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A B S T R A C T

Beta-2-Glycoprotein I (β2GPI) plays a number of essential roles throughout the body. β2GPI, C-reactive protein
and thrombomodulin are the only three proteins that possess the dual capability to up and down regulate the
complement and coagulation systems depending upon external stimulus. Clinically, β2GPI is the primary antigen
in the autoimmune condition antiphospholipid syndrome (APS), which is typically characterised by pregnancy
morbidity and vascular thrombosis. This protein is also capable of adopting at least two distinct structural forms,
but it has been argued that several other intermediate forms may exist. Thus, β2GPI is a unique protein with a
key role in haemostasis, homeostasis and immunity. In this review, we examine the genetics, structure and
function of β2GPI in the body and how these factors may influence its contribution to disease pathogenesis. We
also consider the clinical implications of β2GPI in the diagnosis of APS and as a potentially novel therapeutic
target.

1. Introduction

1.1. What is beta-2-glycoprotein I (β2GPI)?

Beta-2-Glycoprotein I (β2GPI) is a unique five domain protein
comprising four similar complement control protein (CCP)-like domains
(DI-DIV) and one different domain (DV) with a large lysine loop (1C1Z,
Ensemble). It is a soluble blood protein with a circulating concentration
of 0.2 mg/ml [1–3] and a molecular weight of 48 kDa. β2GPI has many
proposed functions and roles within the body including the regulation
of complement and haemostasis. Furthermore, it contains the main
antigenic target of pathogenic autoantibodies found in patients with the
autoimmune disorder antiphospholipid syndrome (APS). Often β2GPI is
only considered important in the context of APS; however, in this re-
view we will be examining its wider functions in physiology and pa-
thology.

1.2. What is antiphospholipid syndrome (APS) and how is β2GPI
important?

APS is an autoimmune disorder in which autoantibodies cause

thrombosis and/or recurrent miscarriage or other obstetric morbidity.
Although these antibodies are generally termed antiphospholipid anti-
bodies (aPL), this term is a misnomer because the pathogenic antibodies
in APS target proteins that associate with PL, the most important of
which is β2GPI.

Antibodies of the IgG or IgM isotype to β2GPI are one of the three
criteria antibodies in APS diagnosis [4]; the others are the lupus an-
ticoagulant (LA) assay and the anti-cardiolipin (aCL) assay. aCL from
patients with APS (but not from non-APS patients) require β2GPI as a
co-factor for CL-binding whilst the LA effect has been shown to be
β2GPI-sensitive in these patients [5–7]. Thus, both the aCL and LA
assays may indirectly be dependent on the function and structure of
β2GPI.

APS is estimated to affect between 0.3-1% of the population[8].
However, a recently published population based study assessing the
epidemiology of APS suggested the figure may be lower, around 50 per
100,000 people [9]. Overall, APS carries significant morbidity and is a
leading cause of strokes in people under 50 years old [8]. Andreoli et al
estimated that APS may be a contributory factor in 6.1% of cases of
pregnancy morbidity, 13.5% of strokes, 11.5% of myocardial infarc-
tions and 9.5% of deep vein thromboses [10].
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Some debate exists within the field regarding the potential to sub-
divide patients into thrombotic or obstetric subgroups. Traditionally
this has been difficult to achieve, particularly because many patients
suffer both thromboses and pregnancy loss. However, in recent years
research has begun to separate the properties of antibodies found in
these two groups of patients. Ripoll and Poulton have both shown dif-
ferential cellular effects by antibodies from obstetric and thrombotic
patients [11,12]. Ripoll et al showed distinct molecular signatures were
detected by gene array when comparing monocytes exposed to IgG
from patients suffering thrombotic or obstetric APS [12]. In a similar
vein, Poulton et al showed that purified IgG from patients with obstetric
but not thrombotic manifestations of APS were capable of inhibiting
trophoblast invasion in an in-vitro assay [11]. Groups have also sug-
gested different pathophysiological mechanisms drive the two variants
of disease with causes of obstetric pathogenesis including deficient
endometrial angiogenesis, inhibited toll-like receptors on trophoblasts
and altered trophoblast interleukin-8 secretion [13–17]. Despite this
research, the idea of two distinct syndromes is still somewhat con-
troversial in the field. A comprehensive review was recently published
by Meroni et al in 2018 [18].

Current therapies for APS are very limited. The only evidence-based
treatment known to reduce the risk of recurrent thrombosis is long-term
anticoagulation [19]. This form of therapy has most commonly been
achieved using warfarin or other vitamin K antagonists (VKAs), al-
though direct oral anticoagulants such as rivaroxaban are now coming
into use. A non-inferiority trial in the United Kingdom, that used a la-
boratory surrogate primary outcome, concluded that rivaroxaban offers
a potentially effective, safe and convenient alternative to warfarin in
APS patients with venous thromboembolism requiring standard in-
tensity anticoagulation [20] though it should be noted that there were
no thrombosis in either arm of the study. In contrast, a more recent
Italian study was discontinued due to excess adverse events (including
myocardial infarction, stroke and bleeding) in the rivaroxaban arm,
versus standard intensity warfarin [21]. This study was limited to triple
aPL-positive (anti- β2GPI, aCL and LA positive) thrombotic APS pa-
tients, a high-risk group in which the same authors previously reported
recurrent thrombosis in 30% of patients on standard intensity warfarin
[22], and included patients with arterial thrombosis in addition to ve-
nous thrombosis,. Further research is required to clarify precisely the
utility of rivaroxaban in APS treatment.

Similarly studies are ongoing into the potential for Apixaban as a
treatment for APS. Much like Rivaroxaban Apixaban is also a specific
Factor Xa inhibitor, however, recent results from the ASTRO-APS study
have shown issues. The study has been stopped twice, both times due to
worse outcomes in the apixaban arm when compared to the control
arm, this includes when the dose was increased. The study is now
continuing with the exclusion of APS patients with a history of
thrombosis [23].

The standard treatment to prevent pregnancy loss in patients with
APS is a combination of subcutaneous low molecular weight heparin
and oral low-dose aspirin, which gives live birth rates of> 70%
[24,25]. However, this treatment is not universally effective and these
patients may nevertheless suffer increased pregnancy morbidity
[24,26]. Hydroxychloroquine (HCQ), an anti-malarial further discussed
in section 6.3 below, has been shown to potentially provide further
benefit in APS pregnancy [27] and randomised controlled trials are
underway [28–30].

Therefore, it is important to develop targeted therapeutics for APS,
using our knowledge of how the interaction between pathogenic aPL
and β2GPI contributes to the pathogenesis of the disease. This in turn
requires a thorough understanding of the function of β2GPI itself in
health and disease.

1.3. β2GPI – more than just APS?

Although β2GPI has a number of proposed roles in both coagulation

and complement [31,32], they have been incompletely defined. Re-
search points to β2GPI being able to both up and down regulate serine
protease cascades but the mechanisms by which these activities are
controlled are currently unknown. A number of studies from various
fields have also identified β2GPI in different sites of disease and injury
in various different tissues [33]. Zhang et al [34] established that β2GPI
is protective in a mouse model of cardiac ischaemia reperfusion injury,
building on work by Niessen et al which histologically showed β2GPI
was present in human cardiac tissue at the time of ischaemic injury
[35]. Furthermore, β2GPI has been found histologically in the placenta
of both healthy controls and APS patients [36,37], and pregnant mice
[33] demonstrating a role in compromised and healthy pregnancy. In
addition, β2GPI has been detected in brain and gut endothelium of mice
challenged with lipopolysaccharide (LPS) [33], as well as in the brain of
mice undergoing ischaemic brain injury [38], although in this latter
study, a faint signal was seen for β2GPI in the brains of sham controls
suggesting that β2GPI is present in non-ischaemic brain tissue. β2GPI
has even been detected in the retina of patients with age related ma-
cular degeneration [39]. At the cellular level, β2GPI is primarily made
by hepatocytes, but is reported to be expressed by or bound to different
human cells, including decidual endothelium and trophoblasts, cells of
the central nervous system [40], monocytes [41,42], neutrophils [43]
and cells forming the subendothelial and intima-media regions in
human atherosclerotic plaques [44]. In fact, studies in the late 1990s
demonstrated that immunisation with β2GPI enhanced atherosclerosis
in LDL receptor [44] and ApoE deficient [45] mice, suggesting a central
role for β2GPI in pathogenic processes outside thrombosis and preg-
nancy morbidity. Of note, circulating IgG anti-β2GPI antibodies
(aβ2GPI) were detected in both studies following immunisation with a
single dose of human β2GPI. Unsurprisingly, given its role in APS,
β2GPI has also been detected in blood clots.

Two of the more unexpected roles for β2GPI have been proposed by
Dong et al and El-Assad et al suggesting an anti-obesity effect by dif-
ferentially inhibiting lipogenesis in mice [46] and an anti-bacterial ef-
fect specifically in the scenario of gram-negative septicaemia in mice
[47]. As research continues it is increasingly clear that β2GPI plays a
number of roles in the body. To fully understand the impact of β2GPI in
health and disease, a cohesive picture is required.

1.4. Review aims

This review aims to bring together the disparate research on the
activities of β2GPI in the body and also its various conformations. We
focus on the complement and coagulative cascades and how a deeper
understanding of the role of β2GPI in current therapies for APS may
inform future therapeutic developments.

2. Structure and genetics of β2GPI

2.1. Open and closed β2GPI

β2GPI exists in both open (J shaped) and closed (circular) forms
[48] (Fig. 1), thus resulting in varying solvent exposures of each of its
domains. In particular, it has been hypothesised that both the N-term-
inal Domain I (DI) and the C-terminal Domain V (DV) are partly hidden
in the closed form but become exposed in the open form of the mole-
cule. This is important because DI contains the major epitope region of
β2GPI responsible for APS antibody generation [49–52], whereas DV is
responsible for binding to cell membranes [53–55]. Despite this re-
search into the structure of the protein, little is known regarding how
the structures are maintained, nor which amino acids govern the
structure itself.

Agar et al [48] found that 90% of the β2GPI circulating in blood is in
the closed formation. Thus, if it is true that the open form promotes
antibody binding in APS, it is important to understand the conditions
which may influence the equilibrium between open and closed forms.
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Many proteins exist in the body in a dichotomous state as either
active or inactive. Examples include zymogens (such as serine pro-
teases), [56] which require structural cleavage to alter their activity.
Another example is tissue factor, which can be encrypted or decrypted
by protein disulphide isomerase (PDI) [57]. β2GPI is unusual compared
to these examples as there is no obvious enzyme or associating protein
to facilitate the structural change between open and closed forms; in-
stead it appears to respond to local environmental stimuli.

Agar et al [48] developed a system by which a change in pH (3.4 or
11.5) and salt concentration (150mM or 1.15M NaCl) can alter the
protein structure of β2GPI dramatically. Structural alteration due to
shifts in pH suggests that the interactions keeping the protein in its
closed form could be heavily influenced by charge. Importantly there
are various microenvironments in the body characterised by large
changes in pH, oxidative state and oxygen saturation and these could in
turn cause β2GPI to assume different structures under normal homeo-
static conditions. However, a pH of 11.5 is not seen physiologically.
β2GPI is characterised by a high content of lysine residues, mostly lo-
cated in DV and acetylation of these residues showed a similar con-
formational change under physiological conditions, supporting the
theory/hypothesis that the closed structure is stabilised by electrostatic
interactions [58].

A study by Passam et al [59,60] looked in detail at the eleven dis-
ulphide bonds found in β2GPI under the assumption that changes in the
redox state of these bonds drove structural changes. This led to the
discovery of an allosteric disulphide formation in DV. Notably, this
disulphide has a typical configuration associated with a middle dihedral
strain energy [60], which suggests that it easily undergoes redox

changes [61]. Allosteric disulphides can be reduced, which induces
larger structural alterations for the protein as a whole. This disulphide
conformation is a natural substrate for reduction by the enzyme
thioredoxin-1. It has been shown that this reduction is capable of al-
tering the binding properties of β2GPI to antibodies in vitro [59]. Fur-
ther research is required to verify whether enzymatic reduction alters
the conformation of the protein in vivo;, a comprehensive review of the
potential for post-translational redox changes in β2GPI on the potential
pathophysiology of APS was published by Weaver et al [62].

Various groups have proposed the existence of intermediate states
between fully open and fully closed [63,64]. However, the stability,
activity and binding properties of these intermediaries are unknown. It
is important to carry out research regarding these potential inter-
mediates to address the role they may play in complement and coa-
gulation and any interaction with pathogenic aβ2GPI. Fig. 1 shows a
potential intermediate structure (middle mechanism) and the interac-
tion of antibody/antibody complex with cells.

DV of β2GPI is structurally distinct from the first four domains. As
well as a highly distinctive allosteric disulphide bond, DV also contains
an unusual loop of lysine residues, which conveys a promiscuous
binding character to the whole protein. The lysine loop allows β2GPI to
interact with anionic PL and other molecules on cell surfaces, coagu-
lation factors, platelets and complement thus suggesting that β2GPI
may have a wide range of functions within the body.

Given the ability of β2GPI to change structure and adopt novel
conformations, it is unsurprising that this molecule also has diverse
activities in multiple protein cascades. It is currently unknown if this
diversity is directly related to the ability of β2GPI to change its

Fig. 1. Proposed structural states of β2GPI and the transition to cellular binding. The schematic above demonstrates the potential interactions between cell surfaces,
β2GPI and antibodies in APS. The proposed schemes are intensely debated in the field. The top scheme shows antibody binding to a closed β2GPI with this causing
β2GPI to open and bind cell membranes. The middle scheme shows β2GPI opening due to environmental factors with an antibody later binding. The bottom scheme
shows circular β2GPI binding a cell membrane, opening and dimerization by an antibody. Debate exists as to which of these schemes is the most physiologically
relevant.
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structure in these different scenarios.

2.2. Glycosylation

Approximately 19% of the molecular weight of β2GPI is composed
of glycans [65] and multiple studies have investigated the glycosylation
of β2GPI. Clerc et al studied the N-glycosylation of β2GPI and de-
monstrated that three specific glycans: A2G252, A2G251 and A3G353
were abundant in the protein. Further information on the glycans
showed diantennary (two branches) and triantennary (three branches)
chains with high levels of sialylation and low fucosylation levels [66].
In the context of APS, patients demonstrated different glycan profiles
with a lower amount of triantennary partially sialylated glycans and
thus a relative increase in diantennary fully sialylated glycans [66]
compared to healthy people.

Glycosylation is a crucial process in the body. Dysregulation of
glycosylation is frequently associated with diseases including genetic
mutations [67] and autoimmune disorders [68]. Importantly, it has
been shown to play a role in the folding of proteins in the body, solu-
bility of proteins [69] and is one of the most frequent post-translational
modifications in eukaryotes. The process of glycosylation includes up to
13 different monosaccharides capable of binding eight different types of
amino acid and it allows great variation and diversity in proteins. This
diversity partially explains the role of glycans as recognition markers
and immune modulators whilst also regulating protein turnover and
proteolysis.

As an example, factor VIII is an essential cofactor for clotting that is
therapeutically available for treatment of haemophilia in a recombinant
form. Factor VIII contains 21 glycosylation sites. A study by Kosloski
et al. [70] showed that deglycosylation of the protein resulted in sig-
nificant loss of activity and structural integrity. Similar studies have
focussed on the role of glycosylation in factor VII and XII where gly-
cosylation was vital for both stability and activity further confirming
that glycosylation may have a significant role in the stability of coa-
gulative enzymes.

It is interesting that glycosylation is important for the stability and
activity of coagulative proteins, with which β2GPI can interact, and
that differential glycosylation of β2GPI is seen in APS. In combination,
these pieces of information raise the possibility that changes in glyco-
sylation pattern alter stability and folding of β2GPI and may play a
significant role in the generation of antibodies in APS whilst also po-
tentially playing a role in differential coagulative regulation.

2.3. Plasmin cleavage

The interaction between β2GPI and plasminogen/plasmin is com-
plex and bi-directional. Plasmin cleaves β2GPI in a kringle IV domain (a
motif shared with plasminogen) in DV at Lys317/Thr318 [71] and re-
search has focussed on the effect of this cleavage on the activity of
β2GPI. This study also showed that in vitro, the cleaved protein in-
hibited the proliferation and migration of endothelial cells, an effect not
seen with intact β2GPI. As of yet no specific study has detected plasmin
clipped β2GPI in the blood of either APS patients or healthy in-
dividuals. However, it remains possible that clipped β2GPI does exist in
vivo, but technical difficulties, low concentration or short half-life make
it difficult to detect. Moreover, β2GPI also binds to tissue plasminogen
and is a cofactor for its activation to form plasmin [72]. Plasmin-
cleaved β2GPI binds plasminogen less well than intact β2GPI sug-
gesting a negative feedback loop. Lopez-Lira et al [73] hypothesised
that significant homology between lipoprotein Lp(a) (a known ligand of
β2GPI) and plasminogen may be the reason for β2GPI targeting plas-
minogen. This group also showed a dose-dependent increase in the
production of plasmin as levels of β2GPI were increased.

A study in 2001 by Guerin et al [74] demonstrated the ability of
heparin to increase the plasmin-mediated inactivation of β2GPI through
upregulating cleavage in the kringle domain. The study assessed

plasmin-cleaved β2GPI for its ability to bind both heparin and cardio-
lipin. For both binding partners, affinity was found to be significantly
diminished post cleavage.

Matsuura et al studied the effects of plasmin cleavage on the anti-
genicity of β2GPI [75], confirming the loss of cardiolipin binding in the
presence of autoantibodies but also suggesting through molecular
modelling that novel hydrophobic and electrostatic interactions in DV
are generated in the process of cleavage. This proposal requires sig-
nificant structural work for confirmation.

The effect of β2GPI on the activation of plasmin and the ability of
plasmin to prevent β2GPI binding to the cellular surface suggest a
complex and intricate feedback mechanism that may have antith-
rombotic and fibrinolytic implications. This is an interesting me-
chanism by which β2GPI can act as a regulator of coagulation both in
health and disease, particularly in APS where binding of autoantibodies
could disrupt the mechanism.

2.4. Genetic variations

A number of different genetic variants of β2GPI have been described
in human serum. They were first identified by Richter et al [76] who
conducted isoelectric focussing and immunoblotting of sera from 400
healthy donors. The results revealed six genetic phenotypes whilst 44
family studies demonstrated the genetic linkage. Treatment of these
samples with neuraminidase and endoglycosidase F (to remove glycans)
failed to resolve the profiles with all six spots still being identifiable,
suggesting the genetic variation is not glycan related. Of the six phe-
notypes described, four variants were confirmed by Cleve et al in an
African cohort in 1992 [77]. The theory for a genetically driven mo-
lecular structural variation was first proposed by Sanghera in 1997 [78]
who determined missense mutations causing two of the variants, with
the Asn88 allele being especially high in black subjects.

Kamboh et al [79] studied two common mutations in DV at posi-
tions 306 and 316 and found that patients homozygous for these mu-
tations or with compound heterozygote presentation had reduced
binding of β2GPI to phospholipids. The patient numbers in this study
are not reported, thus it is hard to draw strong conclusions from this,
although a follow-up study by the same group was more convincing and
included the prevalence of antibodies capable of recognising a complex
of β2GPI and cardiolipin (CL). In a study of an African population
(n=755), the background positivity for the anti-CL/aβ2GPI complex
antibody was 50% (compared to 10% for a US baseline level) whilst the
prevalent genetic mutations contained polymorphisms in the third do-
main of β2GPI [80]. Reconstruction of the alleles found in this study in
order to express recombinant β2GPI showed altered binding to anionic
phospholipids.

Mehi et al suggested that the levels of β2GPI in plasma were in-
fluenced by genetic control through one of three alleles (APO1-3); the
APO2 allele [81]. Amongst the factors that were suggested to influence
plasma levels of β2GPI were age, cholesterol levels, triglyceride levels
and HDL-cholesterol levels but only in women. Further study of the
genetic variation demonstrated lower levels of plasma β2GPI associated
with the APO3 allele. The greatest variation of plasma β2GPI level was
seen in people with the APO3*W missense mutation at codon 316. This
study carried out in Pittsburgh USA, studied only white patients and did
not assess Hispanics or any other ethnicities; thus its ability to be ex-
trapolated to other races and the wider population as a whole is limited.
A study in 1998 [79] attempted to associate genetic alleles of β2GPI
with structural variation. Although genetic research has not elucidated
novel structures of β2GPI, it has shown that minute genetic changes
may alter the ability to generate antibodies to β2GPI.

3. Functional roles of β2GPI

The two main functions of β2GPI to regulate complement and
coagulation are relevant to the pathogenesis of APS. The ability of
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β2GPI to regulate coagulation is complex since it has antithrombotic
(both anticoagulant and antiplatelet) as well as procoagulant effects.

3.1. Beta-2-glycoprotein: anticoagulant, antiplatelet and procoagulant
effects

The balance between the opposing effects of β2GPI in coagulation is
dependent on the surrounding environment. The varying roles are
summarised in Table 1. The effects of β2GPI in coagulation can be
subdivided into direct and indirect. Indirectly, β2GPI can exert an an-
ticoagulant effect through downregulation of thrombin generation
whilst its indirect coagulant effect is shown through mechanisms in-
cluding inhibiting activation of protein C and disrupting the antic-
oagulant Annexin V shield. Direct methods of influencing coagulation
include inhibiting the thrombomodulin complex (Procoagulant) and
binding thrombin to downregulate its activity (anticoagulant). β2GPI
also regulates platelet activation [82]. The fine balance between these
interactions is not completely understood and requires significant re-
search to understand what regulates the pro- and anticoagulative effects
of β2GPI in health and disease.

In patients with APS, aβ2GPI form complexes with β2GPI [98,99];
however, how this influences the functional effects of β2GPI in patients
is not fully understood. Patients with APS develop clots suggesting that
aPL binding to β2GPI negatively alters the anticoagulant processes or
increases the procoagulant effects. Studies have identified targeting
platelets and disrupting annexin shields as mechanisms of pathogenesis
in APS, but considerably more research is needed to probe the influence
of aPL on β2GPI regulation of coagulation. The potential generation of
circulating aβ2GPI/β2GPI is debated in the APS field, however, recent
research has shown that circulating immune complexes of IgA subclass
have been detected in the serum of APS patients and are associated with
thrombotic events [98,99]. Circulating IgG and IgM complexes with
β2GPI have also been recently associated with non-criteria clinical
manifestations of APS [100]; this suggests that, although APS is not
classically characterised as a disease of circulating immune complexes
there may be an emerging role for them in its pathogenesis.

In addition to the coagulation cascade, β2GPI also influences and
regulates other systems within the body, most notably complement.
This ability to be regulatory in both the complement and coagulative
pathways is supported by recent research demonstrating potential
‘cross talk’ between the two systems [101].

3.2. Beta-2-glycoprotein and complement

Given that the structure of β2GPI includes Complement Control
Protein (CCP)-like domains it is unsurprising that it also plays a role in
the complement regulation [102]. However, the extent to which β2GPI
physiologically regulates complement is unknown. Gropp et al propose
that β2GPI has effects as a cofactor for complement inhibition [103],
suggesting that this inhibitory effect is brought about via β2GPI in its
open form in the presence of C3. They suggest the binding of β2GPI to
C3 facilitates the subsequent binding of factor H thus enhancing de-
gradation of C3 to C3i by factor I. It has also been suggested that C3
cleavage by factor I in the absence of factor H is possible in the presence
of β2GPI [103]. This ability to bypass factor H binding is unique to
β2GPI and represents a significant role in regulation of complement.

Similarly, β2GPI has also been referred to as a component of the
innate immune system due to its ability to bind to and neutralise li-
popolysaccharide (LPS). This effect was described by Agar et al. [104]
who carried out a series of experiments looking at the potential role of
β2GPI in the response to LPS in Gram-negative septicaemia. Using
surface plasmon resonance and electron microscopy, they demonstrated
that LPS can bind β2GPI via DV and that this leads to opening of the
β2GPI structure. Either whole β2GPI or DV alone could inhibit LPS-
induced release of tissue factor (TF) from monocytes or endothelial cells
in culture. When 23 healthy volunteers were infused with LPS they
developed fever and tachycardia and there was a mean 25% fall in the
serum level of β2GPI that lasted at least 24 hours. The authors sug-
gested that this fall was due to β2GPI engaging and removing LPS and
this hypothesis was supported by the finding that volunteers who had
lower β2GPI before administration of LPS developed higher fevers and
more release of inflammatory cytokines such as tumour necrosis factor,
interleukin 6 and interleukin 8. Lastly, in a study of patients on the
intensive care unit, 35 patients who developed Gram-negative septi-
caemia had lower β2GPI levels than 36 who did not – but these levels
returned to normal after recovery from sepsis. These results are inter-
esting since LPS can stimulate both the complement and coagulation
cascades so this role of β2GPI is another potential way in which those
systems can be co-regulated [104].

The cleavage of C3 and C5 by FXa and thrombin is increasingly
acknowledged as a potential mechanism through which alternative
activation of complement occurs. β2GPI also has the ability to alter
both thrombin and FXa activity either through preventing inhibition of
FXa/thrombin by its natural regulator or alternatively through

Table 1
Summary of the role of β2GPI as both a pro- and anticoagulant factor.

Anticoagulant, antiplatelet and profibrinolytic Evidence derived
in vivo/in vitro?

Procoagulant Evidence derived
in vivo/in vitro?

β2GPI can bind the ApoER2’ receptor. ApoER2‘ binds Factor XI on
platelets [83] leading to thrombosis. In turn, β2GPI
competitively inhibits this mechanism.

In vitro Various studies have proven that many of the Lupus
Anticoagulant (LA) effects seen in APS patients are β2GPI
dependent [84–87]. This term lupus anticoagulant is misleading
as this effect actually causes increased coagulation in vivo whilst
ex vivo the effect is anticoagulant.

In vitro

ApoER2’ on platelets is required for the immobilisation and
activation of protein C [88] and thus regulation of thrombin
generation. β2GPI also competitively inhibits this process.

In vitro β2GPI interacts with Annexin V, inhibiting the anticoagulant
effect of Annexin V [89].

In vitro

β2GPI can directly inhibit thrombin activation [90]. In vitro β2GPI demonstrated procoagulant activity by inhibiting activated
protein C [91] leading to impaired thrombin generation [92].

In vitro/in vivo

β2GPI prevents plasminogen activator inhibitor 1 from acting upon
tissue plasminogen activator, thus downregulating its
fibrinolytic activity [90].

In vitro Activated protein C (aPC) is created by an interaction of
thrombomodulin and thrombin at a rate of 1000 fold in
comparison to thrombin production alone, β2GPI has been shown
to inhibit this interaction, reducing the production of the
anticoagulant aPC [93].

In vitro

In the presence of β2GPI, platelet aggregation through ADP is
severely impaired [94].

In vitro β2GPI could inhibit the inhibition of thrombin by a combination
of heparin and its cofactor [95].

In vitro

β2GPI binds Factor XI and in turn prevents activation by thrombin
thus preventing the formation of a positive feedback loop
[32,96].

In vitro

β2GPI interacts with platelets preventing generation of FXa [97]. In vitro
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preventing activation of both enzymes from their respective zymogens.
Thus, the ability to prevent activation of FXa or thrombin may be an-
other route by which β2GPI can dampen complement activation in
patients.

The ability of β2GPI to alter plasmin generation has been discussed
in section 2.3. In the context of complement it is worth noting that
plasmin is capable of generating complement through cleavage of C3
and/or C5. This implies that this self-regulating interaction between
plasmin and β2GPI may have a role in complement activation too.

Complement has been shown to play a crucial role in the patho-
genesis of APS and several comprehensive reviews focus on this
[105,106]. In a series of experiments in a murine model of APS preg-
nancy, Salmon and co-workers showed that infusing large amounts of
IgG from patients with APS to mice early in pregnancy caused a sig-
nificant decrease in the number of viable foetuses [107]. This effect was
reduced in complement-deficient mice [108] or in the presence of
complement inhibitors [109]. They proposed that this complement-
dependent mechanism for pregnancy loss in APS could be relevant to
the efficacy of heparin in preventing APS-induced pregnancy loss.
Comparison of the effects of two anticoagulants, heparin and hirudin, in
this model showed that only heparin blocked the pathogenic effect of
the IgG from patients with APS and only heparin blocked the activation
of complement [107]. Thus, this group suggested that complement
activation in the placenta plays a major role in APS pregnancy mor-
bidity. The role of complement in adverse pregnancy outcomes was also
studied by Kim et al. who showed increased levels of complement
breakdown products in the serum of pregnant patients with SLE and/or
APS [110]. Other work has shown that endometrial biopsies from pa-
tients with APS had reduced expression of complement-regulatory
proteins [111]. Other groups have also demonstrated the involvement
of complement in both thrombosis and pregnancy loss models of APS
[112,113]. However, complement modulators are not commonly used
in the treatment of APS, though there have been reports of therapeutic
use of the monoclonal anti-C5 antibody eculizumab with occasional
successes in cases of catastrophic antiphospholipid syndrome (CAPS)
[114–117] effectively preventing re-thrombosis in some patients
[118–120]. Although promising, the small number of cases of CAPS
limits the possible extrapolation of these studies to a more widespread
guideline and as such these successes have yet to be reflected in the best
practice guidelines for CAPS [121].

APS patients frequently present antibodies (anticardiolipin, aβ2GPI)

that can fix complement and also dysregulate coagulation, these two
cascades have been shown to cross talk in health and disease
[122–124]. Further research into the subclasses of antibodies in APS
have shown they should be capable of fixing complement [125–128]
suggesting complement activation may play a major role in APS. This
ability to regulate both complement and coagulation directly is found in
only three proteins: β2GPI, thrombomodulin and C-reactive protein
(CRP).

4. Beta-2-glycoprotein, thrombomodulin and C-reactive protein

Thrombomodulin and β2GPI both interact at very similar points of
the coagulation and complement pathways whilst CRP plays a different
role. Production of inhibitory factors for the complement cascade is
driven by CRP whilst it can also act as a prothrombotic protein in the
presence of platelets [129], specifically through blood coagulation
factors and by altering the fibrinolytic system [130,131]. Interestingly,
both β2GPI and thrombomodulin exert their effects as cofactors for
other processes. As shown in Table 1, thrombomodulin can upregulate
thrombin mediated activated PC (aPC) production approximately 1000-
fold, leading to an anticoagulant effect. β2GPI can interfere with the
formation of this thrombin/thrombomodulin complex downregulating
the effect of thrombomodulin and thus aPC [91]. Independently of this,
the structure of β2GPI has been shown to be important in altering
coagulative processes including thrombin generation [132]. Con-
versely, thrombomodulin can upregulate the cleavage of C3b to C3i
which is mirrored by the activity of β2GPI, however, β2GPI achieves it
more efficiently as it removes the necessity for factor I as a cofactor for
factor H. The complement inhibitory activity of both β2GPI and
thrombomodulin both link with CRP which upregulates the production
of inhibitory factors I and H.

The complex interplay between β2GPI, CRP and thrombomodulin is
shown in Fig. 2. Crucially, β2GPI is the only molecule which can either
upregulate or downregulate either pathway, directly or indirectly.
Thrombomodulin and CRP are less versatile as they only upregulate
either pathway. Thus, agents targeting functions of β2GPI and its in-
teraction with aβ2GPI could present a promising avenue for the treat-
ment of APS or other coagulant or complement based disorders.

Fig. 2. Coagulation and Complement Interactions. This diagram shows the varying contrasting interactions of CRP, thrombomodulin and beta-2-glycoprotein I. Red
arrows indicate upregulation in the presence of β2GPI whilst red arrows with a circular ending indicate inhibition in the presence of β2GPI. Orange arrows represent
upregulations in the presence of thrombomodulin and green arrows upregulation in the presence of CRP. The blue lines represent physiological interactions which
may be altered by the proteins. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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5. β2GPI as an autoantigen – development of new diagnostic tests

5.1. Why do aβ2GPI antibodies develop?

The production of autoantibodies requires a loss of peripheral im-
mune tolerance. The high serum concentration (0.2 mg/ml) [133] of
β2GPI would suggest that it should be unusual for immunological tol-
erance to β2GPI to be broken. There are several theories to explain how
tolerance is broken in APS. There have been suggestions that it may be
due to a higher amount of β2GPI in patients or as a result of a multi-
factorial process. This suggests that patients have an intrinsic risk of
developing autoimmune antibodies (for example, as a result of genetic
susceptibility) before a second process such as higher levels of β2GPI, or
β2GPI in an alternative structure, exposes excessive cryptic antigen thus
allowing for a loss of tolerance and subsequent autoantibody genera-
tion. The potential for increased amounts of β2GPI in patients who
develop antibodies has been studied; however a lower threshold for
production of antibody has yet to be proven [134]. An alternative
suggestion is that antibody development may be via an impaired
clearance of apoptotic material decorated with β2GPI [135], as de-
scribed in systemic lupus erythematosus (SLE) for other antigens
[136–140]. Alternative views claim that the amount of β2GPI which is
in the open state, thus exposing the antigen, is different in APS patients
when compared to individuals who do not have the disease [141]. One
group has gone so far as to show β2GPI is presented in an unusual
fashion on MHC molecules [37], whereby the whole protein rather than
cleaved peptides is bound, whilst others show that the passage of β2GPI
through immune cells is far from straightforward including differences
in intracellular trafficking [142]. Rather than β2GPI being proteolyti-
cally digested and presented as normal, β2GPI stagnates in the late
endosome and is transported to the cellular surface for presentation to
autoreactive CD4+ T cells in an MHC II restricted manner potentially
resulting in presentation and antibody generation [37].

One of the most prominent targets for pathogenic aPL is the en-
dothelium, which forms the interface between blood and the sur-
rounding tissue [143]. Importantly, under inflammatory conditions,
and particularly in the presence of IFN-γ, endothelial cells (EC) can
upregulate MHC II and act as non-classical antigen presenting cells (3),
a process likely to play a critical role in autoimmunity [144]. Indeed,
β2GPI co-localised with MHC II has been detected in the endothelium of
decidual biopsies from APS patients, while non-APS biopsies stain for
β2GPI but not MHC II, suggesting that class II expression and hence
antigen presentation is induced in APS specifically (34). Importantly,
the interaction of β2GPI with the endothelium is not dependent on
MHC II, as the protein can bind EC via a number of different molecules
including anionic structures such as heparan sulfate, annexin A2 [145],
Toll like receptor 4 [146,147] and ApoER2 [148] (schematic for all
binding partners in the following reference [143]). As mentioned pre-
viously, β2GPI is abundantly found in sub-endothelial regions of
atherosclerotic plaques, possibly due to its ability to interact with the
aforementioned molecules, and localises in close proximity to CD4+ T
cells [43]. Benagiano et al eloquently demonstrated that plaques from
both primary [149] and SLE-associated [150] APS patients contain a
large proportion of β2GPI-reactive CD4+ T cells capable of producing
inflammatory cytokines and activating autologous B cells to release
immunoglobulin. A major cytokine released by these β2GPI-reactive T
cells is IFN-γ ([149,150] that can drive endothelial MHC II upregulation
[144]. All this evidence points towards an attractive model for antigen
‘presentation’ by EC, facilitating aPL binding to EC but also promoting
autoantigen presentation and autoreactive T cell activation, resulting in
the breakdown of tolerance.

In the study by Benagiano et al, plaque derived β2GPI-reactive T
cells were found to be considerably more abundant than peripheral
β2GPI-reactive T cells [149]. Of interest, > 80% of β2GPI-reactive
plaque derived T cell clones recognised DI [149], while in the per-
iphery, separate reports suggest that most β2GPI-reactive CD4+ T cells

recognise DIV-V [151]. These disparate results may simply reflect a
change in T cell epitope specificity after homing into their target tissue,
possibly due to a conformational change in tissue-bound β2GPI ex-
posing the DI epitope.

5.2. β2GPI and diagnostic tests in APS

Several groups have studied the prognostic and diagnostic value of
aβ2GPI in patients with APS [152–156]. It has been demonstrated that
these antibodies correlate strongly with thrombotic events
[49,157–162], as do LA assay results [84,163–169]. However, it is
unusual for patients to show sole positivity for aβ2GPI. Equally, there is
a group of patients who have clinical manifestations of APS but test
negative in all of the current criteria assays – sometimes called ser-
onegative APS (SN-APS) [170,171]. There is therefore interest in de-
veloping new assays to aid both diagnosis and risk stratification in
patients with APS, and the primacy of β2GPI as the key autoantigen has
informed development of these tests – particularly IgA aβ2GPI [172]
and anti-DI antibodies [173–175]. The inclusion of anti-DI antibodies
has particular significance when considering the differences in diag-
nostic value from antibodies targeting DV which are believed to be non-
pathogenic [176,177]. Andreoli et al carried out a study in which serum
from 159 subjects with persistently positive medium or high-titre IgG
anti-β2GPI was tested by ELISA for both IgG anti-DI and anti-DIV/V
antibodies. The subjects were fully characterised clinically into the
following groups: 56 with thrombotic PAPS (primary APS), 39 with
pregnancy morbidity, 31 with purely obstetric PAPS, 42 with auto-
immune rheumatic disease but not APS and 30 aPL carriers with no
autoimmune rheumatic disease or APS. This last group of healthy aPL-
carriers had higher anti-DIV/V but lower anti-DI than the other groups.
Thus a ratio of anti-DI to anti-DIV/V of > 1.5 was associated with
autoimmune rheumatic disease, but not specifically with APS or
thrombosis [178].

Pierangeli et al showed the pathogenic potential of IgA in a murine
model [179] and proposed the potential for IgA aβ2GPI positive pa-
tients to develop APS even in the absence of IgG and IgM aβ2GPI.
Furthermore, Shen et al showed clinical significance for IgA aPL in a
study of 472 patients [180] in predicting thrombotic events. This
finding was also highlighted in a review by Andreoli et al who outlined
both raised levels of IgA aβ2GPI in SLE patients who develop APS and a
significant association with thrombosis [181]. Pericleous et al found
that IgA aβ2GPI associates with thrombosis and also highlighted the
added diagnostic value of testing IgA anti-DI [182]. Furthermore,
Murthy et al [183] found aβ2GPI IgA titres correlated with clinical
features of APS and highlighted the role of IgA aPL directed to the 4th

and 5th domain of β2GPI in patients with APS.
A recent study of 40 SN-APS patients found positivity for either IgA

aβ2GPI or anti-DI in 10% of patients with SN-APS [184]. There is a
growing call for these non-criteria antibody tests to be included in APS
diagnosis, and future research should investigate the added value of
such tests in management of patients with this syndrome.

The issue of validity of different diagnostic tests in APS is con-
troversial. Currently there is significant difficulty in standardization of
the testing for aβ2GPI, sources of β2GPI are non-identical and no in-
ternational reference material exists for aβ2GPI. This is a problem
which has been discussed at length [185–187] but at the time of writing
has not been resolved despite taskforces and concerted efforts from
groups worldwide [188,189].

5.3. Anti-domain I antibodies

As discussed in section 2.1, it is believed that DI and DV are asso-
ciated in the closed form of β2GPI, hiding the dominant epitope for aPL
antibodies in the R39-G43 region of DI. It is important to be aware that
antibody binding can also be altered by substitutions elsewhere in the
sequence of DI [190–192]. Given the presence of a dominant epitope in

T. McDonnell, et al. Blood Reviews xxx (xxxx) xxxx

7



DI, several groups have published results looking at anti-DI positivity in
patients with APS.

Numerous groups have examined the potential for anti-DI anti-
bodies diagnostically. It has been shown in some studies that that
adding IgG or IgA anti-DI to the diagnostic criteria increases the sen-
sitivity of the criteria [182,193,194]. Other reports, however, con-
cluded that the IgG anti-DI assay did not add to the value of current
criteria assays in predicting thrombosis [195,196]. In a meta-analysis of
11 studies including 1218 patients with APS, 318 patients with SLE, 49
asymptomatic aPL-positive individuals and 1859 healthy controls,
Radin et al reported that 45.4% of patients with APS were positive for
anti-DI. Studies that looked at association between anti-DI-positivity
and risk of thrombosis found such an association, with odds ratios
ranging between 2.5 and 4 [197].Others have argued the range of
discrepancies between studies due to methodological differences means
there is little clinical value to including anti-DI in testing until stan-
dardized calibrators are available [198]. Recent research has begun to
show that aβ2GPI results do not directly reflect associated aDI results
from the same patients, with different specificities of subclass being
detected [125]. Some groups are advocating far more wide-ranging
studies into the utility of aDI diagnostically [193], however, a lack of
cohesive methodology and specificity is holding back these efforts.

5.4. Other non-criteria APL

Although this review concentrates on the role of β2GPI and anti-
β2GPI antibodies in APS, it is important to recognize that other non-
criteria aPL have been investigated as possible additions to the diag-
nostic armamentarium for APS. Antibodies to phosphatidylserine (anti-
PS), prothrombin (anti-PT) and the phosphatidylserine/prothrombin
complex (anti-PS/PT) have attracted particular interest. The studies
regarding these antibody tests were reviewed thoroughly by a taskforce
of the 14th International Congress on Antiphospholipid Antibodies
[172]. Overall, the evidence did not support any value for testing anti-
PT but supported further studies of anti-PS and anti-PS/PT.

In a systematic review of 20 studies including 5992 patients, Radin
et al reported that a median of 55% of patients with confirmed APS
were IgG anti-PS-positive (35% IgM anti-PS-positive) and that these
prevalence figures were significantly higher than those seen in patients
with SLE and no APS (IgG anti-PS in 22%, IgM anti-PS in 14%). From
these data, however, it was not possible to establish an independent
association between anti-PS-positivity and either vascular thrombosis
or pregnancy morbidity.

To eliminate variation in results due to different anti-PS/PT assays
being used by different research groups, a collaborative multi-centre
study looked at samples derived from different patient cohorts but all
tested at a central facility using two different IgG anti-PS/PT ELISA
[199]. Results from the two ELISA showed strong correlation. In an
initial study of 247 subjects from 8 centres (126 APS, 73 autoimmune
disease controls, 48 healthy controls) the prevalence of IgG anti-PS/PT
positivity in patients with APS was 58%. In 204 patients who gave
concordant results in both ELISA, positivity for IgG anti-PS/PT gave a
sensitivity of 51% and specificity of 91% for APS. Subjects positive for
IgG anti-PS/PT were significantly more likely to have had vascular
thrombosis (odds ratio 11.0, 95% confidence interval 3.8-31.3) or ob-
stetric APS (odds ratio of 10.6, 95% confidence interval 3.5 to 32.1). A
replication study in 214 subjects (96 APS, 67 autoimmune disease
controls, 51 healthy controls) from five new centres gave very similar
results for thrombosis – sensitivity and specificity for APS 47% and 88%
respectively, odds ratio for vascular thrombosis 11.3 (95% CI 4.2 to
30.0) but positivity for IgG anti-PS/PT was not associated with obstetric
APS in the replication cohort [199].

Evidence that adding the IgG anti-PS/PT test to the standard criteria
assays may be of value comes from a Japanese study by Otomo et al
[200] in which samples were subjected to five different LA assays and
six different ELISAs – IgG and IgM for each of aCL, anti-β2GPI and anti-

PS/PT. The results of all the tests were combined into a numerical score
designated aPL-S. The predictive value of aPL-S was assessed in 411
subjects who were followed prospectively after their aPL-S was mea-
sured. Of these, 32 developed thrombosis and these patients had sig-
nificantly higher aPL-S scores at the beginning of follow-up (P=0.012).
Patients with aPL-S> 30 had fivefold higher risk of developing
thrombosis than those with lower aPL-S scores.

6. Beta-2-glycoprotein I as a therapeutic target

6.1. Indirect targeting of functional effects of aβ2GPI

Various attempts at targeting aβ2GPI either directly or indirectly as
a treatment for APS are currently under development.

In a recent study, four patients with APS unresponsive to conven-
tional anticoagulation therapy, were treated with eculizumab (a C5
inhibitor). Thrombosis was not an outcome of the study, which instead
reported increases in platelet count (initially reduced in all four patients
ranging between 18000 and 85000 per ml). It is possible, however, that
the C5 inhibition may have been acting on co-existent idiopathic
thrombocytopenia rather than on aβ2GPI induced thrombocytopenia
[201]. Nevertheless, it has been suggested by Gropp et al [202] that
eculizumab may act by blocking the pro-complement activity of the
aβ2GPI/β2GPI complex and thus compensating for the dysregulation of
β2GPI-complement interactions in APS.

Heparin and its variants have also been shown to target β2GPI with
Kolyada et al [203] characterising the binding site of fondaparinux on
β2GPI as an amino acid sequence in DV. This study further evaluated
the effects of fondaparinux on the binding of aβ2GPI/β2GPI complexes
to cardiolipin showing that binding was still possible whilst competitive
binding with heparin was inconclusive. A study by Guerin et al showed
that heparin binding to β2GPI prevents binding to cellular surfaces
[74], although interestingly, the same was not true of fondaparinux.
Neither study examined the effect of heparin or fondaparinux on the
ability of β2GPI to form antigen/antibody complexes. Although these
therapies target aβ2GPI, they do so indirectly.

6.2. Direct targeting of β2GPI or aβ2GPI

One new potential therapeutic is named A1-A1, a peptide of ap-
proximately 40 amino acids [204] that utilises a synthetic dimer of li-
gand binding domains from ApoER2 [205] to target the fifth domain of
β2GPI and prevent binding to cell surfaces. The two A1 molecules are
bound by a flexible linker allowing binding to β2GPI in the fluid phase.
The stability of the A1-A1 linkage has been shown across 15 days in an
accelerated stability study with good success [205] whilst inhibition of
binding to cardiolipin has been shown with an improved mutant of A1
[206]. Further experiments included inhibiting the thrombotic poten-
tial of aβ2GPI in murine models [207] and a reduction of blood pres-
sure in mice [208]. The group developing this potential therapeutic has
since proven dimerization of DV of β2GPI is sufficient to generate an
increase in stimulation of a monocyte cell line, presumably to show this
is also inhibited by the administration of A1-A1.

This therapy shows significant promise, however, due to the small
size of the peptide dimer (~8kDa) it is likely it will need biochemical
modification prior to future use in humans, this suspicion is reflected in
the mouse model used showing reduced thrombus generation 10 min-
utes after infusion of A1-A1 [207].

Another potential therapeutic is a cytomegalovirus capsid peptide
known as TIFI which is approximately 20 amino acids long and which
shows strong homology to a 15-mer from DV of β2GPI. TIFI was shown
to inhibit the thrombogenic properties of IgG antibodies purified from
APS patients [209] in a mouse model. A further study by the same
group confirmed this action [210] was through the targeting of the 5th

domain of β2GPI. TIFI was successfully tested for its ability to inhibit
murine foetal loss [211] and it was further shown to be protective on
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endometrial endothelial cells [13]. These studies show significant po-
tential for TIFI as a therapeutic for APS.

In addition, recombinant Domain I of β2GPI expressed in bacteria
has been a proposed as a novel therapeutic agent [191] with the aim of
generating a soluble form to bind aβ2GPI antibodies and thus prevent
formation of the aβ2GPI/β2GPI complex. Initial research was promising
with both wild-type DI and a mutant form containing two point mu-
tations shown to inhibit binding of antibodies from APS patients to
β2GPI in an ELISA. Both forms were able to block ability of these an-
tibodies to promote vascular thrombosis in a mouse model [212]. In
addition, recombinant DI was also found to reduce caspase 3 produc-
tion in an aPL-based model of cardiac injury [213]. In order to cir-
cumvent the problem of small size of DI, this research group has re-
cently described the production of PEGylated DI and have shown this
molecule retains the ability to inhibit IgG antibodies purified from
blood of patients with APS in both binding and thrombogenic assays
[214]. Anti-thrombotic activity in vivo was seen in an acute mouse
model at several doses of DI [214] suggesting great therapeutic po-
tential. Further research has been carried out by other groups including
a recent study suggesting Domain I may be effective in vivo in a chronic
model of APS [215].

The group of Agostinis et al. have worked on developing a potential
therapeutic for APS: a non-complement fixing antibody to β2GPI[216].
This molecule has significant potential. It is a single chain fragment
variant (scFv) that has shown the ability to decrease the pathological
effects of aβ2GPI in vivo in mouse models through displacing patient-
derived antibodies [216]. Although this is undoubtedly an interesting
and novel approach to an APS therapeutic, it remains the only current
publication for this agent and as such it is hard to gauge the full clinical
utility of the scFv in APS, however, it has significant potential to be
explored in this remit.

Although there are several technologies aimed at specifically tar-
geting β2GPI in production, these are very far from clinical practice as
yet and still require safety and efficacy studies in humans before we can
know the potential of these agents.

6.3. Hydroxychloroquine in APS

The role of the antimalarial, hydroxychloroquine (HCQ), in the
management of APS has long been extensively debated in the literature
[217] and the drug is commonly used in the management of SLE (which
is frequently associated with secondary APS). Previously, Nuri et al
demonstrated that it plays a role in lowering aPL and preventing re-
current thrombosis in patients with lupus. In addition to observing a
reduction in IgG anti-cardiolipin, a significant decrease in both IgG and
IgM aβ2GPI was observed following treatment with HCQ thus sug-
gesting that this treatment may have an immunomodulatory effect
[218]. The exact mechanism through which HCQ conveys this benefit is
still poorly understood, however, it has been suggested that comple-
ment plays a key causative role in placental ischaemia and abnormal
foetal brain development in APS. Using radioacitve iridium (111In) la-
belled aPL antibodies, Bertolaccini et al investigated this interaction in a
murine model of obstetric APS and found that, although HCQ did not
affect aPL binding to the foetal brain, it did prevent activation of
complement. Notably C5a levels from both APS patients and the murine
model were lower after treatment with HCQ, suggesting that it may
demonstrate benefit through inhibiting complement activation [219].
Further studies in murine models have recently been conducted by
Miranda et al, who focused on the way in which aPL antibodies promote
endothelial dysfunction in thrombotic APS. The study centred on
comparing the difference seen in mice that had been inoculated with
human aPL antibodies that were in turn treated with and without HCQ.
In those treated with HCQ, a reduction in thrombosis formation, re-
duced thrombin generation time and improved endothelial-dependent
relaxation was observed. HCQ was also found to modulate endothelial
nitric oxide synthase [220]. HCQ has also been shown to improve

endothelium-dependent dilatation after three weeks of treatment in an
APS mouse model [221]. In a study of 22 patients with APS treated with
HCQ (200 mg/day for three months) it was shown that it resulted in a
reduction in soluble tissue factor levels, which may in turn convey
benefit in reducing vascular events [222].

Clinically, the benefits of HCQ in high risk APS pregnancies was
demonstrated by Ruffatti et al, who found that from a total of 196
pregnant mothers with APS, significantly higher live birth rates were
seen in those taking hydroxychloroquine. Furthermore, HCQ conferred
greatest benefit to mothers without a history of previous thrombosis
[223]. The role of HCQ in reducing thrombotic complications of APS
has been widely evaluated [224]. A study by Erkan et al aimed to
evaluate the role of HCQ in primary prevention of thrombosis in aPL-
positive patients in the absence of other systemic autoimmune disease.
Unfortunately the study was terminated early due to low recruitment
rates and the authors concluded that the efficacy of HCQ in these cases
could not be fully assessed, thus highlighting the challenges of
achieving reduced thrombosis as a primary outcome in clinical trials in
APS [225].

7. Summary and future directions

β2GPI has been recognised as the key antigen targeted by patho-
genic antibodies in patients with APS for many years. It is only more
recently that the unique nature of this glycoprotein, both in structure
and function, has been explored in detail. β2GPI can take two main
structural forms, open and closed, which may differ in exposure of the
key antigenic epitope on DI. The conformational dynamic of this pro-
tein (i.e. the shift between open and closed forms) is controlled by post-
translational modification and changes in pH. Intermediate forms be-
tween open and closed may also exist. Functionally, β2GPI is unique in
being able to regulate both complement activation and haemostasis in
either direction. These actions of β2GPI can be influenced by aβ2GPI
antibodies present in patients with APS and may be potential ther-
apeutic targets. Assays to measure levels of antibodies to β2GPI and to
DI show promise in improving diagnosis and risk stratification of pa-
tients with APS. A number of proposed therapeutic agents that target
β2GPI/aβ2GPI interactions are in development.

8. Conclusions

β2GPI is a unique protein capable of regulating both complement
and coagulation cascades and maintaining or altering haemostasis. It is
present at the site of various disease processes and exists physiologi-
cally in at least two structural forms. Little is known relating structure
of β2GPI to its function and the nature of intermediate structures be-
tween open and closed β2GPI is poorly understood. β2GPI stands at the
junction between the complement and coagulation cascades and could
play an important role in cross-talk exhibited by these two key phy-
siological systems. The presence of aβ2GPI antibodies in APS could
modify these interactions contributing to the pathogenesis of throm-
bosis and pregnancy morbidity. It is imperative that further research is
conducted into better understanding this unique protein that is capable
of up and down regulating both the complement and coagulation sys-
tems as well as being a key autoantigen in an important autoimmune
disease.

9. Practice points

• The co-regulation of the complement and coagulation cascades both
in disease and haemostasis is an important process to which β2GPI
may be contributory.

• In APS the most important pathogenic antibodies target β2GPI ra-
ther than binding phospholipids directly.

• The presence of IgM and IgG aβ2GPI measured by ELISA is one of
the classification criteria for diagnosis of APS.
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• Newer assays such as IgA aβ2GPI and measurement of antibodies to
DI may be used in diagnosis and management of APS in future.

• Current therapies for APS, notably heparin, may work partially
through an effect on interaction of β2GPI with the complement
cascade.

• New therapies that target either DI or DV of β2GPI are being de-
veloped, but chemical modification such as PEGylation will be
needed to improve pharmacological properties.

10. Research agenda

• Do intermediate structural forms of β2GPI exist in vivo, how stable
are they, and what are their properties?

• Can β2GPI be targeted in clotting and complement disorders to alter
regulation therapeutically?

• Can anti-complement agents such as eculizumab be used in treat-
ment of APS?

• Are the novel small molecules being developed to target DI and DV
viable therapeutic agents for APS?

• Are the benefits of measuring anti-DI and IgA aβ2GPI levels suffi-
cient to add these assays to the classification criteria for APS?
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