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ABSTRACT

The MHD slow mode wave has application to coronal seismology, MHD turbulence, and the solar wind where it
can be produced by parametric instabilities. We consider analytically how a drifting ion species (e.g. He++) affects
the linear slow mode wave in a mainly electron–proton plasma, with potential consequences for the aforementioned
applications. Our main conclusions are as follows. 1. For wavevectors highly oblique to the magnetic field, we find
solutions that are characterized by very small perturbations of total pressure. Thus, our results may help to distinguish
the MHD slow mode from kinetic Alfvén waves and non-propagating pressure-balanced structures, which can also
have very small total pressure perturbations. 2. For small ion concentrations, there are solutions that are similar to
the usual slow mode in an electron–proton plasma, and solutions that are dominated by the drifting ions, but for
small drifts the wave modes cannot be simply characterized. 3. Even with zero ion drift, the standard dispersion
relation for the highly oblique slow mode cannot be used with the Alfvén speed computed using the summed proton
and ion densities, and with the sound speed computed from the summed pressures and densities of all species.
4. The ions can drive a non-resonant instability under certain circumstances. For low plasma beta, the threshold
drift can be less than that required to destabilize electromagnetic modes, but damping from the Landau resonance
can eliminate this instability altogether, unless Te/Tp � 1.
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1. INTRODUCTION

Magnetohydrodynamic (MHD) waves have long been
thought to play a role in heating the solar chromosphere and
corona (e.g., Osterbrock 1961) and heating and accelerating the
solar wind (e.g., the historical review by Hollweg 2008). MHD
waves may dissipate via a turbulent cascade (e.g., Bruno &
Carbone 2013; Tu & Marsch 1995) and there is growing evi-
dence that the solar wind and the regions of the corona from
which it originates may indeed be heated by MHD turbulence
(e.g., Chandran & Hollweg 2009; Cranmer 2009; Cranmer et al.
2007; Ofman 2005; Verdini & Velli 2007; Verdini et al. 2010,
2012). Moreover, the turbulence may be the source of high-
frequency waves which are cyclotron resonant with protons and
heavy ions (especially fully ionized helium, i.e., α-particles,
which are the most abundant heavy ion) and which may explain
why heavy ions in the fast solar wind are both hotter and flow-
ing faster than the protons (Hollweg 2006, 2008; Hollweg &
Isenberg 2002; Isenberg & Vasquez 2007, 2009, 2011; Kasper
et al. 2013; Verdini & Velli 2007). On the other hand, an expla-
nation is required for how heavy ions get decelerated from their
high speeds in interplanetary space close to the Sun to the lower
speeds observed at greater distances, e.g., at 1 AU (Hellinger &
Trávnı́ček 2006; Kaghashvili et al. 2003; Li & Li 2008; Lu et al.
2006; Verscharen & Chandran 2013).

There are three MHD wave modes: the fast, slow and Alfvén
(or intermediate) modes, but the Alfvén mode has received by
far the greatest attention in the solar context, both because it
is observed to be a principal component of the solar wind,
and because it can carry substantial energy fluxes in virtue of
its large group velocity. The ion-cyclotron wave is the high-
frequency extension of the Alfvén mode, and it too has played
a large role in considerations of coronal and solar wind heating
and acceleration (e.g., Hollweg & Isenberg 2002; Kasper et al.

2013), and there may be some direct evidence for its presence
in the solar wind (e.g., He et al. 2011); a full discussion of high-
frequency waves and their roles in the corona and solar wind is
beyond the scope of this paper.

From direct in situ spacecraft observations we have known
for over four decades that Alfvén waves are a major component
of fluctuations in the solar wind (Belcher et al. 1969; Belcher
& Davis 1971; Coleman 1966, 1967, 1968; Unti & Neugebauer
1968). Particularly in the fast wind, these waves are mainly
propagating outward from the Sun, suggesting, but not proving,
a solar source. It was immediately realized that if the waves
do indeed originate at the Sun with sufficient energy flux, they
might account for the chromospheric and coronal heating, and
drive the solar wind. Recent years have seen growing evidence
that Alfvén waves are indeed present much closer to the Sun than
the regions explored by spacecraft; see the recent reviews by De
Moortel & Nakariakov (2012) and Banerjee et al. (2011). Ulrich
(1996) presented spectroscopic observations suggesting the
presence of Alfvén waves in a high magnetic field region in the
chromosphere, with an upward Poynting flux sufficient to power
coronal active regions. In newer observations the presence of
Alfvénic waves in the chromosphere, transition region, and
corona with periods of several minutes has been confirmed
by direct imaging of structures which appear to be moving or
swaying in the manner expected for Alfvénic waves (De Pontieu
et al. 2007; McIntosh et al. 2011; Okamoto et al. 2007; Tomczyk
et al. 2007; Tomczyk & McIntosh 2009). Recent spectroscopic
observations also suggest the presence of Alfvén waves in the
chromosphere and low corona (Banerjee et al. 2009; Gupta
et al. 2010; Jess et al. 2009; Singh et al. 2011; see also Hassler
et al. 1990); Bemporad & Abbo (2012), using spectroscopic data
from extreme ultraviolet imaging spectrometer (EIS) on Hinode,
even provide evidence for significant energy deposition by low-
frequency Alfvén waves in a polar coronal hole. At greater

1

http://dx.doi.org/10.1088/0004-637X/788/1/35
mailto:joe.hollweg@unh.edu
mailto:daniel.verscharen@unh.edu
mailto:benjamin.chandran@unh.edu


The Astrophysical Journal, 788:35 (10pp), 2014 June 10 Hollweg, Verscharen, & Chandran

heights, in the region where the solar wind is believed to undergo
its principal acceleration, Hollweg et al. (1982, 2010) looked at
Faraday rotation fluctuations of radio signals from the Helios
spacecraft during their superior conjunctions with the Sun. It
was argued that the source of the observed fluctuations was
most likely Alfvén waves associated with the waves observed
by spacecraft much further from the Sun. The data were found
to agree well with models (Chandran & Hollweg 2009; Cranmer
& van Ballegooijen 2005; Cranmer et al. 2007; Verdini & Velli
2007; Verdini et al. 2010, 2012) in which turbulently damped
Alfvén waves of solar origin heat and accelerate the solar wind.
Thus, the Alfvén wave is a serious candidate for carrying the
energy which heats and accelerates the solar wind and corona.

In addition to providing theoretical explanations for the
heating and acceleration of the solar atmosphere, MHD waves
are now being used as an observational tool for inferring the
solar atmosphere’s properties. This burgeoning field of study is
usually referred to as “coronal seismology” or “solar magneto-
seismology.” Here the observations do not cover the cyclotron-
resonant regime, but are instead limited to the low-frequency
(with periods of the order of minutes or longer) MHD regime.
And the observations are not limited to the Alfvénic modes. In
fact, since the solar atmosphere is highly structured, there are
“surface” and “body” modes which differ from the usual MHD
modes in a uniform medium; see especially Edwin & Roberts
(1982, 1983) and Roberts (2000). For recent reviews of coronal
seismology see Ballai & Forgács-Dajka (2010), De Moortel &
Nakariakov (2012), Nakariakov & Verwichte (2005), Ofman
(2009), Ruderman & Erdélyi (2009), and Wang (2011). See
Arregui et al. (2013), Asensio & Arregui (2013), Ballai & Orza
(2012), Goossens et al. (2012), Jain & Hindman (2012), Jelı́nek
& Karlicky (2009), Li et al. (2013), Luna-Cardozo et al. (2012),
Morton et al. (2011), Pascoe et al. (2013), Scott & Ruderman
(2012), and Verwichte et al. (2013a, 2013b) for some more
recent papers.

In this paper we will consider one of the modes that has been
particularly useful in coronal seismology, viz., the axisymmetric
slow body mode on a thin cylindrical tube of magnetized
plasma (see the aforementioned review papers as well as Li
et al. 2013; Luna-Cardozo et al. 2012; Macnamara & Roberts
2010, 2011; Telloni et al. 2013; Wang 2011); this mode is
often referred to as the “sausage mode,” in which axisymmetric
expansions and contractions of the magnetic field lines, and
compressions and rarefactions of the plasma, propagate along
the tube. If the tube is thin, the oscillations hardly disturb the
surroundings, and thus the perturbation of total (i.e., magnetic
plus thermal) pressure must be nearly zero. In the limit of
zero tube radius the total pressure perturbation vanishes, and
the sausage mode then propagates according to Equation (17)
below, with the relevant quantities evaluated inside the thin tube
(Hollweg 1990). Equation (17) is also the dispersion relation
for a planar MHD slow mode propagating highly obliquely
to the background magnetic field; it is easy to show that the
total pressure perturbation vanishes also for the plane wave in
this limit. Our analysis will assume planar waves, but in the
limit of highly oblique propagation it will also be valid for the
sausage mode on a thin coronal structure. Of course our analysis
will then apply also to highly oblique slow modes throughout
interplanetary space, and not just on thin coronal structures. We
note that there is a strong tendency for both waves and turbulence
in the corona and solar wind to be characterized by high ratios of
perpendicular to parallel wavenumbers, so our results can apply
to a wide range of disturbances in space.

The new feature here will be the inclusion of one ion species
drifting relative to the protons, in particular α-particles, which
are the most abundant “heavy ion” in the solar atmosphere and
solar wind. Allowing for drift is essential, since α-particle drift
is the rule rather than the exception in the regions of the solar
wind which have been directly sampled by spacecraft (e.g.,
Marsch et al. 1982; Reisenfeld et al. 2001; Kasper et al. 2013).
Moreover, optical observations show that other heavy ions flow
faster than the protons close to the Sun in the regions where
the solar wind becomes supersonic (e.g., Cranmer 2009; Kohl
et al. 1998), and there is no reason to expect that α-particles
will be any different; in fact some theoretical models (Isenberg
1990) of coronal heating and solar wind acceleration predict
rapid α-particle drifts close to the Sun.

We expect that our results will be relevant for interpreting
remote observations of the slow mode, especially the sausage
mode, close to the Sun. We will find that even non-drifting
α-particles affect the dispersion relation in a non-simple way.
The compressions and velocity fluctuations of the α-particles
(or other heavy ions which might be observed remotely) can
even have opposite signs compared to the protons, a fact that
can prove useful in wave diagnostics. Our analysis will show
that drifting α-particles can even drive the slow mode unstable;
since the derivation uses the fluid equations the instability is non-
resonant. However, damping due to collisions (see Macnamara
& Roberts 2010) and kinetic effects such as Landau and transit-
time damping (Barnes 1966, 1967, 1968, 1969a, 1969b), will
probably eliminate the instability for typical conditions in the
corona and solar wind; we present a fully kinetic calculation in
Section 4.

The slow mode has not received a great deal of attention
in studies of the solar wind, but we suggest that its impor-
tance may be underestimated. The instability mentioned in the
previous paragraph could limit the α-particle drift in the solar
wind, and thereby effect a conversion of the α-particle drift en-
ergy into thermal energy. In a low-beta plasma the drift thresh-
old can be lower than the threshold for electromagnetic in-
stabilities (Verscharen & Chandran 2013). Moreover, the slow
mode may be involved in MHD turbulence, which we have al-
ready mentioned is a leading candidate for dissipating wave
energy and heating the corona and solar wind (Chandran 2003,
2005; Cranmer & van Ballegooijen 2012; Kumar et al. 2006;
Matsumoto & Suzuki 2012; Schekochihin et al. 2009;
Verscharen et al. 2012); there is in fact some observational
evidence for the presence of the slow mode in MHD turbulence
(Howes et al. 2012; Klein et al. 2012; Smith & Zhou 2007,
Yao et al. 2011). Slow mode waves may also be produced in
the solar wind via parametric instability of the “background”
Alfvén waves, and the parametric instabilities may themselves
play a role in the development of turbulence (Araneda et al.
2009; Del Zanna et al. 2001; Del Zanna & Velli, 2002; Ghosh
et al. 1993; Goldstein 1978; Gomberoff 2006a, 2006b, 2006c,
2007a, 2007b, 2008, 2009; Gomberoff et al. 1996, 2002, 2010;
Hollweg et al. 1993; Hollweg 1994; Inhester 1990; Jayanti &
Hollweg 1993a, 1993b, 1994; Malara & Velli 1996; Vasquez
1995; Viñas & Goldstein 1991). Moreover, our analysis of the
behavior of ions in the highly oblique slow wave might be used
to distinguish true non-propagating pressure-balanced structures
(PBSs; Bruno & Carbone 2013; Tu & Marsch 1995; and ref-
erences therein) in the solar wind from the propagating waves
analyzed here, even though both exhibit constant total pressure.
(A note on nomenclature: PBSs can be regarded as arising from
the slow mode in the kz → 0 limit, while in our calculation the
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highly-oblique limit takes ky → ∞ while keeping kz finite and
the waves propagate.) Finally, our analysis shows that the slow
mode can produce temporal changes of the solar wind compo-
sition which are not of solar origin (cf. Reisenfeld et al. 1999).

Before proceeding we offer one caveat. The highly oblique
slow mode has vanishing total pressure perturbations, and this
has been used to identify its presence in the solar wind (Howes
et al. 2012; Smith & Zhou 2007). Vanishing total pressure
perturbations are also associated with non-propagating PBSs.
However, a fluid analysis suggests that this can also be a property
of kinetic Alfvén waves; see Equation (14) of Hollweg (1999).
It is thus possible that associating vanishing total pressure
perturbations just with the slow mode or PBSs can be erroneous.
It is our expectation that the present analysis of the behavior of
ions in slow waves might lead to an observational resolution of
the ambiguities.

The analysis is found in Section 2. A multi-fluid approach
is used, but we neglect collisions between plasma species as
well as viscosity and heat conduction. Kinetic effects associated
with the Landau resonance are also omitted in the multi-fluid
study. We use expansions in (gyro frequencies)−1 to restrict the
analysis to the MHD regime, and we take the electrons to be
massless but with finite pressure. We ignore the Alfvén mode
but retain both the fast and slow modes; their dispersion relation
is further restricted to the slow mode by going to the highly
oblique limit (Equations (15a) and (18)). Section 3 presents
some numerical examples, showing in particular the instability
driven by α-drift; some analytical results for the instability are
presented in Equations (26), (29), and (30). Section 4 discusses
kinetic effects and associates the instability with its kinetic
counterpart. Section 5 summarizes our results.

2. ANALYSIS

We consider a plane wave propagating in a uniform back-
ground plasma consisting of electrons, protons, and one ion
species immersed in a uniform magnetic field B0 = (0, 0, B0)
pointing in the z-direction (the subscript “0” will denote a
background quantity). Any background particle flows V0 =
(0, 0, V0) are uniform and along B0. All fluctuations (de-
noted by prefix “δ”) are assumed to be small and to vary as
exp[i ky y + i kz z − i ω t]. We consider low-frequency fluc-
tuations in the MHD regime. The wave magnetic field is taken
to lie in the y–z plane, i.e., δBx = 0; this eliminates the MHD
Alfvén mode but retains the fast and slow modes. Consistent
with this choice and with MHD we take δEy = 0 (E denotes the
electric field) and there are no δE × B0 drifts in the x-direction.
However, in order for there to be charge quasineutrality we still
need to allow for a (small) δEz. (In Section 4 we will revisit the
assumptions δBx = 0 and δEy = 0.)

After linearization, the momentum equation for each species
(charge q, mass m, and background concentration n0) is

− i ω′ δV = q

m

(
δE′ − i k δp

q n0
+

δV × B0

c

)
, (1)

where c is the speed of light (cgs units will be used throughout),
ω′ = ω − kz V0, p is plasma pressure (for adiabatic fluctuations
δp = m v2

s δn with vs the sound speed for each species) and
δE′ = δE + V0 × δB/c. With the assumed polarization of δB,
the Lorentz term affects only δE′

x :

δE′
x = (ω′/ω) δEx, (2)

where use has been made of Faraday’s law.

After linearization, the mass conservation equation for each
species is

ω′ δn = n0(kyδVy + kzδVz). (3)

Equation (1) is first solved for the three components of δV
in terms of δE′ and δn. The components δVy and δVz are then
inserted into Equation (3) which can then be solved for δn for
each species:

δn = i q n0[i ky ω′ Ω δE′
x + kz δEz(Ω2 − ω′2)]

m
[
Ω2

(
ω′2 − k2

z v
2
s

) − ω′2(ω′2 − k2v2
s

)] (4)

where Ω = q B0/(m c) is the cyclotron frequency. Equation (4)
is then used to eliminate δn from the prior result for δV. The
resulting expressions (which will not be written down) for the
three components of δV are then expanded in terms of 1/Ω and
we obtain

δVx/c = ky kz v2
s δEz − i ω′(ω′2 − k2v2

s

)
δE′

x/Ω
B0

(
ω′2 − k2

z v
2
s

) , (5)

δVy/c = −δE′
x/B0, (6)

δVz/c = i ω′ Ω δEz − ky kz v2
s δE′

x

B0
(
ω′2 − k2

z v
2
s

) , (7)

where k2 = k2
y + k2

z . In Equations (5)–(7) we have kept the
term proportional to 1/Ω only in δVx , since that term gives the
polarization drift which we will only need when we calculate the
fluctuation current in the x-direction, δjx . And for consistency
we expand Equation (4) in terms of 1/Ω; the two leading terms
are

δn

c n0
= i kz Ω δEz − ky ω′ δE′

x

B0
(
ω′2 − k2

z v
2
s

) . (8)

For protons and ions, the quantity in parentheses in the
denominators of Equations (7) and (8) does not constitute a
singularity, since it cancels out when δEz is replaced with
Equations (10) and (11) below. However, numerical examples
reveal that there are a few points in solution space where the
denominators of Equations (5), (7), and (8) pass through zero.
Dropping the second term in the denominator of Equation (4)
is then not valid, but since Ω is large this is a problem only
for extremely small ranges of V0 surrounding those points.
Including the dropped term would take us out of the realm
of MHD, and we simply note the existence of this difficulty.
We note too that Equation (6) omits a term proportional to
δEz/[Ω (ω′2−k2

z v2
s )]. Even though δEz is generally small, this is

invalid when the denominator passes through zero, or at certain
points in solution space where δEz → ∞. Again, including
the dropped term would take us out of the realm of MHD.
And including the dropped term would not affect the dispersion
relation, which will be derived without use of Equation (6).

For electrons we assume me → 0, |Ωe| → ∞, v2
se → ∞,

keeping in mind that v2
se/Ωe remains finite. Subscripts e, p and

i will denote electrons, protons, and ions (sometimes including
the protons), respectively. Thus

δne = i e n0e δEz

γ K Te kz

, (9)

where e is the proton charge, γ is the usual ratio of specific heats,
K is Boltzmann’s constant, and T is temperature; Equation (9)
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also follows directly from the z-component of the electron
momentum equation with me = 0. (To ease the mathematics
we take γ to be the same for all species. But since γ is always
multiplied by a temperature, at the end we can simply replace
γ Te,p,i with γe,p,i Te,p,i .)

We now use Equation (8) and plasma quasineutrality, viz.,
e δne = ∑

qi δni , where the summation is over protons and
ions, to obtain δEz:

δEz = i c ky δEx

B0 D ω

∑ qi n0i ω′2
i

ω′2
i − k2

z v
2
si

, (10)

where

D = e2n0e

γ K Te kz

− kz

∑ q2
i n0i/mi

ω′2
i − k2

z v
2
si

, (11)

and we have used Equation (2). Equations (10) and (11) show
that δEz is of the order of ky ω δEx/(kz Ωi,p) which is consistent
with the ordering of terms in Equations (5)–(8).

Having δEz in terms of δEx we can now compute the particle
velocities in terms of δEx . We are particularly interested in δVx ,
Equation (5), in order to compute the electric current δjx . For
the electrons with me → 0 we have

δVxe = −c ky δEz

kz B0
. (12)

With the help of Equation (9) it is easy to show that this
is simply the drift arising from ∇δpe in Equation (1). For
protons and ions we use Equations (5) and (2). With the help of
Ampere’s and Faraday’s laws, and the supplemental condition
kyδBy + kzδBz = 0, we have

δjx = −e n0e δVxe +
∑

qi n0i δVxi = − i k2c2δEx

4 π ω
, (13)

where the sum is again over protons and ions. When δEx is
eliminated, the second equality gives the dispersion relation.

As an illustration and a check of our procedure, consider
a plasma consisting of massless electrons and one species
of drifting ions; charge neutrality requires e n0e = qi n0i .
Following the recipe outlined above, we obtain the dispersion
relation ω′2(ω′2 − k2 v2

s,tot ) − k2v2
A(ω′2 − k2

z v2
s,tot ) = 0, where

vA is the Alfvén speed based on the mass density of the drifting
ions and v2

s,tot = [γ K Ti + (n0e/n0i) γ K Te]/mi . This is
immediately recognized as the usual dispersion relation for the
fast and slow modes convected by the drifting ions.

Adding non-drifting protons to the above example (thus we
are working in the proton frame), but still with the constraint
of quasineutrality e n0e = e n0p + qi n0i , gives the dispersion
relation:

k2Ck + k2
zCkz = 0, (14)

where

Ck = (1 + βep + AN βei)(1 + N Z)v2 v′2

− [(1 + βep)βi + N Z(1 + βp)βei]v
2

− [(1 + AN βi)βep + N Z(1 + AN βei)βp]v′2

+ βep βi + N Z βei βp (15a)

Ckz = − (1 + N Z)v4v′2 − AN(1 + N Z)v2v′4

+ (βi + N Z βei)v
4 + AN(βep + N Z βp)v′4

+ 2 AN(βi − βei)v
2v′2 (15b)

and v = ω/(kzvAp), v′ = ω′/(kzvAp) = v − v0, v0 = V0/vAp,
βp,i = γ K Tp,i/(mp,i v

2
Ap), βep = γ K(Te + Tp)/(mp v2

Ap),
βei = γ K(Ti + Z Te)/(mi v

2
Ap), N = n0i/n0p, A = mi/mp,

Z = qi/e, and vAp is the Alfvén speed based on the mass
density of the protons. With three temperatures and four β‘s,
only three of the β‘s are independent; for example

βei = (Z/A)(βep − βp) + βi. (16)

For the reasons outlined in the Introduction we are going to
limit our attention to the highly oblique slow mode. This mode
has ω and ω′ proportional to kz even as k → ∞; for example,
for highly oblique propagation the familiar MHD slow mode
obeys

ω2/k2
z ≈ v2

A v2
s

/(
v2

A + v2
s

)
. (17)

We recognize approximation (17) as giving the dispersion
relation for the sausage mode on a thin cylindrical structure
(Edwin & Roberts 1983; Hollweg 1990; Roberts 2000); the
square root of the right-hand side is sometimes called “the cusp
speed.” From Equation (14) and the definitions of Ck and Ckz

we see that this can only happen if

Ck = 0 (18)

and this is the desired dispersion relation. The advantage here
is that the quantity Ck is a quartic in v and thus Equation (18) is
analytically solvable using standard packages.

For N → 0, and v0 = 0, the leading terms for the four roots
of Equation (18) are

v2 ≈ βep/(1 + βep) ≡ v2
βep

(19a)

and
v2 ≈ βi ≡ v2

βi
. (19b)

(If N = 0, the second set of roots is extraneous.) Ap-
proximation (19a) is equivalent to approximation (17) for an
electron–proton plasma. For v0 = 0 and vβi 
 vβep, a small-N
expansion of Equation (18) gives the following correction to
Equation (19a):

v2 ≈ v2
βep − N Z v4

βep(βep − βp)

A β3
ep

× [A βep(1 + 2 βep) − Z (1 + βep)(βep − βp)]. (20)

With A > Z the correction is always negative; it can be shown
that increasing βi reduces the magnitude of the correction.
On the other hand, if vβi � vβep the small-N correction to
Equation (19a) is

v2 ≈ v2
βep − N v6

βep

[
A + Z (1 + βep) (βep − βp) β−3

ep

]
(21)

and the correction is always negative. (Equation (16) has been
used in the previous two equations.) For α-particles and the
moderate values of βp and βep to be used in Figure 1, the
corrections are 8% at low βi and 11% at high βi , while for
the low values of βp and βep to be used in Figure 4 the
corrections are only 2.5%–3%. If vβi ≈ vβep the expansion
becomes singular because the roots in Equations (18) are not
distinctly separated, but full numerical solutions show that the
corrections do become larger as vβi → vβep from either side. We
will henceforth refer to modes which are close to Equations (17)
and (19a) as “cusp-like” and we will refer to solutions which are
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Figure 1. Heavy black curves give the real parts of the four roots (designated
a–d) of Equation (18) vs. normalized ion drift speed v0. Nearly horizontal curves
are the cusp-like modes while diagonal curves are the ion-dominated modes; the
gray line, v = v0, shows that the ion-dominated modes are largely convected
by the drifting ions. The thin curve gives the growth rate multiplied by 10; the
corresponding damping rate is not shown. The chosen parameters Te = 105 K,
Tp = 8 × 104 K, Ti = 3 Tp , γ = 1.3, vAp = 40 km s−1, and N = 0.06 are
roughly representative of the solar wind at 1 AU. Points where ω′2−k2

z v
2
s = 0 are

indicated by “×” and arrows for protons and ions respectively. The solid circles
denote solution points where D = 0 as given by Equations (27) and (28). The
open circle is the approximate maximum growth rate as given by Equation (29).

close to Equation (19b) as “ion-dominated.” The phase speed
of cusp-like solutions approximately corresponds to the ion-
acoustic speed, and the phase speed of ion-dominated solutions
corresponds to the ion-sound speed (Mann et al. 1997). The
modes can propagate in both directions with respect to the
background magnetic field, and while the phase speed of
the ion-acoustic mode is barely affected by the drifting ions,
the ion-sound wave propagates with the ion-sound speed in the
reference frame in which the ions are at rest (Verscharen &
Marsch 2011).

As a further check, we have also derived dispersion relation
(18) by starting with the fact that for the MHD slow mode the
perturbation of the total pressure, δptot, is zero in the limit of
highly oblique propagation. As a concrete illustration of this
assertion, for the standard MHD slow mode in a single fluid
with sound speed vs it is easy to derive

δp

δpmag
≈ −1 − k2

z

k2
y (1 + β)

, (22)

with β = v2
s /v

2
A and δpmag is the magnetic pressure perturbation.

Thus δptot → 0 asymptotically as ky/kz → ∞. The derivation
of the dispersion relation in this manner is straightforward since
Equations (8)–(10) can be used to derive δp in terms of δEx ,
and Faraday’s law can be used to write the magnetic pressure
perturbation in terms of δEx . Thus δEx can be eliminated and
the dispersion relation (18) results.
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Figure 2. Scaled representation of δVzi/δVzp for the four roots in Figure 1.
Since protons and ions do not move together Equation (17) is inaccurate even
when v0 = 0.

One of the interesting, and perhaps surprising, features of
the highly oblique slow mode is that δni and δnp can be π
radians out of phase; we will show in Figure 3 that this can
be true even when there is no ion drift. (This was in fact the
original motivation for this study. Viall et al. (2009) reported
anti-correlated proton and α-particle variations in the solar wind.
We thought these observations might be due to waves, but in
retrospect a coronal origin seems more likely. However, the
principle still holds: the slow mode can temporally and locally
change the plasma composition.) Using Equations (8), (10),
and (11) we obtain

δni/n0i

δnp/n0p

= (βei −βi)v2 − (v − v0)2[βep + N Z βp − v2(1 + N Z)]

−(βi + N Z βei)v2 + (v − v0)2[A N (βei − βi) + v2(1 + N Z)]
.

(23)

We will show in Figure 3 that δni and δnp can have opposite
signs, even when there is no ion drift.

Another usesful diagnostic of the wave properties is the ratio
δVzi/δVzp, which can be derived using Equations (7), (10),
and (11):

δVzi

δVzp

= v − v0

v

× {A βi (βi −βei ) + Z [βei (N Z v2 + v2 − N Z βp) − βi βp]}
{A (βi − βei )[βi − (1 + N Z)(v − v0)2] + Z βp[−βi − N Z βei + (1 + N Z)(v − v0)2]} .

(24)

We will show in Figure 2 that δVzi and δVzp can have opposite
signs, even when there is no ion drift. Since the ions and protons
do not move together, the phase speed cannot be calculated
from Equation (17) using a value for vA based on the total mass
density and a value for vs using the full plasma pressure and
the total mass density. (This can be easily verified with some
numerical examples.)
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3. NUMERICAL EXAMPLES

Our numerical examples will all consider a plasma consisting
of electrons, protons, and α-particles (A = 4, Z = 2). For our
first example we take Te = 105 K, Tp = 8 × 104 K, Ti = 3 Tp,
vAp = 40 km s−1, and N = 0.06. Although mainly illustrative,
these parameters correspond roughly to conditions in the solar
wind at 1 AU. We also somewhat arbitrarily take γ = 1.3
rather than five-thirds, in the expectation that this may represent
internal heating processes including electron heat conduction.
In this case vβep = 0.74 and vβi = 0.635. The β‘s are not small;
for example βep = 1.21. Figure 1 plots the real parts of the four
roots of v obtained from Equation (18) vs. v0. (In Figures 1
and 4, points where the denominators of Equations (5), (7),
and (8) pass through zero are indicated by “×” and an arrow
for protons and ions respectively.) The roots which are almost
horizontal lines are cusp-like and close to v ≈ ±vβep; the
roots which are almost diagonal lines are ion-dominated and are
close to

v ≈ v0 ± vβi . (25)

The gray line, v = v0, shows that the ion-dominated modes
are indeed largely convected by the drifting ions. There is an
avoided crossing around v0 ≈ 0.1 where the roots cannot be
simply characterized. (We will see a similar avoided crossing in
Figure 4. Both Figures 1 and 4 have vβep > vβi . We will not show
an example in which the inequality is reversed, but in such cases
the avoided crossing occurs for the modes for which v < 0.)
For 1.3 < v0 < 1.4 there are two real roots and two complex
conjugate roots, one of which is unstable; the dimensionless
growth rate (multiplied by 10) is shown as the thin curve. The
instability occurs when the forward-propagating cusp-like wave
has about the same phase speed as the backward-propagating
(in the ion frame) ion-dominated mode. When the phase speeds
are about equal, both modes couple, and the solutions collapse
to two complex solutions with equal real parts of the wave
frequency. Because the β‘s are not small, the instability requires
V0 > vAp, and other electromagnetic instabilities with larger
growth rates (Verscharen & Chandran 2013) will probably be
more important. However, using the small-N approximations for
the roots, the root intersection leading to instability will occur
close to

v0 = vβep + vβi (26)

so that in a plasma with low β‘s instability can occur for
V0 
 vAp where electromagnetic modes should be stable; we
will show such an example in Figure 4.

Some insight into the nature of the modes can be gained by
examining δVzi/δVzp. This ratio spans a large range of values,
so in order to fit the essential information into one graph we plot
the quantity Sgn[Re(δVzi/δVzp)] Abs[δVzi/δVzp]1/4, which is
shown in Figure 2 for the same parameters used in Figure 1.
Look first at curves “a” and “b” in the lower-left part of the
figure. Comparing with Figure 1 (which uses the same labeling),
as v0 → 0 they represent δVzi/δVzp for the cusp-like modes.
However, note that not only do the ions and protons move
at different speeds, but they are π radians out of phase. This
supports our earlier statement that Equation (17) is inaccurate
even when v0 = 0. Look next at curves “a” and “d” which
correspond to the cusp-like modes when there is significant
drift, v0 > 0.2 or so. We see that the motions are dominated
by the protons (as expected) with |δVzi/δVzp| < 1. Also note
that in Figure 1 root “d” has v0 = v at v0 ≈ 0.72; the ions
are then moving with the wave, and δVzi = 0. Finally, consider
the solutions given by curve “c,” most of curve “b,” and the left
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Figure 3. Scaled representation of (δni/ni0)/(δnp/np0) for the four roots in
Figure 1.

portion of curve “d” in Figure 1. We have already claimed that
they are dominated by the ion dynamics; Figure 2 confirms this
by showing |δVzi/δVzp| > 1 for these roots. Note too that the
curve “c” in Figure 1 has v = 0 when v0 ≈ 0.61; this leads to
the infinity in Figure 2 for reasons which will be discussed in
connection with Figure 3. Finally, the two complex conjugate
roots, which appear when 1.3 < v0 < 1.4, have nearly constant
modulus but varying phase in this range.

Figure 3 displays the density ratio (δni/ni0)/(δnp/np0) for
the same case. (As in Figure 2 we plot the sign of the real part
multiplied by the absolute value raised to the (1/4) power.) There
is little resemblance to Figure 2 for δVzi/δVzp; the reason is that
δn is influenced also by (ky δVy), according to Equation (3).
Roots “c” and “d” give infinities where δnp → 0, while root
“d” gives two zeroes where δni = 0. Note that even for v0 = 0
the two cusp-like roots “a” and “b” have proton and ion density
fluctuations which are opposite in sign. Finally, the cusp-like
roots have modest values of (δni/ni0)/(δnp/np0), while the
ion-dominated roots have larger values of (δni/ni0)/(δnp/np0).

The two filled circles in Figure 1 indicate where D → 0
and |δEz| → ∞; consequently δVzi, δVzp, δni, and δnp all
become singular there, but the ratios shown in Figures 2 and 3
stay finite. According to Equation (10), δEz also has a singularity
where ω = 0. This occurs where the ion-dominated root “c”
crosses the horizontal axis in Figure 1, and δVzi, δni and δnp

all become singular there, but δVzp stays finite in virtue of the ω′
(= ω for protons) in the numerator of Equation (7); this explains
the singularity at v0 ≈ 0.72 in Figure 2.

After extensive algebra we have been able to show that the
values of v0 leading to D = 0 are given by

v2
0,D=0 = (βep βi + N Z βei βp) [βei + βep ± 2

√
βei βep]

(1 + N Z) βei βep

.

(27)
The corresponding values of v in Figure 1 are given by

v2
D=0 = βep βi + N Z βei βp

(1 + N Z) βei

. (28)
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Figure 4. Same as Figure 1 but Te = 106 K, Tp = 3 × 106 K, Ti = 4 Tp , γ = 1.3, vAp = 1500 km s−1, and N = 0.06.

(In Figures 1 and 4 below, the smaller value of v0,D = 0 is close
to the avoided crossing, which in those figures occurs at positive
v, and thus the positive square root of Equation (28) must be
used. However, as mentioned in connection with Figure 1, when
vβi is sufficiently large the avoided crossing occurs at negative
v, and then the negative square root of Equation (28) must be
used.) Even though the two zeroes of D occur at different values
of v0 in Figure 1, and on different branches of the dispersion
relation, they have the same value of |v|; we are unable to offer
a physical explanation of this result.

Figure 4 displays the solutions of the dispersion relation (18)
for conditions roughly representative of the acceleration region
of the fast solar wind. We take Te = 106 K, Tp = 3 × 106 K,
Ti = 4 Tp, and vAp = 1500 km s−1; the ion is again fully-ionized
helium with N = 0.06. In this case the β‘s are small (e.g.,
βep = 0.02), and the characteristic speeds are vβep = 0.137
and vβi = 0.12. Figure 4 closely resembles Figure 1, except
the two filled circles at which D = 0 are at qualitatively
different locations. The main difference from Figure 1 is that
the instability now occurs for V0 
 vAp, and there should be no
competing electromagnetic instabilities. The growth rate (shown
multiplied by 10) is again small, a little more than 3% of the
real part of the frequency.

We now seek a simple analytical approximation for the
maximum growth rate of the instability which appears in
Figures 1 and 4. We assume that the maximum growth rate
occurs at the value of v0 given by Equation (26). We also assume
that the real part of the normalized frequency v in the unstable
region is close to vβep (approximation (19a)), and we expand
the dispersion relation (18) around that value of v, with dv =
v−vβep. For the parameters considered in this paper we find that
we can safely drop terms involving dv3 and dv4; it is somewhat
less accurate but very convenient to drop the term proportional
to dv. We also drop terms proportional to N2. The maximum
dimensionless growth rate can then be approximated as

vgrowth,max ≈ (AN )1/2 v
3/2
βep |βi − (1 − βp/βep) Z/A|

2 v
1/2
βi

. (29)

(Equation (16) has again been used.) The point (vβep +
vβi, 10 vgrowth,max) is displayed as the open circles in Fig-
ures 1 and 4. Note that the growth rate can vanish when
βi = (Z/A) Te/(Te + Tp), which is close to being fulfilled for
the warm plasma case of Figure 1. However, when βi substan-
tially exceeds this value, the growth rate increases as T

3/4
i and

7
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can become substantial even when N is small; for example, for
the parameters in Figure 1, but with Ti increased to 8 Tp, the
maximum growth rate is 14% of the real part of v.

For small β‘s and for modest values of γpTp/γeTe (as
in Figure 4), βi can be dropped from the absolute value in
Equation (29), and the maximum growth rate normalized to the
real part of the frequency (approximated as vβep ≈ β

1/2
ep ) is then

vgrowth,max

vβep

≈
(

N

A

)1/2

Z
γeTe/(γpTp)

2 [1 + γeTe/(γpTp)]3/4

(
βp

βi

)1/4

.

(30)
In this case hot protons and hot ions, as seem to be found
in coronal holes (e.g., Antonucci et al. 2000; Cranmer 2009;
Kohl et al. 1998), reduce the normalized growth rate. For the
parameters used in Figure 4 Equation (30) gives a normalized
growth rate of 0.033; for a wave with a period of 300 s, the
e-folding time is then 1450 s, which is not unreasonably long.

It is not clear whether the ion-drift-driven instability would
play a role in the corona or solar wind. Since the instability is
driven by the ion drift, one would expect the instability to react
back on the ions and limit their drift. In low-beta plasmas, the
required ion drift can be substantially less than the drift needed
to excite electromagnetic instabilities (Verscharen & Chandran
2013). However, since the instability considered here exists over
only a limited range of v0, it is possible that external accelerat-
ing forces could push the ions through to higher stable values of
v0 before the instability can grow to large enough amplitudes to
effectively react back on the ions. It appears that this problem
might not occur for the cyclotron-resonant electromagnetic in-
stabilities driven by ion drift. Moreover, if dissipation associated
with the Landau resonance, or with viscosity or heat conduction
which have not been included in our analysis, is large enough,
the instability might be eliminated altogether. It is interesting
to note, however, that the instability is Landau-resonant with
the Landau-unstable part of the ion distribution function (this
follows from Equation (26) and the fact that vβep is a good
approximation for the normalized phase speed).

4. KINETIC EFFECTS

The resonant kinetic counterpart of the described non-
resonant fluid instability is the ion/ion-acoustic instability
(Fried & Wong 1966; Gary & Omidi 1987; Gary 1993). The
ion-acoustic mode is driven unstable by Landau-resonant beam
ions. A Landau-resonant instability can only be driven if

ω < kzv0 (31)

under the assumption that the beam ions have a Maxwellian
distribution function (Verscharen & Chandran, 2013). Due to
its polarization properties, the ion-acoustic mode is prone to
strong Landau and transit-time damping by the plasma protons
(and to a lesser extent the electrons). However, since the phase
speed of the ion-acoustic mode increases as (Te + Tp)1/2, the
resonant damping can be reduced if the electron temperature
is large enough so that only the few protons in the tail of their
distribution can resonate with the wave at the same wavenumber
at which the ions resonantly drive the instability.

In Figure 5, we show solutions to the fully kinetic dispersion
relation for a hot plasma consisting of Maxwellian protons, elec-
trons, and alpha particles. We obtain the solutions from the nu-
merical solver NHDS (Verscharen et al., 2013). Acoustic modes
in a linearized Vlasov–Maxwell system have phase speeds
consistent with one-dimensional adiabatic ions (γp,i = 3)

v0

v

x10

-1.0
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-0.5

0.2 0.4 0.60

b

d

d

c

d

c

c

db
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Figure 5. Smooth curves are the same as those in Figures 1 and 4 but for
Te = 14×106 K, Tp = 106 K, Ti = 4 Tp , γe = 1, γp,i = 3,vAp = 1500 km s−1,
and N = 0.06. The black points give the real part of v at κz = 0.01 obtained via
NHDS (with θ = 80◦) for selected v0, while the gray points give 10 times the
corresponding imaginary parts of v. On the whole this validates our analysis,
with the addition of weak damping from the Landau resonance.

and isothermal electrons (γe = 1; Gary, 1993). We use the
same parameters as in Figure 4, but with these values of γ , and
we increase the electron temperature to Te = 14Tp in order to
reduce the Landau/transit-time damping to the point where a
comparison with our analytical results can be made, even though
we realize that these parameters do not correspond to the corona
or solar wind. We set the angle θ between k and B0 to 80◦. The
smooth curves are our analytical solutions (though solution “a”
in Figures 1 and 4 has been omitted here), the black points are
the real parts of v obtained via NHDS for selected values of
v0, while the gray points are the imaginary parts, multiplied by
10 as in Figures 1 and 4. The kinetic solutions follow the an-
alytical solutions well. The non-resonant instability is present,
along with the cusp-like and ion-dominated roots, substanti-
ating our analysis. However the instability appears at reduced
growth rate due to the Landau/transit-time damping. As already
noted, the instability appearing in our analysis is consistent with
Equation (31).

The example in Figure 5 was chosen to give only weak
damping. But by varying only Te, we find that this instability is
present only when Te/Tp > 7, which still does not correspond
to conditions in the corona or solar wind.

We emphasize that this kinetic calculation is based on the
assumption of a Maxwellian distribution function for all species.
If any distribution function is in a relaxed marginally stable
state, its contribution to the damping can be lower or even
negligible. The nonlinear treatment of the evolution of the
plasma distribution functions and the associated wave–particle
interactions, however, is beyond the scope of this work.

The NHDS solutions also give the electric field polarizations,
and reveal that δEy , which was ignored in the analysis of
Section 2, can be comparable to or even larger than δEx or
δEz. Yet Figure 5 shows that our derived dispersion relation
agrees well with the NHDS solutions for the real part of v.
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The reason is as follows: If we include δE′
y , we find that,

consistent with our expansions in Ω−1, Equations (8), (10),
and (11) are unaltered. And our equations for δVx , which were
used to derive δjx and ultimately the dispersion relation, are
then only modified by the addition of c δE′

y/B0z. These δE×B0
drifts make no contribution to δjx or to the dispersion relation
as long as the plasma is quasineutral and there is no background
current j0z.

The presence of δEy is easily understood. From ∇ × δEz

Faraday’s law implies the possibility that δBx �= 0. Ampere’s
law would then require δjy , which in our low-frequency situa-
tion must arise from polarization drifts in the y-direction, which
in turn require ∂δE′

y/∂t �= 0. A full discussion is beyond the
intent of this paper, but it is useful to consider as an example
the electron–proton plasma. Following the prescription which
we just outlined (but with δEy and δEz included in ∇ × δE),
we obtain

δEy

i δEx

= tan2 θ γe β ′
e v κz

2(1 − v2)(v2 − βep)
(32)

and
δEy

δEz

= tan θ

1 − v2
, (33)

where θ is the angle between k and B0, β ′
e = 8 π n0e K Te/B

2
0 ,

κz = kz vAp/Ωp, and we have used Equations (10) and (11)
which give

δEz

i δEx

= tan θ γe β ′
e v κz

2(v2 − βep)
. (34)

With v2 given by Equation (19a), and with the parameters
used in Figure 5, we find that Equations (32)–(34) give good
approximations to the NHDS polarizations of the cusp-like solu-
tions, even those with v0 �= 0. The ratio |δEy/δEx | < 1 only for
κz < 8 × 10−3 or so, and increases linearly with κz; the electric
field components transverse to B0 are in general elliptically po-
larized and rotate in the left-hand (ion-resonant) sense. And for
large θ , δEy/δEz > 1 for all values of κz; in fact Equation (33),
which turns out to be an excellent approximation to the kinetic
results, implies (∇ ×δE)x �= 0 and thus δBx �= 0. Note that δEy

can be significant even when k−1
z is much larger than the proton

inertial length and k−1
y is much larger than the proton gyroradius;

standard MHD could not have led to this conclusion.

5. SUMMARY

We have studied the MHD slow mode in a plasma consisting
of fully-ionized hydrogen and a heavy ion (taken to be fully-
ionized helium in the numerical examples) drifting along the
background magnetic field. Such a plasma is representative of
the solar wind and the solar corona close to the Sun where the
solar wind becomes supersonic. Using a three-fluid analysis,
we presented a dispersion relation for both the fast and slow
modes (Equations (14)–(15b)), but since the corona and solar
wind contain many structures and fluctuations with large ratios
of perpendicular to parallel wavenumbers we specialized to
propagation highly oblique to the magnetic field (Equation (18)).
This limit is also representative of the “sausage mode” on thin
coronal structures, which has been observed optically and has
proven useful in coronal seismology. The slow mode can also be
produced via parametric instabilities of the Alfvén waves which
are copiously present in the solar wind, and the slow mode may
also be associated with MHD turbulence in the solar wind. We
have emphasized the fact that the highly oblique slow mode has

very small variations of total pressure, and might be confused
with non-propagating pressure-balanced structures or with the
kinetic Alfvén wave; the results of this paper should be useful
in distinguishing between these alternatives.

Figures 1 and 4 present the dispersion relations for two
illustrative cases. For small ion concentrations we find two
modes (forward and backward propagating) which are close
to the usual “cusp-like” modes in an electron-proton plasma
(Equation (19a)). We also find two modes which are dominated
by the convecting ion (Equation (25)). For reasonable coronal
and solar wind parameters, these two types of modes exhibit
an avoided crossing at small ion drift, and then cannot be sim-
ply characterized. Thus, when applied to coronal seismology,
the standard dispersion relation for the sausage mode in an
electron–proton plasma may lead to non-trivial errors.

We found that the drifting ions can drive a non-resonant
instability, albeit only in a limited range of ion drift speeds
v0. For low plasma β‘s, the drift necessary for instability can
be less than that required to drive electromagnetic ion-resonant
modes (Verscharen & Chandran 2013). Although we have not
carried out a quasilinear analysis, it is reasonable to suppose
that the instability would react back on the ions in such a
way as to limit their drift, and that the drift energy will be
deposited in the plasma as heat. However, by supplementing our
analysis with fully kinetic solutions for the dispersion relation
we have found that with Maxwellian distribution functions the
damping associated with the Landau resonance can eliminate
the instability altogether, unless Te/Tp � 1. Our ideal fluid
analysis also ignored damping associated with viscosity, heat
conduction, and inter-particle collisions.

A comparison with solutions of the full dispersion relation of
a hot plasma shows that the non-resonant instability of this study
is the counterpart of the kinetic ion/ion-acoustic instability.
Landau damping by the protons can efficiently counteract the
instability driven by the ions if the particles have a Maxwellian
distribution function and temperatures not greatly exceeding the
proton temperature.

We have also found (Equations (32)–(34)) the surprising
result, not contained in MHD, that δEy can be significant even
when k−1

z is much larger than the proton inertial length and
k−1
y is much larger than the proton gyroradius. However, the

dispersion relation is not affected by δEy .
We found that the protons and ions do not move together

(Equation (24) and Figure 2), and that their compressions are
not proportional, i.e., (δni/ni0)/(δnp/np0) �= 1 (Equation (23)
and Figure 3), even when the ions are not drifting. The velocity
and density fluctuations of the two species can even be out of
phase. One consequence is that even with zero drift, the standard
dispersion relation (17) for the sausage mode cannot be used
with vA computed using the summed proton and ion densities,
and with vs computed from the summed pressures and densities
of the electrons, protons, and ions. However, the relationships
between the velocity and density fluctuations of the protons
and ions may be used to identify the waves, and distinguish
the oblique slow mode from non-propagating pressure-balanced
structures. There is however a caveat: a fluid analysis (Hollweg
1999) suggests that the kinetic Alfvén wave also has δptot ≈ 0,
and may be confused with pressure-balanced structures and the
highly oblique slow mode.

Finally, it has not escaped our notice that the drifting “ions” in
our analysis can be taken to be the proton “beams” which appear
routinely in in situ observations of proton distribution functions
in the nearly collisionless fast solar wind (see Figure 8.1 of
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Marsch 1991; Marsch 2012). This case will be deferred to a
future publication.

This work has been supported by NASA grant NNX11AJ37G
from NASA’s Heliophysics Theory Program, NASA grant
NNX13AF97G, and NSF grant AGS-1258998.
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Jess, D. B., Mathioudakis, M., Erdélyi, R., et al. 2009, Sci, 323, 1582
Kaghashvili, E. K., Vasquez, B. J., & Hollweg, J. V. 2003, JGR, 108, 1036
Kasper, J. C., Maruca, B. A., Stevens, M. L., & Zaslavsky, A. 2013, PhRvL,

110, 091102
Klein, K. G., Howes, G. G., TenBarge, J. M., et al. 2012, ApJ, 755, 159
Kohl, J. L., Noci, G., Antonucci, E., et al. 1998, ApJ, 501, L127
Kumar, N., Kumar, P., & Singh, S. 2006, A&A, 453, 1067
Li, B., Habbal, S. R., & Chen, Y. 2013, ApJ, 767, 169
Li, B., & Li, X. 2008, ApJ, 682, 667
Lu, Q. M., Xia, L. D., & Wang, S. 2006, JGR, 111, 9101
Luna-Cardozo, M., Verth, G., & Erdélyi, R. 2012, ApJ, 748, 110
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