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Abstract

The design of a complex system warrants a compositional methodology, i.e.,
composing simple components to obtain a system that meaningfully exhibits
their collective behavior. We propose an automaton-based paradigm for compo-
sitional design of such systems where an action is accompanied by one or more
preferences. At run-time, these preferences provide a natural fallback mechanism
for the component, while at design-time they can be used to reason about the
behavior of the component in an uncertain physical world. Using algebraic
structures on preferences and actions, we can compose formal representations
of individual components or agents to obtain a representation of the composed
system, exhibiting intuitively meaningful behavior.

We extend linear temporal logic with two unary connectives that reflect the
compositional structure of actions, and show that it is decidable whether all
behaviors of a given automaton satisfy a formula of this extended logic. We then
show how this logic can be used to diagnose undesired behavior by tracing the
falsification of a specification back to one or more culpable components. Lastly,
we implement a toolchain that compiles our automata to Maude, allowing us to
apply the rich model checking capability of Maude to verify agent behavior.

1. Introduction

Consider the design of a software package that steers a crop surveillance
drone. Such a drone should survey a field and relay the locations of possible
signs of disease to its owner. There are a number of concerns at play, including
but not limited to maintaining altitude, battery levels and distance from birds of
prey. In such a situation, it is best practice to isolate these separate concerns into
different modules — allowing for code reuse, and requiring the use of well-defined
protocols in case coordination between modules is necessary. One would also
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like to verify that the designed system satisfies desired properties, such as “even
with little energy left, the drone can always reach the charging station”.

In the event that the designed system violates its verification requirements
or exhibits behavior that does not conform to the specification, it is often useful
to have an example of such behavior. For instance, if the surveillance drone fails
to maintain altitude, an example of behavior where this happens could tell us
that the drone attempted to reach the far side of the field and ran out of energy.

Additionally, failure to verify an LTL-like formula typically comes with a
counterexample — indeed, a counterexample arises from the automata-theoretic
verification approach quite naturally [51]. Taking this idea of diagnostics one
step further in the context of a compositional design, it would also be useful to be
able to identify the components responsible for allowing a behavior that deviates
from the specification, whether this behavior comes from a run-time observation
or a design-time counterexample to a desired property. The designer then knows
which components should be adjusted (in our example, this may turn out to be
the route planning component), or, at the very least, rule out components that
are not directly responsible (such as the wildlife evasion component).

In this paper, we propose an automata-based paradigm based on soft con-
straint automata [2, 32], called soft component automata (SCAs1). An SCA is a
state-transition system where transitions are labeled with actions and preferences.
Higher-preference transitions typically contribute more towards the goal of the
component; if a component is in a state where it wants the system to move north,
a transition with action north has a higher preference than a transition with
action south. At run-time, preferences provide a natural fallback mechanism for
an agent: in ideal circumstances, the agent would perform only actions with
the highest preferences, but if the most-preferred actions fail, the agent may be
permitted to choose a transition of lower preference. At design-time, preferences
can be used to reason about the behavior of the SCA in suboptimal conditions,
by allowing all actions whose preference is bounded from below by a threshold.
In particular, this is useful if the designer wants to determine the circumstances
where a property is no longer verified by the system.

Because the actions and preferences of an SCA reside in algebraic structures,
we can define a composition operator on SCAs that takes into account the
composition of actions as well as preferences. The result of composition of two
SCAs is another SCA where actions and preferences reflect those of the operands.
As we shall see, SCAs are amenable to verification against formulas in linear
temporal logic (LTL), i.e., one can check whether the behavior of an SCA is
contained in the behavior allowed by a formula of LTL. Moreover, SCAs can
be compiled to Maude, which allows us to use the model checking tools present
there to verify their behavior.

Soft component automata are a generalization of constraint automata [5]. The
latter can be used to coordinate interaction between components in a verifiable
fashion [3]. Just like constraint automata, the framework we present blurs the

1Here, we use the abbreviation SCA exclusively to refer to soft component automata.
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line between computation and coordination — both are captured by the same
type of automata. Consequently, this approach allows us to reason about these
concepts in a uniform fashion: coordination is not separate in the model, it is
effected by components which are inherently part of the model.

The contributions of this paper are as follows. First, we propose an automata-
based and compositional design paradigm for autonomous agents in which robust-
ness is a first-class concept, by allowing the designer to specify alternative actions
that are available in less-than-ideal circumstances. Using these alternatives, an
agent can still achieve some subset of its goals or its original goals to a lesser
degree. Second, we put forth a dialect of LTL that accounts for the compositional
structure of actions and can be used to verify guarantees about the behavior of
components, as well as their behavior in composition. We also show that whether
the behavior of an automaton satisfies the specification in an LTL formula is
decidable in our model. Third, exploiting the algebraic structure of preferences,
we propose a method to trace errant behavior back to one or more components.
This method can be used with both run-time and design-time failures: in the
former case, the behavior arises from the action history of the automaton, in
the latter case it is a counterexample obtained from verification. Fourth, we
describe a compiler that first translates a specification of our automata in an
intermediate representation based on the Reo coordination language, and then
outputs a Maude program that implements the automata. This Maude program
can then be used to ask verification questions (matching the proposed dialect of
LTL), and its output can be used in diagnosis.

The remainder of this paper is organised as follows. In Section 2, we mention
some related work; in Section 3 we discuss the necessary notation and mathemat-
ical structures. In Section 4, we introduce soft component automata, along with
a toy model. We discuss the syntax and semantics of the LTL-like logic used to
verify properties of SCAs in Section 5. In Section 6, we propose a method to
extract which components bear direct responsibility for a failure. In Section 7,
we describe the implementation of an SCA-to-Maude compiler, and show how its
output can be leveraged for verification and diagnosis. Our conclusions comprise
Section 8, and some directions for further work appear in Section 9.

Acknowledgements. The authors would like to thank Vivek Nigam and the
anonymous referees for their valuable feedback. This work was partially supported
by ONR grant N00014–15–1–2202 and the ERC Starting Grant ProFoundNet
(grant code 679127).

2. Related work

The algebraic structure for preferences called the constraint semiring was
proposed by Bistarelli et al. [8, 7], to reason about a type of constraint satisfaction
problem where constraints are tagged with preference values that signal the need
for a constraint to be satisfied. Further exploration of such structures appears
in [9, 22]; composition of preference structures is discussed in [25, 32].
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The structure we propose for modeling actions and their compositions can
be thought of as an algebraic reconsideration of static constructs [26]. Both our
formalism and static constructs are intended as a handle on how the actions
of individual subsystems combine into the actions of the system at large. In
contrast with static constructs, however, our method is more hierarchical, because
actions are composed in a pairwise manner. Consequently, our approach is more
compositional: actions of subsystems compose into actions of a larger subsystem,
which may yet compose into actions of an even larger subsystem; the static
constructs encountered in op. cit. apply to only one such step.

The automata formalism used in this paper generalizes soft constraint au-
tomata [2], which were originally proposed to give descriptions of Web Services [2];
these are, in turn, based on constraint automata [5], an automata model used to
give an operational semantics to the graphical coordination language Reo [1].
In [32], soft constraint automata were first used to model fault-tolerant, compo-
sitional autonomous agents. Soft component automata come with an abstract
view on actions and their composition, whereas for soft constraint automata this
notion is embedded in the concept of ports and constraints imposed on those
ports for each transition. Our perspective on actions allows us to treat them
more abstractly, for instance by reasoning about composability of actions, a
notion that finds its way into the logic that we use for verification.

Weighted automata were initially introduced by Schützenberger [48], and are
used to qualitatively reason about the acceptance of a word. Schützenberger
characterized the behavior of such automata as rational formal power series,
where weights are algebraically defined as elements of a semiring. Several
formalisms were shown to be equivalent to describe the behavior of weighted
automata, such as rational series, linear presentations, or quantitative logics [18].
A version of Büchi’s theorem is presented for weighted automata over finite
words in [17]: the formal power series definable by certain weighted sentences
in monadic second-order logic (MSO) coincide with the series recognizable by
weighted automata. In [19], this result is extended to weighted Büchi automata
over infinite words. Our use of weights is slightly different, in the sense that
we map a word to a sequence of weights, instead of their product. We use the
sequence of weights to define a partial order on words sharing the same prefix.
The “diagnostic preference” introduced in Section 6, is the closest related work
with weighted automata: each word is mapped to a weight, and its acceptance
condition depends on whether the weight is below the threshold.

Using preference values to specify the behavior of autonomous agents is also
explored from the perspective of rewriting logic in the soft agent framework [49,
50]. Experiments with the soft agent framework show that behavior based
on soft constraints can indeed contribute to robustness [40]. The soft agent
framework has been extended with a family of generic fault models, protocols
to specify desired behavior, constraint solving techniques for checking that a
trace is compliant with a protocol, and algorithms to detect local deviations
from expected effects of actions. A notion of gedankenexperiment (c.f. [45]) is
proposed to test if a given fault can be blamed for failure to follow a protocol [34].
In the extended soft agent work the emphasis is put on finding the kinds and
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number of faults for which the agents ability to adapt, using preferences, is
insufficient, assuming that in the absence of faults the agents will succeed in
carrying out the specified protocol.

Sampath et al. [47] discuss methods to detect unobservable errors based on
a model of the system and a trace of observable events; others extended this
approach [14, 43] to a multi-component setting. Casanova et al. [11] wrote about
fault localisation in a system where some components are unobservable, based
on which computations (tasks involving multiple components) fail. In these
paradigms, one tries to find out where a runtime fault occurs; in contrast, we try
to find out which component is responsible for undesired behavior, i.e., behavior
that is allowed by the system but not desired by the specification.

A general framework for fault ascription in concurrent systems based on
counterfactuals is presented in [23, 24]. Formal definitions are given for necessary
and/or sufficient conditions under which failures in a given set of components
cause a system to violate a given property. Components are specified by sets
of sets of events (analogous to actions) representing possible correct behaviors.
A parallel (asynchronous) composition operation is defined on components,
but there is no notion of composition of events or explicit interaction between
components. A system is given by a global behavior (a set of event sets)
together with a set of system component specifications. The global behavior,
which must be provided separately, includes component events, but may also
have other events, and may violate component specifications (hence the faulty
components). In our approach, global behavior is obtained by component
composition. Undesired behavior may be local to a component or emerge as the
result of interactions among components.

Fontana et al. [37] address the problem of finding causal relations among
events in traces generated by stochastic simulation of rule based systems (specif-
ically cell signaling systems modeled in the Kappa language). An event is the
application of a rule instance in a particular context at particular time. They are
interested in questions such as if event e0 had not occurred would event e1 have
occurred?. To answer this question, the authors introduce a notion of counterfac-
tual trace, (τ, i, τ ′), where τ is the ‘factual trace’, i represents the intervention
corresponding to the blocking of a given event, and τ ′ is a counterfactual to τ
where the given event did not happen. The challenge is to formalize the property
that τ ′ agrees with τ as much as possible, while avoiding the blocked event,
which is done in this paper by adapting the stochastic simulation structure. The
authors give probabilistic semantics to statements of the form τ |= [i]ψ (had
the intervention i happened in τ then ψ would have been true), by sampling
counterfactual traces and evaluating the probability of τ ′ satisfying ψ. They
refine the resulting causal relations using notions of enabling and prevention.
The authors point out that systematic methods to identify events to test for
causality are missing although they mention some application specific heuristics.
We regard preferences and probabilities as different dimensions in defining the
space of possible actions/events. Our models focus on preferences (which action
is better in some sense, controlled by the agent) while the Kappa models work
with probabilities (which event is more likely, controlled by the environment).
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Considering the two dimensions, it is interesting to consider: (1) how the notion
of counterfactual trace can be adapted to traces generated by exploring different
preferences; and (2) whether there is an extension of our model with probabilis-
tic environments (for example fault/failure models) where the above notion of
counterfactual trace applies fairly directly.

In LTL, a counterexample to a negative result arises naturally if one employs
automata-based verification techniques [42, 51]. In this paper, we further ex-
ploit counterexamples to gain information about the component or components
involved in violating the specification. The application of LTL to constraint
automata is inspired by an earlier use of LTL for constraint automata [3].

Some material in this paper appeared in the first author’s master’s thesis [30].

3. Preliminaries

If S is a set, then 2S denotes the set of subsets of S, i.e., the powerset of S.
We write S∗ for the set of words over S, and if w ∈ S∗ we write |w| for the length
of w. We write w(n) for the n-th letter of w (starting at 0). Furthermore, let
Sω denote the set of functions from N to S, also known as streams over S [46].
We define for w ∈ Sω that |w| = ω (the smallest infinite ordinal). Concatenation
of a stream or word to a word is defined as expected.

We use the superscript ω to denote infinite repetition — for instance, writing
w = (01)

ω
for the infinite stream of alternating zeroes and ones. We write Sπ for

the set of eventually periodic streams in Sω, i.e., w ∈ Sω such that there exist
wh, wt ∈ Σ∗ with w = wh ·wωt . We write w(k) with k ∈ N for the k-th derivative
of w, which is given by w(k)(n) = w(k + n).

A tree over a set S is a pair T = 〈N,λ〉, where N ⊆ N∗ is non-empty and
prefix-closed (i.e., if wx ∈ N then w ∈ N), and λ : T → S is the labelling
function. We write T0 for the head of T , which is given by λ(ε). A branch of
T is a prefix-closed set N ′ ⊆ N such that if w ∈ N ′, then there exists exactly
one n ∈ N such that wn ∈ N ′; note that a branch may be infinite if the tree has
infinitely many nodes. We write T (S) for the set of trees over S.

We write B(S) for the set of all positive Boolean formulas over S, i.e., the
expressions built from elements of S, the constants false and true, and the
operators ∨ and ∧. Also, S(S) is the set of all semilattice formulas over S, i.e.,
the subset of B(S) built from elements of s, the constant false and the operator
∨. When S′ ⊆ S and B ∈ B(S), we write S′ |= B if B is true when all s ∈ S′
are evaluated as true, and all s ∈ S \ S′ are evaluated as false, where ∨ and ∧
are assigned their obvious meaning.

If S is a set and � : S×S → S a function, we refer to � as an operator on S
and write p� q instead of �(p, q). We always use parentheses to disambiguate
expressions if necessary. To model composition of actions, we need a slight
generalization. If R ⊆ S × S is a relation and � : R→ S is a function, we refer
to � as an R-operator on S; we also use infix notation by writing p� q instead
of �(p, q) whenever pRq.
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If � : R→ S is an R-operator on S, we refer to � as idempotent if p� p = p
for all p ∈ S such that pRp, and commutative if p� q = q� p whenever p, q ∈ S,
pRq and qRp. Lastly, � is associative when for all p, q, r ∈ S, pRq and (p� q)Rr
hold if and only if qRr and pR(q � r); moreover, either of these implies that
(p� q)� r = p� (q � r). When R = S × S, we recover the canonical definitions
of idempotency, commutativity and associativity.

A constraint semiring, or c-semiring, provides a structure on preference values
that allows us to compare the preferences of two actions to see if one is preferred
over the other as well as compose preference values of component actions to find
out the preference of their composed action. Formally, a c-semiring [8, 7] is a
tuple 〈E,≤,

⊕
,⊗〉 such that all of the following hold2

(i) 〈E,≤,
⊕
〉 is a complete join-semilattice, i.e., 〈E,≤〉 is a partially ordered

set and
⊕

: 2E → E is the least upper bound operator. Concretely, this
means that if E ⊆ E, then

⊕
E is the least element of E such that for all

e ∈ E it holds that e ≤
⊕
E.

(ii) ⊗ : E × E → E is a commutative and associative operator, such that for
e ∈ E and E ⊆ E, it holds that

e⊗
⊕

E =
⊕
{e⊗ e′ : e′ ∈ E}

We often denote a c-semiring by its carrier; if we refer to E as a c-semiring,
the constituent elements of that c-semiring are denoted as ≤E,

⊕
E, et cetera.

We drop the subscript when only one c-semiring is in context.
One possible model of a c-semiring is W =

〈
R ∪ {∞},≥, inf, +̂

〉
, called the

weighted c-semiring, where inf is the infimum and ≥ (resp. +̂) is comparison
(resp. addition) of reals extended to R ∪ {∞} in the obvious way. In this model,
preferences are expressed in real numbers (or ∞) which signify their “weight”.
We note that if e, e′ ∈ W with e′ ≤W e, i.e., e is at least as preferable as e′ in
W, then in this case e′ ≥ e — values of lower weight express a higher preference.
We will use the weighted c-semiring in examples throughout this paper.

Note that a c-semiring need not be totally ordered. For instance, consider
U =

〈
2{R,W,X},⊇,

⋂
,∪
〉
, called the UNIX c-semiring [6], where preferences are

subsets of {R,W,X} that represent access permissions (i.e., read, write, execute
respectively) required to implement a plan. In this model, e, e′ ∈ U with e′ ≤U e,
i.e., e is at least as preferable as e′ in U, when e′ ⊇ e, i.e., the permissions in e
are contained in e′. Thus, U encodes the “principle of least privilege”, where
alternatives that require fewer privileges are preferred over those that require
more. In particular, {R,W} is incomparable with {X} as far as U is concerned;
indeed, these privilege levels are incomparable: there are contexts where read-
and write-access to a file might give a user more privileges than execute access,
and vice versa.

2We deviate from the notation used in earlier work for the sake of brevity, but any c-semiring
in the sense of [8, 7] is a c-semiring in this sense, and vice versa.
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We write 0 for
⊕
∅ and 1 for

⊕
E (the unique least and greatest elements

of E, respectively). The operator
⊕

induces an idempotent, commutative and
associative binary operator ⊕ : E×E→ E by defining e⊕ e′ =

⊕
({e, e′}). Note

also that e⊕ 0 = e and e⊕ 1 = 1, as well as e⊗ 0 = 0 and e⊗ 1 = e [7].
The least upper bound operator

⊕
uniquely induces a greatest lower bound

operator
∧

E, which we will use later on.3 Lastly, ⊗ is intensive, meaning that
for any e, e′ ∈ E, we have e⊗ e′ ≤ e [7].

4. Component model

We now discuss the component model that we propose for construction of
autonomous agents.

4.1. Component action systems

Observable behavior of agents is the result of the actions put forth by their
individual components; we thus need a way to talk about how actions compose.
For example, in our crop surveillance drone, the following may occur:

• The communication component wants to synchronize the pictures taken
with the base, while the routing component wants to move north. Since
“synchronize” and “move north” are not mutually exclusive, they are said
to compose concurrently into a single action “synchronize while moving
north”, and we say that this action captures the former two actions.

• The drone has a single antenna that can be used for GPS and communi-
cations, but not both at the same time. The component responsible for
relaying pictures has finished its transmission and wants to release the
antenna, while the navigation component wants to get a fix on the location
and requests use of the antenna. In this case, the actions “release privilege”
and “obtain privilege” compose jointly, into a “transfer privilege” action.

• The routing component proposes to move north, while the wildlife avoidance
component notices a hawk approaching from that same direction, and thus
wants to move south. In this case, these actions available to the components
are contradictory in composition: they cannot be composed, jointly or
concurrently. Some other composition of actions from both components
that can be composed needs to be selected for the drone to do anything.

All of these possibilities are captured in the definition below.

3In general, for c-semirings with an infinite carrier, having a complete join-semilattice
structure, i.e., allowing the computation of arbitrary joins, is necessary for this greatest lower
bound operator to exist. For our purposes, one can also define a c-semiring based on a lattice
(with binary meet and join), but we choose the notation in [7] for the sake of continuity.
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Definition 1. A component action system (CAS) is a tuple 〈Σ,},�〉, such that
Σ is a finite set of actions, } ⊆ Σ× Σ is a reflexive and symmetric relation and
� : }→ Σ is an idempotent, commutative and associative }-operator on Σ. We
call } the composability relation, and � the composition operator.

Every CAS 〈Σ,},�〉 induces a relation v on Σ, where for a, b ∈ Σ, a v b if
and only if there exists a c ∈ Σ such that a and c are composable (a} c) and
they compose into b (a� c = b). One can easily verify that v is a preorder;
accordingly, we call v the capture preorder of the CAS.

As with c-semirings, we may refer to a set Σ as a CAS. When we do, we
denote its composability relation, composition operator and preorder by }Σ, �Σ

and vΣ. We drop the subscript when there is only one CAS in context.
We model incomposability of actions by omitting them from the composability

relation; i.e., if south is an action that compels the agent to move south, while
north drives the agent north, we set south 6} north. Note that } is not necessarily
transitive. This makes sense in the scenarios above, where snapshot is composable
with south as well as north, but north is incomposable with south.

As a consequence of the definition of a CAS, we obtain a property akin to
conflict inheritance (as studied for event structures, c.f. [53]). More specifically,
we find that incomposability of actions carries over to their compositions: if
south} snapshot and south 6} north, also (south � snapshot) 6} north. This is
formalized in the following lemma.

Lemma 1. Let 〈Σ,},�〉 be a CAS and let a, b, c ∈ Σ. If a} b but a 6} c, then
(a� b) 6} c. Moreover, if a 6} c and a v b, then b 6} c.

Proof. For the first claim, suppose that (a� b)} c. Then, since � is a commuta-
tive }-operator, we know that (b� a)} c; moreover, since � is an associative
}-operator, it follows that a} c and b}(a� c), the former of which contradicts
the premise that a 6} c. We thus conclude that (a� b) 6} c.

For the second claim, suppose that a 6} c and a v b. Then there exists a
d ∈ Σ such that a} d and a� d = b. By the above, b = (a� d) 6} c.

The composition operator facilitates orthogonal as well as logical composition.
Given actions obtain, release and transfer, with their interpretation as in the
second scenario, we can encode that obtain and release are composable by stipu-
lating that obtain} release, and say that their (logical) composition involves an
exchange of privileges by choosing obtain � release = transfer. Furthermore, the
capture preorder describes our intuition of capturing: if snapshot and move match
the first scenario, with snapshot} north, then snapshot, north v snapshot � north.

Port automata [35] contain a model of a CAS. Here, actions are sets of
symbols called ports, i.e., elements of 2P for some finite set P . Actions α, β ∈ 2P

are compatible when they agree on a fixed set γ ⊆ P , i.e., if α ∩ γ = β ∩ γ, and
their composition is α ∪ β. Similarly, we also find an instance of a CAS in (soft)
constraint automata [5, 2]; see [30] for a full discussion of this correspondence.
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4.2. Soft component automata

Having introduced the structure we impose on actions, we are now ready to
discuss the automaton formalism that specifies the sequences of actions that are
allowed, along with the preferences attached to such actions.

Definition 2. A soft component automaton (SCA) is a tuple
〈
Q,Σ,E,→, q0, t

〉
where Q is a finite set of states, with q0 ∈ Q the initial state, Σ is a CAS and E
is a c-semiring, with t ∈ E the threshold. Lastly, → ⊆ Q× Σ× E×Q is a finite
relation called the transition relation. We write q a, e−−→ q′ when 〈q, a, e, q′〉 ∈ →.

An SCA models the actions available in each state of the component, how much
these actions contribute towards the goal and the way actions transform the state.
The threshold value restricts the available actions to those with a preference
bounded from below by the threshold, either at run-time, or at design-time when
one wants to reason about behaviors satisfying some minimum preference.

We stress here that the threshold value is purposefully defined as part of an
SCA, rather than as a parameter to the semantics in Section 4.4. This allows us
to speak of the preferences of an individual component, rather than a threshold
imposed on the whole system; instead, the threshold of the system arises from
the thresholds of its components, which is especially useful in Section 6.

We depict SCAs in a fashion similar to the graphical representation of finite
state automata: as a labeled graph, where vertices represent states and edges
represent transitions, labeled with elements of its CAS and c-semiring. The
initial state is indicated by an arrow without origin. The CAS, c-semiring
and threshold value will always be made clear where they are germane to the
discussion.

An example of an SCA is Ae, drawn in Figure 1; its CAS contains the
incomposable actions charge, discharge1 and discharge2, and its c-semiring is the
weighted c-semiring W. This particular SCA can model the component of the
crop surveillance drone responsible for keeping track of the amount of remaining
energy in the system; in state qn (for n ∈ {0, 1, . . . , 4}), the drone has n units
of energy left, meaning that in states q1 to q4, the component can spend one
unit of energy through discharge1, and in states q2 to q4, the drone can consume
two units of energy through discharge2. In states q0 to q3, the drone can try
to recharge through charge.4 Recall that, in W, higher values reflect a lower
preference (a higher weight or cost); thus, charge is preferred over discharge1.

Here, Ae is meant to describe the possible behavior of the energy management
component only. Availability of the actions within the total model of the drone
(i.e., the composition of all components) is subject to how actions compose
with those of other components; for example, the availability of charge may
depend on the state of the component modeling position. Similarly, preferences
attached to actions concern energy management only. In states q0 to q3, the

4A more detailed model is possible by extending SCAs with memory cells [29] and using
a memory cell to store the energy level. In such a setup, a state would represent a range of
energy values that determines the component’s disposition regarding resources.
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q0 q1 q2 q3 q4

charge, 0

discharge1, 2

charge, 0

discharge1, 2

charge, 0

discharge1, 2

charge, 0

discharge1, 2

discharge2, 5 discharge2, 5 discharge2, 5

Figure 1: A component modeling energy management, Ae.

component prefers to top up its energy level through charge, but the preferences
of this component under composition with some other component may cause
the composed preferences of actions composed with charge to be different. For
instance, the total model may prefer executing an action that captures discharge2

over one that captures charge when the former entails movement and the latter
does not, especially when survival necessitates movement.

Nevertheless, the preferences of Ae affect the total behavior. For instance,
the weight of spending one unit of energy (through discharge1) is lower than the
weight of spending two units (through discharge2). This means that the energy
component prefers to spend a small amount of energy in a single step. This
reflects a level of care: by preferring small steps, the component hopes to avoid
situations where too little energy is left to avoid disaster.

4.3. Composition

Composition of two SCAs arises naturally, as follows.

Definition 3. Let Ai =
〈
Qi,Σ,E,→i, q

0
i , ti

〉
be an SCA for i ∈ {0, 1}. The

(parallel) composition of A0 and A1 is the SCA
〈
Q,Σ,E,→, q0, t0 ⊗ t1

〉
, denoted

A0 ./ A1, where Q = Q0 ×Q1, q0 =
〈
q0
0 , q

0
1

〉
, ⊗ is the composition operator of

E, and → is the smallest relation satisfying

q0
a0, e0−−−−→0

q′0 q1
a1, e1−−−−→1

q′1 a0} a1

〈q0, q1〉 a0 � a1, e0⊗e1−−−−−−−−−→ 〈q
′
0, q
′
1〉

In a sense, composition is a generalized product of automata, where composition
of actions is mediated by the CAS: transitions with composable actions manifest
in the composed automaton, as transitions with composed action and preference.

Composition is defined for SCAs that share CAS and c-semiring. Absent
a common CAS, we do not know which actions compose, and what their com-
positions are. However, composition of SCAs with different c-semirings does
make sense when the components model different concerns (e.g., for our crop
surveillance drone, “minimize energy consumed” and “maximize covering of
snapshots”), both contributing towards the overall goal. Earlier work on soft
constraint automata [32] explored this possibility. The additional composition
operators proposed there can easily be applied to soft component automata.

A state q of a component may become unreachable after composition, in
the sense that no state composed of q is reachable from the composed initial
state. For example, in the total model of our drone, it may occur that any
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qY qN

move, 0

snapshot, 0

move, 2
pass, 1

pass, 1

Figure 2: A component modeling the desire to take a snapshot at every location, As.

state representing the drone at the far side of the field is unreachable, because
the energy management component prevents some transition for lack of energy.
Contrarily, since the composed automaton has a lower threshold than that of
the components (by intensivity), it may also be the case that there are states in
the composed automaton whose constituent states were previously unreachable
in the components; this happens when the (composed) preference of a transition
along the path outweighs the composed threshold preference.

To discuss an example of SCA composition, we introduce the SCA As in
Figure 2, which models the crop surveillance drone’s objective to take a snapshot
of every location before moving to the next. The CAS of As includes the pairwise
incomposable actions pass, move and snapshot, and its c-semiring is the weighted
c-semiring W. We leave the threshold value ts undefined for now. The purpose
of As is reflected in its states: qY (resp. qN ) represents that a snapshot of the
current location was (resp. was not) taken since moving there. If the drone
moves to a new location, the component moves to qN , while qY is reached by
taking a snapshot. If the drone has not yet taken a snapshot, it prefers to do so
over moving to the next spot (missing the opportunity).5

We grow the CAS of Ae and As to include the actions move, move2, snapshot
and snapshot1 (here, the action αi is interpreted as “execute action α and account
for i units of energy spent”), and } is the smallest reflexive, commutative and
transitive relation such that the following hold: move} discharge2 (moving costs
two units of energy), snapshot} discharge1 (taking a snapshot costs one unit of
energy) and pass} charge (the snapshot state is unaffected by charging). We
also choose move � discharge2 = move2, snapshot � discharge1 = snapshot1 and
pass � charge = charge. The composition of Ae and Ae is depicted in Figure 3.

The structure of Ae,s reflects that of Ae and As; for instance, in state q2,Y

two units of energy remain, and we have a snapshot of the current location. The
same holds for the transitions of Ae,s; for example, q2,N

snapshot1, 2−−−−−−−→ q1,Y is the

result of composing q2
discharge1, 2−−−−−−−→ q1 and qN snapshot, 0−−−−−−→ qY .

Also, note that in Ae,s the preference of the move2-transitions at the top of
the figure is lower than the preference of the diagonally-drawn move2-transitions.
This difference arises because the component transition in As of the former is
qN move, 2−−−−−→ qN , while that of the latter is qY move, 0−−−−−→ qN . As such, the preferences
of the component SCAs manifest in the preferences of the composed SCA.

The action snapshot1 is not available in states of the form qi,Y , because the

5A more detailed description of such a component may count the number of times the drone
has moved without taking a snapshot first, and assign a preference accordingly.
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q0,N q1,N q2,N q3,N q4,N

q0,Y q1,Y q2,Y q3,Y q4,Y

charge, 1 charge, 1 charge, 1 charge, 1

charge, 1 charge, 1 charge, 1 charge, 1

move2 , 5
move2 , 5

move2 , 5
snapshot 1

, 2

snapshot 1
, 2

snapshot 1
, 2

snapshot 1
, 2

move2, 7 move2, 7 move2, 7

Figure 3: The composition of the SCAs Ae and As, dubbed Ae,s: a component modeling energy
and snapshot management. We abbreviate pairs of states 〈qi, qj〉 by writing qi,j .

only action available in qY is pass, which does not compose into snapshot1.

4.4. Behavioral semantics

The final part of our component model is a description of the behavior of
SCAs. Here, the threshold determines which actions have sufficient preference for
inclusion in the behavior. Intuitively, the threshold is an indication of the amount
of flexibility allowed. In the context of composition, lowering the threshold of a
component is a form of compromise: the component potentially gains behavior
available for composition. Setting a lower threshold makes a component more
permissive, but may also make it harder (or impossible) to achieve its goal.

The question of where to set the threshold is one that the designer of the
system should answer based on the properties and level of flexibility expected
from the component; Section 5 addresses the formulation of these properties,
while Section 6 discusses adjusting the threshold.

Definition 4. Let A =
〈
Q,Σ,E,→, q0, t

〉
be an SCA. We say that a stream

σ ∈ Σω is a behavior of A if there exist streams µ ∈ Qω and ν ∈ Eω such that
µ(0) = q0, and for all n ∈ N, we have t ≤ ν(n) and µ(n) σ(n), ν(n)−−−−−−−→ µ(n + 1).
The set of behaviors of A, denoted by L(A), is called the language of A.

Note the similarity between the behavior of an SCA and that of Büchi-
automata [10]; we elaborate on this similarity in [31].

Remark 1. Similar to the semantics of Büchi-automata [10], the semantics
of SCAs does not include finite traces of actions. In particular, this means
that states without outgoing transitions as well as states where all outgoing
transitions are below the threshold (i.e., “deadlock states”), do not play a part
in the semantics. Consequently, the absence (or presence) of traces that lead
to these states cannot be subject to verification. Since the use case for our
model is systems that should operate indefinitely, we (tacitly) exclude SCAs
with states where no outgoing transition is possible, and moreover assume that
the threshold is never so high as to prevent all outgoing transitions of a state.
This assumption, however, comes at the cost of two important caveats.

The first caveat is that deadlock states may arise as a result of composition,
either as a result of the composed threshold, or because the outgoing transitions
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of two (reachable) states all have actions that are incomposable. It is therefore
important to ascertain that a composite system still satisfies the side-condition
on deadlock states — if it does not, then this could indicate that the systems
being composed do not cooperate well, for example because the CAS does not
provide enough composable actions, or because the threshold of one system is
too strict. In the latter case, the designer may elect to lower the threshold of
one or more components, enabling transitions that prevent the deadlock.

The second caveat is that when the threshold of an SCA is increased to
eliminate behavior that violates some desired property, this should not be
achieved by raising the threshold to the point where undesired behavior is
excluded by having the system deadlock at an earlier point. If such an increase
in threshold is necessary to accomplish the desired goal, one could say that the
system prevents bad behavior by crashing, which itself is not desirable.

The example SCAs that we have considered so far avoid deadlocks caused by
a lack of outgoing transitions (even in composition). We briefly return to the
second caveat when we discuss our procedure for eliminating undesired behavior.

Consider σ = 〈snapshot,move,move〉ω and τ = 〈snapshot,move, pass〉ω. We
can see that when ts = 2, both are behaviors of As; when ts = 1, τ is a behavior
of As, while σ is not, since every second move-action in σ has preference 2.
More generally, if A and A′ are SCAs over c-semiring E that differ only in their
threshold values t, t′ ∈ E, and t ≤ t′, then L(A′) ⊆ L(A). In the case of Ae, the
threshold can be interpreted as a bound on the amount of energy to be spent in
a single action; if te < 5, then behaviors with discharge2 do not occur in L(Ae).

Interestingly, if A1 and A2 are SCAs, then L(A1 ./ A2) is not uniquely deter-
mined by L(A1) and L(A2). For example, suppose that te = 4 and ts = 1, and con-
sider L(Ae,s), which contains 〈snapshot〉 ·〈move, snapshot, charge, charge, charge〉ω
even though the corresponding stream of component actions in Ae, i.e., the stream
〈discharge1〉 · 〈discharge2, discharge1, charge, charge, charge〉ω is not contained in
L(Ae). This is a consequence of a more general observation for c-semirings,
namely that t ≤ e and t′ ≤ e′ is sufficient but not necessary to derive t⊗t′ ≤ e⊗e′.

5. Linear temporal logic

We now turn our attention to verifying the behavior of an agent, by means
of a simple dialect of linear temporal logic (LTL). We extend LTL in order to
reflect the compositional nature of actions in component action systems. This
extension has two aspects, which correspond roughly to v and }: reasoning
about behaviors that capture (i.e., are composed of) other behaviors, and about
behaviors that are composable with other behaviors. For instance, consider the
following scenarios:

(i) We want to verify that in certain circumstances, the drone performs a series
of actions where it goes north before taking a snapshot. This is useful when,
for this particular property, we do not care about other actions that may
also be performed while or as part of going north, for instance, whether or
not the drone engages in communication while moving.
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(ii) We want to verify that every behavior of the snapshot-component is com-
posable with some behavior that eventually recharges. This is useful when
we want to abstract away from the action that allows recharging, i.e., it is
not important which particular action composes with charge.

Our logic accommodates both scenarios, by providing two new connectives: �φ
describes every behavior that captures a behavior satisfying φ, while }φ holds
for every behavior composable with a behavior that satisfies φ.

5.1. Syntax and semantics

The syntax of the LTL dialect we propose for SCAs contains ports conjunction,
negation, the U (until) and X (next) connectives, as well as two new unary
connectives � (captures) and } (composable), which work as follows:

• The captures-connective � is intended to extend the semantics of a formula
to the behavior that it captures. More precisely, if τ ∈ Σω is described by
φ and σ ∈ Σω captures this τ at every action — i.e., for all n ∈ N, we have
τ(n) v σ(n) — then σ is a behavior described by �φ.

• The composable-connective } is aimed at translating the semantics of a
formula to describe the behavior composable with it. If τ ∈ Σω is described
by φ, and this τ is composable with σ ∈ Σω at every action — i.e., for all
n ∈ N, we have τ(n)}σ(n) — then σ is described by }φ.

Formally, given a CAS Σ, the language LΣ is generated by the grammar

φ, ψ ::= > | a ∈ Σ | φ ∧ ψ | φU ψ | X φ | ¬φ | �φ | }φ

As a convention, unary connectives take precedence over binary connectives.
For example, �φU ¬ψ should be read as (�φ)U(¬ψ). We use parentheses to
disambiguate when necessary.

The semantics is given as a relation |=Σ between Σω and LΣ. More precisely,
|=Σ is the smallest such relation that satisfies the inference rules in Figure 4.
Although the atoms are formulas of the form φ = a ∈ Σ that have an exact
matching semantics, in general one can use predicates over Σ. We chose not to
use predicates here to simplify the presentation of examples.

As usual, we obtain disjunction (φ ∨ ψ), implication (φ→ψ), “always” (�φ)
and “eventually” (♦φ) from these connectives. For example, ♦φ is defined as

>U φ, meaning that, if σ |=Σ ♦φ, there exists an n ∈ N such that σ(n) |=Σ φ.
The operator } has an interesting dual that we shall consider momentarily.

We can extend |=Σ to a relation between SCAs (with underlying c-semiring
E and CAS Σ) and formulas in LΣ, by defining A |=Σ φ to hold precisely when
σ |=Σ φ for all σ ∈ L(A). In general, we can see that fewer properties hold as the
threshold t approaches the lowest preference in its c-semiring, as a consequence of
the fact that decreasing the threshold can only introduce new (possibly undesired)
behavior. Limiting the behavior of an SCA to some desired behavior described
by a formula thus becomes harder as the threshold goes down, since the set of
behaviors exhibited by that SCA is typically larger for lower thresholds.
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σ ∈ Σω

σ |=Σ >
σ ∈ Σω

σ |=Σ σ(0)

σ |=Σ φ σ |=Σ ψ

σ |=Σ φ ∧ ψ
σ 6|=Σ φ

σ |=Σ ¬φ

∀k < n. σ(k) |=Σ φ σ(n) |=Σ ψ

σ |=Σ φU ψ

σ(1) |=Σ φ

σ |=Σ X φ

τ |=Σ φ τ vω σ
σ |=Σ �φ

τ |=Σ φ τ }ω σ

σ |=Σ }φ

Figure 4: Semantics of our LTL dialect. In these rules, the free variables in the premise (i.e.,
n in the fifth rule and τ in the last two rules) are implicitly quantified existentially; their
types should be apparent. We also define vω and }ω as pointwise extensions of v and }, i.e.,
σ vω τ when, for all n ∈ N, it holds that σ(n) v τ(n), and similarly for }ω .

We view the tradeoff between available behavior and verified properties as
essential and desirable in the design of robust autonomous systems, because it
represents two options available to the designer. On the one hand, she can make
a component more accommodating in composition (by lowering the threshold,
allowing more behavior) at the cost of possibly losing safety properties. On the
other hand, she can restrict behavior such that a desired property is guaranteed,
at the cost of possibly making the component less flexible in composition.

Example 1 (No wasted moves). Suppose we want to verify that the agent
never misses an opportunity to take a snapshot of a new location. This is
expressed by

φw = ��(move→X(¬moveU snapshot))

This formula reads as “every behavior captures that, at any point, if the cur-
rent action is a move, then it is followed by a sequence where we do not
move until we take a snapshot”. Indeed, if te ⊗ ts = 5, then Ae,s |=Σ φw,
since in this case every behavior of Ae,s captures that between move-actions
we find a snapshot-action. However, if te ⊗ ts = 7, then Ae,s 6|=Σ φw, since
〈move2,move2, charge, charge, charge, charge〉ω would be a behavior of Ae,s that
does not satisfy φw, as it contains two successive actions that capture move.6

This shows the primary use of �, which is to verify the behavior of a component
in terms of the behavior contributed by its subcomponents.

Example 2 (Room for charging). We can describe the behavior of an SCA
in terms of the behavior it is composable with, by means of the connective }.
For instance, if σ is a behavior of Ae, then the structure of Ae tells us that the
number of non-charge actions between instances of charge is at most four. Now
let τ be σ with every instance of charge replaced by pass. Then σ}ω τ ; hence,

6Recall that move2 is the composition of move and discharge2, i.e., move v move2.
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any behavior of Ae is composable with some behavior where there are at most
four non-pass actions between instances of pass. This allows us to verify (for any
te)

Ae |=Σ }�
(
¬pass→

(
X pass ∨X2 pass ∨X3 pass ∨X4 pass

))
where Xn denotes n applications of X.

In words, the formula on the right-hand side means that every behavior is
composable with (}) some behavior where, at any point (�), if the action is not
(¬) a pass, then (→) one of the next four actions (X · · · ∨X2 · · · ) is a pass.

Example 3 (Verifying a component interface). In the previous example,
we verified that the behavior of a component A is compatible with behavior
captured by some formula. Dually, we can verify that the behavior compatible
with A satisfies a formula. Such a property is useful, because it tells us that, in
composition, A filters out the behaviors of the other operand that do not satisfy
φ. In other words, this tells us something about the behavior imposed by A in
composition. This can be expressed using the }-connective, by checking whether
A |=Σ ¬}¬φ holds: if this is the case, then for all σ, τ ∈ Σω with σ a behavior
of A and σ}ω τ , we have σ 6|=Σ }¬φ, thus in particular τ 6|=Σ ¬φ and therefore
τ |=Σ φ.

More concretely, consider the component Ae. From its structure, we can tell
that the action charge must be executed at least once every five moves. Thus, if
τ is composable with a behavior of Ae, then τ must also execute some action
composable with charge once every five moves. This claim can be encoded by

φc = ¬}¬�
(
X } charge ∨X2} charge ∨ · · · ∨X5} charge

)
If Ae |=Σ φc, then every behavior of Ae is incomposable with a behavior

where, at some point, one of its next five actions is not composable with charge.
Accordingly, if σ ∈ Σω is composable with some behavior of Ae, then, at every
point in σ, one of the next five actions must be composable with charge. Behaviors
that fail to meet this requirement are excluded from composition with Ae.

5.2. Decision procedure

Throughout this section we fix a CAS Σ. We describe a procedure to decide
whether A |=Σ φ holds for a given SCA A and φ ∈ LΣ. This procedure leverages
an existing technique used for deciding LTL formulas [42, 52, 51], which relies
on a type of automata called Büchi-automata.

Definition 5. A Büchi-automaton (BA) is defined as a tuple A =
〈
Q, δ, q0, F

〉
where Q is a finite set of states, with q0 ∈ Q the initial state and F ⊆ Q the
accepting states. Lastly, δ : Q× Σ→ S(Q) is called the transition function of A.

We say that a stream σ ∈ Σω is a behavior of A if there exists a stream µ ∈ Qω
such that µ(0) = q0, and for n ∈ N we have that {µ(n + 1)} |= δ(µ(n), σ(n));
furthermore, there exist infinitely many n ∈ N such that µ(n) ∈ F . The set of
behaviors of A, denoted L(A), is called the language of A.
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The main pattern of decision procedures for LTL-like logics based on Büchi-
automata is to translate both the model under verification, M , and the property
to verify, φ, into BAs AM and Aφ respectively with equivalent semantics, and
then compare the languages of AM and Aφ — specifically, if L(AM ) ⊆ L(Aφ),
then any behavior of M is a behavior accepted by Aφ, and hence M should satisfy
φ. As it turns out, the latter question is, in general, decidable for BAs [51, 20, 21].

Lemma 2. Let A and A′ be BAs. We can decide whether L(A) ⊆ L(A′). As a
matter of fact, in case of a negative answer, we can obtain periodic stream σ
that witnesses this — i.e., such that σ ∈ L(A) but σ 6∈ L(A′).

The challenge, then, is to translate both SCAs and formulas in LΣ into
equivalent Büchi-automata. For SCAs, this translation is fairly straightforward.

Lemma 3. Let A be an SCA. We can construct a BA A′ s.t. L(A) = L(A′).

Proof. Let A =
〈
Q,Σ,E,→, q0, t

〉
; we choose A′ =

〈
Q, δ, q0, F

〉
, where δ is given

by choosing for q ∈ Q and a ∈ Σ:

δ(q, a) =
∨
{q′ ∈ Q : q a,e−−→ q′, t ≤ e}

where
∨

is the obvious generalization of ∨ to subsets of S(Q); it should be clear
that ordering and bracketing of the terms does not matter with regard to L(A).

To see that L(A) = L(A′), it suffices to note that if µ ∈ Qω witnesses that
σ ∈ L(A), then µ also witnesses that σ ∈ L(A′), and vice versa.

We say that a BA A implements φ ∈ LΣ if σ |=Σ φ precisely when σ ∈ L(A).
It remains to show that for φ ∈ LΣ we can find a BA Aφ that implements φ.
Although this translation is strictly possible using only BAs [42], it is more
efficient to first translate φ into a more general type of Büchi-automaton known
as an alternating Büchi-automaton [51].

Definition 6. An alternating Büchi-automaton (ABA) is defined as a tuple
A =

〈
Q, δ, q0, F

〉
, where Q, q0 and F are defined as in BAs, and δ : Q×Σ→ B(Q)

is referred to as the (alternating) transition function of A.
A stream σ ∈ Σω is a behavior of A if there exists a T = 〈N,λ〉 ∈ T (Q) with

T0 = q0, such that (i) if N ′ ⊆ N is a branch of T , then there exist infinitely
many w ∈ N ′ with λ(w) ∈ F , and (ii) if w ∈ N , then

{λ(wn) : n ∈ N, wn ∈ N} |= δ(λ(w), σ(|w|))

As before, the set of behaviors of A, denoted L(A), is called the language of A.

As it turns out, ABAs are exactly as expressive as BAs, as witnessed by the
following lemma due to Miyano and Hayashi [41].

Lemma 4. Let A be an ABA. We can construct a BA A′ s.t. L(A) = L(A′).
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Thus, to implement φ ∈ LΣ using a BA, all we need to do is implement φ
using an ABA. To this end, we first observe that the effects of the connectives
� and } on a formula can be mirrored by manipulating ABAs that implement
their underlying formulas, as follows.

Lemma 5. Let φ ∈ LΣ, and suppose that we can construct an ABA that
implements φ. Then we can construct BAs that implement �φ and }φ.

Proof. We argue the claim for �φ; the case for }φ can be argued analogously.
Suppose Aφ is an ABA implementing φ; by Lemma 4, we obtain a BA A′φ =〈
Q, δ, q0, F

〉
implementing φ. We choose the BA A�φ =

〈
Q, δ′, q0, F

〉
, where

δ′(q, a) =
∨
{δ(q, a′) : a′ ∈ Σ, a′ v a}

We claim that A�φ implements �φ. To see this, suppose σ ∈ L(A�φ); in that
case there exists a µ ∈ Qω such that µ(0) = q0, and for n ∈ N it holds that

{µ(n+ 1)} |= δ′(µ(n), σ(n))

This tells us that if n ∈ N, then there exists an an ∈ Σ with σ(n) v an, and

{µ(n+ 1)} |= δ(µ(n), an)}

If we now choose τ ∈ Σω by setting τ(n) = an, we find that σ vω τ and
τ ∈ L(A′φ). Since A′φ implements φ, it follows that τ |= φ, and thus that
σ |=Σ �φ; the implication in the other direction goes through analogously.

It should be emphasized that the construction above yields a (non-alternating)
BA. This is a consequence of the fact that, to implement �φ, we need to translate
the ABA that implements φ into a BA; if we skip this step, and manipulate
the transition structure of (the ABA) Aφ along the same lines as above, the
resulting ABA does not necessarily implement �φ.

Example 4. Suppose that Σ is the CAS used in earlier examples, and consider
the ABA with three states {q0, q1, q2}, with q1 and q2 accepting, and δ given by

δ(q, a) =


q1 ∧ q2 q = q0

q1 q = q1, a = move

q2 q = q2, a = discharge2

false otherwise

This ABA implements φ = X(�move ∧ � discharge2), and, accordingly, its
language is empty. If we apply the transformation used in Lemma 5, we obtain
a modified transition function δ′, given by

δ′(q, a) =


q1 ∧ q2 q = q0

q1 q = q1, move v a
q2 q = q2, discharge2 v a
false otherwise

This ABA accepts the stream σ = 〈move2〉ω, even though σ 6|=Σ �φ.
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We can also implement the negation of a formula φ that appears below either
� or }, provided that we can implement φ itself.

Lemma 6. Let φ ∈ LΣ, and suppose that we can construct an ABA that
implements φ. Then we can construct ABAs that implement ¬�φ and ¬}φ.

Proof. Like the previous lemma, we argue the case for the formula involving �.
By Lemma 5, we find a BA A�φ that implements �φ. Using the techniques
pioneered by Kupferman and Vardi [36], we can construct an ABA A¬�φ with
L(A¬�φ) = Σω \ L(A�φ); it is easy to see that A¬�φ implements ¬�φ.

Lemma 7. Let φ ∈ LΣ, and suppose we can implement every subformula of φ
of the form �ψ or }ψ. We can then construct an ABA Aφ that implements φ.

Proof. The main idea is to define a transition structure on the subformulas of φ
that do not appear below � or } (and their negations), in accordance with the
construction from [51], modified to defer the transitions on formulas of the form
�ψ or }ψ (or their negations) to the automata that implement them.

Let Rφ be the set of subformulas of φ of the form �ψ or }ψ, and their
negations. Let Qφ be set of subformulas of φ that do not appear below � or

}, and their negations. If χ ∈ Rφ, we write A′χ = 〈Q′χ, δ′χ, q0
χ
′
, F ′χ〉 for the

automaton implementing χ (if χ is negated, then A′χ exists by Lemma 6). We
assume (w.l.o.g.) that the Q′χ are pairwise disjoint, and do not overlap with Qφ.

We choose Aφ = 〈Q, δ, φ, F 〉, where Q and F are given by

Q = Qφ ∪
⋃
{Q′χ : χ ∈ Rφ}

F = {χ : χ ∈ Qφ, ∃ψ, ρ s.t. χ = ¬(ψ U ρ)} ∪
⋃
{F ′χ : χ ∈ Rφ}

We then choose δ by specifying for elements of Q that:

δ(>, a) = true

δ(b, a) =

{
true a = b

false otherwise

δ(ψ ∧ χ, a) = δ(ψ, a) ∧ δ(χ, a)

δ(¬ψ, a) = δ(ψ, a) (when ¬ψ 6∈ Rφ)

δ(X ψ, a) = ψ

δ(ψ U χ, a) = δ(χ, a) ∨ (δ(ψ, a) ∧ ψ U χ)

δ(χ, a) = δ′χ(q0
χ
′
, a) (when χ ∈ Rφ)

δ(q, a) = δ′χ(q, a) (when q ∈ Q′χ)
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where for B ∈ B(Qφ) we define B inductively, setting

true = false

false = true

B0 ∨B1 = B0 ∧B1

B0 ∧B1 = B0 ∨B1

as well as ψ = χ if ψ is of the form ¬χ, and ψ = ¬ψ otherwise. The argument
from [51, Theorem 22] can now be applied to show that for all ψ ∈ Qφ, it holds
that σ is accepted starting in ψ if and only if σ |=Σ ψ; consequently, σ is accepted
by Aφ (i.e., starting in φ) if and only if σ |=Σ φ.

We can now use the lemmas above to arrive at the claimed decidability result.

Theorem 1. If A is an SCA and φ ∈ LΣ, then we can decide whether A |=Σ φ.
Furthermore, in case of a negative answer, we obtain a periodic stream σ ∈ Σπ

such that σ ∈ L(A) but σ 6|=Σ φ.

Proof. By Lemma 3, we can construct a BA A′ such that L(A) = L(A′). We
can then use induction on the nesting depth of � and } as well as Lemma 5
and Lemma 7 to find an ABA implementing φ, which we can convert into a BA
Aφ implementing φ by means of Lemma 4. Deciding whether A |=Σ φ is then
equivalent to deciding whether L(A′) ⊆ L(Aφ), which is possible by Lemma 2;
this procedure also provides the periodic counterexample stream.

Remark 2. Although the complexity of the decision procedure above is hard
to analyze in general, it is dominated by the step where a BA implementing φ is
constructed. More precisely, the conversion of an ABA into a BA may result in
a BA that has exponentially more states than the original ABA. In addition to
converting the ABA that implements φ into a BA, we also need to apply this
procedure in Lemma 5. On the other hand, as shown in previous examples, it is
possible to verify non-trivial properties of an SCA using formulas that do not
nest � or } more than two times.

We consider an alternative method for verification of SCAs in Section 7.

6. Diagnostics

Having developed a logic for SCAs as well as its decision procedure, we
investigate how a designer can cope with undesirable behavior σ exhibited by
the agent, either as a run-time behavior, or as a counterexample to a formula
found at design-time (obtained through Theorem 1). The tools outlined here can
be used by the designer to determine the right threshold value for a component
given the properties that the component (or the system at large) should satisfy.
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6.1. Eliminating undesired behavior

A simple way to counteract undesired behavior is to see if the threshold can
be raised to eliminate it — possibly at the cost of eliminating other behavior.
For instance, in Section 5.1, we saw that Ae,s 6|=Σ φw, with counterexample
σ = 〈move2,move2, charge, charge, charge, charge〉ω, when te ⊗ ts = 7. Since all
move2-labeled transitions of Ae,s have preference 7, raising7 te ⊗ ts to 5 ensures
that σ is not present in L(Ae,s); indeed, if te ⊗ ts = 5, then Ae,s |=Σ φw. This
additional property, however, comes at the cost of eliminating the transitions
labelled move2 with cost 7, i.e., exactly the transitions where the agent makes a
move without having taken a snapshot of the current location.

Remark 3. As noted earlier, we should also be careful not to raise the threshold
too much, thereby eliminating behavior (in the formal sense of Definition 4) by
introducing deadlock states, where no transition is available because all outgoing
transitions exceed the threshold. For example, in the extreme case where we
choose te ⊗ ts = 0, we find that L(Ae,s) = ∅, since some state of Ae,s is now a
deadlock state; consequently, Ae,s |=Σ ψ holds for any ψ. In the case where we
choose te ⊗ ts = 5, this situation is prevented: all states of Ae,s continue to have
available outgoing transitions.

In general, since raising the threshold does not add new behavior, this does
not risk adding additional undesired behavior. The only downside to raising the
threshold is that it possibly eliminates desirable behavior, and if taken too far,
it may introduce deadlock states to the system.

We define the diagnostic preference of a behavior as a tool for determining a
threshold that rules out a given behavior, as follows.

Definition 7. Let A =
〈
Q,Σ,E,→, q0, t

〉
be an SCA, and let σ ∈ Σπ ∪Σ∗. The

diagnostic preference of σ in A, denoted dA(σ), is calculated as follows:

1. Let Q0 be {q0}, and for n < |σ| set Qn+1 = {q′ : q ∈ Qn, q σ(n), e−−−−→ q′}.

2. Let ξ ∈ Eπ ∪ E∗ be the stream s.t. ξ(n) =
⊕
{e : q ∈ Qn, q σ(n), e−−−−→ q′}.

3. dA(σ) =
∧
{ξ(n) : n ≤ |σ|} (recall that

∧
is the greatest lower bound).

Since σ is finite or eventually periodic, and Q is finite, ξ is also finite or
eventually periodic. Consequently, dA(σ) is computable.

Lemma 8. Let A =
〈
Q,Σ,E,→, q0, t

〉
be an SCA, and let σ ∈ Σπ ∪ Σ∗. If

σ ∈ L(A), or σ is a finite prefix of some τ ∈ L(A), then t ≤E dA(σ).

Proof. If σ ∈ L(A), there exist streams µ ∈ Qω and ν ∈ Eω such that µ(n) = q0,

and for all n ∈ N, t ≤ ν(n) and µ(n) σ(n), ν(n)−−−−−−−→ µ(n+ 1). It is not hard to see
that µ(n) ∈ Qn for n ∈ N. Then also t ≤E ν(n) ≤E ξ(n) for all n ∈ N. Thus,
t ≤E dA(σ). Likewise, if σ is a finite prefix of some τ ∈ L(A), then t ≤E dA(τ)
by the above, and dA(τ) ≤E dA(σ) by definition of dA, thus t ≤E dA(σ).

7Recall that 7 ≤W 5, so 5 is a “higher” threshold in this context.
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Since dA(σ) is a necessary upper bound on t when σ is a behavior of A, it
follows that we can exclude σ from L(A) if we choose t such that t 6≤E dA(σ).
In particular, if we choose t such that dA(σ) <E t, then σ 6∈ L(A). Note that
this may not always be possible: if dA(σ) is 1 then such a t does not exist.

Note that there may be another threshold (i.e., not obtained by Lemma 8),
which may also eliminate fewer desirable behaviors. Thus, while this lemma
gives helps to choose a threshold to exclude some behaviors, it is not a definitive
guide. We refer to [31] for a concrete example.

6.2. Localizing undesired behavior

One can also use the diagnostic preference to identify the components that
are involved in allowing undesired behavior. Let us revisit the first example from
Section 5.1, where we verified that every pair of move-actions was separated by
at least one snapshot action, as described in φw. Suppose we choose te = 10 and
ts = 1; then te ⊗ ts = 11, thus σ = 〈move2, charge, charge〉ω ∈ L(Ae,s), meaning
Ae,s 6|=Σ φw. By Lemma 8, we find that 11 = te,s = te⊗ ts ≤W dAe,s (σ) = 7. Even
if As’s threshold were as strict as possible (i.e., ts = 0 = 1W), we would find that
te ⊗ ts ≤W dAe,s(σ), meaning that we cannot eliminate σ by changing ts only.
This finding tells us that the current setting of ts = 1 is already high enough
to prevent all behaviors of As that can be filtered out, from contributing to the
undesired behavior σ in Ae,s. On the other hand, raising te does eliminate σ,
and in this sense, we may say that As is responsible for σ.8

More generally, let (Ai)i∈I be a finite family of automata over the c-semiring
E with thresholds (ti)i∈I . Furthermore, let A = ./i∈IAi and let ψ be such that
A 6|=Σ ψ, with counterexample behavior σ. Suppose now that for some J ⊆ I,
we have

⊗
i∈J ti ≤E dA(σ). Since ⊗ is intensive, we furthermore know that⊗

i∈I ti ≤E
⊗

i∈J ti. Therefore, at least one of ti for i ∈ J must be adjusted to
exclude the behavior σ from the language of ./i∈IAi.

We call (ti)i∈J suspect thresholds: some ti for i ∈ I must be adjusted to
eliminate σ; by extension, we refer to J as a suspect subset of I. Note that I
may have distinct and disjoint suspect subsets. If J ⊆ I is disjoint from every
suspect subset of I, then J is called innocuous. If J is innocuous, changing tj for
some j ∈ J (or even tj for all j ∈ J) alone does not exclude σ. Finding suspect
and innocuous subsets of I thus helps in finding out which thresholds need to
change in order to exclude a specific undesired behavior.

Algorithm 1 gives pseudocode to find minimal suspect subsets of a suspect
set I; we argue correctness of this algorithm in Theorem 2.

Theorem 2. If I is suspect and dA(σ) < 1, then FindSuspect(I) contains
exactly the minimal suspect subsets of I.

8We could argue that As alone is not responsible for σ in Ae,s either, because modifying
the preference of the move-loop on qN in As can help to exclude the undesired behavior as
well. In our framework, however, the threshold is a generic property of any SCA, and so we
use it as a handle for talking about localizing undesired behaviors to component SCAs.
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Function FindSuspect (I):
M := ∅;
foreach i ∈ I do

if I \ {i} is suspect then
M := M ∪ FindSuspect(I \ {i});

end

end
if M = ∅ then

return {I};
else

return M ;
end

end
Algorithm 1: Algorithm to find minimal suspect subsets.

Proof. First, note that it is easy to see that FindSuspect never returns ∅.
The proof proceeds by induction on I. In the base, where I = {i}, we can see

that
⊗
∅ = 1, thus, since dA(σ) < 1, it follows that I \ {i} = ∅ is not suspect.

The first branch of the subsequent if is selected, which returns {I} itself. This
matches the fact that I is the only suspect subset of I.

In the inductive step, we assume the claim holds for all strict subsets of I.
We consider two cases. On the one hand, if there exists an i ∈ I such that
I \ {i} is suspect, then we know that the foreach-loop will modify M (since
FindSuspect never returns an empty set). Moreover, I itself is not minimally
suspect. The algorithm then returns⋃

{FindSuspect(I \ {i}) : i ∈ I, I \ {i} suspect}

By induction, FindSuspect(I \{i}) returns all minimal suspect subsets of I \{i}.
Since each of these is also a minimal suspect subset of I, and since very minimal
suspect subset of I that is not equal to I is contained in one of these, the claim
follows by the fact that we ruled out I as a minimal suspect subset.

In the case where dA(σ) = 1, it is easy to see that {{i} : i ∈ I} is the set of
minimal suspect subsets of I.

In the worst case, every subset of I is suspect, and therefore the only minimal
suspect subsets are the singletons; in this scenario, there are O(|I|!) calculations
of a composed threshold value. Using memoization to store the minimal suspect
subsets of every J ⊆ I, the complexity can be reduced to O(2|I|).

While this complexity makes the algorithm seem impractical (I need not be
a small set), we note that the case where all components individually fail to
filter out a contribution to a certain undesired behavior should be exceedingly
rare in a system that was designed with the violated concern in mind: it would
mean that every component contains behavior that ultimately composes into the
undesired behavior — in a sense, every component facilitates a behavior that
counteracts their collective interest.
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7. Implementation

In this section, we propose an implementation of our soft component automata
model in order to perform design and verification experiments. For this purpose,
we use Reo [1], a language to describe coordination of systems of components.
One reason for using Reo is its graphical syntax, which gives an intuitive encoding
of soft component automata in terms of graphical components and interaction
primitives. Moreover, Reo reflects the modular and compositional aspects that
make SCAs suitable for specifying complex behaviors: connectors compose into
more complex connectors, just like how SCAs compose into more complex SCAs.
We take advantage of this feature and, after defining an encoding of SCAs into
Reo connectors, we represent the composition of SCAs as the composition of
their corresponding connectors. Another reason is the existence of a compilation
chain that makes it possible to compile the same Reo model to an execution
language (such as Java or C) or to a language that supports verification (such as
the rewriting logic language Maude [13]). Effective optimizations implemented
in the current Reo compiler help to keep the size of resulting composed models
manageable, yielding similarly manageable models in Maude, Java, etc.

We begin with a brief introduction to Reo in Section 7.1, before presenting
our encoding of SCA as a Reo connector in Section 7.2. The encoding is manual,
but should be straightforward from the close resemblance with the structure of an
automaton. We then describe the internal representation of Reo connectors used
in the Reo compiler, and show in Section 7.3 how this internal representation
can naturally be translated to rewrite rules, e.g., in Maude. The generation of
a Maude rewrite system from a Reo connector is completely automated. The
code to reproduce the experiments is publicly accessible at [38]. Finally, we
illustrate in Section 7.4 the utility of the Maude representation produced by our
Reo compiler for verification.

7.1. Reo as candidate

Reo is a language used for the design of coordination protocols. On the one
hand, Reo is characterized by a graphical representation of connectors, which
gives an intuitive understanding of the data flowing in a Reo circuit. On the
other hand, interaction primitives in Reo have a formal compositional semantics,
which enable verification of connectors, built out of the composition of primitives.
We first introduce the graphical representation of Reo connectors, and then
provide a compositional semantics for interaction primitives as a fragment of
first order logic.

Reo connectors are built using two main constructs: components and ports.
A port supports synchronous transfer of data. Conceptually, each port has two
sides, input and output, each of which accommodates a single type of operation:
put or get. Performing a put operation on a port involves the output side of
that port: the port is used as an output port in this context. Symmetrically,
performing a get operation on a port involves the input side of that port: the
port is used as an input port in this context. A port fires whenever a pair of
put and get operations on that port execute atomically. We define a component
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as a set of ports together with a relation that constrains data flow among those
ports. A component is either atomic or composite. Only the former type of
components must have a semantics attached. A composite component inherits
its formal semantics from the composition of the semantics of its parties. From
the point of view of a component, a port is either a boundary or an internal
port. A boundary port of a component is shared by two components: one uses
the port as an output port, and the other as an input port. Internal ports are
not accessible by other components. We also refer to the set of boundary ports
of a component as the interface of that component.

Observe that the environment acts as a complement to a component: a
boundary port used as an input port by the component is an output port for the
environment, and vice versa. Including the environment as a component makes
all ports internal and yields a closed system. If some boundary ports are left
opened, i.e., not shared with an environment component, then the component
is exposed to arbitrary patterns of external put and get operations on those
boundary ports.

Graphical syntax. Reo has a graphical syntax that visualizes composition of
components. Typically, we call a binary component a channel and certain kinds
of n-ary components nodes. Figure 5 shows four different channels, one ternary
component, and two nodes. Later, the components in Figure 5 will be used to
encode SCAs as Reo connectors. In this section, we describe the behavior of
some channels and some nodes only intuitively.

First, we consider three synchronous channels. The sync channel in Figure 5a
represents a synchronous transfer of data from port a to port b. The syncdrain
and syncspout channels in Figure 5b and Figure 5c model a synchronous firing
of port a and b without necessarily equating data at those ports; the difference
is that in the syncdrain, a and b are input words, whereas in the syncspout they
are output ports.

A syncfifo channel (depicted in Figure 5d) is a combination of synchronous
and asynchronous behavior. It has an internal buffer with the capacity to hold
one data item. This buffer is initially empty. When its buffer is empty, a syncfifo
channel accepts a data item through its input port a, places it in its buffer, which
then becomes full. When the buffer of a syncfifo channel is full, the channel
delivers the content of its buffer to a get operation performed by the environment
on its output port b, and its buffer becomes empty. A get operation on the
output port of a syncfifo channel with an empty buffer blocks until after its
buffer becomes full. In addition to those two operations, and in contrast with
a standard fifo channel, a syncfifo can also synchronously empty its buffer to
its output port while taking a datum at its input port. It turns out that a
syncfifo channel can itself be constructed as a Reo circuit, and thus its graphical
representation can be considered as a mere abbreviation. The details of the
construction of the Reo circuit for a syncfifo is beyond the scope of this paper,
and can be found in [4].

The bfilter channel in Figure 5e is a blocking-filter channel, and is context
sensitive, in the sense that its behavior depends on its composition. By itself, as
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a b

(a) sync(a, b)

a b

(b) syncdrain(a, b)

a b

(c) syncspout(a, b)

a b
•

(d) syncfifo(a, b)

a bPt(e)

(e) bfilter<t,e>(a,b)

a

b
c

(f) merger(a, b, c)

b

a c
(g) replicator(a, b, c)

b

a c

(h) xrouter(a, b, c)

Figure 5: Graphical syntax for some primitives.

pictured on Figure 5e, the bfilter synchronously passes the data from a to b if, and
only if, the c-semiring value e is above the threshold t. In composition with other
bfilter channels, the channel compares the composite c-semiring value with the
composite threshold resulting from the composition. As examples of nodes, the
composition of two bfilter channels bfilter<e1, t1>(a,b) and bfilter<e2, t2>(b,c)
changes the behavior of each bfilter to respectively bfilter<e1 ⊗ e2, t1 ⊗ t2>(a,b)
and bfilter<e1 ⊗ e2, t1 ⊗ t2>(b,c), where ⊗ is the product in the c-semiring.

As an example of nodes, the merger and the replicator are represented in
Figure 5f and Figure 5g respectively. A merger synchronously transfers data
from at most one of its input boundary ports to its output boundary port. If
data is available at both input ports, a merger non-deterministically chooses
one to synchronize with its output port. The replicator synchronously duplicates
the data received at its input port to both of its output ports. The merger
and replicator are called nodes, because they graphically and textually allow an
abbreviation for the construction of Reo connectors: a port used multiple times
as output port, respectively input port, is substituted by a merger, respectively
a replicator, with the appropriate port renaming.

Finally, the ternary component xrouter depicted in Figure 5h has the behavior
of an exclusive router. The xrouter synchronously transmits the data item that
it obtains from its input end through only one of its output ends, selected
nondeterministically. The xrouter component can be generalized to an n-output
component. Similarly to the syncfifo, the xrouter can itself be constructed out
of more primitive connectors [5]. For our purposes, it suffices to consider the
components in Figure 5 as yet another set of atomic primitives.

Besides the graphical syntax used to picture Reo components, we provide
a textual definition for the connectors introduced later, using Treo syntax [16].
In Treo, connectors have a unique name, and are defined providing a list of
parameters, an interface, and a body. We specify a list of parameters in angular
brackets (“<” and “>”), and an interface as a list of ports in parentheses.
Parameters and ports in the signature of a connector are exposed to external
components. The body of a connector defines its structure, and is written as the
set of its sub-connectors. We use set-builder notation for this purpose. Conditions
for sets are written as predicates. As a built-in feature of the textual language,
there is no need to specify nodes (mergers, or replicators). The compiler infers

27



and automatically inserts mergers and replicators in the presence of ports used
multiple times as input or output. An example of a component expressed in
textual Reo is given in Listing 1.

Compilation. Reo connectors are built compositionally out of atomic primitives.
The compiler takes as input a Reo connector specified using the Treo syntax,
and generates a program in one of the target languages. The generated program,
together with a runtime environment, conforms to the behavior of the Reo
connectors. We separate the compilation steps into three phases.

The first step consists of enumerating all atomic elements of the Reo con-
nector. The hierarchical structure of connectors is unfolded, and all atomic
components are enumerated and correctly instantiated. Nodes are inserted as
atomic components. At the end of this step, the connector consists of a set of
atomic elements.

The second step defines the behavior of the connector as the composition of
the behavior of atomic elements. Since the composition operator is associative
and commutative, the compiler can rearrange the composition algebraically,
to reduce its complexity. The choice of the semantics representation for the
atomics impacts the internal representation of the connector in the compiler.
Some semantics for Reo components, such as constraint automata, suffer from a
state space explosion, and several optimizations have been studied [28]. In this
work, we use a logical semantics (presented in Section 7.3) to define the behavior
of atomic components, which, under certain conditions, keeps the composite
representation linear [15].

Finally, the compiler uses the logical description of the composite connector
together with the input and output information of each ports, to produce a set of
guarded commands. A backend specific to the target language can subsequently
translate these guarded commands into a target language for execution (e.g.,
Java, C) or prototyping and verification (e.g., Maude).

7.2. Reo representation of SCA

Some existing research has considered the question of synthesizing Reo circuits
for constraint automata [4]. In our work, similar channels are used for encoding
the structure of the automaton (syncfifo, xrouter, and merger), but a new channel,
the bfilter, is introduced to encode the soft part of the action labeling transitions
of SCAs. Moreover, we provide, along with the description, the representation
of the Reo connector in a textual language, used as input for our compiler.

We propose a general approach to represent SCAs and their composition as
Reo circuits. Recall that, by Definition 2, an SCA is formally defined as a tuple〈
Q,Σ,E,→, q0, t

〉
where Q is the set of states, Σ a component action system,

E a c-semiring, → a transition relation, q0 ∈ Q the initial state, and t ∈ E is
the threshold value of the SCA. In the sequel, we give a procedure to write
an SCA as a Reo circuit. The set of connectors defined hereafter constitutes a
domain specific fragment of Reo for building SCA. We conclude this section
with an example of composition of two SCAs obtained through composition of
their respective Reo representations.
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Figure 6: Graphical abbreviation for a state.

Actions and c-semirings. Given Σ a CAS of an SCA, we map each action a ∈ Σ
into a Reo port with the same name. We consider the SCA “doing action
a” equivalent to “firing of port a”. Given the threshold t ∈ E, we associate
each c-semiring value e ∈ E with a predicate Pt(e) whose semantics reflects the
truth value of t ≤ e in the c-semiring. In order to mirror the semantics defined
previously for composition of SCA, the c-semiring value and the threshold value
of a predicate may change during composition. We consider the c-semiring to be
fixed and shared by all SCAs.

States. We define a state of an SCA as a Reo circuit, which we then graphically
abbreviate as a user-defined node. Essentially, a state is mapped into a syncfifo
channel, the empty/full status of whose buffer reflects whether or not the SCA is
currently in that state. As depicted in the circuit below, we identify the source
end of the syncfifo with the name of the state. Thus, to be in state q of the
SCA corresponds to the syncfifo whose source end is q being full. The initial
state q0 starts with a full syncfifo buffer; the syncfifo buffers of all other states
start empty. Intuitively, all incoming (i1, . . . , in) transitions into a state q, merge
at the source end of the syncfifo, and all outgoing transitions (o1, . . . , om) out
of q synchronize via mutual exclusion with one another on the sink end of the
syncfifo. The reason for using the syncfifo instead of the standard fifo primitive
is that an outgoing transition can also be an incoming transition into the same
state, i.e., allow get and put operations on its ends to synchronously empty and
fill its buffer. We use an n-ary exclusive router to express that only one outgoing
transition is taken from a state with n outgoing transitions. The n-ary xrouter
can be constructed out of the ternary xrouter of Figure 5h.

We call our constructed circuit a state, and use to represent a state of an
SCA as a graphical abbreviation and present it as a user-defined node in Reo
with n inputs and m outputs. We use as graphical abbreviation for the Reo
circuit that corresponds to the initial (and current) state of an SCA.

Besides the graphical construct for a state, we introduce a State connector in
the textual language of Reo shown in Listing 1. We adopt a convention, and
prefix the input and output ports of a state with the name of the state. For
instance, the component State(q0i[1..n], q0o[1..m]) represents the state q0 with n
incoming transitions and m outgoing transitions. We refer to the k-th incoming,
resp. k-th outgoing, transition to state q0 with the port q0i[k], respectively
q0o[k].
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State(qi[1..n],qo[1..m]) {

{ sync(qi[k],x) | k:<1..n> }

syncfifo1 <"0">(x,y)

xrouter(y,qo[1..m])

}

Listing 1: Component defining a state q in textual Reo.

q0 q1

a1

Pt(e)

Figure 7: Reo circuit for a transition of a soft component automaton.

Listing 1 shows an example of a component defined using conditional set
notation. The number of input ports in the interface of the State component
influences how its body is instantiated. The variable k ranges over the list
[1, .., n], and thus creates a set of sync channels.

Transitions. A transition in an SCA involves an action, a c-semiring value, a
pre-state and a post-state. When the transition is enabled (i.e., its c-semiring
value is above the threshold), the transition synchronously fires the action port,
and moves the SCA from its pre-state to its post-state. We model this behavior
in Reo as the circuit in Figure 7, which represents the conditional activation of
a transition using a blocking-filter channel that compares the c-semiring value of
the transition with the threshold of the SCA. Given a c-semiring value e, the
predicate Pt(e) of the blocking-filter channel is true if and only if the c-semiring
value e is greater than or equal to the threshold value t.

The circuit in Figure 7 moves the token from node q0 to node q1 and fires
port a1, only if Pt(e) is true. If Pt(e) is not satisfied, the circuit in Figure 7 blocks
the transfer of the token from q0 to q1, mirroring the fact that its corresponding
SCA transition cannot be taken.

The transition primitive in textual Reo is written in Listing 2. The transition
component takes three ports in its interface, q0 and q1, being respectively the
pre-state and post-state, and a1 being the action. Two values are provided as
parameters to a transition component: the c-semiring value e, and the threshold
value t. Internally, the transition component connects the pre-state to the post-
state through synchronization with the bfilter. The bfilter takes a c-semiring
value of a given type as parameter, and performs internal comparison with the
threshold value.

Soft component automata. Given the constructs for states and transitions, we
can build a Reo circuit for every SCA. For instance, the circuit for the automaton
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Transition <e,t>(q0,q1,a1) {

sync(q0 ,x)

bfilter <e,t>(x,a)

sync(x,q1)

}

Listing 2: Component defining a transition in textual Reo.

qY

qN

amove

asnapshot

apass
amove

apass

Pt(e1)

Pt(e2)

Pt(e3)

Pt(e4)

Pt(e5)

As
amove

apass

asnapshot

Figure 8: Reo circuit for the Snapshot SCA.

in Figure 2 is shown in Figure 8. The two states qY and qN are represented as
two state-nodes, with qN initially full (designating it as the initial state).

To avoid visual clutter, we repeat the names of ports in the circuit (e.g., amove

appears twice in Figure 6), but all occurrences of the same port name correspond
to a single, unique port. Each of the five transitions of As is an instance of the
transition component in Reo. For example, the move transition from qY to qN
is represented by the transition connector with input from the state qY , output
from the state qN , blocking filter with predicate Pt(e1), and action port amove.
The corresponding component view of the automaton is represented by a box
that abstracts away the details of its Reo circuit, exposing as its interface the
boundary ports on which other components can synchronize.

The snapshot SCA Ae is built out of the State and Transition connectors in
Reo defined in Listings 1 and 2. We show the instance of the Snapshot SCA
As in Listing 3, and adopt the convention defined previously to denote ports of
incoming and outgoing transitions.

Component action system. The composition of two SCAs can also be written as
a Reo circuit, by encoding the composed SCA. However, such an approach uses
the SCA composition and disregards the compositional nature of Reo. Instead,
we propose to encode each individual SCA as a Reo circuit, and then compose
those encodings on the level of Reo, to obtain a Reo circuit equivalent to their
composed automaton. This approach allows for a transparent and incremental
translation.

Since composition on the level of SCAs is mediated by their (common) CAS,
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As<t>(move ,pass ,snap) {

Transition <1,t>(qYo[1],qYi[1],pass)

Transition <0,t>(qYo[2],qNi[1],move)

Transition <0,t>(qNo[1],qYi[2],snap)

Transition <2,t>(qNo[2],qNi[2],move)

Transition <1,t>(qNo[3],qNi[3],pass)

State(qYi [1..2] , qYo [1..2]) //State qY

State(qNi [1..3] , qNo [1..3]) //State qN

}

Listing 3: Component defining the snapshot SCA in textual Reo.

composition at the level of Reo should also take the CAS into account. To do
this, we encode the CAS as a Reo circuit of its own; composition of two automata
at the level of Reo is then given by the (Reo) composition of their individual
encodings, together with the circuit obtained from their CAS. Furthermore, we
hide all ports that are not output ports of the CAS after the composition, so
that the only actions observable in the resulting Reo circuit are the actions that
are brokered between the operand circuits by the CAS.

There are three “sides” (collections of ports) to a CAS component: one for
each of the two operands in the composition, respectively called the left and the
right (operand) side, and a composite side for the result of the composition. For
each action α, we add three ports to the circuit, one in each side, labeled α`,
αr and αc for the left, right and composite sides respectively. The ports on the
operand sides are input ports, and the ports on the composite side are output
ports.

The intention of the circuit structure is as follows. If the operand circuits
are ready to perform actions α and β respectively, then ports α` and βr will be
enabled for writing. If α}β, then the CAS circuit brokers their composition,
by allowing α` and βr to fire simultaneously, synchronously firing the port
that represents their composition in the composite side, i.e., (α�β)c, as well.
Moreover, the circuit ensures that firing two ports in the left and right sides
(when permitted) gives rise to exactly one port firing in the composite side.

More formally, the circuit is built as follows. On the operand sides, each
port αo (where o ∈ {`, r}) is connected to an exclusive router labeled αRo . For
each pair of actions in the left and right operand sides that are compatible, i.e.,
all α, β ∈ Σ such that α}β, we draw a synchronous drain from αR` and βRr to
an internal node labeled αβ. Each of these nodes is then connected through a
syncspout channel to the composite side node labeled (α�β)c.

The CAS defined for the SCAs Ae and As is depicted in Figure 9. In this
example, the exclusive router has a single output, and is not strictly necessary.
In general, the CAS could define multiple composite actions out of the same side
action. For instance, suppose that the drone in our example is equipped with solar
panels, and that the net result of charging using the solar panels while moving
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move`

pass`

snapshot`

discharge2r

charger

discharge1r

move2c snapshot1c chargec

Figure 9: Partial encoding of a CAS.

cas(move ,pass ,snap ,dchge1 ,dchge2 ,

chge ,move2 ,charge ,snapshot1 ){

syncdrain(move ,x) syncspout(x,move2)

syncdrain(dchge2 ,x)

syncdrain(pass ,y) syncspout(y,charge)

syncdrain(chge ,y)

syncdrain(snap ,z) syncspout(z,snapshot1)

syncdrain(dchge1 ,z)

}

Listing 4: Component defining the CAS for the composition of Ae and As in textual Reo

is that the energy level does not change. As a result, the energy component’s
action pass is compatible with the action move, and their composition is the
action solar, which means “move with energy from the solar panels”. Note how
in this scenario, the firing of move` can occur only in conjunction with firing
discharge2r or passr, but not both; in the first case, the composite interface port
move2c fires, while in the second case the port solarc fires.

We give in Listing 4 the corresponding Reo component for the CAS described
in Figure 9 for the composition of the snapshot SCA and the energy SCA. We
omitted the exclusive routers, since, in this case, they are not necessary.

Composition. The Reo circuit corresponding to a composition of two soft com-
ponent automata can now be defined as the composition of the Reo circuits for
the individual soft component automata, together with the Reo circuit for the
relevant component action system. Following the method above, we translate
each of As and Ae, respectively representing the snapshot component and the
energy management component, into its respective Reo connector.

Based on the steps described above, it is now possible to define a Reo
circuit for both Ae and As, that we name respectively Ae and As in textual Reo.
The resulting composition, shown in Listing 5, consists of a set containing the
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moves

passs

snapshots

move`

pass`

snapshot`

discharge1r

charger

discharge2r

move2c snapshot1c chargec

discharge1e

chargee

discharge2e

As CAS Ae

Figure 10: Composition of two component automata with their component action system.

composite(move2 ,charge ,snapshot1) {

Ae<t1 >(move ,pass ,snap)

cas(move ,pass ,snap ,dchge1 ,dchge2 ,

chge ,move2 ,charge ,snapshot1)

As<t2 >(dchge1 ,dchge2 ,chge)

|

t1 = 5,

t2 = 3

}

Listing 5: Component in textual Reo defining the composition between Ae and As.

connector for each SCA together with the connector for the component action
system. The two thresholds values are provided as parameter.

Note that, in this case, the composite component exposes only the composite
action of both automata. For verification purposes, we also expose the internal
actions of each SCA. We later use internal actions in the encoding of some LTL
properties as Maude queries, as in Listing 7.

7.3. Reo to Maude

In Reo, the behavior of a connector is defined in terms of the behavior of
the atomics. Several semantics have been defined to represent the behavior
of atomic components [27]. We use a logic as semantics for atomics, similar
to [12]. We introduce the logic and the operation to compose primitives in the
next subsection. The compiler builds internally the logical representation of the
connectors. Using the direction of the boundary ports of the connectors, the
compiler infers from the logical representation a set of guarded commands, from
which a translation to a backend language is defined. We present a translation
from the set of guarded commands to a set of rewrite rules written in Maude.

Semantics for atomics. We use a logical semantics to specify the behavior of
Reo connectors. In this semantics, connectors are formulas in a fragment of first
order logic, and composition of connectors is logically specified as taking the
conjunction of their respective formulas.
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sync(a, b)
a b

a = b

syncfifo(a, b)
a b

•

(m′ = a ∧ a 6= ∗ ∧ b = ∗ ∧m = b) ∨
(m′ = a ∧ a = ∗ ∧ b 6= ∗ ∧m = b) ∨
(m′ = a ∧ a 6= ∗ ∧ b 6= ∗ ∧m = b) ∨

(m′ = m ∧ a = ∗ ∧ b = ∗)

merger(a, b, c)

a

b

c

(a = c ∧ a 6= ∗ ∧ b = ∗) ∨
(b = c ∧ b 6= ∗ ∧ a = ∗) ∨
(a = c ∧ a = ∗ ∧ b = c)

Figure 11: From left to right: textual syntax, graphical syntax and logical syntax.
From up to bottom: sync channel, syncfifo channel, merger component.

We first introduce some notation. We use P to denote the set of variables
that represent values exchanged through their homonym ports, M the set of
variables that represent the current values stored in their homonym memory
cells, and M ′ the set of variables that represent the next values to be stored
in their unprimed homonym memory cells. We use D = {1, ∗} to denote the
domain of port and memory variables. The symbol ∗ will be used to encode the
non-firing of ports as an equality. Lastly, recall that given a c-semiring value
e ∈ E and a threshold t ∈ E, we denote the inequality t ≤ e by Pt(e).

A term is either a port variable p ∈ P, a variable m ∈M for current value
of a memory cell (as the one involved in the syncfifo, c.f. Figure 5d), a variable
m′ ∈M ′ for the next value of a memory cell, or a constant: an element of {∗, 1}.

A formula is built inductively from terms and the Boolean symbol ⊥ (false)
by the grammar:

φ ::= ⊥ | t1 = t2 | t1 6= t2 | Pt(e) | φ1 ∧ φ2 | φ1 ∨ φ2

Given a port p ∈ P, the proposition of whether or not p fires is encoded as
an equality between p and elements of {1, ∗}. If p = 1, we say that p fires. On
the other hand, p = ∗ means that p does not fire. The inequality p 6= ∗ reduces,
in our case, to p = 1. Taking a, b ∈ P, we can now express that a and b fire
synchronously with the same datum, as the formula a = b.

In the sequel, we assume all formulas for primitive components to be in
disjunctive normal form. A clause refers to a disjunct in a formula in disjunctive
normal form. Figure 11 shows the formulas that encode the semantics of a few
Reo primitives. The formula a = b describes the behavior of a sync channel.

The formula for a syncfifo channel has four clauses. The first one corresponds
to filling the buffer with the data observed at port a; the second one empties the
buffer through port b; the third one simultaneously empties the buffer through
port b, and fills the buffer through port a; and the last one corresponds to the
case where no ports fire, in which case the value in the buffer must remain
unchanged.

The formula for a merger primitive has three clauses. The first two clauses
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represent the cases where data flows respectively from port a to port c or port b
to port c. The last clause expresses the situation where no port fires. Although
the logical disjunction suggests that multiple clauses may be true at the same
time, the merger shows an example of exclusive clauses: port a and port b cannot
fire at the same time, because a 6= ∗ ∧ b = ∗ and its symmetric term exclude
such a possibility.

Each component is now described by a formula over its ports and memory
variables. The composition of two components is represented by the conjunction
of their respective formulas. Internally, the compiler normalizes the composite
formula, and gets back a set of synchronous clauses. The notion of synchronous
clause is left intuitive here, and can be found with more details in [15]. Essentially,
the compiler uses the information present in each clause, such as whether a port
must fire or not, to distribute the formula efficiently. In most of cases, the case of
quadratic state space explosion present in the constraint automaton distribution
is avoided.

To keep the same semantics as soft component automata composition, we
introduce a non standard interpretation of conjunction of c-semiring predicates:
the conjunction of two c-semiring predicate is a new c-semiring predicate on the
composed value and composed threshold. We make this interpretation more
precise in the construction of the guarded command from the formula.

Guarded commands. One additional piece of information necessary for imple-
mentation is the direction of data flow in the circuit, i.e., whether a port is an
input or an output port. The logic intentionally abstracts away the direction of
ports to describe only data constraints among port and memory variables. We
assume that each port occurring in a formula is orthogonally designated as an
input or an output port. Based on the flow direction of each port, we transform
the formula describing a connector into a set of guarded commands.

A guard is a set of predicates on the variables involved in a clause. A
command is a series of assignment instructions to the variables involved in a
clause. Each clause defines a set of guards and commands, referred to as a
guarded command. In some sense, guarded commands can be viewed as the
implementation of a formula defining a component. An atomic formula consists
of an equality (or inequality) between terms, or a predicate on a c-semiring
value. Given a clause φ, the set Sφ refers to its atomic formulas. Let p, q be
port variables, and m be a memory variable. The construction of a guarded
command from a clause φ is defined as follows:

- p = ∗ ∈ Sφ. Formulas of this form are present in the representation of an
SCA solely to ensure correct composition. The equality p = ∗ is not added
to either the guard or the command.

- p 6= ∗ ∈ S. If p is an input, we add to the guard the predicate canPut(p),
where canPut(p) is true when the port is able to provide data. If p is an
output, the predicate canGet(p) is added to the guard, where canGet(p)
is true when the port is able to get data.
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- m = ∗ ∈ S. The predicate empty(m) is added to the guard, where
empty(m) is true when no data is present in the memory m. As opposed
to a port where data flows from its input through its output, a memory
stores data. The equality is thus a guard on the current content of m.

- m′ = ∗ ∈ S. The assignment m 7→ null is added to the command, where
null represents no value.

- m = p ∈ S. If p is an output, then the assignment p 7→ m is added to
the command. In order to be well defined, the assignment assumes m
to have a value different from null, since the data domain of p does not
contain null. Thus, the predicate nonEmpty(m) is added to the guard,
where nonEmpty(m) is true when m contains data.9

- m′ = p ∈ S. If p is an input, the assignment m′ 7→ p is added to the
command, and the predicate canGet(p) is added to the guard.9

- m′ = m ∈ S. The assignment m′ 7→ m is added to the command.

- p = q ∈ S. If p is an input and q is an output, the assignment q 7→ p is
added to the command. Moreover, predicate canGet(p) ∧ canPut(q) is
added to the guard. We apply symmetric arguments if p is an output and
q an input.9

- Pt(e) ∈ S. The predicate Pt(e) is added to the guard.

Rewrite system. Structurally, guarded commands are analogous to rewrite rules.
The guard is similar to the left hand side of a rewrite rule and the command to
its right hand side. Additionally, the predicate for comparing a c-semiring value
and a threshold has a natural translation as a condition on the rewrite rule: the
rewrite rule is available only if the c-semiring value is higher than the threshold.
Within this context, we present a translation of guarded commands to rewrite
rules in Maude.

Maude uses sorts to type variables. The sort Data∗ refers to the set Data∪{∗},
where Data in our example is the unary domain {1}. The sort Fact types the
representation of elements of the system state, that corresponds to port and
memory values. Elements of the sort Facts are multisets of elements from Fact
with multiset union corresponding to conjunction. Sorts such as String or Nat
have the expected interpretation. In Maude, ports and memory cells are defined
with two constructors

p( , ) : String Data∗ → Fact

and
m( , ) : Nat Data∗ → Fact

9We omit the cases m = p with p an input, or m′ = p with p an output, or p = q with p
and q both output or input as they do not occur in the representation of SCA.
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Each port is identified by a string (e.g., the action name), and each memory
cell is identified by a natural number. Data flow is represented by values of sort
Data, and data synchronization constraints are encoded using ∗.

Predicates in a guard are terms in the left hand side of its corresponding
rewrite rule.

- canGet(p) and nonEmpty(m) are respectively translated to the terms
p(“p”, d) and m(id, d), where id is a natural number corresponding to m
and d is of sort Data.

- canPut(p) and empty(m) are respectively translated to the terms p(“p”, ∗)
and m(id, ∗), where id is a natural number corresponding to m.

- Pt(e) is translated to a condition on the rewrite rule of the form if(t <= e),
where t and e are c-semiring variables defined in a different module. If the
guard contains multiple predicates over c-semiring values, the generated
rewrite rule contains the composite c-semiring value and composite thresh-
old. For every threshold involved in the condition, it is necessary to add
th(“t”, t) on both the left and the right hand sides of the rewrite rule (it is
used but not changed).

Assignments in the command are terms in the right hand side of the rewrite rule.

- m 7→ null is translated to the term m(id, ∗).
- p 7→ m is translated to the term p(“p”, dm), where dm is of sort Data and

represents the data item in the memory in the left hand side of the rule.

- m′ 7→ p is translated to the two terms m(id, dp) and p(“p”, ∗), where dp is
the data taken from the port p. The assignment of value p to m results in
rewriting the port into a state where canPut(p) is true.

Consider pmove ∈ P a port of type output, m1,m2 ∈M and m′1,m
′
2 ∈M ′. The

predicates Pt0(2) and Pt0(0) represent inequalities between values of the weighted
c-semiring W. Consider the following formula:

φ := (m2 6= ∗ ∧ pmove = m2 ∧m′2 = m2 ∧ Pt0(2)) ∨
(m2 6= ∗ ∧m1 = ∗ ∧ psnap = m2 ∧m′1 = m2 ∧m′2 = ∗ ∧ Pt0(0))

As pointed out in the paragraph on logical syntax, each clause of the dis-
junctive normal form of φ is analogous to a transition/behavior of the system:
the first clause corresponds to the action move in the state qY (represented by
the memory variable m2), and the second clause corresponds to the action snap
from state qY to qN (emptying memory m2 and filling memory m1).

The formula φ has two clauses, and therefore induces two sets of guarded
commands. Let the first clause be:

φ1 := (m2 6= ∗ ∧ pmove = m2 ∧m′2 = m2 ∧ Pt0(2))

The guard set obtained from φ1 is

Gφ1
= {nonEmpty(m2), canPut(pmove), Pt0(2)}
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1 crl[1] : m(2,d_m2) p(‘‘move”, ∗) th(‘‘t0”,t0) =>
2 p(‘‘move”, d_m2) m(2, d_m2) th(‘‘t0”,t0) if( t0 <= ws(2)) .
3
4 crl[2] : m(2,d_m2) m(1, ∗) p(‘‘snap”, ∗) th(‘‘t0”,t0) =>
5 p(‘‘snap”, d_m2) m(1, d_m2) m(2, ∗ ) th(”t0”,t0) if( t0 <= ws(0)) .

Listing 6: Rewrite rules example

and its command set is

Cφ1
= {m′2 7→ m2, p 7→ m2}

The compiler then returns, for each guarded command, its translation to a
rewrite rule in Maude. The first rewrite rule shown in Listing 6 corresponds to
the first clause of the formula, and the second rewrite rule to the second clause.

The translation of formulas into guarded commands, and the translation
of guarded commands to Maude rewrite rules have been implemented in a
compiler. An archive for the compiler is accessible at [38], together with some
explanations to reproduce the experiments. To give an idea, the compilation
time for generating the Maude rewrite system from the Reo circuit encoding the
SCAs is less than a few seconds on a Fedora machine, with 4 1.6GHz Intel i5
CPU cores. In the next subsection, we use Maude to verify some properties of
the generated rewrite system.

7.4. Verification

Given a soft constraint automaton A with its component action system Σ,
as described in Definition 4, the language L(A) is the set of all of its behaviors.
Analogously, an LTL property φ on the alphabet Σ also defines a language
L(Aφ). The inclusion of L(A) ⊆ L(Aφ) suffices to show whether the automaton
A satisfies the property φ.

Detection. We use the same example energy-snapshot automata described in
Example 1, and now seek to verify whether the following property holds:

φw = ��(move→X(¬moveU snapshot))

The property φw represents the set of infinite sequences of actions, where in
between any two move actions, the action snapshot must appear. The correctness
of the rewrite system with regard to the property φw, is defined as a predicate
on a trace constructor in Maude:

trace : StepSetList→ Fact

At runtime, the trace saves the actions performed by the rewrite rules and
their associated preferences. The pair of an action together with its c-semiring
values is of type Step. A set of steps, described by the sort StepSet, represents a

39



1 search [1,40] makestart(10,1) =>∗
2 F:Facts trace(sl:StepSetList ; {a(”move”) a(”discharge2”) s:Step};
3 sl1:StepSetList ; {a(”move”) a(”discharge2”) s1:Step})
4 such that nosnap(sl1:StepSetList) .

Listing 7: Reachability query for property φw, with depth search of 40 steps

composite action together with the composite c-semiring value. The function
trace takes a list of sets of steps, whose type is StepSetList, and returns an
element of type Fact.

We extend the notion of behavior of an automaton as an infinite sequence of
actions accepted by the automaton, by also including the c-semiring value in the
behavior. The state of the rewrite system is thus defined by a finite prefix of an
infinite sequence of composite actions paired with their c-semiring values. The
trace generates this prefix iteratively during the execution of the rewrite system.
Finding a counterexample for the property φw can be turned into a reachability
problem on the states of the rewrite system (e.g., on an element of the trace).
The reachability query in Listing 7 specifies that each sequence of actions (of
sort StepSetList) between two move actions must not contain an action snapshot.
For all finite prefixes of the behavior of the (composed) automaton, Maude will
search for a violation of the property φw, i.e., a sequence 〈σ1,move2, σ2,move2〉
where σ1, σ2 ∈ Σ∗ and snapshot1 does not appear in σ2.

The number of counterexamples and the depth of the search are specified
in brackets after the search command. The threshold value for Ae and As are
given as arguments for the initial state with makestart(10, 1). In this example,
te = 10 and ts = 1. The composition is the join composition (of SCA), therefore
te,s = te ⊗ ts = 11.

With an initial composite threshold te,s = 11, the search command of Listing 7
returns a counterexample: it is possible to perform move2 twice from the initial
state. More generally, all sequences starting with the prefix 〈move2,move2〉 are
detected as counterexamples. We refer to δ as the finite prefix verified by Maude.
We then let dAe,s(δ), be the diagnostic preference of a finite sequence of actions.
In the case where δ = 〈move2,move2〉, dAe,s(δ) = 7.

Diagnosis. Given δ = 〈move2,move2〉 and dAe,s(δ) = 7, can we localize the
minimal set of suspect components of Ae,s?

The diagnosis procedure described in Section 6 gives an algorithm to find
the minimal set of suspect component sets, and defines the new threshold value
in terms of the diagnostic preference.

We first set the threshold ts = 1W and leave te as is. The composite threshold
is then ts ⊗ te = 0 + 10 = 10 ≤ 7. Since raising the threshold ts to its maximum
did not raise the composite threshold beyond the diagnosis threshold value of 7,
we conclude that the component As is innocuous.

On the other hand, setting te = 1W and leaving ts = 1 results in te ⊗ ts =
0+1 > 7. In this case, the composite threshold is now greater than the diagnostic
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q0,N q1,N q2,N q3,N q4,N

q0,Y q1,Y q2,Y q3,Y q4,Y

charge, 1 charge, 1 charge, 1 charge, 1

charge, 1 charge, 1 charge, 1 charge, 1

move2 , 5
move2 , 5

move2 , 5
snapshot 1

, 2

snapshot 1
, 2

snapshot 1
, 2

snapshot 1
, 2

move2, 7 move2, 7 move2, 7

Figure 12: Resulting composition of SCAs Ae and As when te = 5 and ts = 1.

1 search [1, 100] makestart(10,1) =>∗ F:Facts m(5,d:Data) .

Listing 8: Reachability query for not running out of energy

preference, based on which we consider Ae as a suspect. We find the threshold
te = 5 as the minimal threshold value from the suspect component that raises
the composite threshold higher than the diagnostic preference.

We repeat the search command for this new threshold: te = 5 and ts =
1. The result of the search command is now satisfying: Maude reports no
counterexamples (in a search up to depth 40). To confirm our intuition of
our bounded model checking result, we examine the resulting soft component
automata with its enabled transitions as presented in Figure 12. Transitions
containing a c-semiring value lower than the threshold are represented in gray.
Those transitions are not part of the definition of the language anymore.

Reachability queries in Maude are written manually, and a future work
would be to find an automatic translation from a useful subset of our LTL
variant to reachability queries in Maude. An extension of our current Maude
implementation can proceed to examine the trace within Maude’s meta-level. In
this way, Maude will be able to dynamically compute the diagnostic preference
and subsequently modify the threshold values accordingly.

A second property we would like to verify in our example, which we denote
as φe, represents the case where the automaton never runs out of energy, i.e., it
never reaches state q0,N or q0,Y .

Applying the same procedure as for the property φw, we now adjust the
threshold such that all traces do not reach a state in which memory m5 has
data (corresponding to the states q0,N and q0,Y where the component is out of
energy). Although this property is not straightforwardly representable within
the alphabet Σ, we can specify this property as a reachability query in Maude
as shown in Listing 8. The property is satisfied if the search command does
not find any path where m5 has data. These states are represented in red on
Figure 13. As a consequence of the diagnosis algorithm, the threshold te is set
to 1 and ts remains at its initial value 1. All transitions in gray are now filtered
out, and the property of Listing 8 is verified.

Observe that although the diagnosis algorithm correctly adjusted the thresh-
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q0,N q1,N q2,N q3,N q4,N

q0,Y q1,Y q2,Y q3,Y q4,Y

charge, 1 charge, 1 charge, 1 charge, 1

charge, 1 charge, 1 charge, 1 charge, 1

move2 , 5
move2 , 5

move2 , 5
snapshot 1

, 2

snapshot 1
, 2

snapshot 1
, 2

snapshot 1
, 2

move2, 7 move2, 7 move2, 7

Figure 13: Resulting composition of SCAs Ae and As when te = 1 and ts = 1.

olds to cope with the undesired behavior, it has also eliminated the desirable
behavior of moving and taking snapshots. Ideally, we want the outcome of the
diagnosis process to remove the faulty behaviors while keeping desired behaviors.
This example suggests the need for additional techniques to adjust action pref-
erences as well as component thresholds, in order to keep the desired behavior
while satisfying some properties.

Our examples demonstrate that the threshold assigned to a component plays
an important role in diagnosis. The relation between the functionality of an
automaton in a composition and the value of its threshold should be carefully
considered by the designer of a soft component automaton. Moreover, the
designer must keep in mind that components with lower threshold values are
more likely to be detected as suspect.

We showed how a designer can modify system component thresholds to
eliminate undesired behaviors. By raising some thresholds, some transitions
will no longer be allowed. As we suggested, this verification procedure can be
automated and in fact, using reflection, can be carried out by the system at
runtime, where the system keeps verifying the trace produced with regard to
a set of properties. Detection of deviations would then trigger the diagnosis
mechanism to localize the set of suspect components and allow new threshold
values to be set.

8. Discussion

In this paper, we proposed a framework that facilitates the construction
of autonomous agents in a compositional fashion. We furthermore considered
an LTL-like logic for verification of the constructed models that takes their
compositional nature into account, and showed the added value of operators
related to composition in verifying properties of the interface between components.
We also provided a decision procedure for the proposed logic.

The agents in our proposed framework are “soft”, in that their actions have
preferences, which may or may not make an action feasible depending on the
value of a preference threshold. The designer can decrease the value of this
threshold to allow for more behavior, possibly to accommodate the preferences
of another component, or increase it to restrict undesired behavior observed
at run-time or counterexamples to safety assertions found at design-time. We
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considered a simple method to raise the threshold enough to exclude a given
behavior. However, this method may overapproximate in the presence of partially
ordered preferences and possibly exclude desired behavior.

In case of a composed system, one can also find out which components’
thresholds can be thought of as suspect for allowing a certain behavior. This
information can give the designer a hint on how to adjust the system — for
example, if the threshold of an energy management component turns out to be
suspect for the inclusion of some undesired behavior, perhaps the component’s
threshold needs to be more conservative with regard to energy expenses to avoid
the undesired behavior. We stress that responsibility may be assigned to a set of
components as a whole, if their composed threshold is suspect for allowing some
undesired behavior, which is possible when preferences are partially ordered.

Lastly, we showed that automata can be compiled into the Reo coordination
language, which can in turn be compiled into Maude. The latter allows us
to ask verification questions close to those allowed by our proposed dialect of
LTL; the results of those verification questions can then be used as input to the
diagnostics procedure. Using Reo as an intermediate language also leaves open
the possibility of compiling the Reo incarnation of a model into other target
languages, or using existing tools for verification and optimization of Reo models.

Preferences are a mechanism for an agent to evaluate multiple options for
action, but they do not say how to choose among acceptable actions. Maude has
a rich language for specifying strategies [39] and Maude’s reflection capability
allows the user to specify strategies beyond the power of the strategy language.
This capability could be used to augment preferences to further constrain the
allowed executions, for example choosing maximally preferred actions.

9. Further work

Throughout our investigation, the tools for verification and diagnosis were
driven by the compositional nature of the framework. As a result, they apply
not only to the “grand composition” of all components of the system, but also
to subcomponents (which may themselves be composed of sub-subcomponents).
What is missing is a way to “lift” verified properties of subcomponents to the
level of a composed system, possibly with a side condition on the interface
between the subcomponent where the property holds and the subcomponent
representing the rest of the system, along the lines of the interface verification
in Section 5.1.

If we assume that agents have low-latency and noiseless communication
channels, one can also think of a multi-agent system as the composition of SCAs,
each of which represents an agent. As such, our methods may also apply to
verification and diagnosis of multi-agent systems. However, this assumption may
not hold. One way to model multi-agent systems communicating through high-
latency and/or noisy channels entails inserting “glue components” that mediate
the communication between agents, by introducing delay or noise. Another
method would be to introduce a new form of composition for loosely coupled
systems.
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Constraint automata can be run by a distributed algorithm [44]; this facilitates
their deployment in a setting where independent but communicating processes
are responsible for the execution of subcomponents. A similar distributed
algorithm for soft component automata, which generalize constraint automata,
would also be useful. The problem here lies in accommodating preferences: an
action may well have a very high preference in an individual component, but
its composed preference may turn out to be smaller, and indeed the highest-
preference composed action may capture a component action of lower preference.
The challenge thus becomes to reconcile the preferences of individual components
in a distributed manner.

Finding an appropriate threshold value also deserves further attention. In
particular, a method to adjust the threshold value at run-time, would be useful,
so as to allow an agent to relax its goals as gracefully as possible if its current
goal appears unachievable, and raise the bar when circumstances improve.

Koehler and Clarke [35] wrote about decomposition of port automata, which
can be seen as a special case of soft component automata, and showed that all
port automata are compositions of port automata from a small set of generators.
This result is interesting from a design viewpoint, because it tells us that the
mechanism represented by a port automaton can eventually be traced back to
the mechanisms represented by the generators. We would like to see if this result
generalizes to the setting of component action systems.
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