
A substructural epistemic resource logic:
theory and modelling applications

DIDIER GALMICHE, Université de Lorraine, CNRS, LORIA, 54000, Nancy,
France.

PIERRE KIMMEL, Université de Lorraine, CNRS, LORIA, 54000, Nancy, France.

DAVID PYM, University College London, London, WC1E 6BT, UK.

Abstract
We present a substructural epistemic logic, based on Boolean BI, in which the epistemic modalities are parametrized on
agents’ local resources. The new modalities can be seen as generalizations of the usual epistemic modalities. The logic
combines Boolean BI’s resource semantics—we introduce BI and its resource semantics at some length—with epistemic
agency. We illustrate the use of the logic in systems modelling by discussing some examples about access control, including
semaphores, using resource tokens. We also give a labelled tableaux calculus and establish soundness and completeness with
respect to the resource semantics.

1 Introduction

The concept of resource is important in many fields including, among others, computer science,
economics and security. For example, in operating systems, processes access system resources such
as memory, files, processor time and bandwidth, with correct resource usage being essential for the
robust function of the system. The internet can be regarded as a giant, dynamic net of resources, in
which Uniform Resource Locators refer to located data and code.

In recent years, the concept of resource has been studied and analysed in computer science through
the bunched logic, BI [21, 30, 36] and its variants, such as Boolean BI (BBI) [25] and bunched modal
logics [13, 15], and applications, such as Separation Logic [25, 37].

The truth-functional, Kripke semantics of these logics, based on preordered partial monoids is
sketched below. However, before proceeding to describe this semantics, it is perhaps worth observing
that this choice of structure for BI’s models can be motivated directly in terms of natural requirements
for the properties of a notion of resource. Assuming a set of resource elements, we expect to be
able to

- combine two resource elements, to give a new resource element, and
- compare two resource elements, to determine which is the greater.

It is also natural to expect that the combination of elements be partial and this is indeed amply
justified by leading examples. These simple assumptions, that around are cleanly captured by
preordered partial monoids, have led to a remarkably useful ‘resource semantics’. The need for
partiality arises in two ways. Conceptually, we observe that in our semantics of resources it is quite
natural to expect that not all combinations of resource elements will exist (Separation Logic [25, 37]
provides an immediate and compelling example). Second, partiality is technically convenient for BI’s
metatheory [21].

Vol. 29, No. 8, © The Author(s) 2020. Published by Oxford University Press. All rights reserved.
For permissions, please e-mail: journals.permission@oup.com.

Advance Access Publication on 19 January 2020 doi:10.1093/logcom/exz024

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1252 Theory and modelling applications

These considerations lead to a semantics for BI based on partially ordered partial monoids of
worlds,

R = (R,�, •, e).

Here composition of resources is captured by the partial monoidal operation, •, with unit e, and
comparison of resources is captured by the partial order �. Where defined, this structure is required
to satisfy the bifunctoriality condition that if r1 � s1 and r2 � s2, then r1 • r2 � s1 • s2. Let us note
that ↓ denotes definedness of the composition.

Given such structures, the logic BI of bunched implications—see, e.g., [21, 30, 34, 36]—
which freely combines intuitionistic propositional additives with intuitionistic propositional mul-
tiplicatives—has its Kripke semantics given by the following satisfaction relation, where V is an
interpretation of propositional letters in ℘(R), in the usual way:

r |� p iff r ∈ V(p)

r |� ⊥ never
r |� � always

r |� ¬φ iff r �|� φ

r |� φ ∨ ψ iff r |� φ or r |� ψ

r |� φ ∧ ψ iff r |� φ and r |� ψ

r |� φ→ ψ iff for all r � s,
if s |� φ, then s |� ψ

r |� I iff e � r
r |� φ ∗ ψ iff there exist r1, r2 ∈ R s.t. r1 • r2 ↓, r � r1 • r2 and

r1 |� φ and r2 |� ψ

r |� φ −∗ ψ iff for all r′ ∈ R, if r • r′ ↓ and r′ |� φ,
then r • r′ |� ψ .

This resource semantics for BI—i.e., the interpretation of BI’s semantics in terms of resources—
underpins its applications to Separation Logic—and its family of derivatives; see [18, 19] for an
extensive discussion—and is mainly concerned with sharing and separation.

Specifically, Separation Logic is usually given as a presentation (often using Hoare triples) of a
specific theory of BBI for a language of memory cells and pointers with a model based on the stack
and the heap [25]. Versions of Separation Logic that are based on (intuitionistic) BI, as given above,
are also possible [25].

In BBI, [25, 37], the additives are classical, so that the order is collapsed to equality in the partial
monoid. Thus, we have

r |� φ→ ψ iff if r |� φ, then r |� ψ

r |� I iff e = r
r |� φ ∗ ψ iff there exist r1, r2 ∈ R s.t. r1 • r2 ↓, r = r1 • r2 and

r1 |� φ and r2 |� ψ .

The semantics described above is otherwise unchanged.
Thus, sharing of resources is captured by additive connectives, such as ∧, while separation of

resources is captured by multiplicative connectives, such as ∗. These connectives are the logical
kernels of the family of separation logics, with resources being interpreted in various ways, such as
memory regions, [25, 37], or elements of other particular monoids of resources [9]. This semantic
view of resource stands in stark contrast to the ‘number-of-uses’ reading of Linear Logic (LL)’s
proof theory [23]. We shall return to this point in the sequel, where we consider the evolution of a
model of system of resources.

This framework of resource semantics has also been extended into modal logic. Specifically,
we can set up a conservative extension (a ‘Logic of Separating Modalities’ or LSM [15]) of the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1253

modal logic S4 which adds multiplicative modalities—modalities that are parametrized on (local)
resources. These modalities are defined relative to two-dimensional worlds, one of which captures
the S4 accessibility relation and one of which supports the resource parametrization.

Roughly speaking, an LSM model is a 4-tuple (W , R, R,V), where W is a set of worlds, R is a
partial monoid of ‘resources’ (Res, •, e), R ⊆ (W × Res) × (W × Res) is a ref lexive and transitive
relation and V is an interpretation of propositional letters in ℘(W × Res). Then, using the both
dimensions of ‘worlds’ to handle, respectively, both classical modality and resource parametrization,
we have

w, r |� ♦sφ iff there exist w′ ∈ W and r′ ∈ R such that r • s ↓,

(w, r • s)R(w′, r′) and w′, r′ |� φ

w, r |� �sφ iff for all w′ ∈ W and all r′ ∈ R, if r • s ↓ and

(w, r • s)R(w′, r′), then w′, r′ |� φ.

Here, s is the local resource, associated with the modality, and r, in the model, is the ambient
resource. The modalities are read as asserting that φ is possibly (respectively, necessarily) true at
the world (w, r) subject to the availability of additional resource s.

Note that two other pairs of modalities are derivable from these:

- The basic additive modalities:

w, r |� ♦φ iff there exist w′ ∈ W and r′ ∈ R such that (w, r)R(w′, r′)

and w′, r′ |� φ

w, r |� �φ iff for all w′ ∈ W and all r′ ∈ R, if (w, r)R(w′, r′) then

w′, r′ |� φ.

- Multiplicative modalities with undetermined additional resource parameters:

w, r |� ♦•φ iff there exist w′ ∈ W and s, r′ ∈ R such that r • s ↓,

(w, r • s)R(w′, r′), and w′, r′ |�M φ

w, r |� �•φ iff for all w′ ∈ W and all s, r′ ∈ R, if (r • s ↓ and

(w, r • s)R(w′, r′)) then w′, r′ |� φ.

Full details of the derivations of these modalities may be found in [15] (Lemma 6), where the
conservativity of LSM over S4 is also established (in Section 5). The key feature of BI as a modelling
tool (and hence of its specific model Separation Logic) is its control of the representation and
handling of resources provided by the resource semantics and the associated proof systems. Notice
that, in the semantics given above, the components of the additive conjunction, ∧, share resources
whereas the truth condition for the multiplicative conjunction, ∗, requires separate resources for each
component. Notice also that this interpretation extends to the multiplicative implication as follows:
−∗ can be seen as (the type of) a function that combines the resource required to support itself with
the resource required to support its argument to give the resource required to support the application
of the function to its argument (see [30, 31]). Finally, notice also that we do not assume (in the manner
of hybrid logic) the existence of an atomic proposition for each element ‘s’ of the set Res with r |� s
iff r = s: from the perspective of resource semantics, such an assumption—the motivations for

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1254 Theory and modelling applications

which would be somewhat technical and essentially syntactic—is not well supported. In particular,
we would argue that such an assumption obscures the natural structure of the modalities that we
wish to explore and, moreover, imposes a constraint on the relationship between worlds and their
properties that we do not wish to take in general. We will return to this point brief ly in Section 2.

BI’s sequent proof systems employ bunches, with two context-building operations: one for
the additives—characterized by ∧, which admits weakening and contraction—and one for the
multiplicatives—characterized by ∗, which admits neither weakening nor contraction. Bunches are
not finite sequences of formulae but rather are finite trees, with formulae at the leaves and the
context-building operations at the internal vertices. For the details of the set-up, see [30, 31, 36].

In this set-up, we have the following right rules for the conjunctions and their corresponding
implications,→ and −∗:

Γ � φ Δ � ψ

Γ ; Δ � φ ∧ ψ
∧R and

Γ ; φ � ψ

Γ � φ→ ψ
→ R

and

Γ � φ Δ � ψ

Γ , Δ � φ ∗ ψ
∗R and

Γ , φ � ψ

Γ � φ −∗ ψ
−∗R.

Again, details may be found in the references given above.
In this setting, the structural rules of Weakening and Contraction arise as follows:

Γ (φ) � χ

Γ (φ ; ψ) � χ
W and

Γ (φ ; φ) � ψ

Γ (φ) � ψ
C.

In the former rule, the leaf φ is replaced by the bunch φ ; ψ and, in the latter rule, the sub-bunch (in
the evident sense) φ ; φ is replaced by the formula φ. In both cases, ; (rather than,) is used. Again,
details may be found in the references given above.

The soundness and completeness of BI’s proof systems for the semantics given above is
established in [30, 36] and elsewhere and via labelled tableaux in [21], and the completeness of
BBI for the partial monoid semantics described above is discussed comprehensively in [27].

The idea of resource semantics as it derives from BI and its models and its use as modelling tool
is discussed extensively in [35], in an article that is intended to be widely accessible to logicians and
computer scientists.

Girard’s LL [23] also decomposes the logical connectives into additive and multiplicative forms
(for classical and intuitionistic conjunction and disjunction, but not for intuitionistic implication).
However, it does so in a very different way from BI. Instead of employing bunches to allow control
of the structural rules, LL introduces the so-called exponentials ! and ?—modalities, similar to S4’s
� and ♦)—which have the following left and right rules:

Γ , φ � Δ

Γ , ! φ � Δ
! L

! Γ � φ, ?Δ

! Γ �! φ, ?Δ
! R

! Γ , φ �?Δ

! Γ , ?φ �?Δ
?L

Γ � φ, Δ

Γ �?φ, Δ
?R.

Then the structural rules of Weakening and Contraction arise as

Γ � Δ

Γ , ! φ � Δ
WL

Γ � Δ

Γ �?φ, Δ
WR

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1255

and

Γ , ! φ, ! φ � Δ

Γ , ! φ � Δ
CL

Γ �?φ, ?φ, Δ

Γ �?φ, Δ
CR.

Restricting to a single-conclusioned calculus for intuitionistic LL, we have just the ! .
At this point, we may ask what is the relationship between BI and LL. The short answer is that

they are essentially incomparable. This is explained in detail in the references given above (e.g., [30,
34, 35]), but the essential point can be seen in terms of their differing treatments of intuitionistic
implication. In BI, which can be considered to freely combine intuitionistic propositional logic and
multiplicative propositional LL, intuitionistic implication is present directly. In LL, intuitionistic
implication, φ ⊃ ψ , is represented using Girard’s translation

φ ⊃ ψ = ! φ � ψ . (1)

Such a representation does not exist in BI. This can be seen, as described in [30, 34, 35], using an
argument based on category-theoretic models of BI’s proofs. Specifically, BI’s proofs are modelled
by bi-cartesian doubly closed categories, and there is no endofunctor ! on such a category that
satisfies (the interpretation of) (1).

Returning brief ly to truth-functional semantics and its resource interpretation, we remark that LL’s
recently developed Kripke semantics [12] does not, as it stands, admit a direct resource interpretation
of the kind outline above. The possibility of such interpretations is an interesting issue.

Modal extensions of BI, such as MBI [1, 9], DBI and DMBI [13], have been proposed to introduce
dynamics into resource semantics. In recent work, the idea of introducing agents, together with
their knowledge, into the resource semantics has led to an Epistemic Separation Logic, called ESL,
in which epistemic possible worlds are considered as resources [14]. This logic corresponds to an
extension of BBI with a knowledge modality, Ka, such that Kaφ means that the agent a knows that
φ holds.

Various previous works on epistemic logics consider the concept of resource, using a variety of
approaches. They include [3, 24, 29]. Here we aim to explore more deeply the idea of epistemic
reasoning [16] in the context of resource semantics and its associated logic, by taking the basic
epistemic modality Ka and parametrizing it with a resource s, with the associated introduction
of relations not only between resources, according to an agent, but also between composition of
resources in different ways. The parametrizing resource may be thought of as being associated with,
or local to, the agent. This approach leads to the definition of two new modalities Ls

a and Ms
a and,

consequently, to a new logic in which, as a leading example, we can obtain an account of access to
resources and its control, whether they be pieces of knowledge, locations or other entities. We call
this logic Epistemic Resource Logic or ERL.

In Section 2, we set up the logic ERL by a semantic definition and, in Section 3, we give the
key conservative extension properties of the logic and also introduce a useful sublogic, ERL∗. In
Section 4, we explain how to use the logic to model and reason about the relationship between
a security policy—in the context of access control—and the system to which it is applied (cf.
Schneier’s gate problem [38]). Our application to systems security policy stands in contrast to
other work (e.g., [33]) in which epistemic logic has been applied to the analysis of cryptographic
protocols. We complete this section with other examples, including joint access and semaphores,
which illustrate the applicability of ERL in these perspectives. In Section 5, we set up a labelled
tableaux calculus for ERL and establish soundness with respect to ERL’s semantic definition and
also completeness from a countermodel extraction method. Let us note that we apply the approach
and techniques already used for designing such labelled tableaux for other modal extensions of BBI

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1256 Theory and modelling applications

[13–15]. Details of the arguments are provided in the appendices. Our arguments encompass also
the sublogic ERL∗.

Further work will be devoted to further study of the logic and its variants, including intuitionistic
and dynamic systems, to local reasoning for resource-carrying agents [25, 37], to connections
with other approaches to modelling the relationship between policy and implementation in system
management [39] and to approaches involving logics for layered graphs [1, 10]. The work presented
here builds upon and strongly develops early ideas presented in [20].

2 An ERL

Epistemic logic is the logic of knowledge and belief. It is concerned with what agents know and
believe. The knowledge and beliefs of agents are represented using modalities which assert the truth
of propositions relative to agents’ judgements of the relationship between worlds [16]. In the setting
of resource semantics, worlds are interpreted as representing available resources and agents make
judgements about the equivalence of resources.

The language L of the ERL is obtained by adding two new modal operators L and M to the BI
language. In order to define the language of ERL, we introduce the following structures: a finite
set of agents A; a finite set of resources Res, with a particular element, e; an internal composition
operator · on Res (· : Res × Res ⇀ Res); and a countable set of propositional symbols Prop. The
language L of ERL is defined as follows:

φ ::= p | ⊥ | � | ¬φ | I | φ ∨ ψ | φ ∧ ψ | φ→ φ | φ ∗ φ | φ −∗ φ | Ls
aφ |Ms

aφ,

where p ∈ Prop, a ∈ A and s ∈ Res.
In this context we call s the agent’s local resource. We also define the following operators: M̃

s
aφ ≡

¬Ms
a¬φ and L̃s

aφ ≡ ¬Ls
a¬φ. The meanings of these connectives are defined in the sequence of

definitions that follow below. For simplicity, we write rs instead of r · s and so write Lrs
a φ instead

of Lr·s
a φ.

Note that we introduce modalities that depend on agents and resources and compare them with
previous work on an epistemic extension of BBI [14]. With a slight abuse of notation, we have
explicit resources in the language syntax: just as in [15], we must assume that the resource elements
present in the syntax of the modalities have counterparts in the partial resource monoid (PRM)
semantics. This design choice has consequences both for the expressivity of the logic and for the
formulation of the tableaux calculus. In the sequel, ↓ denotes definedness and ↑ undefinedness.

DEFINITION 1 (Partial resource monoid).
A PRM is a structure R = (R, •) such that

• R is a set of resources such that Res ⊆ R (which notably means that e ∈ R), and
• • : R× R ⇀ R is an operator on R such that, for all r1, r2, r3 ∈ R,

- • is an extension of ·: if r1, r2, r3 ∈ Res, then r1 = r2 · r3 iff r1 = r2 • r3,
- e is a neutral element: r1 • e ↓ and r1 • e = r1,
- • is commutative: if r1 • r2 ↓, then r2 • r1 ↓ and r2 • r1 = r1 • r2 and
- • is associative: if r1 • (r2 • r3) ↓, then (r1 • r2) • r3 ↓ and (r1 • r2•)r3 = r1 • (r2 • r3).

We call e the unit resource and • the resource composition. Henceforth, ℘(R) denotes the powerset
of R.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1257

Note that we implicitly consider that the resource composition • is compatible with equality
between resources. That means that if r1 = r2 and r1 • r3 ↓, then r2 • r3 ↓ and r2 • r3 = r1 • r3
(right-composition property of •). We also have the left-composition since • is commutative.

DEFINITION 2 (Model).
A model is a triple M = (R, {∼a}a∈A, V) such that

• R = (R, •) is a PRM,
• for all a ∈ A, ∼a⊆ R× R is an equivalence relation and
• V : Prop→ ℘(R) is a valuation function.

We can place this logic in the context of our previous work on modal [9, 10] and epistemic
extensions of (Boolean) BI [13, 14]. In [14], an epistemic extension of BBI, called ESL, is
introduced. In this logic, there is just one epistemic modality, Ka, which allows the knowledge of an
agent a to be expressed. The modalities employed in this system and those employed in the system
presented herein stand in contrast to the modalities of the system LSM described in Section 1 in that
they make essential use of the notion of agent in their definition.

More formally, the semantics of this modality is defined by r |�M Kaφ if and only if, for all r′
such that r ∼a r′, r′ |�M φ, where r and r′ are semantic worlds (or resources) and ∼a is a relation
between worlds that expresses that they are equivalent from the point of view of the agent a. The
parametrization of modalities on resources derives from ideas that are conveniently expressed in
e.g., [9, 10].

In this paper, we aim to develop the idea in order to consider a modality like Ka and to parametrize
it on a resource s, requiring the world relation to be of the form r • s ∼a r′ or r ∼a r′ • s or even
r • s ∼a r′ • s. Then, in the spirit of ESL, we define a new logic from BBI that allows us to model not
only relations between resources according to an agent but also how those relations are restricted by
resources. We can also consider the resources upon which the agent’s relation are parametrized to be
local to the agent.

In this spirit, we define two new modalities Ls
aφ and Ms

aφ, with the notation building on the
usual one in epistemic logic, for which we have the following semantics expressing two forms of the
agent’s contingency for truth in the presence of composable resources:

1. Ls
aφ expresses that the agent, a, can establish the truth of φ using a given resource whenever

the ambient resource, r, can be combined with the agent’s local resource, s, to yield a resource
that a judges to be equivalent to that given resource.
In other words Ls

aφ is true relative to the ambient resource, r, iff for a’s views of the
combination of the ambient resource, r, and its local resource, s, φ is true. More formally
we have

r |�M Ls
aφ iff if r • s ↓ then for all r′ ∈ R, if r • s ∼a r′, then r′ |�M φ.

2. Ms
aφ expresses that the agent, a, can establish the truth of φ if there exists a resource that can be

combined with its local resource, s, such that a judges the combined resource to be equivalent
to the ambient resource, r.
In other words, Ms

aφ is true relative to the ambient resource, r, iff for a’s views, the ambient
resource is the combination of the local resource, s, with another resource that makes φ true.
More formally we have

r |�M Ms
aφ iff there exists r′ ∈ R such that r′ • s ↓ and r ∼a r′ • s and r′ • s |�M φ.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1258 Theory and modelling applications

ERL can thus be seen as a particular epistemic logic that provides new modalities which model
access to resources, whether they are interpreted as pieces of knowledge, locations or otherwise.

Note that we could obtain operators with similar semantics by taking ESL [14] and adding it the
hybrid operators of the hybrid logic HyBBI [4]. Such a new logical framework would allow us to
use symbols, called nominals, that force a formula to be valid for a specific resource. Namely, if
we consider a nominal ns forcing the resource s, we then could define the modality Ls

aφ by Ls
aφ ≡

ns −∗Kaφ and we recover the semantics given in this section for this modality. Moreover, we could
also define the modality Ms

aφ by Ms
aφ ≡ K̃a((�∗ns)∧φ). Observations like this are quite common

for logics of the kinds considered here, but our view is that conceptual clarity, rather than syntactic
ingenuity, should drive the design choices.

This hybrid approach based on nominals represents a significant technical addition to our semantic
assumptions that is not justified by the motivations of resource semantics, adding a confusion
between resources and propositions that we consider to be inconvenient for our intended modelling
applications. Moreover, we would argue that the identities between the modalities that are induced
obscure rather than elucidate their meaning—although we would concede that the identities may be
of use in mechanical implementations—and lead to a less elegant analysis. Furthermore, working
with the hybrid semantics requires additional work in setting the tableaux-based metatheory for the
logic, as discussed in Section 5.

It therefore seems appropriate to add the epistemic operators systematically in a clean semantic
setting.

DEFINITION 3 (Satisfaction and validity).
Let M = (R, {∼a}a∈A, V) be a model. The satisfaction relation |�M⊆ R × L is defined, for all
r ∈ R, as follows:

r |�M p iff r ∈ V(p)

r |�M ⊥ never
r |�M � always

r |�M ¬φ iff r �|�M φ

r |�M φ ∨ ψ iff r |�M φ or r |�M ψ

r |�M φ ∧ ψ iff r |�M φ and r |�M ψ

r |�M φ→ ψ iff if r |�M φ, then r |�M ψ

r |�M I iff r = e
r |�M φ ∗ ψ iff there exist r1, r2 ∈ R s.t. r1 • r2 ↓, r1 • r2 = r and r1 |�M φ and r2 |�M ψ

r |�M φ −∗ ψ iff for all r′ ∈ R, if r • r′ ↓ and r′ |�M φ, then r • r′ |�M ψ

r |�M Ls
aφ iff if r • s ↓ then for all r′ ∈ R, if r • s ∼a r′, then r′ |�M φ

r |�M Ms
aφ iff there exists r′ ∈ R such that r′ • s ↓ and r ∼a r′ • s and r′ • s |�M φ.

A formula φ is valid, denoted � φ, if and only if, for any model W and any resource r, we have
r |�M φ.

PROPOSITION 1 (Satisfaction for the secondary modalities).
Let M = (R, {∼a}a∈A, V) be a model, and let r ∈ R. The following statements hold:

1. r |�M L̃s
aφ iff if r • s ↓ then there exists r′ ∈ R such that r • s ∼a r′ and r′ |�M φ;

2. r |�M M̃s
aφ iff for all r′ ∈ R, if r′ • s ↓ and r ∼a r′ • s, then r′ • s |�M φ.

PROOF. Consider the first part, 1. L̃
s
aφ ≡ ¬Ls

a¬φ, so r |�M L̃
s
aφ iff r |�M ¬Ls

a¬φ iff r �|�M Ls
a¬φ

iff there exists r′ ∈ R s.t. r•s ∼a r′ and r′ �|�M ¬φ iff there exists r′ ∈ R s.t. r•s ∼a r′ and r′ |�M φ.
Proof of 2 is similar. �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1259

More intuitively, we can see that L̃
s
aφ expresses that the agent, a, can establish the truth of

φ if there exists a resource such that the combination of the ambient resource, r, and the local
resource, s, is judged by a to be equivalent to that resource. Similarly, M̃

s
aφ expresses that

the agent, a, can establish the truth of φ using a resource that is the combination of its local
resource, s, with any resource such that a judges the combined resource to be equivalent to the
ambient resource, r. We shall see later that these dual modalities can be also useful for modelling
systems.

Returning to the possible representation of the modalities in a hybrid version of ESL, we could
then define these modalities as follows: L̃

s
aφ ≡ (� ∗ ns) ∧ K̃aφ and M̃

s
aφ ≡ Ka((� ∗ ns) →

φ), with ns being a nominal forcing the resource s. As we have previously explained, here we
aim at avoiding confusion between resources (which are part of the model) and propositions
(which are part of the language) that we consider to be inconvenient for our intended modelling
applications.

Note that the first point of the definition of •, in Definition 1, implies that the three other
definitions (neutral element, commutativity and associativity) extend to ·, so that the following
are semantically equivalent (i.e., every valid formula in the one is valid in the other) for any
agent a and any resources r, s and t: Lre

a φ ≡ Lr
aφ, Lrs

a ≡ Lsr
a and Lr(st)

a ≡ L(rs)t
a . Of course, such

equivalences also hold for Mφ, L̃φ, and M̃φ.

3 Some properties of ERL

We show that ERL is a conservative extension of BBI and Epistemic Logic (EL) and that, in the
presence of additional properties of the partial resource monoid (Definition 1), there are some
noteworthy relationships between modalities.

We consider two fragments of ERL. First, ERLBBI—corresponding to BBI [25]—with A = ∅
on the language L|BBI defined as L excluding the Ls

a and Ms
a operators. Second, ERLEL—

corresponding to the epistemic logic EL consisting of classical propositional additives and the basic
epistemic operator Ka [16]—with Res = {e}, on the language L|EL defined as L excluding I, ∗
and −∗ and with Ls

a and Ms
a, replaced by the operator Ka, which is defined, for all agents a, by

Kaφ = Le
aφ =Me

aφ.

PROPOSITION 2 (ERL is a conservative extension of BBI and EL).
If, in every model of BBI, the neutral element of the composition is the element e of Res, then
ERLBBI is semantically equivalent to BBI. If the agent sets are the same for the two languages,
ERLEL is semantically equivalent to the epistemic logic EL.

We now consider some properties of ERL; specifically, the way in which the different operators
behave when they are used together in formulae. One interesting property we might require in our
semantics, which is based on monoidal structure, is the compatibility of ∼a and •. More precisely,
we might require that if two resources are equivalent for an agent a, then the composition with a
third resource be transferred through this equivalence.

Although such a property can be very useful, it introduces, from the modelling perspective,
some quite strong properties: the transmission of properties of resources through agent-dependent
equivalence is a strong assertion regarding agents’ private accesses and should be avoided when
modelling some security properties.

Considering these concerns, we take this extra property to be optional and identify it in a sublogic
of ERL which we call ERL∗.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1260 Theory and modelling applications

DEFINITION 4
The logic ERL∗ is defined as ERL with the addition of the following property to the partial resource
monoid (Definition 1): For any agent a and any resources r, r′ ∈ R, if r• s ↓ and r ∼a r′, then r′ • s ↓
and r • s ∼a r′ • s. It is called the compatibility of ∼a with •.

Note that we use the logic ERL∗ in the security modelling examples that we develop in the next
section.

LEMMA 1
Let a ∈ A be an agent, s, t ∈ Res be resources and φ be a formula of ERL∗. We have the following
properties:

1. Ls
a(L

t
aφ) ≡ Lst

a φ

2. Ms
a(M

t
aφ)→Mt

aφ

3. Ls
aφ→ M̃

t
a(L

s
aφ)

4 Mt
a(L̃

s
aφ)→ L̃

s
aφ.

5 L̃
t
a(L̃

s
aφ) ≡ L̃

ts
a φ

6 M̃s
aφ→ M̃t

a(M̃
s
aφ)

7 Le
aφ ≡ M̃

e
aφ

PROOF. First consider 1. Let W be a model and r be a resource. Suppose that r |�M Ls
a(L

t
aφ). Then

we have r • s ↓ and, for any r′ ∈ R such that r • s ∼a r′, we have r′ |�M Lt
aφ. Thus, r • s ↓ and,

for any r′ ∈ R such that r • s ∼a r′, r′ • t ↓, and for any r′′ ∈ R such that r′ • t ∼a r′′, we have
r′′ |�M φ. Consider r′′′ ∈ R such that r • s • t ∼a r′′′. By ref lexivity, we obtain r • s ∼a r • s. Then
with r′ = r • s and r′′ = r′′′, we have r • s • t ↓ and r′′′ |�M φ. Thus, r |�M Lst

a φ, and we can
deduce that Ls

a(L
t
aφ)→ Lst

a φ.
Now suppose that r |�M Lst

a φ. Then r • s • t ↓ and, for any r′′′ such that r • s • t ∼a r′′′, we have
r′′′ |�M φ. As r • s • t ↓, we have r • s ↓. Let r′ ∈ R be such that r • s ∼a r′. Then, by compatibility,
r′ •t ↓ and r•s•t ∼a r′ •t. Let r′′ be such that r′ •t ∼a r′′. Then, by transitivity, we have r•s•t ∼a r′′.
Then, with r′′′ = r′′, we have r′′ |�M φ. We obtain r • s ↓ and, for any r′ ∈ R such that r • s ∼a r′,
r′ • t ↓ and for any r′′ ∈ R such that r′ • t ∼a r′′, we have r′′ |�M φ. Then we have r |�M Ls

a(L
t
aφ),

and then we can deduce Lst
a φ→ Ls

a(L
t
aφ). Finally, we have Ls

a(L
t
aφ) ≡ Lst

a φ.
Now consider 6. Let W be a model and r be a resource. Suppose that r |�M M̃

s
aφ. Then, for any

r′ such that r′ • s ↓ and r ∼a r′ • s, we have r′ • s |�M φ. Let r′′ such that r′′ • t ↓ and r ∼a r′′ • t
and r′′′ such that r′′′ • s ↓ and r′′ • t ∼a r′′′ • s. By transitivity we deduce that r ∼a r′′′ • s and if we
fix r′ = r′′′ we have r′′′ • s |�M φ. As it is true for any r′′′ such that r′′′ • s ↓ and r′′ • t ∼a r′′′ • s,
we have r′′ |�M M̃

s
aφ. As it is true that, for any r′′ such that r′′ • t ↓ and r ∼a r′′ • t, we have

r |�M M̃t
a(M̃

s
aφ), then for any resource r in any model W , M̃s

aφ→ M̃t
a(M̃

s
aφ) is valid.

Note that the reverse implication, M̃t
a(M̃

s
aφ)→ M̃s

aφ, is not valid. In fact, if r |�M M̃t
a(M̃

s
aφ), φ

is validated by all r′′ • s such that r ∼a r′ • t and r′ • t ∼a r′′ • s. But to have r |�M M̃
s
aφ, we must

have r′′′ • s |�M φ for all r′′′ such that r ∼a r′′′ • s, and not only for those for which the equivalence
by ∼a is built from t. Then there is no equivalence between M̃

s
aφ and M̃

t
a(M̃

s
aφ).

All of the other cases are proved in similar ways. �
We can complete our language with another modality Ns

aφ that could also be helpful for our
modelling perspective. From this modality, that is a variant of Ls

aφ, we can also derive Ñ
s
aφ such that

Ñs
aφ ≡ ¬Ns

a¬φ.
Ns

aφ expresses that the agent, a, can establish the truth of φ using any resource combined with its
local resource, s, provided a judges that combination to be equivalent to the combination of the local
resource, s, with the ambient resource, r. In other words, Ns

aφ is true relative to the ambient resource
r iff for a’s views of the combination of the ambient resource r and its local resource s, φ is true.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1261

More formally we have the following:

r |�M Ns
aφ iff if r • s ↓ then for all r′ ∈ R s.t. r′ • s ↓ if r • s ∼a r′ • s, then r′ • s |�M φ.

We can build Ns
aφ from the previous main modalities as follows.

PROPOSITION 3
We have Ns

aφ ≡ Ls
a(M̃

s
aφ).

PROOF. Consider that r |�M Ls
a(M̃

s
aφ) iff, for all r′ ∈ R, if r • s ∼a r′, then r′ |�M M̃

s
aφ iff, for all

r′ ∈ R, if r • s ∼a r′, then, for all r′′ ∈ R, if r′ ∼a r′′ • s, then r′′ • s |�M φ iff, for all r′, r′′ ∈ R,
if r • s ∼a r′ and r′ ∼a r′′ • s, then r′′ • s |�M φ iff (by the transitivity of ∼a), for all r′′ ∈ R, if
r • s ∼a r′′ • s, then r′′ • s |�M φ iff r |�M Ns

aφ. �

4 Modelling access control with the logic ERL∗

In this section, we illustrate how to use ERL and its special sublogic ERL∗, in modelling access
control situations.

Security policies, such as those for access control, are often formulated separately from the
architectural context in which they are intended to be applied. This can lead to the existence of
vulnerabilities. Specifically, when a particular security policy is applied to a particular system, the
security properties of the resulting system may not be as intended.

We aim to illustrate that the new operators Ls
a and Ms

a are appropriate for modelling situations
where the access to resources (whether they are locations or pieces of data) is central. Indeed, both
operators can be used to specify (in a slight different f lavour) whether a resource verifies a property
in agent’s a perspective, granted that the local resource s is present.

Before developing our examples, we recall that there exists a body of work based on LL and
multiset rewriting for modelling some access control problems in specific situations. For example,
multiset rewriting has been used to characterize security protocols [7]. Our aim here, however, is to
provide a more general framework that can be a modelling tool in many situations rather than be
an ad hoc creation specific to a context. Even if such a framework based on LL and modalities for
authorization and knowledge exists [22], we consider the differences between LL and BBI that make
the later a more convenient tool for modelling. Both are able to model aspects of the properties of
resources, but in LL propositions represent resources while in BBI (and, indeed, in BI) propositions
represent properties of resources that can be expressed within the Kripke structures supporting
resource semantics. LL focuses on the production and consumption—essentially counting—of
resources while BBI focuses on separation and sharing of properties on resources. Modal extensions
of BBI extend this view to incorporate the production and consumption of resources via the effects
of actions in action modalities [13, 15].

Because—as explained in the introduction and in a substantial body of literature [34]—the
semantics of BBI can be interpreted as being a theory of resources and their properties, we can
directly use resources as tokens in our modelling of systems [8]. Of particular note in this paper is
the use of local resources. For example, s in r � Ls

a is of the same nature but does not have the same
role, as the ambient resource r. This allows a simple integration of new actors of a system into a
modelling using ERL and avoids the creation of new formal elements of a more ad hoc nature.

4.1 Modelling distributed systems

The construction of mathematical models always involves design choices. Our approach is guided
by the approach to modelling distributed systems articulated in [1, 9]. This approach builds upon the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1262 Theory and modelling applications

observation that, from a slightly abstract yet convenient point of view, the key structural components
of a distributed systems are the following:

- Locations. The basic architecture of the system is considered to be described by a collection of
connected places. Mathematically, we need some topological structure, with directed graphs
being perhaps the most commonly useful set-up.

- Resources. Resources are situated at the locations identified in the system’s architecture. They
are the components of the system that are manipulated—i.e., consumed, created, moved and
so on—as the system evolves in order to deliver the services that it is intended to provide.
Mathematically, we take the ‘resource monoids’ adopted in, e.g., the semantics of BI, in
Separation Logic and, indeed, in ERL. In the intuitionistic versions of these logics, we take a
partially ordered (or sometimes preordered) partial monoid of resources. As we have seen in
Section 1, the monoidal composition then captures the combination of resource elements and
the ordering captures the comparison of resource elements. In the classical versions, we drop
the ordering and work just with combination.

- Processes. The services that a system provides are delivered by the execution of processes,
during which resources are manipulated. Mathematically, in formal generality, we can
describe processes using an algebraic calculus of processes. In [8], we have employed
a variation of Milner’s basic system, SCCS [28], adapted to capture the interaction with
resources and locations.

In addition, we require the following concept:

- Environment. When a system is modelled, it is necessary to decide what is its boundary.
Things that are outside of the boundary are not represented in detail within the model.
Nevertheless, the model must interact with its environment. Mathematically, this can be
represented stochastically, using specified probability distributions to capture events at the
boundary.

The structural components collectively represent the state of a system and can be used to define
a process algebra with an operational semantics that defines their co-evolution as actions occur
[1, 8, 9]:

L, R, E
a−→ L′, R′, E′.

When building models in this style, it is necessary to set up a notion of signature for a model. For
basic actions a and locations L, we define an evolution

μ(a, L, R) = (L′, R′)

that specifies the effect of a on the resource R at this L. We call μ a modification function.
In this setting, there is an associated modal logic with a satisfaction relation of the form

L, R, E |� φ,

which includes both additive and multiplicative action modalities [1, 8, 9]. Additive action modalities
yield formulae of the form [a] φ, with a truth condition along the following lines:

L, R, E |� [a] φ iff for all E
a−→ E′, L′, R′, E′ |� φ,

where we need the condition, part of the signature of the model, to the effect that the occurrence
of the action a causes the evolution of L to L′ and R to R′ [1, 8, 9]. The multiplicative modalities
allow actions to carry around local resources that can be combined with the ambient resource—so

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1263

we consider L, R, E |� [a]S φ and form R′ ◦ S′ in the definiens of the satisfaction clause—to enable
the evolution [1, 8, 9].

The logic is used both to constrain the model, through situation-specific logical properties, and to
express desired or undesired properties of the system that are to be checked.

In the setting of modelling access control using ERL, locations, resources and processes can all
be represented, although we can make some simplifications.

- Locations. The examples we consider implicitly employ location architectures, but they are
sufficiently simple that they can also be handled implicitly in the formalization, often through
the treatment of resources.

- Resources. The resource elements considered carry the structure of resource monoids, and we
make essential use of this in the models.

- Processes. Our examples only deal with the actions that are required to the instantiation
of epistemic modalities. Nevertheless, we provide discussions of how our examples can be
understood in the location–resource–process context.

In this setting, we elide the modelling of environment: since we are not seeking to build executable
models, this simplification is of little or no consequence for our present purposes. In these senses,
we are making use of a fairly pure version of resource semantics.

We employ a range of examples of security modelling using this approach. We begin, in
Section 4.2, with ‘Schneier’s gate’, which illustrates the policy–architecture gap, and then consider
a core systems–security situations of joint access control, in Section 4.3, and semaphores, in
Section 4.4.

4.2 The ‘Schneier’s gate’ problem

Consider the example of ‘Schneier’s gate’ [38], wherein a security system is ineffective because
of the existence of a side-channel that allows a control to be circumvented. Here a facility that is
intended to be secured is protected by a barrier that prevents cars from entering into the facility.
The barrier may be controlled by a token—such as a card, a remote or a code—the holding of
which distinguishes authorized personnel from intruders. If, however, the barrier itself is surrounded
by ground that can be traversed by a vehicle, without any kind of fence or wall, then any car
can drive around it (whether it is with malicious intent or just by laziness of getting through the
security procedure) and the access control policy, as implemented by the barrier and the tokens, is
undermined. So, the access control policy—that only authorized personnel, in possession of a token,
may take vehicles into the facility—is undermined by the architecture of the system to which it is
applied.

We show how ERL∗ can be used to model, and so reason about, the situation described above
(following [38]), illustrating how such situations can be identified by logical analysis. Related
analyses, employing logical models of layered graphs, can be found in [11].

We follow the approach to distributed systems modelling sketched in Section 4.1 and elaborated
in [1, 8, 9]. We start with a simple model, depicted in Figure 2, and gradually refine it. We model
just a facility protected by an access barrier. We will need the following key components:

• Locations. We assume, for what is an architecturally simple model, just three locations: outside
and inside of the area guarded by the barrier and the barrier itself. In this simple setting, there
is no need to incorporate an explicit representation of locations into our model’s worlds.
• Resources. There are just three types of resources: vehicles (cars), access tokens, which are

required to operate the barrier, and a marker for the presence of the barrier.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1264 Theory and modelling applications

FIGURE 1 A depiction of the ‘Schneier’s gate’ problem.

FIGURE 2 Barrier problem, base case

• Processes. In this simple setting, we do not need to employ the full, quite complex, structure of
a process algebra; rather, the actions of a logic with action modalities—in particular, the action
modalities of ERL∗, with their epistemic semantics—will suffice.

In fact, our treatment of resource in this epistemic-logic setting is a little more subtle. From the
modelling perspective, the resources we have exposed here are diverse in nature: there is a material
token (key or card for instance), there are cars, and a just a marker for the presence and well-
functioning of the barrier. This diversity raises the question of the meaning and value of the unit
resource, e. We finesse this problem by accepting that resources encompass a variety of different
objects, but we can also employ the epistemic nature of our logic and consider that resources
represent not objects as such but rather the knowledge that a given object is in our system.

A vehicle having the appropriate access token should be able to get inside. We consider the
following sets of resources, agents, and logical properties of resources/system states:

Res = {e, b, t, c}, A = {α}, Prop = {O, J}.

Here we have the following:

• the atomic propositions O and J , respectively, express the state of being outside and inside the
facility—we use J instead of I to avoid confusion with I, the unit operator;
• a resource element b is taken as a marker for the presence and well-functioning of the barrier;
• a token, required to operate the barrier, is denoted by a resource element t and vehicles (cars)

are denoted by resource elements c, c′, etc.;

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1265

• for simplicity we are assuming that all resource elements are of the same sort; i.e., are elements
of the same resource monoid; this will cause no formal difficulty in this simple setting, though
richer examples might require more care in this respect;
• u |�M O means that u is outside the facility, and v |�M J means that v is inside;
• the agent α is a generic one that represents a user of the system; i.e., say, the vehicle/driver

that approaches the access control point. The resources b and t represent tokens that stand
respectively for the barrier and the access token of the users.

So, c can be viewed as an abstract token marking the presence of a car and t the presence of the
required access device in this car. Thus, resources act as an abstraction layer of our system. In this
view, it follows that it is easy to see e as the absence of information (nothing is known of the system).

We have the following property: O → Lbt
α J . According to the semantics, based on a resource

monoid R, c |�M O→ Lbt
α J just in case if c |�M O, then, for every c′ ∈ R such that c • b • t ∼α c′,

c′ |�M J . Thus, the combination of the two tokens grants access to the inside. The use of the token
b for the presence of the barrier helps in modelling a situation in which the barrier is completely
shut or is broken (in which case entering would not be possible). Note that the formulae O→ Lt

αJ ,
O → Lb

αJ and O → Le
αJ are not valid because we cannot enter if the barrier is shut, if we have no

access token or both.
The use of the operator Ls

α in this situation is illustrative. First, consider what differences the use

of other operators would make. If we were to state O → M̃bt
α J , then it would mean that anyone

outside can get (without condition) inside and acquire the two access tokens. This is of course not
what we expect. On the other hand, using Ns

α has an interesting effect. O→ Nbt
α J requires not only

that an entering agent have the expected tokens but also that those tokens remain active once they
are inside. This is slightly different from our first approach: we do not know if the tokens are still
active once the agent is inside.

We can also consider which of the additive implication, →, and the multiplicative, −∗, would
be the better modelling choice in this example. For the first approach, → seems quite sufficient.
Indeed, if we assert O→ Lbt

α J as valid, then any resource satisfies it. So, if we have a car c such that
c |�M O, we also have c |�M O→ Lbt

α J , and then we get the expected c |�M Lbt
α J .

However, if we consider more complex properties, the situation is different. Imagine, e.g., an
environment that is composed not only of the car c but also another entity or piece of information,
o. Our epistemic context is thus o • c. If we have c |�M O and if O → Lbt

α J is valid, then we get
c |�M Lbt

α J . As we do not have o • c |�M O, we cannot deduce that o • c |�M Lbt
α J .

If instead we assume that the property O −∗ Lbt
α J is valid, then we have, in particular, o |�M

O −∗ Lbt
α J and, together with c |�M O, we can deduce o • c |�M Lbt

α J , as desired. So, the use of
−∗ instead of→ is much more useful in more complex systems; as it allows us to set aside, as with
Separation Logic’s Frame Rule, some of the entities of our system and still apply the property.

Now we introduce agents to the model (see Figure 3). The first model may seem crude, because a
single resource is used to model the access of any agent. So, we seek to benefit from the logic that
allows us to take agents into account.

We change the model by defining a detailed set of agents, A = {α, β, γ } and now take three agents
or users, α, β and γ . Each user should have its own access token, and the resource set is modified
accordingly: Res = {e, b, tα , tβ , tγ , c}. Now the slightly different formula O→ Lbta

a J is valid for any
agent a ∈ A. So, e.g., O→ Lbtα

α J is valid, which means that α can get inside with his own token, but

O→ L
btβ
α J is not, which means α cannot use β’s token.

Now consider the case in which the access is controlled and the agents are supposed to cross
the barrier only if they have the appropriate access device. We want to capture the fact that the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1266 Theory and modelling applications

FIGURE 3 Barrier problem with agents.

FIGURE 4 Barrier problem with a shortcut.

FIGURE 5 Barrier problem with a fence.

system can actually be f lawed (as mentioned in the problem presentation). It is actually quite easy
to do, because being able to circumvent the barrier just means being able to access the inside of the
complex without any token. We could be a little more specific by imagining that some agents know
the shortcut (or dare to use it) and others do not (see Figure 4). In the previous setting, suppose that
the agent β is aware of the shortcut and is disposed to use it. Our new set of properties should now
be the following: {

O→ Lbta
a J (for every a ∈ A), O→ Le

βJ
}

.

The unit resource e expresses a direct access (with no resource needed). Note how the use of
agents can help us to express different security policies in the same model.

We can reasonably suppose that such a flawed system would be quickly dealt with, e.g., by
installing a fence that would prevent going around the barrier (see Figure 5). We could, of course,
just model that by removing our last addition and get back to the intended policy, but it is more
interesting to encode it by a formula. For example, we might then also describe a fault in the fence
(or its removal). To do so, we can simply add a propositional formula F that is valid for any resource
provided there is a fence preventing the passage of ‘rogue’ agents. Our system then becomes{

O→ Lbta
a J (for every a ∈ A), O ∧ ¬ F → Le

βJ
}

.

Having established a system of formulae that describes our modelling situation quite clearly, we
can seek some properties of the model. The idea is to establish a property of the system that goes

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1267

beyond its basic definition. For example, we may want to check that every agent inside the facility
has passed the barrier and has in its possession its access token. This means that we must prove that,
for every agent a ∈ A, J →Mbta

a J .
Indeed, if c |�M J → Mbta

a J , this means that if c |�M J , then there exists c′ ∈ R such that
c ∼a c′ • b • ta and c′ • b • ta |�M J , which expresses that every resource representing a car that
is inside must in fact be equivalent, for an agent a ∈ A, to a resource that is inside and is composed
with both the appropriate token ta and the barrier token b. This is exactly what we wanted to capture.

Notice that this particular property is not verified by the system we described in our set-up. Indeed,
noted previously, specifying entrance with r |�M O→ Lbta

a J makes J be satisfied by any resource
r′ such that r • b • ta ∼a r′. We can see that r′ does not contain b and ta. The use of Nbta

a instead
solves this problem: we then have r • b • ta ∼a r′ • b • ta and r′ • b • ta |�M J , as required.

So far, we have considered only simple situations, mainly one car crossing the barrier in
various situations. Of course, we may wish to consider more complex models and establish similar
properties. For example, we may want to see what happens if several cars are modelled together in
the system.

We have the sets of properties in the form of implications stated before. To state there is a car
in the system, we just assert that the formula O is valid. Then, by looking at the semantics of our
formulae, we create a resource c which satisfies that formula. In order to have several cars, we might
at first be tempted to assert something like O∧O∧O (for three cars). However, given our semantics,
we have trivially that O ∧ O ∧ O ≡ O, which is inconvenient for our modelling purpose. It is better
to state O ∗ O ∗ O, using the multiplicative conjunction, instead. Then, to satisfy this formula, we
need indeed three resources c1, c2, c3 and we have c1 • c2 • c3 |�M O ∗ O ∗ O—i.e., for each car
to gain access, a token is required for that car. Then, using −∗ as described above, we can see the
system evolve as cars are allowed inside. Thus, the use of ∗ is particularly relevant to model several
instances of a same object.

Of course, we could easily enrich this model to make more distinctions between different cars and
their different properties, but the essentials of the model would remain the same.

4.3 Joint access

One of the most common problems of access control is joint access, and we propose to model a
very simple example with our logic. The background for this example can be found in many films
about the cold war era: the situation is that a critical system—such as one that controls the release
of nuclear weapons, as in ‘Crimson Tide’ [5]—is secured by two different keys, each one held by
a different operator. For the system to unlock, it is necessary that both operators activate their keys
simultaneously. We provide a logical analysis of this situation.

From our systems modelling perspective, we can set this up quite simply, as depicted in Figure 6.
Some of the modelling choices made here are quite obvious: we need two agents and two

associated resources representing their keys. So, we take A = {α, β } and Res = { k1, k2, e }.
Implicitly, the formulae will express that α is associated to k1 and β to k2. Also implicitly, we are
employing four locations, l1 – l4, so that we can sketch a system model as

l1 , k1 , α : Unlock1 : 0
α−→ l3 , k1 , Unlock1 : 0

l2 , k2 , β : Unlock2 : 0
β−→ l3 , k2 , Unlock2 : 0

l3 , k1 • k2 , Unlock1 : 0× Unlock2 : 0︸ ︷︷ ︸
def= Unlock

α•β−→ l4 , k1 • k2 , 0,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1268 Theory and modelling applications

FIGURE 6 Joint access.

where l3 • l3
def= l3, and where the modification function of the model, which describes how the keys

move from location to location, is given by

- μ(α, l3, k1 • k2) = (l4, k1 • k2),
- μ(α, l1, k1) = (l3, k1) and
- μ(α, l2, k2) = (l3, k2).

Focussing on our logical modelling, and suppressing for now the location architecture, we must
express the fact that each agent—representing here a simplified notion of process—must use its key.
Of course, as the whole point of the example is to illustrate how two separate accesses unlock the
system, thus each use of key must be modelled with a different formula. We propose the following
formulae for this purpose:

Mk1
α � and Mk2

β �.

We use the atomic formula � since we do not need to access any property—rather we need only
to update α and β’s accessible worlds to express that k1 and k2 are now activated. If we consider
Mk1

α � for instance, then if r |�M Mk1
α �, then there exists a resource r′ such that r ∼α r′ • k1 and

r′ • k1 |�M �. Given this last statement, we have that there exists r′ such that r ∼α r′ • k1. Thus,
with this formula we have stated that α can reach a state in which k1 is activated. The second formula
states the same for b and k2.

We must express that whenever both keys are present, the system can be unlocked. We could
consider using a formula such as M̃

k1k2
α U , where U is an atomic formula expressing that the system

is unlocked. However, we can see at once that this choice is problematic. Indeed, this formula is
dependent on α, but the point of joint access is that none of the agents involved is responsible on its
own for the activation of the device. Moreover, should we decide to proceed with such a formula,
it would fail to do the required job—k2 is brought in the system by β and only α is present in the
formula. Obviously, using β instead of α raises the same problems (symmetrically).

It seems, therefore, that our model lacks (at least) an agent. We introduce an omnipotent agent
o (and thus A = {α, β, o}). The idea is to have an agent that can see and use whatever α and β

can, without the two sharing knowledge or potential action. This agent can be interpreted either as
a global authority or just as a modelling of the device itself (the computer that accepts the keys and
executes the order). Now, with this extra agent, M̃

k1k2
o U seems to be an acceptable candidate for

modelling the unlocking of the system. This states that whichever state reachable for o that contains
k1 and k2 triggers the unlocking. However, we still need to express o’s capability. To do that, we
introduce the following set of formulae:{

Ms
aφ→Ms

oφ | a ∈ A, s ∈ Res, φ ∈ L
}

.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1269

This expresses that any access to a resource by an agent through the modality M can be transferred
to o. Of course, in a more general setting, we could state similar things for the other operators, but,
in this very particular example, only M will be useful.

Finally, in order to the system to work, we need to activate both keys simultaneously. The first
approach could be to append the two key-activation with an ∧: Mk1

α �∧Mk2
β �. This does not produce

the desired result. Indeed, if r |�M Mk1
α �∧Mk2

β �, then we get r ∼α r′ • k1 and r ∼β r′′ • k2 and we
intended to have the combination of k1 and k2, which is not obvious here. Thus, the best way is in
fact to use Mk1

α � ∗Mk2
β �. More than the simple correctness of our modelling, this use of ∗ is quite

convincing, as we aimed to model the separated use of two keys.
Thus, we have modelled our situation as follows:

1. ∀ ag ∈ A, ∀s ∈ Res, ∀φ ∈ L, Ms
agφ→Ms

oφ;

2. Mk1
α � ∗Mk2

β �;

3. M̃
k1k2
o U .

We can check that this has the desired effect, i.e., that whenever both keys are present, the system
can be unlocked. Consider a resource r that forces (2) and (3). The forcing of (3), unpacked, means

for all r′ such that r ∼o r′ • k1 • k2, r′ • k1 • k2 |�M U .

On the other side, unpacking of (2) gives

there exist r1, r2 such that r = r1 • r2 and r1 |�M Mk1
α � and r2 |�M Mk2

β �.

We can then instantiate (1) twice, with ag = α, s = k1 and φ = �, then with ag = β, s = k2 and
φ = � to get

there exist r1, r2 such that r = r1 • r2 and r1 |�M Mk1
o � and r2 |�M Mk2

o �.

Unpacking this, we get

there exist r1, r2, r′1, r′2 such that r = r1 • r2 and r1 ∼o r′1 • k1 and r2 ∼o r′2 • k2.

By the compatibility of • and ∼, we obtain that r ∼o r′1 • k1 • r2 and then that r ∼o r′1 • k1 • r′2 • k2,
which by commutativity is r ∼o r′1 • r′2 • k1 • k2. Then we have r′1 • r′2 • k1 • k2 |�M U , as required.

4.4 Semaphores

Another important example of modelling in access control is concerned with concurrency in parallel
programming. We have described in the introduction how Separation Logic, built on BI, is a powerful
and efficient tool to model memory management. We propose, in this section, an example of a similar
work with ERL* in which we use it to model programs accessing memory and the particular example
of simple concurrency with semaphores.

First, we establish the general basis of our modelling approach. We consider a multi-processor (or
a set of different systems) which is seeking to run multiple programs or tasks with a limited amount
of memory space.

- The set R of resources will represent the memory of the system, Res being a subset of the
memory specified for each problem. e always denotes an empty set of information in the
memory. Thus, in this example, we again suppress location, conflating it with resource.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1270 Theory and modelling applications

- The set of agents A represents all the different threads or processes which are running the
tasks.

- Two parts, m and m′, of the memory are linked by the relationship ∼α if the access to m is
equivalent to the access to m′ for the process α.

- Finally, we use propositions of ERL* to model programs run by the thread. Thus, when we
write m |�M P, we mean that the memory stored in m is used to run the program P.

Just as in the example of joint access, we can set up our modelling of semaphores in the context
of our general approach to systems modelling. We suppress the details here, preferring to use the
simplified approach afforded by the logical tools introduced in this paper, but see [15] for examples
of similar models that more closely follow the system modelling approach.

So, consider how to model semaphores in this context. Recall that semaphores are simple bits
of program which use f lags or tokens to ensure that a specific portion of program, called critical
section, is always accessed by at most one process. We use an arbitrary set of agents A, and the set
of resources Res = {e, t}, where t is a token marking the entrance into the critical section. We also
have two propositions C and NC, the former being the critical section of code, the latter being all the
non-critical part of the code. Note that, here, the agents correspond to processes.

We consider the following formulae, which constrain the model, for any arbitrary process α ∈ A:

1. Guard: for any α′, α′′ ∈ A s.t. α′ �= α′′, L̃
t
α′� → ¬L̃

t
α′′�;

2. In : NC→ Lt
αC;

3. Out : C→ ((¬Mt
α�) ∧Me

αNC).

The Guard formulae, true for any two different processes α′ and α′′, ensure that two processes
cannot enter a critical section together. Indeed, if, for any Guard formula, we have that m |�M
Guard, then, if there is m′ such that m • t ∼α′ m′, there is no m′′ such that m • t ∼α′′ m′′. That is, for
any process p′ which has the token t in memory, no other process p′′ can get the token.

The In formula specifies that the process α enters the critical section. If we have that m |�M In,
then, if m |�M NC, then, for any m′ such that m • t ∼α m′, we have that m′ |�M C. That is, if a
process is running the non-critical section, the addition of the token t gives it access to a memory
state sufficient to run the critical section.

Symmetrically, the Out formula expresses the exit of p from a critical section. If m |�M Out,
then, if m |�M C, then, for all m′ such that m ∼α m′ • t, m′• �|�M �. That is, there is no m′ such
that m ∼α m′ • t. This allows us to delete t from the memory accessible by α. The second part of the
formula, Me

αNC, states that there is a state m′′ such that m ∼α m′′ and m′′ |�M NC; i.e., α gets back
into non-critical section.

No memory state that satisfies NC after C has been executed can have t in it. So, once this formula
is taken into account, either p can continue to execute C or go into NC and release the token t. We
can now see whether the guard we proposed is sufficient to ensure us that no two processes can get
the critical section together. We do that in a simple way, by introducing the (new) formula NC ∗NC.
If we have m |�M NC ∗ NC, then we have m = m1 • m2, with m1 |�M NC and m2 |�M NC. This
is a fair representation of two processes running the non-critical section in parallel, each one using a
different part of the memory (cf. the treatment of concurrent composition in [1, 9] and in Concurrent
Separation Logic [32]).

Now consider a process α1 and suppose it has access to the token; i.e., there exists m′1 such that
m1 • t ∼α1 m′1. If In is valid, then we have in particular that m1 |�M In and thus we have m′1 |�M C.
Now, α1 is executing the critical section with m′1. Could another process α2 access the critical section
with m2? The guard should avoid it. Indeed, if Guard is valid, then we have m |�M Guard. Yet, we

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1271

have established that m1 • t ∼α1 m′1. We also have that m = m1 • m2 and, by right composition, we
have m1 • m2 • t ∼α1 m′1 • m2; thus, m • t ∼α1 m′1 • m2. By applying m |�M Guard with α′ = α1
and α′′ = α2, we have that there is no m′ such that m • t ∼α2 m′. Now, if α2 were to access the
critical section with m2, then we should have m′2 such that m2 • t ∼α2 m′2. Then we should have that
m • t ∼α2 m′2 • m1 which would contradict what we stated before. Thus, α2 cannot enter the critical
section.

However, once in this situation, as we have m′1 |�M C, we can use Out to let α1 out of the critical
section. As m′1 |�M Out, we generate m′1 |�M ¬Mt

α1
� and m′1 |�M Me

α1
NC. The first tells us that

there is no m′ such that m′1 ∼α1 m′•t. But, in our premiss, we have that m′1 ∼α1 m1•t. Those two facts
are contradictory. Thus, if we want to use this formula, we have to delete the relation m′1 ∼α1 m1 • t.
This guarantees that t is no longer in α1’s grasp. The second part, m′1 |�M Me

α1
NC, gives us a new

memory state m′′1 such that m′1 ∼α1 m′′1 and m′′1 |�M NC. Thus, α1 is back in non-critical state. Note
that once m′1 ∼α1 m1 • t is deleted, the guard ceases to be applicable, and nothing prevents α2 from
entering the critical section this time.

4.5 Evolution in LL, BI and ERL

It is perhaps worthwhile pausing at this point to compare the representation of system evolution that
is available here with that which is available in LL. First, we should note that the nature of the system
model employed here is quite different from that which would derive from a representation based on
LL. Second, in our setting, as we have explained, we employ a truth-functional instantiation of the
general distributed systems modelling approach based on concepts of location, resource and process.
In the examples of this paper, the account of process is very limited, being restricted to the actions of
epistemic agents (with no rich process-theoretic structure). Third, as a result of these design choices,
the readily available account of evolution requires unpacking the truth-functional semantics, which
can be see in terms of tableaux proofs (as presented in Section 5). Experience from, e.g., Separation
Logic [37] suggests that the presence (as in BBI and ERL and ERL∗) of a negation with the standard
classical semantics is a very useful modelling tool.

In contrast, representations using LL’s sequent calculus, such as the logic programming approach
described in [2, 26], employ a less rich modelling perspective—restricted to proofs of sequences of
resource manipulations—but then give a very direct operational reading of evolution in this restricted
setting. A proof-theoretic treatment of some underlying ideas in LL may be found in [6]. Note,
however, that BI includes MILL as a fragment (as we have seen) and that the basic propositional
systems for BI can be presented as sequent calculi with well-understood relationships with LL.
Within the multiplicative fragment of BI, the same readings of resource evolution can, of course,
be obtained—we do not consider it worthwhile to rehearse these readings in the context of our
examples, which are intended to illustrate resource semantics. We conjecture, therefore, that it is
possible to give (perhaps labelled) sequent calculi for ERL and ERL∗ that would provide a similar
operational reading of evolution (see the remarks at the beginning of Section 5) to that which is
available in LL or the multiplicative fragment of BI.

To set up a precise correspondence between these evolutions and the semantic representation of
resource is an interesting issue.

A brief comparison with ‘epistemic linear logic’ [22]—which is about modelling access control
in LL—is perhaps also worthwhile. Again, this work benefits from the syntactic structures of
LL as basis for representing evolution in the setting of the restricted model of systems that is
naturally treated syntactically by LL. Again, in contrast, we begin from a more comprehensive
systems semantics—which accommodates a very general notion of resource, including ambient

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1272 Theory and modelling applications

system resources and resources that are local to agents—and treat similar examples in this restricted
instance. Again, we might expect sequent calculi for ERL and ERL∗ to capture a similar treatment
of evolution to that provided by LL.

5 A tableaux calculus for ERL

In this section, we provide a labelled calculus for ERL in the spirit of the calculi previously developed
for BI [21] and BBI [27] that are based on labels and label constraints allowing the capture of
the semantics of these logics inside the corresponding calculus. In the case of BBI, a specific
completeness proof, based on an oracle, has been developed in [27].

Similar labelled calculi have been proposed also for some modal and epistemic extensions of
BI and BBI [13–15]. In these cases, the calculus design, used for BBI, is applied with specific
labels and constraints issued from a semantic analysis of the considered logic. In the case of the
labelled calculus for ESL [14], which is an epistemic extension of BBI, we deal with constraints that
are parametrized by agents but do not handle the presence of resources in the scope of the modal
operators (the local resources).

While herein we provide a tableaux calculus in the continuation of previous works on modal
bunched logics, we note also that we could design a labelled sequent calculus for ERL and ERL∗
that would also be used to provide an operational reading of evolution through proof construction
as in some LL fragments. However, our aim in this section is only to provide, by applying an
approach and some proof methods already developed for other modal bunched logics, a labelled
tableaux calculus for our logic—both in order to establish its metatheory and as a general reasoning
tool.

For the present work, we must introduce labels that correspond to the local resources embedded
in operators. As we shall see, we do that through a subset Λr of labels that is in bijection with the set
of local resources Res. Similar techniques have been used with the logic LSM [15], which extends
BBI with resource-parametrized S4 modalities. Likewise, the proofs of soundness and completeness
of the calculus with respect to the semantics introduced in Section 2 are similar to the ones for ESL,
mainly addressing the need to take the set Λr into account. Revisiting the remarks in Section 2 about
the possibility of working with a hybrid semantics and then relating ERL to a hybrid version of
ESL, we remark that the design of a hybrid tableau calculus would require some specific work about
using nominals and formulas to replace labels and constraints—and this replacement introduces
more complexity and undermines the strong links with the resource semantics that is central in our
approach.

First, we introduce labels and constraints that correspond, respectively, to resources and to the
equality and equivalence relations on resources and agents. Next, we develop labelled tableaux for
ERL. Then, we establish soundness with respect to the resource semantics, giving the details of the
proof in the appendix. Finally, we consider countermodel extraction and completeness, again giving
the details of the proof in the appendix.

5.1 Labels and constraints

We consider a finite set of constants Λr such that |Λr| = |Res| − 1. On it we build an infinite
countable set of (resource) constants γr such that Λr ⊂ γr, and then γr = Λr ∪ {c1, c2, . . .}.
Concatenation of lists is denoted by⊕; �� denotes the empty list. A resource label is a word built on
γr, where the order of letters is not taken into account, i.e., a finite multiset γr and by ε the empty
word. For example, xy is the composition of the resource labels x and y. We say that x is a resource

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1273

FIGURE 7 Rules for constraint closure (for any u ∈ A).

sublabel of y if and only if there exists z such that xz = y. The set of resource sublabels of x is
denoted E(x).

We define a function λ : Res→ Λr such that

1. λ(e) = ε;
2. for all r ∈ Res\{e}, λ(r) ∈ Λr; and
3. λ is injective. r = r′.

Note that λ is trivially a bijection between Res and Λr ∪ {ε}.

DEFINITION 5 (Constraints).
A resource constraint is an expression of the form x � y, where x and y are resource labels. An agent
constraint is an expression of the form x �u y, where x and y are resource labels and u belongs to
the set of agents A.

A set of constraints is any set C that contains resource constraints and agent constraints. Let C be
a set of constraints. The (resource) domain of C is the set of all resource sublabels that appear in
C; i.e.,

Dr(C) =
⋃

x�y∈C
(E(x) ∪ E(y)) ∪

⋃
x�uy∈C

(E(x) ∪ E(y)).

Let C be a set of constraints. The (resource) alphabet Ar(C) of C is the set of resource constants
that appear in C. In particular, Ar(C) = γr ∩ Dr(C). Now we introduce, in Figure 7, the rules for
constraint closure that allow us to capture the properties of the models into the calculus.

DEFINITION 6 (Closure of constraints).
Let C be a set of constraints. The closure of C, denoted C, is the least relation closed under the rules
of Figure 7 such that C ⊆ C.

There are six rules (〈ε〉, 〈sr〉, 〈dr〉, 〈tr〉, 〈cr〉 and 〈kr〉) that produce resource constraints and four
rules (〈ra〉, 〈sa〉, 〈ta〉 and 〈ka〉) that produce agent constraints. We note that v, introduced in the rule
〈ra〉, must belong to the set of agents A.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1274 Theory and modelling applications

PROPOSITION 4
The following rules can be derived from the rules of constraint closure:

xk � y

x � x
〈pl〉 x � yk

y � y
〈pr〉 xk �u y

x � x
〈ql〉 x �u yk

y � y
〈qr〉

x �u y x � x′ y � y′

x′ �u y′
〈wa〉

COROLLARY 1
Let C be a set of constraints and u ∈ A be an agent.

1. x ∈ Dr(C) iff x � x ∈ C iff x �u x ∈ C.
2. If xy ∈ Dr(C), x′ � x ∈ C and y′ � y ∈ C, then xy � x′y′ ∈ C.

PROPOSITION 5
Let C be a set of constraints. We have Ar(C) = Ar(C).

LEMMA 2 (Compactness).
Let C be a (possibly infinite) set of constraints.

1. If x � y ∈ C, then there is a finite set Cf such that Cf ⊆ C and x � y ∈ Cf .
2. If x �u y ∈ C, then there is a finite set Cf such that Cf ⊆ C and x �u y ∈ Cf .

5.2 Labelled tableaux for ERL

We now define a labelled tableaux calculus for ERL in the spirit of previous works [14, 17, 21, 27]
by using similar definitions and results but based on the specific label and constraints definitions.

DEFINITION 7
A labelled formula is a 3-tuple of the form (Sφ : x) such that S ∈ {T,F}, φ ∈ L is a formula and
x ∈ Λr is a resource label. A constrained set of statements (CSS) is a pair 〈F , C〉, where F is a set
of labelled formulae and C is a set of constraints, satisfying the following property, denoted Pcss,

if (Sφ : x) ∈ F , then x � x ∈ C(Pcss).

A CSS 〈F , C〉 is finite if F and C are finite. The relation � is defined by 〈F , C〉 � 〈F ′, C′〉 iff
F ⊆ F ′ and C ⊆ C′. We write 〈Ff , Cf 〉 �f 〈F , C〉 when 〈Ff , Cf 〉 � 〈F , C〉 holds and 〈Ff , Cf 〉 is
finite, meaning that Ff and Cf are both finite.

PROPOSITION 6
For any CSS 〈Ff , C〉, where Ff is finite, there exists Cf ⊆ C such that Cf is finite and 〈Ff , Cf 〉 is
a CSS.

PROOF. By induction on the number of labelled formulae of Ff and by Lemma 2. �
Figure 8 presents the rules of tableaux calculus for ERL. Note that ‘ci and cj are new label

constants’ means ci �= cj ∈ γr \ (Ar(C) ∪Λr).

DEFINITION 8 (Tableau for ERL).
Let 〈F0, C0〉 be a finite CSS. A tableau for 〈F0, C0〉 is a list of CSSs, called branches, inductively
built according to the following rules:

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1275

FIGURE 8 Rules of the tableaux calculus for ERL.

1. The one branch list [〈F0, C0〉] is a tableau for 〈F0, C0〉;
2. If the list Tm ⊕ [〈F , C〉]⊕ Tn is a tableau for 〈F0, C0〉 and

cond〈F , C〉
〈F1, C1〉 | . . . | 〈Fk , Ck〉

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1276 Theory and modelling applications

is an instance of a rule of Figure 8 for which cond〈F , C〉 is fulfilled, then the list Tm ⊕ [〈F ∪
F1, C ∪ C1〉; . . . ; 〈F ∪ Fk , C ∪ Ck〉]⊕ Tn is a tableau for 〈F0, C0〉.

A tableau for the formula φ is a tableau for 〈{(Fφ : c1)}, {c1 � c1}〉.
We remark that a tableau for a formula φ verifies the property (Pcss) of Definition 7 (by the rule
〈ra〉) and any application of a rule of Figure 8 provides also a tableau that verifies the property (Pcss)
(in particular, by Corollary 1).

In this calculus, we have two particular set of rules. The first set is composed of the rules 〈TI〉,
〈T∗〉, 〈F−∗〉, 〈FL〉, 〈FM̃〉, 〈FN〉, 〈TL̃〉, 〈TM〉 and 〈TÑ〉, that introduce new label constants (ci and
cj) and new constraints, except for 〈TI〉 that only introduces a new constraint. The second set is
composed of the rules 〈F∗〉, 〈T−∗〉, 〈TL〉, 〈TM̃〉, 〈TN〉, 〈FL̃〉, 〈FM〉 and〈FÑ〉, that have a condition
on the closure of constraints. To apply one of these rules we choose a label which satisfies the
condition and then apply the corresponding rule. Otherwise, we cannot apply the rule.

DEFINITION 9 (Closure conditions).
A CSS 〈F , C〉 is closed if one of the following conditions holds, where φ ∈ L:

1. (Tφ : x) ∈ F , (Fφ : y) ∈ F and x � y ∈ C;
2. (FI : x) ∈ F and x � ε ∈ C;
3. (F� : x) ∈ F ;
4. (T⊥ : x) ∈ F .

A CSS is open if it is not closed. A tableau for φ is closed if all its branches (i.e., all of its CSSs) are
closed and a tableaux proof for φ is a closed tableau for φ.

Closed branches are marked with × and open branches are marked with ◦.
Example. Let us consider the formula M̃

s
aφ → M̃

r
a(M̃

s
aφ). To build the corresponding tableau, we

start with the CCS 〈{(FM̃
s
aφ → M̃

r
a(M̃

s
aφ) : c1)}, {c1 � c1}〉 and with the following representation

of the formula set F and the constraints set C:

[F] [C]√
1(FM̃

s
aφ→ M̃

r
a(M̃

s
aφ) : c1) c1 � c1

We then apply the rules of our tableaux method, respecting the priority order, and we obtain the
tableau of Figure 9. We omit the λ and write r for λ(r), for any resource.

Note that we mark with
√

the steps of the tableau construction. The main steps are the following:
first apply the rule 〈F →〉 (

√
1) and then obtain two formulae both with M̃ as operator. According

to the priority rules, first apply the 〈FM̃〉 rule (
√

2), which generates a new formula, a new resource
label c2 and the constraint c1 �a c2r. Then apply the 〈FM̃〉 rule again (

√
3), which generates a new

formula, a new resource label c3 and the constraint c2r �a c3s. We must now apply the 〈TM̃〉 rule
(
√

4) and then we need a resource label z such that c1 �a zs ∈ C.
Now, having closure by rule 〈ta〉 with agent a, we generate the constraint c1 �a c3s, and thus

apply the rule with z = c1 and generate (Tφ : c3s). As we also have (Fφ : c3s), we have a closed
branch and thus a closed tableau.

5.3 Soundness of the calculus

We start by proving the soundness property of the tableaux calculus. The proof is similar to the
soundness proof developed for BI tableaux and some recent extensions [13, 14, 17, 21]. We remind
here the key notions and more detailed proofs are given in Appendix A.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1277

FIGURE 9 Tableau for M̃
s
aφ→ M̃

r
a(M̃

s
aφ).

The main point is the notion of realizability of a CSS 〈F , C〉, meaning that there exists a model M
and an embedding (|.|) from the resource labels to the resource set of M such that if (Tφ : x) ∈ F ,
then |x| �M φ, and if (Fφ : x) ∈ F , then |x| ��M φ.

DEFINITION 10 (Realization).
Let 〈F , C〉 be a CSS. A realization of it is a pair (M, |.|) where M = (R, {∼a}a∈A, V) is a model
and |.| : Dr(C)→ R such that

• for any r ∈ Res, we have |λ(r)| = r,
• |ε| = e,
• |.| is a total function (for all x ∈ Dr(C), |x| is defined),
• if xy ∈ Dr(C), then |x| • |y| ↓ and |x| • |y| = |xy|,
• if (Tφ : x) ∈ F , then |x| |�M φ,
• if (Fφ : x) ∈ F , then |x| �|�M φ,
• if x � y ∈ C, then |x| = |y|, and
• if x �u y ∈ C, then |x| ∼u |y|.

We say that a CSS is realizable if there exists a realization of this CSS. We say that a tableau is
realizable if at least one of its branches is realizable.

PROPOSITION 7
Let 〈F , C〉 be a CSS and R = (M, |.|) be a realization of it. R is also a realization of 〈F , C〉, and
then

1. for all x ∈ Dr(C), |x| is defined,
2. if x � y ∈ C, then |x| = |y| and
3. if x �u y ∈ C, then |x| ∼u |y|.

LEMMA 3
The rules of the tableaux method for ERL preserve realizability.

PROOF. By induction on the structure of realizable tableaux. See [15] for a similar argument and
Appendix A for more details. �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1278 Theory and modelling applications

FIGURE 10 Tableau for Ls
aφ→ Ls

a(L
r
aφ).

LEMMA 4
Closed branches are not realizable.

PROOF. By a case analysis of closed branches that are realizable. See [15] for a similar argument and
Appendix A for more details. �
THEOREM 1 (Soundness).
Let φ be a formula of ERL. If there exists a tableaux proof for φ, then φ is valid.

PROOF. We suppose that there exists a proof for φ. Then there is a closed tableau Tφ for the CSS
C = 〈{(Fφ : c1)}, {c1 � c1}〉. Now suppose that φ is not valid. Then there is a countermodel
M = (R, {∼a}a∈A, V) and a resource r ∈ R such that r �|�M φ. Let R = (M, |.|) such that
|c1| = r. As R is a realization of C, by Lemma 3, Tφ is realizable. Moreover, by Lemma 4, Tφ cannot
be closed, which is absurd because Tφ is a proof and then is closed by definition. Therefore, φ

is valid. �

5.4 Countermodel generation and completeness of the calculus

Before proceeding to establish completeness, we consider a countermodel extraction method for our
calculus that is adapted from a method proposed in [27].

Countermodel generation. The method transforms the sets of resource and agent constraints of a
branch 〈F , C〉 into a model M such that, if (Tφ : x) ∈ F , then ρx �M φ and, if (Fφ : x) ∈ F , then
ρx ��M φ, where ρx is the representative of the equivalence class of x.

The method is based mainly on the definition on a particular CSS 〈F , C〉, called a Hintikka
CSS. For more details, see Appendix B. This approach for countermodel extraction is proposed and
illustrated for other bunched logics in [13–15, 17, 21] and adapted to our ERL logic.

Example. We give an example of countermodel extraction by considering A = {a} and Res = {e, r}
and the formula Ls

aφ→ Lr
aLs

aφ, which is not valid. By applications of the tableaux rules, we obtain
the tableau of Figure 10.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1279

We see that, in step 4, we can only find c2 as suitable label for c1s �a x and thus the tableau is not
closed. The only branch of this tableau is a Hintikka CSS and we extract this countermodel using
Definition 13.

We have M = (R, {∼a}a∈A, V), where

• R = Rep(Dr(C)) ∪ Res = {e, r, s, ρc1 , ρc2 , ρc3 , ρc1λ(s), ρc2λ(r)}
• The resource composition:

• e r s ρc1 ρc2 ρc3 ρc1λ(s) ρc2λ(r).

e e r s ρc1 ρc2 ρc3 ρc1λ(s) ρc2λ(r)

r r ↑ ↑ ↑ ρc2λ(r) ↑ ↑ ↑
s s ↑ ↑ ρc1λ(s) ↑ ↑ ↑ ↑

ρc1 ρc1 ↑ ρc1λ(s) ↑ ↑ ↑ ↑ ↑
ρc2 ρc2 ρc2λ(r) ↑ ↑ ↑ ↑ ↑ ↑
ρc3 ρc3 ↑ ↑ ↑ ↑ ↑ ↑ ↑

ρc1λ(s) ρc1λ(s) ↑ ↑ ↑ ↑ ↑ ↑ ↑
ρc2λ(r) ρc2λ(r) ↑ ↑ ↑ ↑ ↑ ↑ ↑

• The equivalence relation, ref lexivity is not represented:

• V(φ) = {ρc2}.
We can easily verify that we have a countermodel of Ls

aφ→ Ls
a(L

r
aφ).

1. As ρc2 ∈ V(φ), we have ρc2 |� φ.
2. As {x ∈ R|ρc1 • s ∼a x} = {ρc2}, we have by (1), ρc1 |�M Ls

aφ.
3. As ρc3 /∈ V(φ), we have ρc3 �|� φ.
4. As ρc2 • r = ρc2λ(r) ∼a ρc3 , by (3), we have ρc2 �|�M Lr

aφ.
5. As ρc1 • s = ρc1λ(s) ∼a ρc2 , by (4), we have ρc1 �|�M Ls

a(L
r
aφ).

6. By (2) and (5), we conclude that ρc1 �|�M Ls
aφ→ Ls

a(L
r
aφ).

Completeness. The proof of completeness is an extension of the corresponding proof proposed for
BBI [27] to the epistemic connectives of our logic. It consists in building, using a fair strategy, a
Hintikka CSS from a formula for which there is no tableaux proof that is a sequence of labelled
formulae in which all labelled formulae occur infinitely many times, and also an oracle that is a set
of non-closed CSS with some specific properties. Then, assuming there is no tableaux proof for φ,
we build a Hintikka CSS and deduce from it that φ is not valid.

THEOREM 2 (Completeness).
Let φ be an ERL formula. If φ is valid, then there exists a tableaux proof for φ.

PROOF. The proof is an extension of the corresponding proof proposed for BBI [27] to the epistemic
connectives of our logic. More details are given in Appendix C. �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1280 Theory and modelling applications

To complete this section, we show how we can define a tableaux calculus for the sublogic ERL∗.

DEFINITION 11 (Tableaux for ERL∗).
The tableaux calculus for ERL∗ is defined exactly as the tableaux calculus for ERL, with the addition
of the following rule to Definition 6:

x �u y yk � yk

xk �u yk
〈ca〉

PROPOSITION 8
The tableaux calculus for ERL∗ is sound and complete with respect to the semantics given in Sections
2 and 3.

PROOF. The proof is the same as the one for ERL except that the new rule 〈ca〉 must be considered
each time the closure of constraints is concerned. This addition does not cause any difficulties
with proofs since this rule is a direct translation of the specific property of ERL∗ as described in
Definition 4. �

6 Conclusions

We have presented a substructural epistemic logic, based on BBI, in which the epistemic modalities,
which extend the usual epistemic modalities, are parametrized on the agent’s local resource. The
logic represents the first step in developing an epistemic resource semantics. This step is illustrated
through examples that explore the gap between policy and implementation in access control. We have
also provided a system of labelled tableaux for the logic and established soundness and completeness.

Much further work is suggested. First, we might consider the theory, pragmatics, and interpretation
of the epistemic modalities with resource semantics, including aspects of local reasoning for
resource-carrying agents [25, 37], concurrency [32]. Second, we might consider logical theory,
including proof systems, model-theoretic properties, and complexity. Connections with other
approaches to modelling the relationship between policy and implementation in system management,
such as those discussed in [39] and approaches involving logics for layered graphs [1, 10], should be
explored.

A Soundness: proofs of lemmas

LEMMA 3
The rules of the tableaux method for ERL preserve realizability.

PROOF. By induction on the structure of realizable tableaux. See [15] for a similar argument. Let T
be a realizable tableau. By definition, T has a realizable branch B = 〈F , C〉. Let R = (M, |.|) be a
realization of the branch B, where M = (R, {∼a}a∈A, V) and |.| : Dr(C)→ R. If we apply a rule on
a labelled formula of a branch that is not B then B is not modified, and then T is realizable. Else, we
consider each kind of formula on which the rule is applied.

• (TI : x) ∈ F .
We have, by definition of realization, |x| |�M I. Then |x| = e. As |ε| = e then |x| = |ε| and we
remark that R is a realization of the new branch 〈F , C ∪ {x � ε}〉.
• (Tφ1 ∗ φ2 : x) ∈ F .

By realization, we have |x| |�M φ1 ∗ φ2. Then, by definition, there exist r1, r2 ∈ R such that

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1281

r1 •r2 ↓, |x| = r1 •r2, r1 |�M φ1 and r2 |�M φ2. As ci and cj are new resource label constants,
|ci| and |cj| are not defined. Moreover, as ci �= cj, we can extend R by setting |ci| = r1 and
|cj| = r2. As we have |ci| • |cj| ↓ and, by implicit extension, |x| = |ci| • |cj| = |cicj|, we obtain
a realization of 〈F , C ∪ {x � cicj}〉, that is a realization of the branch 〈F ∪ {(Tci :,)(Tφ2 :
cj)}, C ∪ {x � cicj}〉.
• (Fφ1 ∗ φ2 : x) ∈ F .

We have |x| �|�M φ1 ∗ φ2. By definition, for all r1, r2 ∈ R such that r1 • r2 ↓ and |x| = r1 • r2,
we have r1 �|�M φ or r2 �|�M ψ . The branch is expanded into two branches that are 〈F∪{(Fφ :
y)}, C〉 and 〈F ∪ {(Fψ : z)}, C〉, where x � yz ∈ C. By Proposition 7, |x| = |yz|. By definition
of realization, |.| is total, then |y| • |z| ↓ and |yz| = |y| • |z|. Thus, |y| �|�M φ or |z| �|�M ψ .
Therefore, R is a realization of at least one of the two new branches 〈F ∪ {(Fφ : y)}, C〉 or
〈F ∪ {(Fψ : z)}, C〉.
• (TLr

uφ : x) ∈ F and xλ(r) �u y ∈ C.
We have |x| |�M Lr

uφ. By definition, for all r′ ∈ R such that |x| • r ∼u r′, we have r′ |�M φ.
Moreover, as xλ(r) �u y ∈ C, by Proposition 7, we have |xλ(r)| ∼u |y|. By definition, |xλ(r)| =
|x| • |λ(r)| = |x| • r. Thus, |x| • r ∼u |y| and finally, we have |y| |�M φ; thus, R is a realization
of the branch 〈F ∪ {(Tφ : y)}, C〉.
• (FLr

uφ : x) ∈ F .
We have |x| �|�M Lr

uφ. By definition, there exists r′ ∈ R such that |x| • r ∼u r′ and r′ �|�M φ.
As ci is a new constraint, |ci| is not defined and we can choose |ci| = r′ and we have |ci| �|�M φ

and |x| • r ∼u |ci|. By definition, |xλ(r)| = |x| • |λ(r)| = |x| • r. Thus, |xλ(r)| ∼u |ci| and we
have a realization of the branch 〈F ∪ {(Fφ : ci)}, C ∪ {xλ(r) �u ci}〉.

Other cases are proved similarly. �
LEMMA 4
Closed branches are not realizable.

PROOF. By a case analysis of closed branches that are realizable. See [15] for more details.
Let 〈F , C〉 a closed branch. We suppose that this branch is realizable. Let R = (M, |.|) a

realization of it. There are four cases:

• (Tφ : x) ∈ F , (Fφ : y) ∈ F and x � y ∈ C. By Proposition 7, as the branch is realizable, we
must have |x| |�M φ, |y| �|�M φ and |x| = |y|, which is absurd.
• (FI : x) ∈ F and x � ε ∈ C. By Proposition 7, as the branch is realizable, we must have
|x| �|�M I and |x| = |ε|. By Definition 3, we have e �= |x| and by Definition 10 we have |x| = e,
which is absurd.
• (F� : x) ∈ F . By Proposition 7, as the branch is realizable, we must have |x| �|�M �, which is

absurd by Definition 3.
• (T⊥ : x) ∈ F . By Proposition 7, as the branch is realizable, we must have |x| |�M ⊥, which is

absurd by Definition 3.

As all cases are absurd, we conclude that 〈F , C〉 is not realizable.
�

B Countermodel extraction method

We propose a countermodel extraction method, first designed in [27] for BBI, that consists in
transforming the sets of resource and agent constraints of a branch 〈F , C〉 into a model M such that
if (Tφ : x) ∈ F then ρx �M φ and if (Fφ : x) ∈ F then ρx ��M φ, where ρx is the representative of
the equivalence class of x. First, we define when a CSS 〈F , C〉 is a Hintikka CSS.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1282 Theory and modelling applications

DEFINITION 12 (Hintikka CSS).
A CSS 〈F , C〉 is a Hintikka CSS iff, for any formula φ, ψ ∈ L, any resource r ∈ Res, any resource
label x, y, z ∈ Λr and any agent u ∈ A:

1. (Tφ : x) /∈ F or (Fφ : y) /∈ F or x � y /∈ C
2. (FI : x) /∈ F or x � ε /∈ C
3. (F� : x) /∈ F
4. (T⊥ : x) /∈ F
5. If (TI : x) ∈ F , then x � ε ∈ C
6. If (T¬φ : x) ∈ F , then (Fφ : x) ∈ F
7. If (F¬φ : x) ∈ F , then (Tφ : x) ∈ F
8. If (Tφ ∧ ψ : x) ∈ F , then (Tφ : x) ∈ F and (Tψ : x) ∈ F
9. If (Fφ ∧ ψ : x) ∈ F , then (Fφ : x) ∈ F or (Fψ : x) ∈ F

10. If (Tφ ∨ ψ : x) ∈ F , then (Tφ : x) ∈ F or (Tψ : x) ∈ F
11. If (Fφ ∨ ψ : x) ∈ F , then (Fφ : x) ∈ F and (Fψ : x) ∈ F
12. If (Tφ→ ψ : x) ∈ F , then (Fφ : x) ∈ F or (Tψ : x) ∈ F
13. If (Fφ→ ψ : x) ∈ F , then (Tφ : x) ∈ F and (Fψ : x) ∈ F
14. If (Tφ ∗ ψ : x) ∈ F , then ∃y, z ∈ Λr, x � yz ∈ C and (Tφ : y) ∈ F and (Tψ : z) ∈ F
15. If (Fφ ∗ ψ : x) ∈ F , then ∀y, z ∈ Λr, x � yz ∈ C implies (Fφ : y) ∈ F or (Fψ : z) ∈ F
16. If (Tφ −∗ ψ : x) ∈ F , then ∀y ∈ Λr, xy ∈ Dr implies (Fφ : y) ∈ F or (Tψ : xy) ∈ F
17. If (Fφ −∗ ψ : x) ∈ F , then ∃y ∈ Λr, xy ∈ Dr and (Tφ : y) ∈ F and (Fψ : xy) ∈ F
18. If (TLr

uφ : x) ∈ F , then ∀y ∈ Λr, xλ(r) �u y ∈ C implies (Tφ : y) ∈ F
19. If (FLr

uφ : x) ∈ F , then ∃y ∈ Λr, xλ(r) �u y ∈ C and (Fφ : y) ∈ F
20. If (TMr

uφ : x) ∈ F , then there exists y ∈ Λr, x �u yλ(r) ∈ C and (Tφ : yλ(r)) ∈ F
21. If (FMr

uφ : x) ∈ F , then for all y ∈ Λr, x �u yλ(r) ∈ C implies (Fφ : yλ(r)) ∈ F
22. If (TNr

uφ : x) ∈ F , then for all y ∈ Λr, xλ(r) �u yλ(r) ∈ C implies (Tφ : yλ(r)) ∈ F
23. If (FNr

uφ : x) ∈ F , then there exists y ∈ Λr, xλ(r) �u yλ(r) ∈ C and (Fφ : yλ(r)) ∈ F
24. If (TL̃

r
uφ : x) ∈ F , then there exists y ∈ Λr, xλ(r) �u y ∈ C and (Tφ : y) ∈ F

25. If (FL̃
r
uφ : x) ∈ F , then for all y ∈ Λr, xλ(r) �u y ∈ C implies (Fφ : y) ∈ F

26. If (TM̃r
uφ : x) ∈ F , then ∀y ∈ Λr, x �u yλ(r) ∈ C implies (Tφ : yλ(r)) ∈ F

27. If (FM̃
r
uφ : x) ∈ F , then ∃y ∈ Λr, x �u yλ(r) ∈ C and (Fφ : yλ(r)) ∈ F

28. If (TÑ
r
uφ : x) ∈ F , then there exists y ∈ Λr, xλ(r) �u yλ(r) ∈ C and (Tφ : yλ(r)) ∈ F

29. If (FÑr
uφ : x) ∈ F , then for all y ∈ Λr, xλ(r) �u yλ(r) ∈ C implies (Fφ : yλ(r)) ∈ F .

Conditions 1–4 ensure that a Hintikka CSS is not closed and conditions 5–29 ensure that it is
saturated (no new tableaux rule can be applied).

To extract countermodels, we must manipulate equivalence classes. The equivalence class of x ∈
Dr(C), denoted [x], is the set [x] = {y ∈ Λr | x � y ∈ C}. Moreover, the function ρ that extracts
a representative from a class is defined for any class [x] by ρ([x]) = r if ∃r ∈ Res/λ(r) ∈ [x]
and by ρ([x]) = y with y an arbitrary element of [x] otherwise. We note that ρx = ρ([x]) and that
Rep(Dr(C)), the set of all representatives of Dr(C), is given by Rep(Dr(C)) = {ρx | x ∈ Dr(C)}.
LEMMA 5
For any set of constraints C, we have e ∈ Rep(Dr(C)) and ρε = e.

DEFINITION 13 (Function Ω).
Let 〈F , C〉 be a Hintikka CSS. The function Ω associates to 〈F , C〉 a 3-tuple Ω(〈F , C〉) =
(R, {∼a}a∈A, V), where R = (R, •), such that

• R = Rep(Dr(C)) ∪ Res,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1283

• if α /∈ Rep(Dr(C)) or β /∈ Rep(Dr(C)), then α • β =↑, else, α = ρx and β = ρy, and we have

ρx • ρy =
{ ↑ if xy �∈ Dr(C)

ρxy otherwise,
• for all a ∈ A, α ∼a β iff α = ρx and β = ρy and x �a y ∈ C and
• α ∈ V(p) iff α = ρx and there exists y ∈ Λr such that y � x ∈ C and (Tp : y) ∈ F .

LEMMA 6
Let 〈F , C〉 be a Hintikka CSS. Ω(〈F , C〉) is a model.

LEMMA 7
Let 〈F , C〉 be a Hintikka CSS and M = Ω(〈F , C〉) = (R, {∼a}a∈A, V), where R = (R, •). For any
formula φ ∈ L, any agent a ∈ A and any x, y ∈ Dr(C), we have the following: (1) If (Fφ : x) ∈ F ,
then ρx �|�M φ; (2) If (Tφ : x) ∈ F , then ρx |�M φ.

LEMMA 8
Let 〈F , C〉 be a Hintikka CSS such that (Fφ : x) ∈ F . The formula φ is not valid and Ω(〈F , C〉) is a
countermodel of φ.

PROOF. Let 〈F , C〉 be a Hintikka CSS such that (Fφ : x) ∈ F . Let K = Ω(〈F , C〉). By Lemma 6, K
is a model. As 〈F , C〉 is a CSS, then by (Pcss) and Corollary 2, x ∈ Dr(C). Thus, by Lemma 7, we
have ρx �|�M φ. Therefore, K is a countermodel of the formula φ and we can conclude that φ is not
valid. �

C Proof of completeness

This proof is an extension of the proof for BBI [27] to the epistemic connectives of our logic. It
consists in identifying two things: first, a Hintikka CSS, using a fair strategy, from a formula for
which there is no tableaux proof, i.e., a sequence of labelled formulae in which all labelled formulae
occur infinitely many times; second, an oracle, i.e., a set of non-closed CSSs with some specific
properties.

DEFINITION 14 (Fair strategy).
A fair strategy is a sequence of labelled formulae and agent constraints (Si)i∈N in ({T,F} × L ×
Λr) ∪ (Λr × A×Λr) such that all labelled formulae and all agent constraints occur infinitely many
times in this sequence, i.e., {i ∈ N | Si ≡ (SF : x)} and {i ∈ N | Si ≡ xλ(r) �u y} are infinite, for
any (SF : x) ∈ {T,F} × L×Λr and any xλ(r) �u y ∈ Λr × A×Λr.

PROPOSITION 9
There exists a fair strategy.

PROOF. Let X = ({T,F} × L × Λr) ∪ (Λr × A × Λr). As Prop is countable then L is countable.
Moreover, Λr is countable (remember that γr is countable). Therefore, X is countable. So N × X is
countable and there exists a surjective function ϕ : N −→ N× X . Let p : N× X −→ X defined by
p(i, x) = x and u = p ◦ ϕ. We show that u is a fair strategy by showing that for any x ∈ X , u−1({x})
is infinite. Let x ∈ X . u−1({x}) = ϕ−1(p−1({x})). But p−1({x}) = {(i, x)|i ∈ N} so p−1(x) is infinite.
As ϕ is surjective ϕ−1(p−1({x})) is also infinite. �

DEFINITION 15
Let ℘ be a set of CSS.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1284 Theory and modelling applications

1. ℘ is �-closed if 〈F , C〉 ∈ ℘ holds whenever 〈F , C〉 � 〈F ′, C′〉 and 〈F ′, C′〉 ∈ ℘ holds.
2. ℘ is of finite character if 〈F , C〉 ∈ ℘ holds whenever 〈Ff , Cf 〉 ∈ ℘ holds for everyjb
〈Ff , Cf 〉 �f 〈F , C〉.

3. ℘ is saturated if, for any 〈F , C〉 ∈ ℘ and any instance

cond(F , C)

〈F1, C1〉 | . . . | 〈Fk , Ck〉
of a rule of Figure 8, if cond(F , C) is fulfilled, then 〈F ∪ Fi, C ∪ Ci〉 ∈ ℘ for at least one
i ∈ {1, . . . , k}.

DEFINITION 16 (Oracle).
An oracle is a set of non-closed CSSs that is �-closed, of finite character and saturated.

LEMMA 9
There exists an oracle which contains every finite CSS for which there exists no closed tableau.

PROOF. The proof is an adaptation for our epistemic modalities of the corresponding proof schema
in [13, 27]. The proof given in [13] provides the necessary notions to develop this proof in detail. �

To prove completeness, we consider a formula ϕ for which there exists no proof and we show that
there exists a countermodel for this formula.

The proof depends on finding a way to obtain a Hintikka CSS. By Lemma 9, there exists an oracle
which contains every finite CSS for which there exists no closed tableau. We denote by ℘ this oracle.
By Proposition 9, there exists a fair strategy. We denote by S this strategy and Si the ith formula or
agent constraint of S . As T0 cannot be closed then its unique branch belongs to the oracle, i.e.,
〈{(Fϕ : c1)}, {c1 � c1}〉 ∈ ℘.

We build a sequence 〈Fi, Ci〉i�0 whose limit is a Hintikka CSS, as follows:

• 〈F0, C0〉 = 〈{(Fϕ : c1)}, {c1 � c1}〉;
• Si is a labelled formula of the form (SF : x):

- If 〈Fi ∪ {(SF : x)}, Ci〉 �∈ ℘, then 〈Fi+1, Ci+1〉 = 〈Fi, Ci〉;
- If 〈Fi ∪ {(SF : x)}, Ci〉 ∈ ℘, then 〈Fi+1, Ci+1〉 = 〈Fi ∪ {(SF : x)} ∪ Fe, Ci ∪ Ce〉 such that

Fe and Ce are given by

Si Fi Fe Ce

T I ∅ {x � ε}
T φ ∗ ψ {(Tφ : a), (Tψ : b)} {x � ab}
F φ −∗ ψ {(Tφ : a), (Fψ : xa)} {xa � xa}
F Lr

uφ {(Fφ : a)} {xλ(r) �u a}
T Mr

uφ {(Tφ : aλ(r))} {x �u aλ(r)}
F Nr

uφ {(Fφ : aλ(r))} {xλ(r) �u aλ(r)}
T L̃r

uφ {(Tφ : a)} {xλ(r) �u a}
F M̃

r
uφ {(Fφ : aλ(r))} {x �u aλ(r)}

T Ñ
r
uφ {(Tφ : aλ(r))} {xλ(r) �u aλ(r)}

Otherwise ∅ ∅
with a = c2i+2 and b = c2i+3.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

Theory and modelling applications 1285

• Si is an agent constraint of the form xλ(r) �u y:

- If γr ∩ (E(x) ∪ E(y)) �⊆ {c1, ..., c2i+1}, then 〈Fi+1, Ci+1〉 = 〈Fi, Ci〉;
- If 〈Fi, Ci ∪ {xλ(r),�u y}〉 �∈ ℘ then 〈Fi+1, Ci+1〉 = 〈Fi, Ci〉;
- If 〈Fi, Ci ∪ {xλ(r) �u y}〉 ∈ ℘, then 〈Fi+1, Ci+1〉 = 〈Fi, Ci ∪ {xλ(r) �u y}〉.

PROPOSITION 10
For any i ∈ N, the following properties hold:

1. (Fϕ : c1) ∈ Fi and c1 � c1 ∈ Ci;
2. Fi ⊆ Fi+1 and Ci ⊆ Ci+1;
3. 〈Fi, Ci〉i�0 ∈ ℘;
4. Ar(Ci) ⊆ {c1, c2, . . . , c2i+1}.
The limit CSS 〈F∞, C∞〉 of 〈Fi, Ci〉i�0 is defined by F∞ =⋃

i�0 Fi, C∞ =⋃
i�0 Ci.

PROPOSITION 11
The following properties hold:

1. 〈F∞, C∞〉 ∈ ℘;
2. For any labelled formula (Sφ : x), if 〈F∞ ∪ {(Sφ : x)}, C∞〉 ∈ ℘, then (Sφ : x) ∈ F∞;
3. For any agent constraint xλ(r) �u y, if 〈F∞, C∞ ∪ {xλ(r) �u y}〉 ∈ ℘, then xλ(r) �u y ∈ C∞.

LEMMA 10
The limit CSS is an Hintikka CSS.

PROOF. By Proposition 11, 〈F∞, C∞〉 ∈ ℘. We must verify that all conditions of Definition 12 hold.
�

THEOREM 3 (Completeness).
Let ϕ be a formula. If ϕ is valid, then there exists a proof for ϕ.

PROOF. Similar to the proof of the corresponding result in [15]. We suppose that there is no proof
for the formula ϕ and show that ϕ is not valid. The method which we present here allows us to
build a limit CSS 〈F∞, C∞〉 that, by Lemma 10, is a Hintikka CSS. By property 1 of Proposition 10,
(Fϕ : c1) ∈ Fi, for any i � 0. By the definition of a limit CSS, (Fϕ : c1) ∈ F∞. By Lemma 8, ϕ is
not valid. �

Acknowledgements

We are grateful to Simon Docherty and to the anonymous referees for their comments on earlier
drafts of this paper. We also thank many colleagues, including particularly James Brotherston, Johan
van Benthem and Peter O’Hearn, among many, who have commented on documents related to this
document.

References

[1] G. Anderson and D. Pym. A calculus and logic of bunched resources and processes. Theoretical
Computer Science, 614, 63–96, 2016.

[2] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and
Computation, 2, 297–347, 1992.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

1286 Theory and modelling applications

[3] A. Baltag, B. Coecke and M. Sadrzadeh. Epistemic actions as resources. Journal of Logic and
Computation, 17, 555–585, 2006.

[4] J. Brotherston and J. Villard. Parametric completeness for separation theories. In ACM
Symposium on Principles of Programming Languages, POPL 41, pp. 453–464, San Diego,
CA, 2014.

[5] J. Bruckheimer (Producer) and T. Scott (Director). Crimson Tide. Hollywood Pictures, 1995.
[6] S. Castellan and N. Yoshida. Causality in linear logic. In Proc. FoSSaCS 2019, pp. 150–168.

Vol. 11425 of LNCS, Springer, 2019.
[7] I. Cervesato. Typed multiset rewriting specifications of security protocols. Electronic Notes in

Theoretical Computer Science, 40, 8–51, 2001.
[8] M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling. Mathe-

matical Structures in Computer Science, 19, 959–1027, 2009.
[9] M. Collinson, B. Monahan and D. Pym. A Discipline of Mathematical Systems Modelling.

College Publications, 2012.
[10] M. Collinson, K. McDonald and D. Pym. Layered graph logic as an assertion language for

access control policy models. Journal of Logic and Computation, 27, 41–80, 2017.
[11] M. Collinson, K. McDonald and D. Pym. A substructural logic for layered graphs. Journal

of Logic and Computation, 24, 953–988, 2014. Erratum at https://doi.org/10.1093/logcom/
exv019.

[12] D. Coumans, M. Gehrke and L. van Rooijen. Relational semantics for full linear logic. Journal
of Applied Logic, 12, 50–66, 2014. doi: doi.org/10.1016/j.jal.2013.07.005.

[13] J.-R. Courtault and D. Galmiche. A modal separation logic for resource dynamics. Journal of
Logic and Computation, 28, 733–778, 2018. doi: 10.1093/logcom/exv031.

[14] J.-R. Courtault, H. van Ditmarsch and D. Galmiche. An epistemic separation logic. In 22nd
International Workshop on Logic, Language, Information, and Computation, WoLLIC 2015,
pp. 156–173. Vol. 9160 of LNCS, Springer, Bloomington, IN, 2015.

[15] J.-R. Courtault, D. Galmiche and D. Pym. A logic of separating modalities. Theoretical
Computer Science, 637, 30–58, 2016. doi: 10.1016/j.tcs.2016.04.040.

[16] H. van Ditmarsch, J. Y. Halpern, W. van der Hoek and B. Kooi, eds. Handbook of Epistemic
Logic. College Publications, 2015.

[17] S. Docherty and D. Pym. Intuitionistic layered graph logic. In Proc. IJCAR 2016, pp. 469–486.
Vol. 9706 of LNCS, Springer, Coimbra, Portugal, 2016.

[18] S. Docherty and D. Pym. A stone-type duality theorem for separation logic via its under-
lying bunched logics. Electronic Notes in Theoretical Computer Science, 336, 101–118,
2018.

[19] S. Docherty and D. Pym. A stone-type duality theorem for separation logic via its underlying
bunched logics. Logical Methods in Computer Science, 15, 27:1–27:51, 2019.

[20] D. Galmiche, P. Kimmel and D. Pym. A substructural epistemic resource logic. In Proc. ICLA
2017, pp. 106–122. Vol. 10119 of LNCS, Springer, 2017.

[21] D. Galmiche, D. Méry and D. Pym. The semantics of BI and resource tableaux. Mathematical
Structures in Computer Science, 15, 1033–1088, 2005.

[22] D. Garg, L. Bauer, K. D. Bowers, F. Pfenning and M. K. Reiter. A linear logic of authorization
and knowledge. In 11th European Symposium on Research in Computer Security, ESORICS
2006, pp. 297–312. Vol. 4189 of LNCS, Springer, 2006.

[23] J. Y. Girard. Linear logic. Theoretical Computer Science, 50, 1–102, 1986.
[24] J. Halpern and R. Pucella. Modeling adversaries in a logic for security protocol analysis.

In Formal Aspects of Security, FASec 2002, pp. 115–132. Vol. 2629 of LNCS, Springer, 2003.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

https://doi.org/10.1093/logcom/exv019
https://doi.org/10.1093/logcom/exv019
doi.org/10.1016/j.jal.2013.07.005
10.1093/logcom/exv031
10.1016/j.tcs.2016.04.040

Theory and modelling applications 1287

[25] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In 28th ACM
Symposium on Principles of Programming Languages (POPL), pp. 14–26, London, 2001.

[26] J. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic.
Information and Computation, 110, 327–365, 1994.

[27] D. Larchey-Wendling. The formal strong completeness of partial monoidal Boolean BI.
Journal of Logic and Computation, 26, 605–640, 2014.

[28] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25, 269–310,
1983.

[29] P. Naumov and J. Tao. Budget-constrained knowledge in multiagent systems. In Proc. AAMAS
2015, pp. 219–226, International Foundation for Autonomous Agents and Multiagent Systems,
2015.

[30] P. O’Hearn and D. Pym. The logic of bunched implications. The Bulletin of Symbolic Logic, 5,
215–244, 1999.

[31] P. O’Hearn. On bunched typing. Journal of Functional Programming, 13, 747–796, 2003.
[32] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Science,

375, 271–307, 2007.
[33] R. Pucella. Knowledge and security. Chapter 12 of [16], pp. 591–655.
[34] D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications. Applied Logic

Series, vol. 26. Kluwer Academic Publishers, 2002.
[35] D. Pym. Resource semantics: logic as a modelling technology. ACM SIGLOG News, 6, 5–41,

April 2019.
[36] D. Pym, P. O’Hearn and H. Yang. Possible worlds and resources: the semantics of BI.

Theoretical Computer Science, 315, 257–305 Erratum: p. 22, l. 22 (preprint), p. 285, l.-12
(TCS): ‘, for some P′, Q ≡ P; P′’ should be ‘P � Q’.

[37] J. Reynolds. Separation logic: a logic for shared mutable data structures. In IEEE Symposium
on Logic in Computer Science, LICS 2002, pp. 55–74, Copenhagen, Denmark, July 2002.

[38] B. Schneier. The Weakest Link. https://www.schneier.com/blog/archives/2005/02/the_weakest_
lin.html). Schneier on Security (https://www.schneier.com, 2005.

[39] B. Toninho and L. Caires. A spatial-epistemic logic for reasoning about security protocols. In
8th Int. Workshop on Security Issues in Concurrency, SecCo 2010, Electronic Proceedings in
Theoretical Computer Science (EPTCS) (arXiv.org), 2010.

Received 00 Month 20xx

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article-abstract/29/8/1251/5709592 by guest on 27 January 2020

https://www.schneier.com/blog/archives/2005/02/the_weakest_lin.html
https://www.schneier.com/blog/archives/2005/02/the_weakest_lin.html
https://www.schneier.com

	A substructural epistemic resource logic: theory and modelling applications
	1 Introduction
	2 An ERL
	3 Some properties of ERL
	4 Modelling access control with the logic unhbox voidb@x hbox ERL*
	4.1 Modelling distributed systems
	4.2 The 'Schneier's gate' problem
	4.3 Joint access
	4.4 Semaphores
	4.5 Evolution in LL, BI and ERL

	5 A tableaux calculus for ERL
	5.1 Labels and constraints
	5.2 Labelled tableaux for ERL
	5.3 Soundness of the calculus
	5.4 Countermodel generation and completeness of the calculus

	6 Conclusions
	A Soundness: proofs of lemmas
	B Countermodel extraction method
	C Proof of completeness

