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ABSTRACT  

The Generalized Integral Transform Technique (GITT) is reviewed as a hybrid numerical-

analytical approach for fluid flow problems, with or without heat and mass transfer, here with 

emphasis on the literature related to flow problems formulated through the full Navier-Stokes 

equations. A brief overview of the integral transform methodology is first provided for a general 

nonlinear convection-diffusion problem. Then, different alternatives of eigenfunction expansion 

strategies are discussed in the integral transformation of problems for which the fluid flow model is 

either based on the primitive variables or the streamfunction-only formulations, as applied to both 

steady and transient states. Representative test cases are selected to illustrate the different 

eigenfunction expansion approaches, with convergence being analyzed for each situation. In 

addition, fully converged integral transform results are critically compared to previously reported 

simulations obtained from traditional purely discrete methods. 
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1. INTRODUCTION 

 

Integral transforms have been widely employed in the solution of differential equations, though 

their usefulness is not limited to this purpose. It is recognized that Leonhard Euler has in fact 

introduced the concept of integral transforms in handling second order differential equations [1], 

first in 1763 for a specific differential equation, and later on in 1769 when the treatment was more 

systematic and complete [1]. On the other hand, Fourier in his 1822 treatise [2] advanced the idea of 

Separation of Variables, so as to handle and interpret the solutions of the newly derived heat 

conduction equation, after proposing the constitutive equation known as Fourier´s law. His work 

provided the modern mathematical theory of heat conduction, but also introduced the well-known 

Fourier series and Fourier transforms. However, it appears that it was in the work of Acad. N.S. 

Koshlyakov [3], that the integral transform method gained a more general formalism based on 

eigenfunction expansions and was first extended to handle linear partial differential equations in 

finite media with nonhomogeneous terms, either on the main equation or in the boundary 

conditions, as described in his textbook [4]. This concept of a more general integral transform 

approach based on eigenfunctions from Sturm-Liouville eigenvalue problems was further explored 

by Koshlyakov and co-workers [5] and Eringen [6], among others. In the 60´s, Luikov [7], 

Mikhailov [8], and Ozisik [9] made some of the most fundamental contributions for the full 

establishment of this analytical approach in the heat and mass transfer field. The consolidation of 

these ideas was systematically presented in the compendium of Mikhailov and Ozisik [10] of 1984, 

which organized the integral transform analysis of heat and mass diffusion into seven fairly wide 

classes of linear problems. 

The classical integral transform method, despite being applicable to various classes of linear 

problems, as discussed above, finds limitations that were recognized in attempts of solving 

problems, still linear but with time-dependent equation or boundary conditions coefficients [11,12], 

when only approximate analytical solutions were offered for such non-transformable problems. 

Following this same path, a hybrid numerical-analytical extension was proposed, first in the realm 

of moving boundary problems [13], and soon after, revisiting the time-dependent coefficients 

formulations [14,15]. This hybrid approach kept along the years the same name of Generalized 

Integral Transform Technique (GITT), first proposed in [11], and involved the complete solution of 

the coupled transformed problem, based on the numerical solution of a truncated version of the 

transformed system of ordinary differential equations. In a relatively short period of time it was 



extended to different classes of problems, including nonlinear diffusion and convection-diffusion 

[16-19] and irregular domains in parabolic and elliptic formulations [20-23]. It would not take long 

for the GITT to be challenged by the solution of fluid flow problems governed either by the 

boundary layer equations or the Navier-Stokes equations [24,25]. Since then, the hybrid method 

was progressively extended and new classes of problems and applications have been dealt with, and 

it has been reviewed at different stages and sources [26-34]. 

The integral transform analysis of fluid flow problems governed by the Navier-Stokes equations 

has required the proposition of new eigenfunction expansions, other than those normally employed 

in diffusion or convection-diffusion problems, directly derived from the general Sturm-Liouville 

eigenvalue problem. Along the years, in the present methodological context, the Navier-Stokes 

equations have been mostly dealt with in the streamfunction-only formulation [25,35-46], and less 

frequently in the primitive variables formulation [47,48]. In two-dimensional problems, the 

streamfunction formulation offers the advantages of automatically satisfying the continuity equation 

and eliminating the pressure field. In addition, it has been observed through the various applications 

considered, that the fourth order biharmonic-type eigenvalue problem which is naturally preferred 

for the eigenfunction expansion in this formulation, results in improved convergence rates in 

comparison with the previously proposed expansions based on the primitive variables formulation. 

However, the extension of this concept to three-dimensional flows, leading to vector and scalar 

potentials, has been shown to be less advantageous when dealt with by the same hybrid approach 

[49]. Nevertheless, the integral transform method under the two-dimensional streamfunction 

formulation has been applied to various classes of problems, including cavity and channel flows, 

rectangular and cylindrical geometries, regular and irregular domains, laminar and turbulent flows, 

steady and transient states, natural and forced convection, as well as on magnetohydrodynamics 

[25,35-46]. The integral transformation of the streamfunction formulation is the first one to be here 

reviewed, for both steady and transient state situations, in light of its popularity among the 

contributions that employed this hybrid approach so far. 

With respect to the primitive variables formulation, which has been more extensively employed 

in solving the boundary layer equations [50-54], it is worthwhile mentioning first the approach 

based on the proposition of a Poisson equation for the pressure field [47] and, more recently, based 

on the manipulation of the momentum equations to eliminate the pressure field [48], but without 

recalling the streamfunction definition, while the continuity equation is used to determine one of the 



velocity vector components. This second approach is also here reviewed in view of its 

straightforward extension to the three-dimensional situation. 

The present review is focused on the GITT solution of fluid flow problems governed by the 

Navier-Stokes equations, with or without heat or mass transfer, represented by the associated 

energy or species conservation equations. This particular emphasis is here chosen in light of recent 

progresses that are allowing for further generalization of this hybrid method. First, a single domain 

reformulation strategy has been successfully employed in a number of problems involving 

heterogeneous media and complex geometries [55-59], with recent extensions to the solution of 

fluid flow and heat or mass transfer within channels and cavities partially filled with a saturated 

porous medium [60-63]. Second, a novel interpretation of the eigenfunction expansion proposal in 

handling the Navier-Stokes equations [60], has unified the treatment of the two- and three-

dimensional primitive variables formulations into a vector eigenfunction expansion representing all 

velocity components with one set of transformed potentials and an appropriately chosen vector 

eigenfunction basis. Through this new interpretation, the velocity vector field can be represented 

considering the influence of an infinite number of vortices disturbing a base flow. This proposition 

automatically recovers the streamfunction formulation as a special case for the two-dimensional 

situation. The combination of these two novel concepts allows for a more straighforward handling 

of transient flows within complex geometries, such as for instance, in analyzing flow instabilities 

effects in convective heat and mass transfer problems within porous or partially porous media, 

previously considered in different physical situations [64-70]. 

 

2. THE GENERALIZED INTEGRAL TRANSFORM TECHNIQUE 

 

The Generalized Integral Transform Technique (GITT) [26-34], based on the classical integral 

transform method [10], provides a hybrid numerical-analytical nature to the eigenfunction 

expansion approach, yielding error-controlled solutions to a large number of linear and nonlinear 

convection-diffusion problems. The basic steps in the GITT algorithm can be summarized as 

follows [71,72]: 

 

a) Select an analytical filtering solution to improve convergence behavior of the eigenfunction 

expansions, if required. Filtering to achieve homogeneous boundary conditions and/or reduce the 

importance of equation source terms is often helpful; 



b) Choose the associated eigenvalue problem, which should desirably incorporate characteristic 

linear behaviors of the original problem formulation represented by the coefficients of the 

differential operators. Either diffusive or convective eigenvalue problems [73]  may be adopted. 

More recently, nonlinear eigenvalue problems have also been employed with marked improvement 

on convergence [33,74]; 

c) Develop the integral transform pair and obtain the transform and inversion, that will define 

the transformation operation and the explicit recovering of the potential; 

d) Solve the eigenvalue problem, either in analytical form and symbolic computation, or 

through the GITT approach itself, transforming the chosen differential eigenvalue problem into an 

algebraic one [23,26]. A convergence acceleration strategy, based on integral balances, has been 

recently advanced in handling eigenvalue problems through the GITT [75]; 

e) Integral transform the original PDE and obtain the transformed differential system, which 

shall be an ODE system for a total transformation, when all the independent variables are 

eliminated except one. It can result in an initial value problem, for a parabolic or hyperbolic 

formulation, or in a boundary value problem, for an elliptic formulation. A partial transformation 

[72] may also be applied, as first proposed in [76], when two independent variables are kept in the 

transformed system, yielding a partial differential transformed system; 

f) Compute transformed system coefficients, which are integrals, single or multiple, involving 

the eigenfunctions. When analytical expressions are not obtainable through symbolic computation 

[77], there is a marked advantage in promoting semi-analytical integrations, when the oscillatory 

nature of the eigenfunctions is analytically handled, while the non-oscillatory portion of the 

integrand is approximated by piecewise polynomials [71,72]; 

g) Solve the transformed system, either numerically or analytically, when feasible. This main 

numerical task requires handling the resulting coupled ODE or PDE system for the transformed 

potentials, which needs to be truncated to a sufficiently large order for numerical purposes. Reliable 

automatic solvers are readily available for the numerical solution of stiff ODE systems, and even for 

one-dimensional systems of PDEs with adaptive remeshing, such as in the routine NDSolve of the 

Mathematica system [77]; 

h) Recall inversion formula to analytically reconstruct the hybrid solution of the desired 

potential. At this point, the inversion formula can be employed for accuracy testing, once the 

intermediate tasks were error controlled, and then allowing for best selection of the transformed 



system truncation orders. Error estimates are then automatically provided at any desired position 

and time. 

In order to illustrate the basic steps above, let us consider a general nonlinear convection-

diffusion problem of n coupled potentials, ( , )kT tx , defined in the region V with boundary surface S:  

 

, , 0 1( ) ( , ) ( , ) ( , , ),    ,   < ,   1, 2,...,k t k k k k k kw L T t L T t G t V t t t n= +   =xx x x x T x                         (1.a) 

  

Equation (1a) is already written in a way that all the coupling and nonlinear terms are collapsed 

into the source terms, ( , , )kG tx T , eventually also including convective terms, while the remaining 

operators retain representative information with selected linear coefficients. Therefore, the x 

operator, 
,kLx

, for this diffusion or convection-diffusion problem, may be written as:  

 

( ), ( ) ( , ) ( ) ( , )k k k k kL K T t d T t=    −x x x x x                                                           (1.b) 

 

which includes the diffusion and linear dissipation terms. The t operator, 
,t kL , for a parabolic 

formulation may be given by,  

 

,k tL
t





                                                                             (1.c) 

 

while for an elliptic or hyperbolic formulation is written as 

 

, ( ) ( )k t k kL a t b t
t t

 
 −  

 

 

 
                                                                (1.d) 

 

The source term, including nonlinear convective terms, if pertinent, becomes: 

 

( , , ) ( , , ). ( , ) ( , , )k k kG t t T t g t=−  +x T u x T x x T                                                    (1.e) 

 

with initial or boundary conditions in the t variable given, respectively, by 

 



0( , ) ( ),      k kT t f V= x x x ,   for the parabolic problem                                 (1.f) 

0

0

( , )
( , ) ( ),     ( ),   k

k k k

t t

T t
T t f h V

t =


= = 



x
x x x x ,   for the hyperbolic problem     (1.g,h) 

1

, , ,( ) ( 1) ( ) ( , ) ( ),  at = , =0,1, l

k l k l k k l lt t T t f t t l V
t

+ 
+ − =  

 


 


x x x , for the ellliptic problem   (1.i) 

 

and the boundary conditions in the remaining coordinates 

 

0 1( ) ( ) ( ) ( , ) ( , , ),  ,  < k k k k kK T t t S t t t
 

+ =   
 


  


x x x x x T x

n
                                           (1.j) 

 

where n denotes the outward-drawn normal to the surface S, and  the potentials vector is given by 

 

 1 2, ,..., ,...,
T

k nT T T T=T                                                                     (1.k) 

 

Equations (1) do not include all of the problem formulations of interest in heat and fluid flow 

analysis, but are sufficiently general to illustrate the formalism in the GITT. The first step in the 

integral transform solution of Eqs. (1) is then the proposition of a filtering solution, so as to reduce 

the importance of the non-homogeneities characterized by the equations and boundary conditions 

source terms, and their influence on slowing down the eigenfunction expansions convergence rates. 

Therefore, in general terms, the filter can be written as: 

 

*

,( , ) ( , ) ( ; )k k k FT t T t T t= +x x x                                                                  (2) 

 

where the filtering solution, , ( , )k FT tx , accounts at least partially for the information within the 

source terms, ( , , )kG tx T  and ( , , )k t x T . Then, the resulting filtered potentials should obey the 

following problem formulation: 

 

* * * *

, , 0 1( ) ( , ) ( , ) ( , , ),    ,   < ,   1, 2,...,k t k k k k k kw L T t L T t G t V t t t n= +   =xx x x x T x                         (3.a) 

  



with the filtered source term 

 

* *

, , , ,( , , ) ( , , ) - ( ) ( , ) ( , )k k k t k k F k k FG t G t w L T t L T t= + xx T x T x x x                                                (3.b) 

 

and filtered initial and boundary conditions as 

 

* *

0 , 0( , ) ( ) ( ) ( , ),      k k k k FT t f f T t V=  − x x x x x ,   for the parabolic problem                     (3.c) 

00

*
,* * *

0

( , )( , )
( , ) ( ),     ( ) ( ) ,   

k Fk
k k k k

t tt t

T tT t
T t f h h V

t t
==


= =  − 
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xx
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for the hyperbolic problem     (3.d,e) 
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for the ellliptic problem   (3.f) 

and the boundary conditions in the remaining coordinates 

 

* * *

,

0 1

( ) ( ) ( ) ( , ) ( , , ) ( , , ) ( ) ( ) ( ) ( , ),  

,  < 

k k k k k k k k k k FK T t t t K T t

S t t t

   
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 

 
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x x x x x T x T x x x x

n n

x

(3.g) 

Equations (3) were obtained from application of the linear filtering solution of Eq. (2), but other 

more involved filtering schemes have been proposed, including recursive filtering, local 

instantaneous filtering, and implicit (or nonlinear) filters [71,72], which shall not be reviewed here 

for the sake of brevity. 

Following the formalism in the GITT [26-34,71,72], an eigenvalue problem is chosen that 

provides the base for the eigenfunction expansion. Here, when Eqs. (1) were written, this choice 

was already implicitly made, since characteristic linear coefficients have been identified to describe 

the differential operators. Therefore, the following eigenvalue problem is considered: 

 

( ) 2( ) ( ) [ ( ) ( )] ( ) 0,   k ki ki k k kiK w d V   + − =   x x x x x x                                                   (4.a) 

( ) ( ) ( ) ( ) 0,   k k k kiK S
 

+ =  
 


  


x x x x x

n
                                                            (4.b) 



 

 Again, more involved eigenvalue problems can be proposed in specific situations, towards 

improved convergence of the eigenfunction expansions, such as in coupled problems, convective 

eigenvalue problems, or even nonlinear Sturm Liouville problems, however these alternatives shall 

not be examined in the present context. Problem (4), with the associated orthogonality property of 

the eigenfuncionts, ( )ki x , permits the derivation of the following transform-inverse pair: 

 
*( ) ( ) ( ) ( , )dki k ki k

V
T t w T t V=  x x x ,          transform                                                (5.a) 

*

,

1

( , ) ( ) ( )k ki k i

i

T t T t


=

=  x x ,          inverse                                                      (5.b) 

 

The symmetric kernels ( )ki x  and the norms are given by: 

 

( )
( ) ki

ki

kiN
=




x
x ;   2

v
( ) ( )dki k kiN w v=  x x                                                     (5.c,d) 

 

The integral transformation of the partial differential equations (3.a) is then performed, making 

use of the operator ( )(.)dki
V

V  x , to yield the transformed system, after manipulation of the 

boundary conditions, Eqs.(3.g) and (4.b): 

 
2

, 1( ) ( ) ( , ),        k t ki ki ki ki 0L T t T t g t i=1,2,... , t t t , k =1,2,...,n+ =   T                            (6.a) 

 

where the coupling transformed source terms include the influence of the convective terms and of 

the equation and boundary condition source terms as 

 

( ) ( )
* * * *

( )
( ) ( )

( , ) ( ) ( , , ) ( , , )

ki
ki k

ki ki k k
V S

k k

K

g t G t dV t ds

 
− = +  

+ 
 




 
 

x
x x

nT x x T x T
x x

                   (6.b) 

 

Similarly, the initial or boundary conditions in the t variable are integral transformed with the 

operator ( ) ( )(.)dk ki
V

w V x x , to provide: 

 
*

0( ) ( ) ( ) ( )ki ki k ki k
V

T t f w f dV=   x x x , for the parabolic problem                               (6.c) 



0

* *

0

( )
( ) ( ) ( ) ( ) , ( ) ( ) ( )ki

ki ki k ki k ki k ki k
V V

t t

dT t
T t f w f dV h w h dV

dt
=

=  =   x x x x x x ,      

for the hyperbolic problem    (6.d,e) 

1 *
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k l k l ki k li k ki k l l
V

d
t t T t f w f dV t t l

dt

+ 
+ − =  

 
  x x x    

for the elliptic problem       (6.f) 

 

The transformed ordinary differential system, Eqs. (6), is either an initial value problem, for 

parabolic or hyperbolic formulations, or a boundary value problem for the elliptic formulation, and 

it is unlikely that analytical solutions can be obtained for such a general nonlinear situation. 

However, reliable solvers for ODE´s are readily available to provide numerical solutions with user 

prescribed accuracy, such as the routine NDSolve in the Mathematica platform [77]. After 

numerical integration of the ODE system along the t variable, the inverse formula, Eq. (5b), is 

recalled to reconstruct the filtered potentials in analytical form.  

This hybrid approach has been extensively used as a benchmarking tool, in the verification of 

more general and flexible numerical codes, but also as a production tool itself, especially in highly 

intensive computational jobs and/or very precision demanding applications. An open source general 

purpose symbolic-numerical code was developed, coined as UNIT code (Unified Integral 

Transforms) [71,72], and implemented in the Mathematica platform [77]. It offers all of the basic 

analytical and numerical steps in the GITT implementation, allowing for a more straightforward 

utilization of this methodology. The reader should refer to the recent contributions on the UNIT 

code for details on the algorithm implementation, both on the total and partial transformation 

schemes [71,72]. 

 

3. STREAMFUNCTION AND PRIMITIVE VARIABLES FORMULATIONS  

 

The present section illustrates the application of the GITT in solving the Navier-Stokes 

equations, either on the streamfunction-only or in the primitive variables formulations. In the first 

example, it has been chosen to illustrate the solution of the steady state Navier-Stokes equations 

written in terms of the streamfunction in a cylindrical geometry, representing laminar flow 

development within a concentric annular tube with rotating inner wall. The second example deals 

with transient magnetohydrodynamics and natural convection in a rectangular cavity, again in the 

streamfunction-only formulation, while in the third example, the classical lid driven cavity flow 

problem is considered with a transient moving lid, handled directly on the primitive variables 



formulation. In the sequence, section 4 presents the recently introduced concept of a vector 

eigenfunction expansion, which unifies the treatment of two and three-dimensional problems in the 

primitive variables formulation. Finally, in section 5, a few results are provided to demonstrate the 

convergence behavior of the proposed eigenfunction expansions in each case. 

 

3.1. Streamfunction-only Formulation  

 

 3.1.1 Steady state 

 

This example deals with laminar flow inside an annular duct with a rotating inner wall, as 

illustrated in Fig. 1 [78,79]. A Newtonian fluid enters the duct with a uniform velocity profile u0 

aligned with the axial direction. The annular duct has inner and outer radii ri and ro, respectively. 

The inner cylinder rotates with an angular velocity ω, whereas the outer cylinder remains at rest. 

The flow is considered to be steady, laminar, incompressible, and axisymmetric, with constant 

physical properties. 

The flow in the annular region is represented by the continuity and the Navier-Stokes equations 

in the cylindrical coordinates system. The continuity equation is automatically satisfied when the 

streamfunction-only formulation is adopted, which is written in terms of the streamfunction and the 

tangential velocity component, in dimensionless form, as [79]: 

 

 
( )

4 3 2 4 3 4

4 3 2 2 3 2 2 2 4

3 2 3 3 2 3

3 2 2 2 2 3

2 2
2

2 2 2

2 3 3 2
2

r r r r r r r r z r r z z

Re 1 1 1 1 1

2 1 r z r r r r r r z r r r z r r z z

v2 1
2 v

r z r r r z z




            
− + − + − + =

        

                  
− + + − − +    

−                

       
− − + −  

     



 (7.a) 
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2

2 2

v v v v v v1 Re 1 1
r

r r r r z 2 1 r z r r r r z
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− + = + −    

   −         
 (7.b) 

 

The boundary conditions are given by: 

 

 1( , z) C  = ;   
( , z)

0
r

 
=


;   v ( , z) 1  =  (7.c-e) 



 2(1, z) C = ;   
(1, z)

0
r


=


;   v (1, z) 0 =  (7.f-h) 

 2 2
1(r,0) C (r ) / 2 = − −  ;   

2

2

(r,0)
0

z

 
=


;   v (r,0) 0 =  (7.i-k) 

 (r, ) (r)  =  ;   
(r, )

0
z

 
=


;   ,v (r, ) v (r)   =  (7.l-n) 

 

where, (r)  and ,v (r)   are the values of the streamfunction and the tangential velocity 

component in the fully developed region. Also, C1 and C2 are the values of the streamfunction at the 

inner and outer cylinder walls, respectively. These quantities are defined as: 

 

( )
( )

( )
2 2

2 2 2 2 2 2
2 m m

r2
(r) C r r ln r ln r 2r 2 r

4


 − 
  = − −  − − + + 
 
 
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( )2

2

1
C

2

− 
= −  (7.o-q) 

   
( ), 2

1
v (r) r

r1
 

  
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−   
;   2 2

m1 2r = +  − ;   
( )

( )

1
22

m

1
r

2ln 1/

 −  
=  

  

 (7.r-t) 

 

The dimensionless groups employed in the above formulation are: 
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o i 02(r r )u
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−
=


; 
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( )
i

o

2Ta 1r 1

u Re 1
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( ) ( )
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(r r )
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 +
 (8.h-j) 

 

where the main parameters in Eqs. (8) are the Reynolds number (Re), the Taylor number (Ta), the 

rotation parameter (), and the radii ratio (). The streamfunction is related to the radial and axial 

velocity components, vr and vz, as: 

 

r

1
v

r z


=


;   z

1
v

r r


= −


                                                               (9.a,b) 

 



In solving Eqs. (1), filtering is applied in order to improve the computational performance, by 

eliminating the non-homogeneity of the boundary conditions in the r-direction, since this is the 

chosen coordinate for elimination through the integral transformation process. This filter is given 

as: 

 

 *
,v (r, z) v (r) v (r, z)   = + ;   (r, z) (r) (r, z) =  + 

 
(10.a,b) 

 

Eigenfunction expansions are then proposed for the streamfunction and tangential velocity 

fields, by considering a biharmonic-type problem for the streamfunction and a Sturm-Liouville  

problem for the tangential velocity component, both dependent on the radial direction only. Here, 

the integral transformation is promoted only in the radial direction, thus leading to a transformed 

ODE system (boundary value problem) in the z direction. The solution of the coupled non-linear 

ordinary differential equations for the transformed potentials is obtained through the DBVPFD 

subroutine of the IMSL library [80].  

 

 3.1.2 Transient state 

 

This example considers the influence of a magnetic field in the momentum and heat transfer in 

transient MHD flow in a square cavity, for conditions of moderate and high Grashof numbers [44, 

81-85], as illustrated in Fig. 2. The cavity has an infinite extent along the z-axis, the lower and 

upper walls are insulated, while the side walls are maintained at different and constant temperatures, 

namely, the hot (Th) and cold (Tc) walls, respectively. The flow is in transient state and the fluid is 

Newtonian and electrically conductive. Moreover, the fluid properties are considered constant 

throughout the range of temperatures in the specific example. The temperature difference causes the 

movement through the onset of the buoyancy force. This term in the momentum equations is 

modeled using the Boussinesq approximation, with density variation in the body force term only. 

The fluid is permeated by a constant magnetic field B0 applied in the x-direction (from the left to the 

right wall), which creates a force opposing the buoyancy effect, the Lorentz force, represented by 

the vector product between the electrical current density and the magnetic field. Therefore, the 

equations governing the problem are the continuity, Navier-Stokes and energy equations, as well as 

the electric charges conservation equation, Ohm's Law, and Ampère-Maxwell's law in a moving 



medium. Adopting the streamfunction-only formulation, the problem is written in dimensionless 

form as [81]: 

 

2 3 3 3 3 2
4 2

3 2 2 3 2

( ) T
Pr Pr Ha Ra Pr

t y x xx x y x y y x

            
+ + − + =  − −   

            

       
     (11.a) 

2T T T
T

t y x x y

    
+ − = 

    

 
                                                                    (11.b) 

 

The initial and boundary conditions, in dimensionless form, needed to complete the 

mathematical formulation, are: 

 

forT( x, y,0 ) ( x, y,0 ) 0 t 0= = =                                                                  (11.c,d) 

at at0; T 1      x 0;    T 0      x 1
x x

 
= = = = = = = =

 

 
                                                (11.e-j) 

at at
T T

0      y 0;    0      y 1
y y y y

   
= = = = = = = =

   

 
                                                (11.k-p) 

 

The usual definition of the streamfunction was adopted, in the form: 

 

* *
* *

* *
u ; v

y x

 
= = −

 

 
                                                                             (12.a,b) 

 

together with the following dimensionless quantities: 

 

*** * *

cT

2

T h c

T Ttx y
x ; y ; ; t ; T

L L L T T

−
= = = = =

−





                                                      (13.a-e) 

 

where the subscript “*” identifies the dimensional variables, αT is the fluid thermal diffusivity, and 

L is the length of the cavity. Also, Ha, Ra, Pr, and Gr are the Hartmann, Rayleigh, Prandtl and 

Grashof numbers, respectively, which are defined as: 

 



3 3

T h c T h c
0 2

0 T T

g (T T )L g (T T )L R a
Ha B L ; Ra ; Pr ; Gr

Pr

− −
= = = = =

  

    
 (14.a-d) 

 

where ν is the kinematic viscosity, βT is the coefficient of thermal expansion, σ is the electrical 

conductivity and μ0 is the magnetic permeability in vacuum. In this study, the effects of polarization 

and magnetization were neglected. The magnetic Reynolds number is considered to be very small, 

as well as the effects of Joule heating and viscous dissipation. In integral transforming the flow 

problem, Eq. (11.a), the preferred eigenvalue problem is the biharmonic equation in both space 

coordinates, x and y, as analyzed in [81]. For the temperature problem, Eq. (11.b), the two-

dimensional Sturm-Liouville equation with constant coefficients is adopted. Then, the transformed 

system becomes an initial value problem (ODEs system), which has been accurately handled by 

subroutine DIVPAG of the IMSL Library [80].  

 

3.2. Primitive Variables Formulation  

 

Consider the transient two-dimensional Navier-Stokes equations with constant properties for an 

incompressible flow with negligible body forces, together with the corresponding continuity 

equation, for the classical lid-driven cavity flow problem in primitive variables formulation. The 

fluid, initially at rest, has impermeability and no-slip conditions at the walls, except on the top 

surface where a reference uniform time-variable velocity, f(t), is imposed [48,86]. The primitive 

variables formulation in dimensionless form in the square region 0<y<1 and 0<x<1, as represented 

in Fig. 3, is given by [48]: 

 

( ) ( ), , , ,
0

v x y t u x y t

y x

 
+ =

 
                                                                                   (15.a) 

2 2

2 2

1

Re

u u u p u u
u v

t x y x x y

      
+ + = − + + 

      
                                                                 (15.b) 

2 2

2 2

1

Re

v v v p v v
u v

t x y y x y

      
+ + = − + + 

      
                                                                   (15.c) 

 

with the following initial and boundary conditions:  

 



( ), ,0 0u x y = ;    ( )1, , 0u y t = ;     ( )0, , 0u y t = ;     ( ),0, 0u x t = ;     ( ) ( ),1,u x t f t=         (15.d-h) 

( ), ,0 0v x y = ;     ( )1, , 0v y t = ;     ( )0, , 0v y t = ;     ( ),0, 0v x t = ;     ( ),1, 0v x t =            (15.i-m) 

 

It has here been chosen to illustrate the integral transformation alternative path of handling the 

primitive variables Navier-Stokes equations, as proposed in [48]. The idea is to manipulate the 

momentum equations, such as in the case of the streamfunction formulation, so as to eliminate the 

pressure field. Then, the continuity equation in Eq. (15.a) is integral transformed and used to 

express one of the transformed velocity components in terms of the other component. Thus, the first 

step in the approach consists in eliminating the pressure term from the Navier-Stokes equations, 

which requires that one differentiates Eq. (15.b) with respect to y and Eq.(15.c) with respect to x, 

and the results are then subtracted, yielding: 

 

2 2 2 2 2 2 2 2

2 2 2 2 2 2

1 1

Re Re

u v u u v v v v u u
u v v u

y t x t y x y y x x x x y y x y

                     
− + + − + = − + + +        

                        

       (16) 

 

Equations (15.a) and (16), together with initial and boundary conditions, Eqs. (15.d-m), complete 

the problem statement in terms of the primitive variables formulation, without the pressure terms. 

Here, second order diffusion-type eigenvalue problems have been preferred, and there is the choice 

of implementing a total or partial integral transformation scheme. An application will be reported in 

section 5, for an oscillating lid velocity ( ) ( )cos  tf t =  , with 2=   , where   is the oscillating 

frequency and τ is the time period [86]. 

The same procedure can be used for a three-dimensional formulation. In this situation, the 

resulting system of equations is given by the continuity equation and the other two equations 

generated in the manipulation of the three momentum equations to eliminate the pressure field, 

yielding:  

 

( ) ( ) ( ), , , , , , , , ,
0

u x y z t v x y z t w x y z t

x y z

  
+ + =

  
                                                      (17.a) 
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1 1
, , , , , ,
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    
= − + + 
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    (17.b) 
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4. VECTOR EIGENFUNCTION EXPANSION 

 

Next, recent advances on combining integral transforms with the single domain reformulation 

strategy and a vector eigenfunction expansion [60] are briefly discussed. The example here 

considered represents a parallel plate channel partially filled with a porous medium. The model for 

the fluid flow inside the porous medium is the Darcy-Brinkman, while for the free fluid, is the 

Navier-Stokes equations for steady state incompressible flow. With the main advantage of 

accomplishing the coupling between the regions automatically and more conveniently for 

computational purposes, the single domain formulation is here employed, represented through 

appropriate space variable coefficients. The problem formulation then becomes [60]: 

 

0  =u  (18.a) 

( )  
4 4

p
Re ReDa

 = − +    −


 u u u u  (18.b) 

 



where u  is the dimensionless velocity vector,   is the dimensionless nabla operator,   is the 

dimensionless density, p  is the dimensionless pressure field,   is the dimensionless dynamic 

viscosity, Re  is the Reynolds number based on the hydraulic diameter, and Da  is the Darcy 

number. The dimensionless quantities are given by: 

 

* * * *
* 0 0

2 2

0 0 0 0 0 0

4
;  ;  ;  ; ; ;

u hp
h p Re Da

u u h
=  =  = = = = =

  
 

   

u
u                           (19.a-g) 

 

where *
u  is the velocity vector, 0u  is the uniform entry longitudinal velocity component, *  is the 

nabla operator, h  is half the height of the channel, *  is the density, 0  is the fluid density, *p  is 

the pressure field, *  is the viscosity, 0  is the fluid viscosity, and   is the permeability of the 

porous medium. 

In accordance with the single domain formulation [55-59], the physical properties of Eqs. (18) 

vary abruptly across the interfaces between different media. Let 
fV  and 

pV  be the regions occupied 

by the fluid and porous layers, respectively. Employing the effective viscosity, neglecting the 

inertial terms within the porous medium, and disregarding the dissipative term in the fluid layer, the 

following definitions are adopted: 
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p pp
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 

  



      (20.a-c) 

 

where   is the porosity of the porous medium.  

The Brinkman viscous correction allows for the imposition of no-slip boundary conditions at the 

walls. At the entrance, a uniform velocity profile was imposed. The outlet boundary condition is 

prescribed assuming that the channel is long enough for the flow to be fully developed. Hence, a 

dimensionless fully developed velocity profile ( )F y , as detailed in [60], is considered at the outlet. 

The adopted single domain approach eliminates the need to explicitly specify boundary conditions 

at the interface between the free fluid and porous layers. Thus, the boundary conditions are given 

as: 

 



( ) ( ), 1 0; ,1 0x x− = =u u  (21.a,b) 

( ) ( ) ( ) ( )0, 0 0 ; ,1 0 0
T T

oy f y x F y   =  =   u u  (21.c,d) 

 

where 
ox  is the dimensionless channel length and f  is the velocity profile at the entry of the 

channel. 

The first step is then the filtering of the velocity vector, in the form: 

 

( ) ( ) ( ) ( ), , , , wˆ here 0 0
T

x y x y x y F y = + =  f fu u u u                                 (22.a,b) 

 

The velocity vector field can be determined by taking into account the influence of an infinite 

number of vortices disturbing a base flow. Then, this novel interpretation of the eigenfunction 

expansion is introduced to represent the filtered velocity vector as [60]: 

 

( ) ( ) ( )
1

ˆ , i i

i

x y x y


=

 =     Φu                                                       (23) 

 

Expanding eq. (23) in the Cartesian coordinate system, imposing that the only non-zero 

component of the base vector iΦ  is in the z-direction, and assuming the linearity of the curl 

operator holds for the infinite series involved, the following expression is achieved: 
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1 1
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i i i i

i i

x y x y x y
y x

   
 

= =

        
= −    

         
 u                                     (24) 

 

where i  is taken as the z-axis component of iΦ . Defining the summation within the derivatives in 

eq. (24) as the streamfunction, the correspondence between the present approach and the 

streamfunction formulation is fully established. However, the interpretation without recurring to the 

streamfunction definition allows for a more straightforward generalization to three-dimensional 

problems, provided that a proper base for the expansion ( iΦ ) is made available. In the single 

domain framework, the integral transform methodology strongly benefits from the inclusion of the 

abrupt variation of the physical properties that represent the media transitions. Therefore, an 



extension of the classical biharmonic eigenvalue problem has been preferred in the present situation 

[60]. This eigenvalue problem with space variable coefficients is itself handled by the GITT by 

considering a simpler auxiliary eigenvalue problem [26]. 

Further extension of the physical concept of a base flow disturbed by an infinite number of 

vortices is envisioned, aiming at the solution of the flow equations in its three-dimensional transient 

form. Thus, consider the fairly general formulation of the transient Navier-Stokes equations in 

dimensionless vector form for an incompressible flow given by: 

 

0, V  =  u x                                                                        (25.a) 

( )  
1

,p V
t Re


+    = − +     




u
u u u x                                                  (25.b) 

 

where V  represents the domain occupied by the fluid, u  is the dimensionless velocity vector, p  is 

the dimensionless pressure field, Re  is the Reynolds number,   is the dimensionless viscosity. 

Recalling the separation of the flow field into a base flow and an infinite number of disturbing 

vortices of Eq. (22.a), the latter are represented in a more convenient way for solving Eqs. (25.a,b), 

as follows: 

 

( ) ( )( )
1

ˆ , i i

i

t u t


=

= u x                                                               (26) 

 

Assuming the base flow satisfies the continuity equation (25.a), the definition of Eq. (26) is 

sufficient to warrant mass conservation likewise in the streamfunction-only formulation, dropping 

the need to further analyze Eq. (25.a). 

A convenient way to assure the convergence of the eigenfunction expansion of eq. (26) would be 

to impose the orthogonality property to ( )i , while including physical information into it. A 

straightforward way of accomplishing these requirements is to use a vector eigenvalue problem 

capable of decoupling system (27.a-h) when 0Re →  (Stoke’s flow). The resulting self-adjoint 

vector eigenvalue problem is given by [87]: 

 

( ) ( )2

i i i      +  =
 

0                                                       (27) 



 

The orthogonality property of the solution to eq. (27) allows for the proposition of a transformed 

velocity, in the form: 

 

( ) ( ) ( )ˆ ,i i
V

u t t dv=   Φ u x                                                             (28) 

 

Equations (26) and (28) form a transform-inverse pair, reproducing the same formalism as in the 

usual application of the GITT. 

Let eV  be the boundary of V  containing the entry region, wV  be the boundary of V  containing 

the wall region, oV  be the boundary of V  containing the outlet region, where e w oV V V V =      . 

Substituting eq. (22.a) into eq. (25.b), applying ( ) __i
V

dv   , using typical boundary conditions 

for the entry, wall, and outlet regions, and using some vector calculus identities, the following 

transformed system of ordinary differential equations results: 
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dt Re
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with integral coefficients given by, 

 

( ) ( ) ( )  ( ) ( ) ( ):
o

ijk j k i j k i
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B ds dv

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    u n u                (29.c) 
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ij j f i j f i
V V

D ds dv

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where ˆ
ep  and ˆ

op  are the filtered pressures at the entry and outlet regions, respectively. 



 The numerical solution to the transformed problem of eqs. (29.a-f), once inserted into the 

inverse formula of Eq. (26), allows for recovery of the velocity vector. 

 

5.  RESULTS AND DISCUSSION 

 

The four solution paths above discussed are now exemplified, with emphasis on the illustration 

of convergence behavior of the associated eigenfunction expansions and verification with numerical 

solutions available in the literature or here obtained through commercial numerical platforms.  

 

5.1. Streamfunction-only Formulation: Steady laminar flow in annular tube with rotation 

 

Table 1 shows the convergence behavior of the axial velocity component, for the dimensionless 

axial positions z = 0.54 and z = 2.7, for Re = 300 and γ = 0.1, considering the case with rotation of 

the inner cylinder for ξ = 1. It can be observed that all of the velocity field results are fully 

converged to four significant digits in the range of truncation orders shown for the eigenfunction 

expansion (N<39). At the position further downstream convergence is noticeably faster than at the 

position closer to the channel entrance, at position z = 0.54. This is due to the adopted filtering 

solution which extracts the fully developed velocity profile for large z.  

Figure 4 shows the development of the axial velocity component evaluated at different axial 

positions for Re = 300 and γ = 0.1 for the case with rotation of the inner cylinder, considering ξ = 1. 

It can be observed that the fully converged results obtained through integral transforms (GITT) have 

a perfect agreement, in the graph scale, with those computed through the COMSOL Multiphysics 

platform.  

 

5.2. Streamfunction-only Formulation: Transient natural convection with MHD flow 

 

Test cases were analyzed for Grashof numbers equal to 104 and 106, Hartmann number in the 

range from 0<Ha<100, while the Prandtl number was taken equal to 0.71 in all cases. First, the 

convergence behavior of the global mean Nusselt number, streamfunction modulus and the 

dimensionless temperature at the points (x = 0.1; y = 0.1) and (x = 0.9; y = 0.9) of the cavity, for  

t =0.005 and for steady state, with Gr = 104 and Ha =0, is shown in Table 2. The results in this table 

illustrate the excellent convergence rates both at the beginning of the transient process and at steady 

state. The global mean Nusselt number converges with fewer terms, while the streamfunction has a 



slower convergence rate. The steady state velocity x-component at the vertical midplane of the 

cavity (x = ½), for different values of Ha from 0 to 50 and Gr = 104, is shown in Figure 5.a, 

comparing the present results obtained by the GITT approach with those in [82] that employed a 

mesh-free kernel approximation technique based on radial basis functions (RBFs). For the lowest 

Hartmann number analyzed (Ha = 0), the behavior of the velocity field at this plane indicates the 

existence of a vortex and a point of zero velocity (y = 1/2). For the largest Hartmann number 

analyzed (Ha = 50), the behavior indicates that the magnetic field has an effect of suppressing 

convective currents inside the cavity. Results for the temperature field obtained by GITT are also 

compared with those of [82] in Fig. 5.b, in the horizontal midplane of the cavity (y = 1/2). Heat 

transfer by conduction clearly predominates at the largest Hartmann number (Ha=50). A marked 

change in temperature gradients is observed and the more significant presence of convection is 

observed as Ha is decreased towards the lowest Hartmann number (Ha=0), when magnetic effects 

cease. Furthermore, Figs. 5.a,b confirm the excellent agreement, to the graph scale, between the 

present GITT results with the numerical solution in [82]. 

The second Grashof number examined is much larger, Gr = 106, which corresponds to conditions 

in which thermal effects are of greater magnitude, with convection evolving much more rapidly and 

observing the emergence of marked movements of internal waves. Thus, the magnetic field 

necessary to suppress the natural convection must be stronger than previously considered for Gr = 

104. This behavior is shown in Figs. 6 for the streamfunction isolines with Gr = 106 and Ha = 0 and 

100 at four different times. Now, with the presence of a stronger magnetic field, Ha = 100, with the 

advancement of the transient process, the axis of the central vortex is rotated in the 

counterclockwise direction, and this effect is due to the suppression of convection by the Lorentz 

force. Figures 7 show the isotherms for the cases Gr = 106 and Ha = 0 and 100 at four different 

times. Again, it is evident the formation of a distinct vertical boundary layer along the heated wall 

early in the process and, in the case of Ha = 0, the formation of at least two vortices at the geometric 

center of the cavity for the largest time, t = 0.93. The discharge of a jet by the heated side wall 

forms an initially horizontal layer of intrusion that occurs along the upper horizontal wall of the 

cavity, as shown in Fig. 7.a for   t = 0.005. With the advancement of the transient process, the 

horizontal flow reaches the center of the cavity resulting in the formation of a thermally stratified 

core, where the temperature increases monotonically as a function of the coordinate y. 

 

 



 

5.3. Primitive Variables Formulation: Transient lid driven cavity flow 

 

Figure 8.a shows a comparison of the horizontal velocity component for partial and total 

transformation for steady-state (t=12), at the cavity centerline (x=0.5), for uniform motion of the top 

lid, against results found in the literature, with overall good agreement to the graphical scale. 

Classical benchmark results were here adopted, including the works of Burggraf [88] and Ghia et al. 

[89], besides the error controlled GITT results in [25] and the more recent numerical simulation 

results in [90]. Figure 8.b shows a comparison of the vertical velocity component for partial and 

total transformation for stationary regime (t=12), at the cavity horizontal centerline (y=0.5), for 

uniform motion of the top lid, i.e., 0 = .  

Figure 9.a shows a comparison of the horizontal velocity component at the centreline of the 

cavity with oscillating lid velocity, at a specific instant of time for Re=100 and 62 = , which 

agrees well with the numerical solution of Mendu and Das [86]. One may also note that the 

magnitude and direction of the velocity undergo a number of changes from the bottom to the top of 

the cavity. The centerline velocity profile in Fig. 9.a exhibits two local extremes due to the 

oscillatory motion. These repeated changes in magnitude and direction of the velocity along the 

centerline represent the presence of a number of complex vortices in the cavity. Fig. 9.b shows a 

comparison for the vertical velocity component at the horizontal centerline profile for six specific 

instants of time for Re=100 and w = 2p 6 , where again one can observe a very good agreement 

with the results of Mendu and Das [86]. 

 

5.4. Vectorial Eigenfunction Expansion: Membraneless redox flow batteries 

 

An application involving the mass transport of species in membraneless redox flow batteries 

(MRFB) is here reviewed. Composed of two electrodes in contact with a flowing aqueous solution 

of ions of different electrochemical potentials, this device takes advantage of the laminar flow 

developed in microchannels to keep the two species separated without the need of a costly and often 

non-optimized ion selective membrane [91,92], but still avoiding each chemical substance to reach 

an undesirable electrode on the opposite side. To ensure good performance from the MRFB, a 

careful analysis of the mass transport must be carried out for both the separation of ions from the 



opposite electrode and for the effective delivery of ions to the reactive sites within the porous 

electrodes. 

Figure 10 displays a model of the MRFB analyzed in the present work, consisting of 

symmetrically disposed porous carbon electrodes in flow-by configuration. Table 3 shows the 

convergence behavior of the eigenfunction expansion of Eq. (23) and a numerical comparison with 

the results obtained with the commercial software COMSOL Multiphysics. Convergence to at least 

three significant digits is observed with a maximum deviation from the finite elements results of 

~0.1%. Figure 11.a depicts concentration contours to a typical electrochemical species with 

Schmidt number equal to 200. For Re = 50, full separation of the ions from the opposite electrode is 

obtained, which indicates the suitability of these operational parameters for a good performance of 

the MRFB. Figure 11.b shows the horizontal component of the velocity vector along the vertical 

direction, including the transition between fluid and porous layers. Results obtained with COMSOL 

Multiphysics are offered in a co-verification effort. The agreement is shown to be perfect to the 

graph scale, hence demonstrating the capability of the method described in section 4 of dealing with 

flow problems in heterogeneous media. Further calculations can be performed, aiming at 

determining the current density under mass-transport-limited conditions, for which the reader is 

referred to [61]. 

 

6.  CONCLUSIONS 

 

The Generalized Integral Transform Technique (GITT) is reviewed as a computational-

analytical approach in the analysis of transport phenomena based on formulations that involve the 

Navier-Stokes equations for the fluid flow modelling. Three alternative integral transform solution 

paths are revisited. Initially, the more commonly employed streamfunction-only formulation for 

two-dimensional flows is illustrated, which automatically satisfies the continuity equation and 

eliminates the pressure field. The first example deals with the streamfunction formulation in steady-

state, when the eigenfunction expansion is obtained from a one-dimensional biharmonic eigenvalue 

problem, while the more challenging second example handles a transient situation, when the 

eigenvalue problem is two-dimensional for a total integral transformation scheme. Then, a primitive 

variables formulation is considered for both two and three-dimensional transient flows, which 

manipulates the momentum equations also to eliminate the pressure field, but employs the integral 

transformed continuity equation to provide one of the transformed velocity components in terms of 

the others. Finally, a recently introduced vector eigenfunction expansion strategy is discussed, as 



applied to both steady and transient two- or three-dimensional flows. As in the streamfunction 

formulation, this approach automatically satisfies continuity and eliminates the pressure field, 

recovering the streamfunction eigenfunction expansion for the two-dimensional case. This approach 

is also combined with a single domain reformulation strategy which allows for the straightforward 

treatment of heat (or mass) transfer and fluid flow in heterogeneous media. The approaches are 

demonstrated through examples involving laminar flow in annular channel with inner wall rotation, 

transient natural convection in magnetohydrodynamic flow, transient lid driven cavity flow 

problem, and mass transfer in membraneless redox flow batteries. These approaches should now be 

challenged in applications involving multiphase flow, flow instabilities, and complex fluids, to 

name a few new possibilities for extension of the hybrid numerical-analytical methodology. 
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Table 1 - Analysis of the convergence of the axial velocity componet, vz(r.z),  for the case with 

rotation of the inner cylinder (=1) for Re = 300 and γ = 0.1. 

 

N 
z=0.54 

r=0.145 r=0.325 r=0.550 r=0.775 r=0.955 

7 0.9130 1.092 1.090 1.186 0.5439 

11 0.6621 1.095 1.106 1.193 0.5049 

15 0.6117 1.106 1.109 1.201 0.4985 

19 0.6024 1.108 1.109 1.204 0.4966 

23 0.5993 1.109 1.109 1.205 0.4959 

27 0.5981 1.110 1.109 1.205 0.4956 

31 0.5976 1.110 1.109 1.206 0.4955 

35 0.5973 1.110 1.109 1.206 0.4955 

39 0.5972 1.110 1.109 1.206 0.4955 

N 
z=2.7 

r=0.145 r=0.325 r=0.550 r=0.775 r=0.955 

7 0.5126 1.285 1.382 1.120 0.2891 

11 0.5041 1.095 1.106 1.193 0.2880 

15 0.5025 1.276 1.390 1.119 0.2877 

19 0.5021 1.275 1.390 1.120 0.2877 

23 0.5020 1.275 1.390 1.120 0.2877 

27 0.5020 1.275 1.390 1.120 0.2877 

31 0.5020 1.275 1.390 1.120 0.2877 

35 0.5019 1.275 1.390 1.120 0.2877 

39 0.5019 1.275 1.390 1.120 0.2877 

 



Table 2 - Convergence behavior for the global mean Nusselt number, streamfunction modulus 

and temperature for t = 0.005 and in the steady state with Gr = 104, Pr=0.71 and Ha = 0. 

 

t =0.005 

N Nu  y(0.1,0.1)  T(0.1,0.1) y(0.9,0.9)  T(0.9,0.9)  

40 1.000 0.198x10-2 0.309 0.100x10-3 0 

80 1.001 0.257x10-2 0.305 0.788x10-4 0 

120 1.001 0.267x10-2 0.304 0.540X10-4 0 

160 1.001 0.267x10-2 0.304 0.488X10-4 0 

200 1.001 0.264x10-2 0.304 0.515X10-4 0 

240 1.001 0.263x10-2 0.304 0.557X10-4 0 

260 1.001 0.261x10-2 0.303 0.501X10-4 0 

280 1.001 0.261x10-2 0.303 0.520X10-4 0 

300 1.001 0.261x10-2 0.304 0.541X10-4 0 

steady state 

N Nu  y(0.1,0.1)  T(0.1,0.1) y(0.9,0.9)  T(0.9,0.9)  

40 2.009 0.321x10-2 0.698 0.321x10-2 0.301 

80 2.010 0.349x10-2 0.696 0.349x10-2 0.303 

120 2.010 0.353x10-2 0.695 0.353x10-2 0.304 

160 2.010 0.353x10-2 0.695 0.353x10-2 0.304 

200 2.010 0.352x10-2 0.695 0.352x10-2 0.304 

240 2.010 0.352x10-2 0.695 0.352x10-2 0.304 

260 2.010 0.352x10-2 0.695 0.352x10-2 0.304 

280 2.010 0.352x10-2 0.695 0.352x10-2 0.304 

300 2.010 0.352x10-2 0.695 0.352x10-2 0.304 

 

 



 

Table 3: Convergence behavior and co-verification of the GITT and COMSOL results for the 

horizontal velocity component at the channel centerline in selected longitudinal positions. 

 

Re = 50; Da = 0.002; y = 0 

 x = 0.1 x = 0.2 x = 0.4 x = 0.6 x = 0.8 

N = 3 0.984 1.045 1.182 1.272 1.317 

N = 6 1.009 1.065 1.187 1.273 1.317 

N = 9 1.027 1.067 1.186 1.273 1.317 

N = 12 1.018 1.066 1.186 1.273 1.317 

N = 15 1.017 1.066 1.186 1.273 1.317 

N = 18 1.019 1.066 1.187 1.273 1.317 

COMSOL 1.019 1.067 1.187 1.274 1.319 

 



 

 

 

Figure 1 – Geometry and coordinates for laminar flow within annular duct with rotating inner wall. 



 

 

 

Figure 2- Geometry and coordinates system for natural convection in square cavity with a 

transversal magnetic field. 



 

Figure 3: Schematic representation of the transient lid-driven cavity flow problem 
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Figure 4 - Development of the axial velocity component vz(r,z) for flow in annular channel with 

inner wall rotation (Re = 300, =0.1 and =1). 
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Figures 5. Comparison of the velocity x-component and temperature fields for Gr = 104 at steady 

state: (a) velocity component u along the vertical coordinate at the cavity plane x = 1/2;                  

(b) temperature profile along the horizontal coordinate at the cavity plane y =1/2. 
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Figures 6. Transient streamfunction isolines at different times with Gr = 106 and Ha = 0 and 100. 

(a) t = 0.005; (b) t = 0.02; (c) t = 0.1; (d) t = 0.93. 
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Figures 7. Transient temperature isolines at different times with Gr = 106 and Ha = 0 and 100. 

(a) t = 0.005; (b) t = 0.02; (c) t = 0.1; (d) t = 0.93. 
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Figures 8: a) Horizontal and b) Vertical velocity components at the cavity centreline for Re=100. 
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(b) 

Figures 9: Comparison of the a)horizontal and b)vertical velocity components for the oscillating lid 

driven flow problem with Re=100 and  w = 2p 6 . 

 

 

Figure 10: Illustration of the MRFB (Membraneless Redox Flow Battery) analyzed. Battery in 

flow-by configuration with porous carbon electrodes disposed symmetrically. 



 

 

 

 

Figures 11: Concentration contours and horizontal component of the velocity vector varying with y 

for Re = 50 and Da = 0.002. a) Concentration contours. Horizontal red lines represent the inteface 

between fluid and porous media; b) Profiles of the horizontal velocity profile with a vertical red line 

representing the interface between fluid and porous medium. COMSOL results given as symbols 

and GITT results as solid lines. 
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