
Graphical Affine Algebra
Filippo Bonchi

Universitá di Pisa
Pisa, Italy

Robin Piedeleu
University College London
London, United Kingdom

Pawel Sobocinski
University of Southampton

Southampton, United Kingdom

Fabio Zanasi
University College London
London, United Kingdom

Abstract—Graphical linear algebra is a diagrammatic language
allowing to reason compositionally about different types of linear
computing devices. In this paper, we extend this formalism with
a connector for affine behaviour. The extension, which we call
graphical affine algebra, is simple but remarkably powerful: it
can model systems with richer patterns of behaviour such as
mutual exclusion—with modules over the natural numbers as
semantic domain—or non-passive electrical components—when
considering modules over a certain field. Our main technical
contribution is a complete axiomatisation for graphical affine
algebra over these two interpretations. We also show, as case
studies, how graphical affine algebra captures electrical circuits
and the calculus of stateless connectors—a coordination language
for distributed systems.

I. INTRODUCTION

Concurrent programming can be seen as the marriage of
parallelism with synchronisation mechanisms. One of the ear-
liest and most influential synchronisation mechanism is mutual
exclusion [1], with the same underlying idea present in modern
concurrent programming through hardware-assisted atomic
constructs such as compare-and-set (CAS). Any theory that
takes up Abramsky’s challenge [2] to identify the fundamental
structures of concurrency ought to be expressive enough to
account for such fundamental synchronisation patterns. The
remit of this paper is the development of a principled, compo-
sitional account of these fundamental structures of concurrency
by characterising the underlying mathematical concept—affine
relations—and exploring (somewhat unexpectedly!) related
applications, notably non-passive electrical circuits.

A. Graphical Linear Algebra (GLA)

GLA [3], [4] is a diagrammatic language used to reason
compositionally about different types of linear computing
devices. String diagrams of GLA are recursively defined by
sequential and parallel composition of the following basic
operation, parametrised by a given semiring R.

| | | | | | k k ∈ R (1)

Here is addition, the constant zero, k is multipli-
cation by k, copy, discard, while and are the
same operations right-to-left. This semantics is formalised via
a recursively defined mapping of diagrams to relations over
R-vectors: thus right-to-left operations are simply denoted by
the opposite relations of their left-to-right cousins.

GLA has some claims of being fundamental. For R = Z/2,
it is the syntax of the phase-free ZX-calculus [5], a simple
algebra for pure state qubit computation [6]. For R the field

R(x) of polynomial fractions, it has been used to model
linear dynamical systems [7]–[9], which itself goes back to
Shannon [10] and the class of signal flow graphs [11], [12].
More recently [13] we showed that, by letting R be the
semiring N of natural numbers, GLA gives a compositional
account of the behaviours of Petri nets. Indeed, the lack of
additive inverses in N is well-suited to situations—as in classic
Petri nets—where it is unreasonable to consider “negative
resources”.

Thus in different computational interpretations—from quan-
tum and control-theoretic to concurrent—the set (1) of syntac-
tic primitives and the specification of their relational behaviour
remains the same. What changes is the denotational domain,
that is, the kinds of relations that are characterised. GLA over a
field (e.g. Z/2, R or R(x)), equipped with the equations of in-
teracting Hopf algebras, axiomatises linear relations (relations
that are linear subspaces) [3], [4]. GLA over N, equipped with
the equations of the algebra of resources, axiomatises additive
relations (relations that are N-semimodules, containing the
zero vector and closed under addition) [13].

B. Missing Expressivity: Affine Relations

Within the concurrent interpretation, mere additive relations
are not quite powerful enough to capture essential behaviour
patterns such as mutual exclusion. Indeed, consider the fol-
lowing idealised mutual exclusion connector, as considered in
the calculus of stateless connectors [14].

(2)

The legal behaviours, as an N-relation, is the finite set

{(((00), 0), ((10), 1), ((01), 1)}

indicating that only one of the two inputs can synchronise
with the output at any one time. The relation is not additive:
e.g. ((10), 1) + ((01), 1) = ((11), 2) is not included. We shall see,
however, that it is an N-affine relation. Moving from additive
to affine relations expands the relational universe. For example,
the empty relation ∅ is affine, but not additive.

The concept of affinity is of course better known over
fields (e.g. R) and is a mathematical playground of affine
and convex geometry. It turns out that moving to affine
relations is fruitful also in this context, namely in modelling
electrical circuits. GLA has already been used to define a
compositional semantics for passive linear circuits [15], that
is, electrical circuits built exclusively from resistors, inductors
and capacitors. The advantage of this approach is that it

provides a rigorous setting in which to perform open network
analysis purely diagrammatically.

Non-passive components, however, e.g. voltage and current
sources are not linear but affine. For example, a k volt source
constrains the voltage (φ1, φ2) and current (i) pairs to be the
following relation:

+–
k

7−→
{(

φ1

i

)
,
(
φ2

i

))
|φ2 − φ1 = k

}
(3)

Our motivating questions for the results presented in this
paper are, therefore, (i) can the syntax of GLA be extended
in a simple and principled fashion to capture R-affine and N-
affine relations? And, if so, (ii) can we give an equational
characterisation of denotational equality, arriving at a sound
and complete calculus for affine relations?

C. Extending GLA: Graphical Affine Algebra

The answer to the first question is positive, and surpris-
ingly simple. The syntax of Graphical Affine Algebra (GAA)
extends (1) with just one additional connector

expressing the ‘constant 1’ behaviour. In other words, can
be regarded as a circuit component that emits a constant unit
signal on its right interface: the intended relation is {(•, 1)}.
We will now sketch how this language extension allows us to
capture the aforementioned examples.

Let us first consider N-relations. Using , we define :

:= . (4)

The result is a wire that can only carry 0 or 1 (i.e., any natural
number ≤ 1). Given this, the mutual exclusion connector (2)
is simply the composition of with .

Let us now switch to R-relations. It is not difficult to see that
the relation (3) is expressed by the following GAA diagram:

k (5)

Indeed, as we shall see, adding the generator is sufficient
for expressing both N- and R-affine relations— in fact, affine
relations over any field K.

As a final example, let us consider how to express the empty
relation ∅—which is both N- and R-affine—using our syntax.

(6)

Here the new generator is composed with . Opera-
tionally, this amounts to asserting “1 = 0”; in terms of
the relational interpretation, the result is the composition of
{(•, 1)} with {(0, •)}, which gives the empty relation.

D. Equational Characterisations

The answer to the second question is also positive. As our
main technical contribution, we provide two sound and fully
complete axiomatisations for GAA over affine relations, for
the two semirings that are of interest in our applications: the
case R = N, and the case in which R is a field K.

The equational theories are simple, with only a few addi-
tional equations that govern the interaction of with the
remaining GLA primitives. A particularly interesting equation
is shared by the two theories and concerns the properties of the
empty relation (6). Recall that the composition of any relation
with the empty relation, as well as the cartesian product of any
relation with the empty relation, results in the empty relation.
Equationally, thus behaves analogously to logical false; in
particular, we ought to be able to prove that

c lk = d
k l

for any diagrams c and d. We show that this can be accom-
plished with a single equation that “disconnects” a wire.

(∅)
=

E. Outline

In Section II we introduce the syntax ACircR of circuit
diagrams—the basic language that we will use throughout
the paper—with its semantics, in terms of relations of R-
vectors. In Section III we restrict our focus to two domains of
interpretation: the prop AffRelK of affine relations over a field
K and AffRelN of affine relations over the natural numbers. In
Section IV we introduce two corresponding equational theories
AIHK and ARC, and prove that they are fully complete for
their intended semantics. The syntax, semantics, and equa-
tional theories involved are summarised in Figure 1. The next
two sections are devoted to case studies that showcase the
expressivity of our calculus. The first, in Section V, uses
GAA over N to capture the calculus of stateless connectors,
a coordination language for distributed systems [14] closely
related to Reo [16] and BIP [17]. The second case study,
in Section VI, uses GAA over R(x) to model the behaviour
of electrical circuits, including not only passive components
as [15], but also current and voltage sources. We prove by
diagrammatic reasoning classic results about compositions of
these components, and show how GAA allows us to detect
undefined behaviour.

II. THE LANGUAGE OF CIRCUIT DIAGRAMS

A. Syntax and Semantics

We start with a simple language of circuit diagrams, given
by the grammar below. Values k in k range over elements
of a given semiring R.

c, d ::= | | | | | |
| k | | | | c ; d | c⊕ d

We write ACircR for the full language and CircR for the
fragment without (A stands for ‘affine’). As mentioned

[3], [7], [18] [13] This paper

Theory Graphical Linear Algebra Graphical Affine Algebra

Syntax CircK CircN ACircK, Sec. II ACircN, Sec. II

Semantics LinRelK AddRel AffRelK, Sec. III AffRelN, Sec. III

Axioms IHK RC AIHK, Sec. IV ARC, Sec. IV

Embeds Signal Flow
Graphs Petri Nets

Electrical
circuits
Sec. VI

Stateless
connectors

Sec. V

Fig. 1. Overview on GLA and GAA, in the notation of this paper.

in Section I, for different Rs, CircR is able to model linear
dynamical systems [7], [19], phase-free quantum processes [5],
Petri nets [13], and more. The focus of this paper is exploring
the expressivity and the equational theories supported by the
extended language ACircR.

Symbols of ACircR are rendered pictorially, as we will
treat them formally as string diagrams [20] in due course
(Section II-B). This also explains the use of two binary
operations, sequential (c ; d) and parallel (c⊕d) composition:
they are those of monoidal categories.

The diagrammatic syntax is variable-free, but requires a
simple sorting discipline. A sort is a pair (k, l), with k, l ∈ N;
intuitively, k and l are the number of dangling wires on each
side of a ACircR-diagram. We shall only consider terms that
are sortable, according to the following rules.

: (1, 0) : (1, 2) : (2, 1) : (0, 1)

: (0, 1) : (2, 1) : (0, 1) k : (1, 1)

: (1, 1) : (0, 0) : (2, 2)

c : (k1, k2) d : (k2, k3)

c ; d : (k1, k3)

c : (k1, l1) d : (k2, l2)

c⊕d : (k1+k2, l1+l2)

An easy induction confirms uniqueness of sorting: if c : (k, l)
and c : (k′, l′), then k = k′ and l = l′.

The semantics 〈 · 〉
R

of ACircR is defined inductively by the
clauses in Figure 2, where we write • for the unique R-vector
of length zero.

Intuitively, duplicates, discards and sums
values, whereas produces zero values, produces one
value, and k multiplies by k a given value. The mirror
images , have behaviour defined symmetrically with
respect to and . Finally, behaviours combine sequen-
tially, where values synchronise along the common boundary
of diagrams, or in parallel, where values are simply stacked.
Note that 〈 · 〉

R
is defined in terms of relations rather than

functions; thus it is neutral with respect to flow directionality.
For further discussion on this point, see [8].

B. From Terms to String Diagrams

Our goal is to characterise semantic equivalence in ACircR

equationally, for different choices of R. In each case, these

equations contain the laws of symmetric monoidal categories
(SMCs). Thus it makes sense to move from raw terms, as
in (7), to string diagrams: this is the remit of the subsection.

First, we enhance our graphical notation by depicting

c : (k, l) as c
k l , c ; d as c d

k1 k3k2 and c⊕d as
c

d

k1

k2

l1

l2
,

where the labelled wire k stands for a stack of k wires.
We often omit wire labels when it does not lead to confusion.

The laws of SMCs are given in Figure (3) in the graphical
notation. They yields a structural equivalence on ACircR-terms,
which is preserved by the semantics. More precisely, writing
≡ for the smallest congruence over ACircR-terms generated
by the equations in Figure 3, we have that c ≡ d implies
〈 c 〉

R
= 〈 d 〉

R
. Because of this observation, henceforth we shall

consider the terms of ACircR as arrows of an SMC, which by
a mild abuse of notation we will also denote ACircR. In fact,
ACircR is a specific kind of SMC, known as a prop.

Definition 1. A prop is a symmetric strict monoidal category
with objects the natural numbers, with k ⊕ l defined by the
addition k + l. A prop morphism F : C → D is a symmetric
monoidal functor from C to D that is identity on objects.

ACircR is defined as a prop with arrows k → l sorted
terms c : (k, l) of the corresponding syntax modulo ≡, with
sequential composition c ; d, monoidal product c ⊕ d, and
symmetries defined by the corresponding operations in (7) (c.f.
[19, Definition 2.3] for the details of the free construction of
a prop from a syntax).

For uniformity, we shall also model the semantic domains
of our calculus as props. This is based on the definition below.

Definition 2 (RelR). Given a semiring R, let RelR be the prop
with arrows k → l relations R from Xk to X l, i.e. R ⊆ Xk×
X l. Given R : k1 → k2 and S : k2 → k3, their composition
R ; S : k1 → k3 is

{(x, z) : x ∈ Xk1 , z ∈ Xk3 and there exists z ∈ Xk2

such that (x,y) ∈ R and (y, z) ∈ S}.
(7)

Given R : k1 → l1 and S : k2 → l2 their monoidal product
is obtained by taking their cartesian product, i.e. R ⊕ S :
k1 + k2 → l1 + l2 is the relation{(

(x1
x2

) , (y1
y2)

)
: x1 ∈ Xk1 , x2 ∈ Xk2 , y1 ∈ X l1 ,

y2 ∈ X l2 such that (x1,y1) ∈ R and (x2,y2) ∈ S
}
.

(8)

Identities and symmetries are defined in the obvious way.

Note that our inductive definition of Figure 2 yields a
morphism of props 〈− 〉

R
: ACircR → RelR. Functoriality here

means that the interpretation is compositional with respect to
the operations ; and ⊕.

C. Compact closed structure

String diagrams , called cup and , cap, play a
special role. Their behaviour, according to the semantics 〈 · 〉

R
,

〈 〉
R
:= {(x, •) | x ∈ R} 〈 〉

R
:= {(x, (xx)) | x ∈ R} 〈 〉

R
:= {(•, x) | x ∈ R} 〈 〉

R
:= {((xx), x) | x ∈ R}

〈 〉
R
:= {((xy), x+ y) | x, y ∈ R} 〈 〉

R
:= {(•, 0)} 〈 k 〉

R
:= {(x, k · x) | x ∈ R} 〈 〉

R
:= {(•, 1)}

〈 〉
R
:= {(•, •)} 〈 〉

R
:= {(x, x) | x ∈ R} 〈 〉

R
:= {((xy), (yx)) | x, y ∈ R}

〈 c ; d 〉
R
:= {(a, b) | ∃w.(a,w) ∈ 〈 c 〉

R
, (w, b) ∈ 〈 d 〉

R
} 〈 c⊕ d 〉

R
:= {((a1

a2
), (b1

b2
)) | (a1,a2) ∈ 〈 c 〉R , (b1, b2) ∈ 〈 d 〉R}

Fig. 2. Semantics of ACircR.

c1 c2 c3 = c1 c2 c3
c

= c

c
= c =

c

c1 c2

c4c3
=

c1 c2

c4c3

c1

c2

c3

=

c1

c2

c3

= c = c = c

Fig. 3. Laws of Symmetric Monoidal Categories. Sort labels are omitted for readability.

intuitively forces the two ports on the left (respectively right)
to carry the same resources, thus acting as left (right) feedback:〈 〉

R
=
{(

(xx) , •
)
|x ∈ X

} 〈 〉
R
=
{(
•, (xx)

)
|x ∈ X

}
Using these diagrams (along with and) as building
blocks, is it possible to define for each k ∈ N, diagrams
k : k + k → 0 and k : 0→ k + k with semantics〈
k

〉
R
=
{(

(aa) , •
)
|a ∈ Xk

} 〈
k

〉
R
=
{(
•, (aa)

)
|a ∈ Xk

}
See e.g. [19, §5.1] for details. These arrows give rise to a
(self-dual) compact closed structure [21], that is, they satisfy

= =

As for identities and symmetries, we will often omit the label
k on cups and caps for readability. The graphical language of
compact closed props allows us to bend wires at will, treating
them as unoriented edges between the connection points of
individual components. It also allows the introduction of
“right-to-left” versions of each generator in our diagrammatic
syntax. We explicitly introduce these counterparts as syntactic
sugar, since they will be used in subsequent sections.

:= :=

k := x :=

(9)

The associated behaviour, in each case, is the opposite relation:
for example, 〈 〉

R
= {(n+m,

(
n
m

)
) | n,m ∈ N}.

D. Examples
We conclude this section by showcasing the expressivity of

ACircR. The first two examples are captured by the fragment
CircR, whereas the last two are genuinely affine (they make
use of), and anticipate the case studies of Section V and VI.

a) Lowpass filter: Take R to be R(x). The idea is
that elements of R(x) express Laplace-transformed signals
in the frequency domain. In other words, multiplication by
x corresponds to differentiation w.r.t. the time variable. The
CircR(x)-diagram on the left below denotes a low-pass filter:
a filter that attenuates signals with frequencies higher than a
certain cutoff (≤ 1

2πτ) and lets through those that are lower.
The semantics of the diagram, on the right below, allows us
to retrieve the transfer function (the ratio of the left and right
boundary signals) of the filter.〈

x

τ−1 〉
R(x)

=
{
(φ, φ′) | ∃φ1, φ2, φ2 = φ′ and

φ− φ2τx = φ2

}
=
{
(φ, φ′) | φ′ = 1

1+τxφ
}

b) Less than or equal to: Again for R = N, consider the
diagram of CircN. One can check that〈 〉

N

= {(m,n) | ∃m′.m+m′ = n}
= {(m,n) | m ≤ n}

Observe that if, instead of N, we parametrise the theory over
a semiring with additive inverses, such as R, then the same
diagram collapses to the total relation 〈 〉R = R× R.

c) Mutual exclusion: For the diagram of CircN
from (4), first notice that 〈 〉N is by definition equal to〈 〉

N

= {(n, n) | ∃m ∈ N, n+m = 1}

= {(0, 0), (1, 1)}

Then we can derive that
((

m
n

)
, z
)
∈
〈 〉

N
whenever

z = m+ n ≤ 1. We have, therefore〈 〉
N
=
{((

1
0

)
, 1
)
,
((

0
1

)
, 1
)
,
((

0
0

)
, 0
)}
,

that is, at most one of the upper and lower port on the left
may synchronise with the port on the right. This diagram thus
implements mutual exclusion.

d) Ideal voltage source: The behaviour of electrical com-
ponents is expressed as a voltage-current relationship between
their terminals. As was done in [15] we will use one wire
to denote voltage and another to denote the current, each
modelled as a real number. With this interpretation, a simple
voltage source with fixed voltage k is denoted by the same
ACircR diagram as in (5) and we can see that its denotation
coincides with (3):〈

k

〉
R

=
{((

φ1

i

)
,
(
φ2

i

))
|φ1 + k = φ2

}
III. CATEGORIES OF AFFINE RELATIONS

In the remainder of the paper we focus on two instances of
R, motivated by applications: the case when R is a field K,
and the case when R is the semiring N of natural numbers.

Our overall goal is to equip ACircK and ACircN with sound
and fully complete axiomatisations with respect to suitable
classes of relations in the semantic domain. This is articulated
in two steps. In this section, we identify these classes as
K-affine relations and N-affine relations, showing that they
form props AffRelK and AffRelN respectively. The next section
will conclude the characterisation by introducing equational
theories for ACircK and ACircN which are sound and fully
complete with respect to AffRelK and AffRelN.

A. Affine relations over a field

Fix a field K. We recall the concept of linear relation.

Definition 3 ([3], [7]). A K-linear relation of type k → l
is a linear subspace of Kk × Kl, considered as a K-vector
space. K-linear relations form a sub-prop LinRelK of RelK,
with composition defined by (7)-(8).

By analogy, we define affine relations from affine subspaces.

Definition 4. An affine subspace of Kd is a subset V ⊆ Kd
that is either empty or for which there exists a vector a ∈ Kd
and a linear subspace L of Kd such that V = a + L :=
{a+ x | x ∈ L}.

A K-affine relation of type k → l is an affine subspace of
Kk ×Kl, considered as a K-vector space.

Our next goal is to show that K-affine relations form a
prop. To this aim, it is useful to give a construction that
allows us to relate linear and affine relations systematically,
using homogenisation, a well-known technique of affine and
convex geometry. To every affine relation we associate a linear
relation in a unique way, by embedding it into a space with
an additional dimension. First, for a set X ⊆ Kk ×Kl, let

0X =
{((

0
a

)
, b
)
| (a, b) ∈ X

}
⊆ Kk+1 ×Kl (10)

Definition 5. Let R : k → l be an affine relation given by
(a, b)+L. Its homogenisation is the linear relation R̂ : k+1→
l defined as R̂ =

((
1
a

)
, b
)
+ 0L.

Homogenisation satisfies an useful property:

(a, b) ∈ R if and only if
((

1
a

)
, b
)
∈ R̂. (11)

We will now use homogenisation to prove affine relations
close under relational composition. If R : k → l and S :
l → p are affine relations, we cannot directly compose their
homogenisations R̂ : k + 1 → l and Ŝ : l + 1 → p as linear
relations, as the types do not match.

We can, however, interpret the homogenisation construction
as embedding affine relations into a subcategory of the co-
Kleisli category of the (−)+1 comonad, with structural natural
transformations µ : (−) + 1→ (−) + 2 and ε : (−) + 1→ id:

µk =

〈
k

〉
K

and εk =
〈

k

〉
K

(12)

The comonad laws are a consequence of the comonoid law
for and are easy to check. For U : k + 1 → l and
V : l+1→ p two linear relations, their coKleisli composition
U ;̂V is: 〈

k
U

V p

l

〉
K

(13)

We are now able to prove the following closure property.

Proposition 6. The composite (7) of two K-affine relations is
a K-affine relation.

Proof. Let R : k → l and S : l→ p be two K-affine relations.
If (x, z) ∈ R ; S there exists y ∈ Kk such that (x,y) ∈ R
and (y, z) ∈ S. So

((
1
x

)
,y
)
∈ R̂ and

((
1
y

)
, z
)
∈ Ŝ and

therefore
((

1
x

)
, z
)
∈ R̂ ;̂ Ŝ. As long as R ; S is nonempty (in

which case we are done), we can always find a basis of R̂ ;̂ Ŝ
of the form

{((
1
e

)
,f
)
,
((

0
e1

)
,f1

)
, . . . ,

((
0
en

)
,fn
)}

. Then,
clearly R ; S = (e,f) + L where L is the linear subspace
spanned by {(e1,f1), . . . , (en,fn)}.

As a result, we can define the prop AffRelK of K-affine
relations, as a sub-prop of RelK.

B. Affine relations over the semiring N
When the semiring is N, the absence of additive and multi-

plicative inverses yields a different semantics, which requires
slightly more work than the K-affine case. Our departure point
is the notion of additive relation.

Definition 7 ([13]). An additive relation of type k → l is
a subset R ⊆ Nk × Nl such that (i) (0,0) ∈ R and (ii) if
(a, b), (a′, b′) ∈ R then (a+ a′, b+ b′) ∈ R.

Every pair (a, b) ∈ Nk × Nl generates an additive relation
〈(a, b)〉 = {(na, nb) | n ∈ N}. More generally, for a finite
set G = {(a1, b1), · · · , (ap, bp)} of points in Nk × Nl, we
write 〈G〉 for the additive relation

〈G〉 =

{
p∑
i=1

ni(ai, bi) | n1, . . . , np ∈ N

}
. (14)

For our characterisation only finitely generated additive rela-
tions are relevant.

Definition 8. An additive relation R : k → l is finitely
generated (f.g.) if there exists a finite set of vectors G =
{(a1, b1), · · · , (ap, bp)} such that R = 〈G〉. F.g. N-additive
relations form a sub-prop AddRel of RelN.

Example 9. The two pictures in the left of Figure 4 rep-
resents the additive relations of type 1 → 1 generated by
{(1, 2), (3, 1)} and {(1, 3), (2, 2), (4, 1)} respectively.

Henceforward, when we say “additive relation”, we mean
f.g. additive relation. Differently from the linear case, closure
under composition of additive relations is a nontrivial fact [13].
The following is another important difference between the
linear and additive worlds.

Proposition 10 ([13, Proposition 23]). Every additive relation
has a unique minimal (for inclusion) generating set, called its
Hilbert basis.

We now move to defining N-affine relations. Recall that
the Minkowski sum of sets C,D ⊆ Nd is C + D =
{c+ d | c ∈ C,d ∈ D}. If one of these is a singleton, e.g.
C = {c}, we will abuse notation and write c+D. Note that
∅+D = ∅.

Definition 11. A N-affine relation R : k → l is a set R ⊆
Nk × Nl for which there exists finite B,D ⊆ Nk × Nl such
that R =

⋃
(a,b)∈B

{
(a, b) + 〈D〉

}
. Elements of B are called

base points and those of D directions.

The first noticeable difference with affine relations over a
field is that N-affine relations can have more than one base
point. If B = {(a, b)} is a singleton, R = (a, b) +D is the
translation of an additive relation by (a, b). If B = {(0,0)},
R is an additive relation. Thus every additive relation R is N-
affine: take B = {(0,0)} and D to be a generating set of R.
An N-affine relation is, therefore, a finite union of translated
additive relations.

Example 12. The two pictures on the right of Figure 4
represent the two N-affine relations of type 1 → 1 with
respective bases {(2, 2), (4, 2)} and {(1, 2)}, and respective
directions {(1, 2), (3, 1)} and {(1, 3), (2, 2), (4, 1)}.

Note that every finite subset S of Nk+l is also N-affine (by
setting B = S and D = {(0,0)}). Finally, ∅ is N-affine (e.g.
by taking B = ∅) but not additive.

As for K-affine relations, we can define the homogenisation
of an N-affine relation. For this we will also need the following
notation, for X ⊆ Nk × Nl:

1X =
{((

1
a

)
, b
)
| (a, b) ∈ X

}
⊆ Nk+1 × Nl.

Definition 13. Let R : k → l be an N-affine relation with base
points B and directions D. Its homogenisation is the additive
relation R̂ : k + 1→ l defined as R̂ =

〈
1B ∪ 0D

〉
.

As for K-affine relations, the homogenisation of N-affine
relations satisfies the crucial property of equation (11). We
can now prove that N-affine relations form a category.

Proposition 14. The composite (7) of two N-affine relations
is an N-affine relation.

Proof. Let R : k → l and S : l → p be N-affine
relations and R;S their composite. We can obtain the base
points and directions of R;S from the Hilbert basis H of
the additive relation R̂ ;̂ Ŝ. If (a, c) ∈ R;S, there exists
b ∈ Nk such that (a, b) ∈ R and (b, c) ∈ S. So((

1
a

)
, b
)
∈ R̂ and

((
1
b

)
, c
)
∈ Ŝ and therefore

((
1
a

)
, c
)
∈

R̂ ;̂ Ŝ. We can decompose this last pair into a weighted sum
of H-elements

((
1
a

)
, c
)
=
((

1
f

)
, g
)
+
∑m
i=1 ni

((
0
di

)
, ei
)
,

where
((

1
f

)
, g
)
,
((

0
di

)
, ei
)
∈ H and ni ∈ N for 1 ≤

i ≤ m. Then, (a, c) = (f , g) +
∑m
i=1 ni(di, ei). There-

fore, since (a, c) was arbitrary, we conclude that R;S =⋃
(x,y)∈B

{
(x,y)+〈D〉

}
, with B =

{
(f , g) |

((
1
f

)
, g
)
∈ H

}
and D =

{
(d, e) |

((
0
d

)
, e
)
∈ H

}
.

As a result, we can define the prop AffRelN of N-affine
relations, as a sub-prop of RelN.

IV. AXIOMATISING AFFINE RELATIONS

This section contains the main technical contribution of
the paper, namely the introduction of equational theories for
ACircK and ACircN that are sound and fully complete for
their affine relation semantics. In each of the two cases,
we first introduce the equational theory and its properties.
Then we show that there is a prop isomorphism between the
syntax modulo the equations, and affine relations. The full
completeness result follows from the isomorphism.

A. Axiomatising K-affine relations

As in the previous section, we start with the (non-affine)
linear case. It is proven in [3], [7] that the quotient of Circk

by the equations of interacting Hopf algebras (reported in Fig.
6, Appendix A), which we call IHK, is isomorphic to LinRelK.

Our characterisation will extend this isomorphism to affine
systems. The challenge is to identify equations that govern the
behaviour of the new generator . We claim that adding the
following three equations is sufficient:

(dup)
=

(del)
=

(∅)
=

First, let us explain the new axioms. The first two say that
can be deleted and copied by the comonoid structure, just

like . This has the effect of constraining the interpretation
of as a 0-ary functional relation, i.e. it is a constant.

More interestingly, the third equation is justified by the
possibility of expressing the empty set, by, for example,

〈 〉K = {(•, 1)} ; {(0, •)} = ∅. (15)

As mentioned previously, ∅ is an affine relation that is not
linear. Since for any R and S in RelR, ∅ ⊕ R = ∅ ⊕ S =

Fig. 4. Two additive and two N-affine relations.

∅, composing or taking the monoidal product of ∅ with any
relation results in ∅. Thus ∅ is analogous to logical false.

Definition 15. The prop AIHK (affine interacting Hopf alge-
bras) is the quotient of ACircK by the equations of IHK (Fig. 6,
Appendix A) plus (dup), (del) and (∅).

We are going to show that AIHK is isomorphic to AffRelK.
First, the following lemma formalises the preceding discussion
about equation (∅).

Lemma 16. For any two arrows c, d : k → l of AIHK,

c lk = d
k l

Proof. In Appendix C-A.

We are now ready to prove our characterisation result.
Because all the equations of AIHK are sound in LinRelK,
we can define a prop morphism J− KK : AIHK → LinRelK
inductively by the same clauses (Figure 2) of 〈 · 〉K.

Theorem 17. J · KK : AIHK → LinRelK is a prop isomorphism.

Proof. First, we show that J · KK is full. Diagrammatically,
homogenisation means that K-affine relations can be thought
of as K-linear relations with an extra dangling wire for the
additional dimension. Because the restriction of J− KK to a
functor IHK → LinRelK is well-defined and an isomorphism
(thus, also full) [3, Theorem 6.4], we can always obtain a
string diagram in IHK for the homogenisation R̂ of an affine
relation R. Then, we can use generator to plug this wire,
obtaining a string diagram

R̂
lk

.

Finally, equation (11) implies that
u

v R̂
lk
}

~

K

= R (16)

proving that J− KK is full. It remains to show that J− KK is
faithful. We will use a normal form argument, which relies
the isomorphism of IHK and LinRelK [3, Theorem 6.4]. Let
d : k → l be a diagram in AIHK. By naturality of the symmetry
we may write d as follows:

d
lk = c

lk

(17)

for some diagram c, in the image of the embedding IHK ↪→
AIHK. In graphical terms, we have pulled all copies of up
and down, past the rest of the diagram which represents some
linear relation c. We may now simplify (17):

c
lk (dup)

= c
lk

(18)

= c′
lk

(19)

where c′ is the diagram enclosed in the dotted box. Finally,
from the span normal form for linear relations [3, Theo-
rem 6.2], we can find a diagram e : p→ l+1+k representing
some matrix Me (i.e. J e KK = {(a,Mea) | a ∈ Kp}), such
that

d
lk =

e

l

k

p

(20)

=
e

l

k

p

(21)

and the columns of Ma generate J c′ KK (for the definition of
, see (9)). By equation (11) and the isomorphism IHK ∼=

LinRelK, the affine relation J d KK is uniquely characterised by
this decomposition if it is nonempty. If it empty however, it
means that is plugged to a wire of e representing some
row of Me (in the sense of Appendix B) which is uniformly
zero. Indeed, if

(
a1 . . . an

)
is this row, J d KK is empty precisely

when there is no x1, . . . , xn ∈ K such that a1x1+· · ·+anxn =
1. This happens only when ai = 0 for all 1 ≤ i ≤ n or, in
diagrammatic form, when:

d
lk = f

l

k

p
(22)

for some diagram f representing a matrix. By Lemma 39 all
diagrams of this form are equal, which concludes the proof.

Corollary 18 (Soundness and Full Completeness). For any
two string diagrams c, d : k → l in AIHK,

c = d iff J c KK = J d KK .

and for each R in AffRelK there is some e such that J e KK = R.

B. Axiomatising N-affine relations

The characterisation of N-affine relations requires a bit more
work. Analogously to the field case, we take as starting point
the equational theory characterising the prop AddRel of (non-
affine) additive relations. This theory is called the algebra of
resources (see [13, Fig. 4], reported in Fig. 7, Appendix A).
We write RC for the prop obtained by quotienting CircN by
its equations.

In order to extend the result to N-affine relations, we
need suitable extra equations for . These will include
(dup), (del), (∅) from Section IV-A and, because N misses
multiplicative inverses, we require one additional equation:

(cons)
=

Definition 19. The prop ARC is the quotient of ACircN by the
equations of RC (Fig. 7, Appendix A) plus (dup), (del), (∅)
and (cons).

The new equality (cons) enforces the consistency of sys-
tems of non-negative integer equations. In symbolic form it
guarantees that, if 2n+m = 1 then n = 0 and m = 1. Note
that this is not true when interpreted over a field so that (cons)
is not sound for AffRelK, for any K.

From this simple axiom, we can prove that p1n1 + · · · +
pknk = 1 has a satisfying assignment if and only if not all the
ni, for 1 ≤ i ≤ k are strictly greater than 1. This is a key fact
about natural numbers, needed for the characterisation of N-
affine relations. The following lemmas express it in graphical
form. Their proofs are in Appendix C-A.

Lemma 20. For all n > 1,

n

=

Lemma 21. For n1, . . . , nk such that ni > 1 for all i ≤ k:

n1

ni

nk

=

We now have all the ingredients to show that ARC is
isomorphic to AffRelN. Because all the equations of AffRelN
are sound for N-affine relations, we can define a prop mor-
phism J · KN : ARC→ AffRelN inductively by the same clauses
(Figure 2) of 〈 · 〉K.

Theorem 22. J · KN : ARC→ AffRelN is a prop isomorphism.

Proof. The proof of fullness follows the same steps as for
Theorem 17, but uses the result, from [13], that the restriction
of J− KN to RC→ AddRel is an isomorphism (hence, full).

We move on to faithfulness. Again, the first steps of the
proof are the same as for Theorem 17: given d in ARC, we
can always use the naturality of the symmetry, the (dup) axiom
and the normal form for additive relations [13, Section 3.4] to
obtain e : p → l + 1 + k representing some matrix Me (i.e.
J e KN = {(a,Mea) | a ∈ Np}) such that

d
lk =

e

l

k

p

(23)

As before, property (11) and the isomorphism of RC and
AddRel ([13]), the N-affine relation J d KN is uniquely char-
acterised by this decomposition if it is nonempty. The case in
which it is empty is slightly more complicated than for K-
affine relations. This means that is plugged to a wire of
e representing a row of Me (in the sense of Appendix B)
which sums to a nonnegative integer different from one. Thus
it is

(
n1 n2 . . . nk

)
with either all ni > 1 or all zero

(ni = 0, for 1 ≤ i ≤ k). In the first case, there exists a
diagram f representing a matrix, such that

d
lk = f

l

k

ni

n1

nk

p
(24)

and therefore, by Lemma 41,

d
lk = f

l

k

p
(25)

In the second case, e is disconnected from . We can
deduce that d is of the following form, for some diagram f
representing a matrix:

d
lk = f

l

k

p
(26)

Note that Lemma 39 also holds for ARC (as all the equations
required to prove it also hold) and therefore all diagrams of
this form are equal, which concludes the proof.

Corollary 23 (Soundness and Full Completeness). For any
two string diagrams c, d : k → l in ARC,

c = d iff J c KN = J d KN

and for each A in AffRelN there is some e such that J e KN = A.

V. CASE STUDY I: STATELESS CONNECTORS

While additive relations, via the corresponding diagram-
matic theory RC, can express basic forms of synchronisa-
tion and parallelism, there are many interesting non-additive
phenomena in concurrency that remain out of reach. One
notable example is that of mutual exclusion: when two or
more processes are prevented from operating or accessing a
shared resource at the same time [22]. The key insight of
this section is that mutual exclusion is an affine phenomenon.
Indeed, as we will see, by moving to ARC we will be able to
model not only mutual exclusion, but also the more general
inhibitory patterns of synchronisation captured by the calculus
of stateless connectors [14]. More specifically, we will show
that (i) all behaviour specified by stateless connectors can be
expressed, via a compositional semantics-preserving transla-
tion, by components from ACirc2 and that (ii) the equational
theory of ARC is sound and complete with respect to this
translation. Note that, here, 2 = {0, 1} denotes the Boolean
semiring.

The syntax of stateless connectors is given below, assuming
a sorting discipline analogous to that of Section II.

c, d ::= | | | | |
| | | | c ; d | c⊕ d

(27)

We use crossed wires to indicate that the intuition is different
to ACirc2: the resources passing through the wires are not a
natural number, but either 0 or 1 (dubbed, respectively, untick
and tick in [14]). Later, we will see that these crossed wires
can be understood as diagrams of ACircN. A term of (27)
specifies a connector that coordinates software components
attached to its ports: the signal 1 means that the component
is synchronising, 0 that is not. We denote the prop of string
diagrams of this syntax by SCCirc.

We focus on the standard denotational meaning [14] of (27)
terms via tick tables, which are simply relations R ⊆ 2k × 2l

for k, l ∈ N. We recall this in Definition 24 below: Rel2 is an
instance of Definition 2 and • is the unique element of 20.

Definition 24. The prop morphism 〈〈−〉〉 : SCCirc → Rel2 is
recursively defined as follows:

〈〈 〉〉 =
{(

0,
(
0
0

))
,
(
1,
(
1
1

))}
〈〈 〉〉 = {(0, •), (1, •)}

〈〈 〉〉 =
{((

0
0

)
, 0
)
,
((

1
1

)
, 1
)}

〈〈 〉〉 = {(•, 0), (•, 1)}

〈〈 〉〉 =
{((

0
0

)
, 0
)
,
((

1
0

)
, 1
)
,
((

0
1

)
, 1
)}

〈〈 〉〉 = {(•, 0)} 〈〈 〉〉 = {(•, •)}

〈〈 〉〉 = {(0, 0), (1, 1)} 〈〈 〉〉 =
{((x

y

)
,
(
y
x

))
| x, y ∈ 2

}
〈〈c ; d〉〉 = 〈〈c〉〉 ; 〈〈d〉〉 〈〈c⊕ d〉〉 = 〈〈c〉〉 ⊕ 〈〈d〉〉

Similarly to their counterparts in Circ2, and (and
their mirror images) act as copier and discarder, and
as zero. On the other hand, the generator implements
mutual exclusion: the synchronisation of the right port is only
possible with exactly one of the two left ports. This semantic

difference is reflected in the equational theory: e.g. (•◦-biun)
from Figure 7 does not hold.

6=

Nevertheless, the semantics of is a N-affine relation,
corresponding to the interpretation of the diagram below,
already encountered in Section II-D (c).〈 〉

N

=
{((

n
m

)
, n+m

)
| n+m ≤ 1

}
=
{((

1
0

)
, 1
)
,
((

0
1

)
, 1
)
,
((

0
0

)
, 0
)}

The subterm , which also featured in Section II-D
and for which we will use the shorthand ≤ , is essential
to our translation of SCCirc to ARC. Notice that the ARC
diagram denoting mutual exclusion is the composition of
with , defined as

:=
≤

:=

The intuition is that restricts the bandwidth of the wire,
so that it can carry at most one unit of resource. Each generator
of SCCirc can now be encoded as the corresponding one of
ARC composed with . A key property of is its
idempotency.

Proposition 25. = in ARC.

Proof. Appendix C-B.

Definition 26. The translation E(−) : SCCirc → ARC is
defined recursively as follows.

E() = E() =

E() = E() =

E() = E() =

E() = E() = E() =

E(c ; d) = E(c) ; E(d) E(c⊕ d) = E(c)⊕ E(d)

Because the identity of SCCirc is mapped to and not
to the identity in ARC, we do not have a prop morphism. In
fact, for this reason, this encoding is not a functor. One can
think of it as a functor up-to an idempotent1, representing the
inclusion of the subset {0, 1} ⊆ N.

Theorem 27. Let ι1 : AffRelN → RelN be the obvious
prop morphism embedding N-affine relations into RelN and
ι2 : Rel2 → RelN be the mapping arising from the inclusion

1It is possible to make this notion precise using the idempotent completion
(or Karoubi envelope) of ARC. For details, see [23]

2 ⊆ N, interpreting a relation over 2 as a relation over N. 2

For all c in SCCirc, the diagram below commutes.

SCCirc
E(−)

//

〈〈−〉〉

��

ARC

J · KN∼=
��

AffRelN
ι1
��

Rel2 ι2
// RelN

Proof. By induction on SCCirc.

As a consequence of Theorem 27 we obtain a sound and
complete axiomatisation for equivalence of stateless connec-
tors by means of the axioms of ARC, in Figure 7.

Corollary 28. For any two stateless connectors c and d in
SCCirc,

〈〈c〉〉 = 〈〈d〉〉 iff E(c) = E(d)

Remark 29. Theorem 26 in [14] states that the connectors in
SCCirc can denote exactly those relations in Rel2 that contain
the vector 0. ACirc2 can express more relations of Rel2, for
instance the not relation denoted by the following diagram:〈 〉

N

= {(0, 1), (1, 0)}

In fact, all relations in Rel2 can be expressed by ACirc2 since
every finite subset of Nk × Nl is an N-affine relation k → l,
so in particular every subset containing only 0s and 1s is in
AffRelN.

VI. CASE STUDY II: ELECTRIC CIRCUITS

Elementary electrical engineering focusses on open linear
circuit analysis. An example is illustrated below.

+– 12V

8Ω

4Ω

6Ω
1 1

2

Such circuits may include voltage (+–
k

) and current sources

(
k

), resistors (
k

), junctions (filled nodes) and open
terminals (unfilled nodes).

The section is structured as follows. We begin by making
these open circuits formal as combinatorial structures. We
then present open circuits as algebraic structures, and give
a compositional semantics in terms of K-affine relations. In
Subsection VI-A, we use the axiomatisation of Section IV to
give a sound and complete calculus for the analysis of open
linear circuits. We end in Subsection VI-B by showing how
to handle circuits with time-dependent currents and voltages,

which also feature inductors (
k

) and capacitors (
k

).

2Note that ι2 is not a functor since it does not preserve identities.

We can make closed (i.e. those without open terminals)
circuits precise as combinatorial structures by considering
them as multigraphs with a mixture of directed and undirected
edges. Directed edges are either voltage and current sources,
while undirected edges are resistors. Finally, every edge is
labelled by a non-negative real, denoting either voltage (in
volts), current (in amperes) or resistance (in ohms). Formally,
then, a closed circuit is

{X, V, C ,R , vs, vt : V → X, cs, ct : C → X,

rc : R→ P2(X), q : V + C +R→ R+}

where X,V,C,R are, correspondingly, finite sets of nodes,
voltage sources, current sources and resistors, vs, vt, cs, ct, rc
give the connectivity of the edges, and q the labels.

To consider open circuits, we consider a certain category
of cospans. First, the category CCirc of closed circuits and
their obvious choice of morphism has pushouts. Next, any
finite ordinal can be considered as a discrete closed circuit,
with the ordinal serving as its set of nodes. We therefore
consider the full subcategory OCirc of the category of
cospans Cospan(CCirc) with objects finite ordinals. Having
ordinals as objects reflects the numbering the left and right
open terminals, as we have done in the example diagram
above. It is straightforward to verify that OCirc is a prop.

We now give a straightforward algebraic characterisation of
OCirc. The prop ECirc is has signature{

k
, +–

k
,

k
}
k∈R+

∪
{

, , ,

}
(28)

where the parameter k ranges over the non-negative reals.
Arrows m → n of ECirc represent open linear electrical
circuits with m open terminals on the left and n open terminals
on the right. The following are the equations:

= = =

= = =

= =

k
=

k

The equations, apart from the last, are those of special
Frobenius monoids [24]. The final equation reflects the fact
that resistors are bidirectional. We state the following without
proof, which is similar to [25, Proposition 3.2] and [26,
Theorem 3.3].

Proposition 30. As props, OCirc ∼= ECirc.

Having established open circuits as both combinatorial
(OCirc) and algebraic (ECirc) structures, we can now give

I

(
k
)

= k
J · KR7−−−→

{((
φ1

i

)
,
(
φ2

i

))
| φ2−φ1=ki

}

I

(
+–
k
)

= k
J · KR7−−−→

{((
φ1

i

)
,
(
φ2

i

))
| φ2−φ1=k

}

I

(
k
)

=
k J · KR7−−−→

{((
φ1

k

)
,
(
φ2

k

))}

I
()

=
J · KR7−−−→


(
φ
i1

)
,


φ

i2

φ

i3

 | i1+i2+i3=0


I
()

=
J · KR7−−−→




φ

i2

φ

i3

 ,
(
φ
i1

)
| i1+i2+i3=0


I () =

J · KR7−−−→
{
•,
(
φ
0

)}
I () =

J · KR7−−−→
{(

φ
0

)
, •
}

Fig. 5. Compositional semantics of electrical circuits.

a compositional semantics in terms of affine relations in Fig.
VI. For each generator we give its translation as AIHR-diagram
and the associated R-affine relation in symbolic notation. A
similar semantics was given by Baez and Coya [15], [27],
building on the work of Baez, Erbele and Fong [7], [28],
and Rosebrugh, Sabadini and Walters [25]. Components of
an electrical circuit denote a relationship between current and
voltage, traditionally modelled as real values. The semantics
of an open circuit of type m→ n is thus a relation from R2m

to R2n, with the behaviour of the individual elements given
by Kirchoff’s laws. We use φ ∈ R to range over voltages and
i ∈ R to range over currents.

Proposition 31. I (−) : ECirc → AffRelR is a symmetric
strict monoidal functor.

Proof. See Appendix C-B.

Note that I (−) fails to be a morphism of props for the
simple reason that it is not identity on objects: a single wire
of an electrical circuit maps to two wires of AIHR, with these
used to keep track of the voltage and the current. Indeed, on
objects I (1) = 2.

A. AIHR as a Calculus of Electrical Circuits

Below we give a few examples of how AIHR can be used
to derive well-known properties of circuits.

Lemma 32 (Properties of resistors).

I
(a b)

= I
(a+b)

I

 a

b

 = I
(

ab/(a+b)
)

Proof. See Appendix C-B.

Lemma 33 (Properties of voltage sources).

I
(

+–
a

+–
b
)

= I
(

+–
a+b
)
I

 +–
a

+–
a

 = I
(

+–
a
)

Proof. We only prove the first equality.

I

(
+–
a

+–
b
)

=
a

b
=

a

b

=
a

b
= a+b = I

(
+–

a+b
)

Remark 34. In engineering literature, parallel voltage sources
of different voltages are disallowed. It is nonetheless interest-
ing to see what happens in the semantics.

a

b

=
a

b

=
a

b

=
a

b

= =

This, as we have seen, is the way of expressing the empty
relation in graphical affine algebra.

Lemma 35 (Properties of current sources).

I
(a a)

= I
(a)

I

 a

b

 = I
(a+b)

Proof. We prove only the second equality.

I

 a

b

 =

a

b

=

a

b
=

b

a

(Lemma 42)
= b

a

= a+b = I

(
a+b
)

Remark 36. Just as different voltage sources cannot be put
in parallel (Remark 34), different current sources cannot be
put in series: a similar graphical calculation as in Remark 34
yields the empty relation.

B. From R to R(x): Inductors and Capacitors

To capture time-dependent currents and voltages, we extend
circuits with two additional kinds of undirected edges, induc-

tors
k

and capacitors
k

, each with labels from R+,
signifying inductance and capacitance. Omitting the details
of the straightforward formalisation, we obtain CCircs by
considering the category of such extended circuits and, via
cospans, the corresponding category of open circuits OCircs.

To obtain ECircs we extend the signature (28) with induc-

tors and capacitors

{
k

,
k
}
k∈R+

and extend the set

equations of ECirc with those that indicate that these additional
elements are undirected

k

=
k k

=
k

The following is a simple extension of the correspondence
shown in Proposition 30.

Proposition 37. As props, OCircs ∼= ECircs.

By moving from the reals R to the field of polynomial
fractions R(x), or equivalently, rational functions in one
variable, we can give a compositional semantics of circuits
with time-dependent currents and voltages. The idea is to let
multiplication by x express differentiation by the time variable,
as usually done in engineering via Laplace transforms. We
extend the mapping of Figure 5 as follows:

I
(k)

= kx
J · KR(x)7−−−−→

{
(
(
φ1

i

)
,
(
φ2

i

)
)
∣∣ φ2−φ1=kxi

}

I
(k)

= kx
J · KR(x)7−−−−→

{
(
(
φ1

i

)
,
(
φ2

i

)
)
∣∣ i=kx(φ2−φ1)

}
We can then show that also the extended semantics is

functorial.

Proposition 38. I (−) : ECircs → AffRelR(x) is a symmetric
strict monoidal functor.

Proof. Follows from the proof of Proposition 44. It suffices to

check that the undirectedness of
k

and
k

is respected,
but the derivation given in the proof of Proposition 44 can
easily be adapted in each case.

Exploiting the isomorphism AIHR(x) ∼= AffRelR(x), we can
reason equationally also on this extended class of circuits. For
instance, one can show that inductors behave analogously to
resistors when put in series and in parallel— cf. Lemma 32 and
Appendix C-B, Lemma 46. This is mostly evident when ob-
serving the structural similarity of their AIHR(x)-interpretation:

k vs kx .

REFERENCES

[1] E. W. Dijkstra, “Cooperating sequential processes,” in The origin of
concurrent programming. Springer, 1968, pp. 65–138.

[2] S. Abramsky, “What are the fundamental structures of concurrency? we
still don’t know!” arXiv:1401.4973, 2014.

[3] F. Bonchi, P. Sobociński, and F. Zanasi, “Interacting Hopf algebras,” J
Pure Appl Alg, vol. 221, no. 1, pp. 144–184, 2017.

[4] F. Zanasi, “Interacting hopf algebras: the theory of linear systems,” Ph.D.
dissertation, Ecole Normale Supérieure de Lyon, 2015.

[5] F. Bonchi, P. Sobociński, and F. Zanasi, “Interacting bialgebras are
Frobenius,” in FOSSACS ’14, pp. 351–365.

[6] B. Coecke and R. Duncan, “Interacting quantum observables,” in ICALP
’08, pp. 298–310.

[7] J. Baez and J. Erbele, “Categories in control,” TAC 30:836–881, 2015.
[8] F. Bonchi, P. Sobocinski, and F. Zanasi, “Full abstraction for signal flow

graphs,” in POPL ’15, pp. 515–526.
[9] B. Fong, P. Rapisarda, and P. Sobociński, “A categorical approach to

open and interconnected dynamical systems,” in LICS ’16.
[10] C. E. Shannon, “The theory and design of linear differential equation

machines,” National Defence Research Council, Tech. Rep., 1942.
[11] S. J. Mason, Feedback Theory: I. Some Properties of Signal Flow

Graphs. MIT Research Laboratory of Electronics, 1953.
[12] J. C. Willems, “The behavioural approach to open and interconnected

systems,” IEEE Contr Syst Mag, vol. 27, pp. 46–99, 2007.
[13] F. Bonchi, J. Holland, R. Piedeleu, P. Sobocinski, and F. Zanasi, “Dia-

grammatic algebra: from linear to concurrent systems,” in POPL ’19.
[14] R. Bruni, I. Lanese, and U. Montanari, “A basic algebra of stateless

connectors,” Theor Comput Sci, vol. 366, no. 1–2, pp. 98–120, 2006.
[15] J. C. Baez, B. Coya, and F. Rebro, “Props in network theory,”

arXiv:1707.08321, 2017.
[16] F. Arbab, R. Bruni, D. Clarke, I. Lanese, and U. Montanari, “Tiles for

reo,” in WADT ’08, pp. 37–55.
[17] R. Bruni, H. Melgratti, and U. Montanari, “Connector algebras, Petri

nets, and BIP,” in Andrei Ershov Memorial Conf, 2011, pp. 19–38.
[18] F. Bonchi, P. Sobocinski, and F. Zanasi, “A categorical semantics of

signal flow graphs,” in CONCUR ’14, pp. 435–450.
[19] ——, “The calculus of signal flow diagrams I: linear relations on

streams,” Inf Comput 252:2–29, 2017.
[20] P. Selinger, “A survey of graphical languages for monoidal categories,”

Springer Lecture Notes in Physics, vol. 13, no. 813, pp. 289–355, 2011.
[21] G. M. Kelly and M. L. Laplaza, “Coherence for compact closed

categories,” J Pure Appl Alg, vol. 19, pp. 193–213, 1980.
[22] E. Dijkstra, “Solution of a problem in concurrent programming control,”

Communications of the ACM, vol. 8, no. 9, p. 569, 1965.
[23] R. Piedeleu, “Picturing resources in concurrency,” Ph.D. dissertation,

University of Oxford, 2018.
[24] A. Carboni and R. F. C. Walters, “Cartesian bicategories I,” J Pure Appl

Alg 49:11-32, 1987.
[25] R. Rosebrugh, N. Sabadini, and R. F. C. Walters, “Generic commutative

separable algebras and cospans of graphs,” TAC 17(6):164–177, 2005.
[26] F. Bonchi, F. Gadducci, A. Kissinger, P. Sobocinski, and F. Zanasi,

“Rewriting modulo symmetric monoidal structure,” in LICS ’16.
[27] B. Coya, “Circuits, bond graphs, and signal-flow diagrams: A categorical

perspective,” Ph.D. dissertation, U California Riverside, 2018.
[28] J. C. Baez and B. Fong, “A compositional framework for passive linear

networks,” arXiv:1504.05625, 2015.
[29] S. Lack, “Composing PROPs,” TAC 13(9):147–163, 2004.
[30] J. Kock, Frobenius algebras and 2D topological quantum field theories.

CUP, 2003.
[31] B. Coecke and A. Kissinger, Picturing Quantum Processes - A first

course in Quantum Theory and Diagrammatic Reasoning. CUP, 2017.
[32] R. Bruni and F. Gadducci, “Some algebraic laws for spans (and their

connections with multi-relations),” in RelMiS 2001. Elsevier, 2001.
[33] F. Zanasi, “The algebra of partial equivalence relations,” in MFPS ’16,

pp. 313–333.
[34] B. Coya and B. Fong, “Corelations are the prop for extraspecial

commutative Frobenius monoids,” TAC 32(11):280–395, 2017.
[35] B. Coecke, D. Pavlovic, and J. Vicary, “A new description of orthogonal

bases,” Math Struct Comp Sci, vol. 23, no. 3, pp. 557–567, 2012.
[36] F. Bonchi, D. Pavlovic, and P. Sobocinski, “Functorial semantics for

relational theories,” arXiv:1711.08699, 2017.
[37] B. Coecke and R. Duncan, “Interacting quantum observables: categorical

algebra and diagrammatics,” New J Physics 13(4):043016, 2011.

APPENDIX A
AXIOMATISATIONS FOR NON-AFFINE CIRCUIT DIAGRAMS

In this appendix we report from [3] and [13] the equational
theories axiomatising (non-affine) linear relations and additive
relations, called the theory of interacting Hopf algebras (IHK)
and the algebra of resources (RC) respectively. For each theory,
we provide a brief description of its equations.

A. Interacting Hopf algebras

The following description refers to Figure 6.

• In the first block, both the black and white structures
are commutative monoids and comonoids, expressing
fundamental properties of addition and copying.

• In the second block, the white monoid and black
comonoid interact as a bimonoid. Bimonoids are one of
two canonical ways that monoids and comonoids interact,
as shown in [29].

• In the third and fourth block, both the black and the white
monoid/comonoid pair form an extraspecial Frobenius
monoid. The Frobenius equations (fr 1) and (fr 2) are
a famous algebraic pattern which establishes a bridge
between algebraic and topological phenomena, see [24],
[30], [31]. The “extraspecial” refers to the two additional
equations, the special equation (•-sp) and the bone
equation (•-bo). The Frobenius equations, together with
the special equation, are the another canonical pattern
of interaction between monoids and comonoids identified
in [29]. Together with the bone equation, the set of four
equations characterises corelations, see [32]–[34].

• The equations in the fifth block are parametrised over
r ∈ K and describe commutativity of k with respect
to the other operations, as well as multiplication and
addition of scalars.

• Finally, the last block describes the interpretation of
k as division by k.

B. The algebra of resources

The following description refers to Figure 7.

• The first three blocks are the same as in IHK, cf. Figure 6.
• In the fourth block, deviating from the equational theory

of IHK, the white monoid-comonoid pair forms a special
bimonoid, not a Frobenius monoid. In fact, the Frobe-
nius structure is equivalent to the presence of additive
inverses [35], [36] and it is incompatible with the non-
negativity of the natural numbers: a + b = 0 =⇒ a =
b = 0, reflected by (◦-bi(co)un).

• In the fifth block, two more equations capture key prop-
erties of addition in N. Note that the second can be seen
as a unary version of the first. In particular, (can) is
one of the two equations that axiomatises the notion of
complementary observables in categorical approaches to
quantum mechanics [37].

• Finally, the last equation is an axiom scheme,
parametrised over n ∈ N. It uses the following syntactic

sugar, along with the obvious mirror image versions,
defined recursively:

0 :=

n :=
n − 1

to represent the additive relations of the form 〈(1, n)〉.
Equations (n-inv) are one half of the equations that
concerns such sugars in IHK. Their symmetric variant is
not present since they are not sound for AddRel and rely
on the presence of multiplicative inverses, which N does
not have.

APPENDIX B
PICTURING MATRICES

The proofs of completeness of AIHK (Theorem 17) and ARC
(Theorem 22) exploit the ability to represent matrices in the
graphical syntax. Details can be found in [4, Sec. 3.2] but we
recall the basics below.

Roughly speaking, the theory of matrices lives inside
both AIHK and ARC as the theory of the bimonoid

, , , along with that of the scalars k . It
means that, using only these we can represent any matrix
with coefficients in K or N. And, moreover, reasoning about
them can be done entirely graphically, as the corresponding
equational theories are complete.

To develop some intuition for this correspondence, let us
demonstrate how matrices are represented diagrammatically.
An l × k matrix Md corresponds to a diagram d with k
wires on the left and l wires on the right—the left ports
can be interpreted as the columns and the right ports as the
rows of Md. The left jth port is connected to the ith port
on the right through an r-weighted wire whenever coefficient
(Md)ij is a nonzero scalar r ∈ R. When the (Md)ij entry
is 0, they are disconnected. Since composition along a wire
carries the multiplicative structure of R, we can simply draw
the connection as a plain wire if (Md)ij = 1. For example,

The matrix Md =


a 0 0
b 0 1
1 0 0
0 0 0


is represented by the following diagram:

d =

a

b

Conversely, given a diagram, we recover the matrix by count-
ing weighted paths from left to right ports. In terms of the
isomorphisms J · K

R
of Section IV, we have that J d K

R
=

{(a,Mda | a ∈ Rk}.

(◦-as)
=

(◦-co)
=

(◦-unl)
=

(•-coas)
=

(•-coco)
=

(•-counl)
=

(•-as)
=

(•-co)
=

(•-unl)
=

(◦•-bi)
=

(◦•-biun)
=

(•◦-biun)
=

(◦•-bo)
=

(•-fr1)
=

(•-fr2)
=

(•-sp)
=

(•-bo)
=

(◦-fr1)
=

(◦-fr2)
=

(◦-sp)
=

(◦-bo)
=

r

r (add)
= r

(zer)
= r

r
(dup)
=

r

r
r

(del)
=

r s
(×)
= rs

s

r (+)
= r + s 0

(0)
=

r r
(r-inv)
=

(r-coinv)
= r r for r 6= 0, r ∈ K

Fig. 6. Axioms of Interacting Hopf Algebras (IHK).

APPENDIX C
MISCELLANEOUS PROOFS

A. Axiomatising Affine Relations

Lemma 39. For any two arrows c, d : k → l of AIHK,

c lk = d
k l

Proof. Because they represent the empty relation, all diagrams
of this form should be equal in AIHK. The proof relies on the
ability to completely disconnect all diagrams using the (∅)
axiom. To verify this, we can reason by structural induction.
For the base cases, we check that all generators of the same
type, tensored with , are equal.
• For the counits, we have

(∅)
=

(bo)
= (29)

• For the monoids, we have

(•-coun)
=

(29)
=

(•◦-biun)
=

(•◦-biun)
=

and, furthermore

(29)
=

(•◦-biun)
=

(cons)
=

• The reasoning for the dual generators is the same, flipped
horizontally.

For the inductive case, notice that

(dup)
=

(•◦-bi)
=

(•-sp)
= (30)

Then, assume that we have

c lk = d
k l

c′
l l = d′

l l

(◦-as)
=

(◦-co)
=

(◦-unl)
=

(•-coas)
=

(•-coco)
=

(•-counl)
=

(•-as)
=

(•-co)
=

(•-unl)
=

(◦•-bi)
=

(◦•-biun)
=

(•◦-biun)
=

(◦•-bo)
=

(fr1)
=

(fr2)
=

(•-sp)
=

(•-bo)
=

(◦-bi)
=

(◦-biun)
=

(◦-bicoun)
=

(◦-sp)
=

(◦-bo)
=

(can)
=

(up)
=

nn
(n-inv)
= for n 6= 0

Fig. 7. Axioms of the algebra of resources (RC).

so that their composition satisfies the expected property:

c c′
(30)
= c c′

(I.H.)
= d d′

(30)
= d d′

The case of the monoidal product is entirely analogous.

Lemma 40. For all n > 1,

n

=

Proof. By induction on n. The base case is the axiom (cons).
Assume that the statement of the lemma is true for some

integer n > 1. Then,

n + 1

=
n

(•-as)
=

n

(I.H.)
=

(◦•-bi)
=

(◦-un)
=

Lemma 41. For n1, . . . , nk such that ni > 1 for all i ≤ k:

n1

ni

nk

=

Proof. By induction on k. For k = 1 it is a direct consequence
of Lemma 40:

n
(◦-un)
=

n (Lemma 40)
=

n

(◦-biun)
=

Assume that the statement of the lemma holds for some k.
Then,

n1

ni

nk+1

nk

(Lemma 40)
=

ni

nk

n1

nk+1

(◦-biun)
=

ni

nk

n1

(I.H.)
=

B. Missing Proofs for the Case Studies

The following is a useful graphical result.

Lemma 42. In IHK and ARC, we have

= =

Proof. We prove only one of the equalities.

(•-coun)
=

(fr)
=

(◦•-bi)
=

(compact.)
=

(fr)
=

(•-coun)
=

Proposition 43. = in ARC.

Proof.

:=
≤

≤
(•-coas)
= ≤

≤

(dup)
= ≤

≤

It is now enough to show that

≤

≤
:=

(Lemma 42)
=

(•-un)
=

(can)
= = ≤

Proposition 44. I (−) : ECirc → AffRelR is a symmetric
strict monoidal functor.

Proof. It suffices to show that the mapping is well-defined,
i.e. that the equations of ECirc are respected by the semantics:
whenever t = u in ECirc then I (t) = I (u). The equations
of special Frobenius algebras obviously hold, since we are
working over AIHR. The final equation, expressing the bidi-
rectionality of resistors,

I

 k

 = I

(
k
)

(31)

can be checked as follows. First, it is an easy exercise of
graphical linear algebra to show that

k = -k

Then, we have

I

 k

 = k

=
-k

=
-k

-1-1

=
k

= k = I

(
k
)

where the penultimate step follows from compactness (see
Section II-C).

Lemma 45 (Properties of resistors).

I
(a b)

= I
(a+b)

I

 a

b

 = I
(

ab/(a+b)
)

Proof.

I

(
a b

)
=

a

b

=
a

b

=
a

b

= a+b = I

(
a+b

)

I

 a

b

 =

a

b

= a

b

= a

b
(Lemma 42)

= I

(
ab/(a+b)

)

Lemma 46. [Properties of inductors]

I
(a b)

= I
(a+b)

I

 a

b

 = I
(ab/(a+b))

Proof.

I

(
a b

)
=

a

b

x

x

=
a

b

x

x

=
a

b
x

= I

(
a+b

)

I

 a

b

 =
a

b

x

x

=
a

bx

x

= a

b

x

x
(Lemma 42)

=
a

b
x

= I

(
ab/(a+b)

)

Lemma 47. [Properties of capacitors]

I
(a b)

= I
(ab/(a+b))

I

 a

b

 = I
(a+b)

Proof.

I

(
a b

)
=

a

b

x

x

=
a

b

x

x

=
a

b
x

= I

(
ab/(a+b)

)

I

 a

b

 =

ax

bx

=
ax

bx

=
ax

bx
(Lemma 42)

= a
x

b

= I

(
a+b

)

