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1 Introduction

The interest of this paper is to discretise the Stokes problem with non-standard
boundary conditions. In [1], a hybrid discontinuous Galerkin (hdG) method was
proposed and analysed for this problem. The finite element method used was
the combination of BDM elements of order k for the velocity, and discontinuous
elements of order k — 1 for the pressure. In this paper we increase the order of
the pressure space to k, while keeping the order for the velocity space fixed as k.
Since this pair does not satisfy the inf-sup condition, a stabilisation term needs to be
added.

The stabilisation term referred to above can be built using a diversity of
approaches, but, roughly speaking, the stabilisation can be residual or non-residual.
In [8] the authors added a mesh-dependent term penalising the gradient of the pres-
sure to the formulation. Later, in [14] this method was restricted and reinterpreted
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as a Petrov—Galerkin scheme leading to the first consistent stabilised method, and
further developments were presented in the works [7] and [13]. For a review of
different residual stabilised finite element methods for the Stokes problem, see the
review paper [2].

Now, due to their nature, residual methods include unphysical couplings to the
formulation, and modify all the entries of the stiffness matrix. Hence, non-residual
methods where only a positive semi-definite term penalising the pressure is added
have also being proposed. Examples of this type of methods are the pressure
gradient projection [9] and local pressure gradient stabilisation [3]. The methods
just mentioned typically use two nested meshes in order to build the method. Thus,
to avoid this complication, the local pressure gradient stabilisation has been also
presented on the same mesh in [12]. Additionally, methods that use fluctuations of
the pressure gradient are not effective when the finite element space for pressure
is the piecewise constant space. The usual way to overcome this is to add pressure
jumps to the formulation, as it has been done, e.g., in [16]. These have been shown
to be very effective, but they do somehow temper with the data structure of the code.
To avoid this, the authors in [10] present an approach that is based on polynomial-
pressure-projection. This method works for low order of polynomials as was shown
in [4], and preserves symmetry of the original equation.

In the light of the discussion of the previous paragraphs, in this work we propose
a stabilised hdG method for the Stokes problem with non-standard boundary condi-
tions. The method is reminiscent of the Dorhmann-Bochev method (from [10]), but
uses the same velocity space used in the hdG method from [1].

1.1 Notations and Model Problem

Let € be an open polygonal domain in R? with Lipschitz boundary I' := Q.
We use boldface font for tensor or vector variables e.g. u is a velocity vector field.
The scalar variables will be italic e.g. p denotes pressure scalar value. We define
the stress tensor 0 := vVu — plI (where v > 0 is the fluid viscosity and I is
the identity matrix) and the flux as 0, := ¢ n. In addition, we denote normal and
tangential components as follows u,, :=u - n, u; :=u - t, o, := 6y - B, where n is
the outward unit normal vector to the boundary I" and ¢ is a vector tangential to "
such thatn -t = 0.
For D C , we use the standard L?(D) space with the following norm

I£1Ip = /;) f%dx forall f € L%(D).
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Let us define, for m € N, the following Sobolev spaces
H" (D) := {v cLX(D): Va| <m % e L2(D)} ,
H (div, D) = {v c[LXD)?: V-ve LZ(D)} ,

lee] ‘e
MQT. In addition, we
1 2

will use the standard semi-norm and norm for the Sobolev space H" (D)

where, for @ = (a1, @) € N2, |¢| = a] + a2, and 9% =

m
|f ey == Y 1% Flps 1 Gy = D1 f 1y ¥V f € H™(D).
k=0

loe|=m

In this work, we consider the two dimensional Stokes problem with tangential-
velocity and normal-flux (TVNF) boundary conditions

—vAu +Vp = f inQ,

V-u=0 inQ,

(1
O =g onl,
Uy =0 onT,

where u : © — R? is the unknown velocity field, p : Q — R the pressure, v > 0
the viscosity, which is considered to be constant, and f € [L2(Q)]?, g € LA(I') are
given functions. The restriction to homogeneous Dirichlet conditions on u; is made
only to simplify the presentation.

Let {74}, be a regular family of triangulations of © made of triangles. For
each triangulation 7T, &, denotes the set of its edges. In addition, for each of element
K € Ty, hg = diam(K), and we denote i := maxgc7; hx. We define following
Sobolev spaces on the triangulation 7, and the set of all edges in &,

L&) = {u - vlg e LAE)VE ¢ 5h},
H"(T;) = {v cL2(Q): vlx € H"(K)VK € Th} form € N,
with the corresponding broken norms.
Now we will introduce the finite element spaces that discretise the above spaces.
Let £ > 1. We start by introducing the velocity and pressure spaces. To discretise

the velocity u we use the Brezzi—-Douglas—Marini space (see [5, Section 2.3.1]) of
order k > 1 defined by

BDM} = |y € H @iv. @) : wilk € [P (K)] VK € Ta.
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Associated to this space, we introduce the BDM projection IT¢ : [H1(Q)]*? —
BDM l’l‘ defined in [5, Section 2.5]. The pressure is discretised using the following
space

0f i={an € L2@: aulx € Pe(K) VK € Ta.

Associated to this space we define the local L*(K)-projection \I/’I‘< . L3(K) —>
Py (K) for each K € 7T, defined as follows. For every w € L? (K), \Il],‘<(w) is
the unique element of Py (K) satisfying [ Wk (wyvpdx = [ wopdx Yo, €
Py (K) , and we define the continuous projection Wk|g = \Il/1‘< forall K € 7.

The last ingredient needed in the method described below is a finite element
space associated to a family of Lagrange multipliers associated to the edges of the
triangulation. These multipliers will be denoted by # and are meant to approximate
the tangential trace of the velocity # on the edges of the triangulation. For this, and
in order to propose a discretisation with fewer degrees of freedom, we discretise the
Lagrange multiplier & using the space

M = [ﬁh € L2 (&) : thlg € Py (E) YE €, iy =0on r].

Furthermore, we introduce for all E € &, the L2(E)-pr0jection CIDIE-_1 - L*(E) —
Px_1 (E) defined as follows. For every w € L% (E), d>’;1(u~)) is the unique element
of Px_1 (E) satisfying [, CI>]1‘{1(1Z))17;, ds = [p Wiy ds VU, € Py (E), and we
denote dF—1 : L2 (Eh) — M,]l‘_1 defined as CIDk_1|E = (bll‘;_l for all E € &,.

2 The Stabilised Method

Our approach is to write the discrete problem with the same degree of polynomials
for velocity and pressure spaces. In other words, denoting V;, := BDM ,’: X M ,]1‘51,

we want to use the space Vj, x Qﬁ, instead of V}, x Qll‘l_1 as it was done in [1]. To
do this, we need the proper stabilisation term, because this choice of spaces does
not guarantee inf-sup stability.

The first ingredient in the definition of the stabilised method for (1) we use the
same bilinear forms as in [1], this is

a ((wh, wn) . (vas ﬁh)) = Z (/K vVwy, : Vuy, dx

KeTy

—/aKv(a,,wh)t((vh),—f)h) ds+ef v((wn), — Bn) (duv), ds

K
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+th / (), — wr) @ ' ((vn); — 1) ds)
K JOK

b((vh,ﬁh),qh> = Z /thv. vy, dx,

KeTy,

where ¢ € {—1, 1} and t > 0 is a stabilisation parameter. In addition, to compensate
for the non-inf-sup stability of the finite element spaces we have chosen, we
introduce the bilinear form

1 _ _
s (Ph,CIh) = 5 /Q (Ph —yk lPh) (qh — gk lqh) dx.

With these ingredients we can now present the finite element method analysed in
this work: Find (up, iin, pr) € Vi x QX such that for all (vy, oy, qn) € Vi x Ok

A ((”h: ins pr) - (i, O, %)) = / Sfop dx +/ 8(vn), ds, (2)
Q r
where

A ((”hs ins ph) - (n. O, Qh)) =a ((uh, in) , (vn, fm)) +b ((vh, Un) Ph)

+b ((uh, in) qh) — s (pnsan) -

2.1 Well-Posedness of the Discrete Problem

Let us consider the following norm on Vj, (see [1, Lemma 3.2] for a proof that this
is actually a norm in Vp,)

2
1 (wn ) 112 =0 (|wh|§,1(,<> + i |dnwn |2 + i @41 (), — uvh)HaK> :
KeTy

The first step towards proving the stability of Method (2) is the following weak
inf-sup condition for b.

Lemma 1 There exist constants Cy, Co > 0, independent of hg and v, such that

b ((”hv Un) s 61h>
sup ——————=

— >C —C” — k-l H Vg, € OF.
o oyeve 1 (on Tn) 11 tanlg = C2 fa n|lg  Yan € Q)

3)
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Proof We consider an arbitrary g, € Q];l. Let Q2 be a convex, open, Lipschitz set
such that Q C Q, and let us consider following extension

~ . Jgnin Q
“=0 m\Q -

Let now ¢ be the unique weak solution of the problem

—A¢ =G inQ
¢=0 onoQ2 "’

Since € is convex, then ¢ e H%(Q). Then w := Vé|q belongs to [H'(2)]?, and
for w := wy,

b((w.@).q1) = gl Van € Of. )
In addition, applying standard regularity results, see [5, Section 1.2], we get
lwligi@) = IVellgg) < cilignlle ®)

2
In [1, Lemma 3.5] it is shown that there exists a Fortin operator IT : [H1 (Q)] —
Vy, satisfying the following condition: for all v € [H'(£2)]? the following holds

b((v.5). 1) =b (MW .q1) Vaue0f™, ©)
T @) 11 < CV/V 0l g1 - 0

Let (wp, wy) = II(w), then thanks to (6), (4) and the continuity of b (see [1,
Lemma 3.3])

(om0 ) =5 (080 ) 0 (01,5 50.09)

> Nanld =2 | D2 twn = wl ) Jan — ¥ a] .
KeTy,

Using the approximation properties of the BDM interpolation operator (see [5,
Preposition 2.5.1]) and (5)

. 1 _
b ((wh, W) , 61h> > (all%llsz — 203 H% — vy, HQ) Wy

> <c1 lanlle = C2 |an — ¥*'as HQ> 11 o, ) 111
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where, in the last estimate we have used the stability of the Fortin operator II in the

[I| - ||| norm (7). This proves the result with C; = ﬁ and C; = ézf/% |

Before showing an inf-sup condition, we prove the continuity of bilinear form A.

Lemma 2 There exists a constant C > 0 such that, for all (wh, ﬁ)h) , (vh, f)h) eV
andry, qn € Qﬁ, we have

< ClII (wa> Was 1) Halll (vr, Oy gn) -

®)

‘A ((wh, Why ) » (Vns On, 6]h)>

Proof We use the continuity of the bilinear forms (see [1, Lemma 3.3]) and the fact
that the projection is a bounded operator. O

The final step towards stability is proving the inf-sup condition for bilinear form A.

Lemma 3 There exists B > 0 independent of hx such that for all (wh, Wy, rh) S
Vi x QK the following holds

A ((wh, li)h, rh) s (vh, ﬁh, qh)>
sup

= > Bl (wn, Wa, ra) e (9)
(on.Tn.qn) Vi x O 1 (i, Ons qn) |1n

As a consequence, Problem (2) is well-posed.

Proof Let (wh, Wh, rh) € Vp x Q’,‘l. The idea of the proof is to construct an
appropriate (vh, Up, qh) such that

A ((Wh, Wi, rn) » (i, O, Qh)) > cll| (wr, Wiy ra) a1 (V8 Ons gn) -

To achieve that we use coercivity of a (see [1, Lemma 3.4]), continuity of a (see [1,
Lemma 3.3]) and Lemma 2. For details see [6]. m]

2.2 Error Analysis

In this section we present the error estimates for the method. The addition of the
stabilising bilinear form s(-, -) introduced a consistency error. However according
to [4], this should not be viewed as a serious flaw, as this consistency error can be
bounded in an optimal way. The following result is the first step towards that goal.

2
Lemma4 Let (u,p) € [H1 ()N H? (7}1)] x L% () be the solution of the
problem (1) and u = u; on all edges of &,. If(uh, iy, ph) eV, x Q];l solves (2),
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then for all (vh, Uh, qh) eV, x Qﬁ the following holds
A ((u — Up, u— ﬁhv p— ph) ) (vhv 6}‘[5 Qh)> =S (ps Qh) . (10)
Next, we introduce the following norm
[, &, p)|I (e, )| + ! Pl (11)
u,u, = |||(u, u — )
Pllln ﬁ Pl

and prove the following variant of Cea’s lemma [11, Lemma 2.28] for this stabilised
Stokes problem.

2
Lemma 5 Let (u, p) € [H1 ()N H? ('ﬁl)] x L% () be the solution of the

problem (1) and u = u; on all edges of &. If(uh, iy, ph) eV, x Qﬁ solves (2),
then there exists C > 0, independent of h and v, such that

I (w — wn, @ — i, p— p) llln <C inf I (# = v, it = On, p = qn) llln
v n.qn ) €V x OF
¢ k—1

€yt 1

+ NG Hp P|, 12)

Proof 1tis a combination of Lemmas 1, 2 and 3. For details see [6]. O

2
Lemma 6 Let (u, p) € [H1 ()N H? (771)] x L% () be the solution of the

problem (1) and u = u; on all edges of &. If(uh, iy, ph) eV, x Qﬁ solves (2),
then there exists C > 0, independent of h and v, such that

o~ 1
I (4 — it — i, p— pi) llln < CH* (ﬁnunﬂm(m + ﬁnpnmm)> .

Proof 1t is a combination of [1, Lemmas 3.8] and Lemma 5 with the local L2-
projection approximation [11, Theorem 1.103]. O

3 Numerical Experiments

The computational domain is the unit square Q = (0, 1)>. We present the results
for k = 1, that is the discrete space is given by BDM; X M}?,o X Q}l. We test
both the symmetric method (¢ = —1) and the non-symmetric method (¢ = 1). We
have followed the recommendation given in [15, Section 2.5.2] and taken T = 6.
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We choose the right hand side f and the boundary condition g such that the exact
solution is given by

u = curl [(1 — cos((1 — x)2)> sin(x2) sin(y?) (1 — cos((1 — y)z)):| . p=tan(xy).

In Fig. 1a and b we depict the errors for both the symmetric and non-symmetric
cases, respectively. We can see that they not only validate the theory from Sect. 2.2,
but also perform an optimal h? convergence rate for ||u — uy| q. Furthermore, we
observe an increased order of convergence for ||p — pp| . In fact, the error seems
to decrease with O (h3/?), rather than the O (h) predicted by the theory.

To stress the last point made in the previous paragraph, in Table 1 we compare
the L2 error of the pressure (||p — pnllq) for hdG method introduced in [1] and
stabilised hdG method from Sect.2. Columns p; € Q% are associated with hdG
method and pj, € Q}l with stabilised hdG ones. There, we confirm that the pressure

17 ol
or alt
“1r
— 27
=2 g S
: “ &
g ® |« [~ o
2 4t —o—|[[(u = an, @ — )] A =7 eIl = a, @ — )]
——|p = pullo 7 ——|lp — prllo
51 --0(h?) 1 S~ -- o)
O(h'?) i e O(B1)
6 —=-0(h) 1 6 —=-0(h)
25 2 15 1 05 25 2 a5 05
log(h) log(h)
(@) (b)
Fig. 1 Convergence the stabilised method with k = 1. (a) Symmetric bilinear form (¢ = —1).
(b) Non-symmetric bilinear form (¢ = 1)
Table 1 Comparison of the error of the pressure ||p — pille
Symmetric bilinear form (¢ = —1) Non-symmetric bilinear form (¢ = 1)
h pn € Q) P € Q) pi € Q) pi € Q)
21 0.152296 0.077228 0.159019 0.090624
272 0.082775 0.041790 0.084875 0.047488
273 0.042620 0.020500 0.043313 0.009449
24 0.021357 0.008338 0.021513 0.003516
2-3 0.010676 0.003083 0.010707 0.001269
26 0.005340 0.001105 0.005346 0.002171
277 0.002671 0.000392 0.002672 0.000453

2-8 0.001336 0.000139 0.001336 0.000161
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error for the stabilised version is much smaller than the one for the inf-sup stable
case, in addition to having an increased order of convergence.

4 Conclusion

In this work we have applied the idea introduced in [10] to stabilise the hdG
method proposed in [1] for the Stokes problem with TVNF boundary conditions.
The method adds a simple, symmetric, term to the formulation, and allowed us to
use a higher order pressure space, which, in turn, improved the pressure convergence
(although a proof of this fact is, in general, not available). This approach was
also applied to NVTF boundary conditions (see [6]) and can be used for other
discontinuous Galerkin methods that deal with Stokes or nearly incompressible
elasticity problems.

Future testing using higher order discretisations is needed to assess whether this
approach provides an increase of the convergence rate for the pressure. Thus, the
numerical tests with higher order of polynomials for discontinuous finite methods
is interest for further research to look for the improvement of the convergence.
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