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ABSTRACT

Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-
equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been
proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational
force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate
Qflow at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of
total momentum. We show that instabilities control the deceleration of alpha particles at r rcrit< , and the rotational
force controls the deceleration of alpha particles at r rcrit> , where r 2.5 AUcrit  in the fast solar wind in the
ecliptic plane. We find that Qflow is positive at r rcrit< and Q 0flow = at r rcrit , consistent with the previous
finding that the rotational force does not lead to a release of energy. We compare the value of Qflow at r rcrit< with
empirical heating rates for protons and alpha particles, denoted Qp and Qa , deduced from in situ measurements of
fast-wind streams from the Helios and Ulysses spacecraft. We find that Qflow exceeds Qa at r 1 AU< , and that
Q Qflow p decreases with increasing distance from the Sun from a value of about one at r = 0.29–0.42 AU to about
1/4 at 1 AU. We conclude that the continuous energy input from alpha-particle deceleration at r rcrit< makes an
important contribution to the heating of the fast solar wind. We also discuss the implications of the alpha-particle
drift for the azimuthal flow velocities of the ions and for the Parker spiral magnetic field.
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1. INTRODUCTION

The solar wind is a magnetized plasma consisting of protons,
electrons, and other ion species. Of the other ion species, alpha
particles play the most important role in the overall dynamics
and thermodynamics of the solar wind, because they comprise

15%~ of the total solar-wind mass density (Bame et al. 1977;
Li et al. 2006; Marsch & Richter 1984; Pizzo et al. 1983).
Observations of protons and alpha particles in the solar wind
also show that the temperature profiles of both species decrease
more slowly with distance from the Sun than expected in an
adiabatically or double-adiabatically (see Chew et al. 1956)
expanding gas (Cranmer et al. 2009; Gazis & Lazarus 1982;
Hellinger et al. 2011; Hellinger & Trávníček 2013; Lamarche
et al. 2014; Marsch et al. 1982b, 1982c, 1983, Maruca
et al. 2011; Miyake & Mukai 1987; Schwartz & Marsch 1983;
Thieme et al. 1989). This finding implies that a continuous
heating mechanism acts on the solar-wind ions during
their transit through the heliosphere. However, there is
still no consensus on the mechanisms responsible for this
heating.

In the fast solar wind, expansion and heating lead to non-
equilibrium features in the distribution functions of the particle
species (Goldstein et al. 2000; Kasper et al. 2013; Marsch et al.
1982b, 1982c; Maruca et al. 2012; Reisenfeld et al. 2001)
because the collision timescale for ions is typically much larger
than the travel time from the Sun (Kasper et al. 2008). These
non-equilibrium features include relative drifts between the
plasma species along the direction of the magnetic field B and
temperature anisotropies with respect to B. Because collisions
are weak in the fast solar wind, kinetic micro-instabilities are an
important process for limiting these deviations from

equilibrium (e.g., Gary 1993; Gary et al. 2000b, 2003, Hollweg
et al. 2014; Lu et al. 2006). In-situ measurements have shown
that the solar wind is confined to regions of parameter space
that are bounded by the thresholds of different instabilities
(Bale et al. 2009; Bourouaine et al. 2013; Hellinger et al. 2006,
2011; Kasper et al. 2002; Marsch et al. 2004; Maruca
et al. 2012; Matteini et al. 2007). Once an instability threshold
is crossed, the corresponding instability reduces the deviation
from thermodynamic equilibrium by generating plasma waves
that interact with particles to reshape their distribution function.
Observations in the fast solar wind show that the absolute

value of the typical relative velocity between alpha particles
and protons, denoted U pD a , is of order the local Alfvén speed
based on the proton mass density pr (Marsch et al. 1982b;
Reisenfeld et al. 2001),

v
B

4
. (1)A

ppr
º

The alpha-to-proton drift excites the fast-magnetosonic/whistler
(FM/W) instability (Gary et al. 2000a; Li & Habbal 2000;
Revathy 1978) and the Alfvén/ion-cyclotron (A/IC) instability
(Verscharen et al. 2013b) when the drift velocity vA . The
Alfvén speed decreases with distance from the Sun, and thus
instabilities continuously decelerate the alpha particles (pro-
vided that r is not too large, as we will show in this paper).
Previous studies have discussed the energy that is available in
the relative drift and have suggested that the release of this
energy by instabilities in the form of waves makes a significant
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contribution to solar-wind heating (Borovsky & Gary 2014;
Feldman 1979; Šafránková et al. 2013; Schwartz et al. 1981).

The rotational force is another collisionless mechanism that
reduces the relative drift speed between protons and alpha
particles (Hollweg & Isenberg 1983; Li & Li 2006; Li
et al. 2007; McKenzie et al. 1979). Roughly speaking, alpha
particles and minor ions can be viewed as beads sliding on a
wire, where the wire is the spiral interplanetary magnetic field,
which is anchored to and rotates with the Sun. Ions with radial
velocities U rp< are accelerated outward by the forces exerted
by the rotating “wire,” where U rp is the average proton radial
velocity. In contrast, ions with radial velocities exceedingU rp

are decelerated by the rotating wire (Hollweg & Isenberg 1981;
McKenzie et al. 1979). This process is net-energy-conserving
and does not release energy that would become available for
particle heating.

The central goal of this study is to calculate analytically the
rate Qflow at which energy is released by alpha-particle
deceleration, accounting for azimuthal flow and the spiral
geometry of the interplanetary magnetic field. We also develop
a solar-wind model that allows us to evaluate Qflow at

r0.29 AU 4.2 AU< < . In constructing this model, we draw
upon our recent work, in which we derived analytic expressions
for the thresholds of the A/IC and FM/W instabilities
(Verscharen et al. 2013a). We then compare our solution for
Q r( )flow with the heating rates that are required to explain the
observed temperature profiles of protons and alpha particles.
For this comparison, we do not discuss the nature of the
mechanism that converts Qflow into particle heating, but rather
restrict ourselves to a discussion of the energy available for
particle heating. As a by-product of our calculation, we revisit
the calculation of the Parker spiral magnetic field and show
how the inclusion of differentially flowing alpha particles and
the neglect of torque beyond the effective co-rotation point at
radius reff , which is of order the Alfvén critical radius rA, lead to
minor modifications to Parker’s (1958) original treatment.

We also describe how instabilities and the rotational force
work in concert to decelerate the alpha particles. We show that,
when the azimuthal velocity is properly included, Q 0flow > at
r 1 AU< and Q 0flow  as r increases to a critical radius rcrit.
In the fast solar wind, r 2.5 AUcrit  in the plane of the Sun’s
equator, and rcrit increases with increasing heliographic
latitude λ. At r rcrit< , instabilities are the most efficient
deceleration mechanism, and U pD a is comparable to the
threshold drift velocity needed to excite the FM/W instability.
At r rcrit> , the rotational force is the most efficient decelera-
tion mechanism, the rotational force causes U pD a to become
too small to excite instabilities, and Q 0flow = . We also show
that the condition Q 0flow = leads to the same equation for
alpha-particle (and minor-ion) deceleration found in previous
studies of the rotational force (Hollweg & Isenberg 1981;
McKenzie et al. 1979), provided that r is sufficiently large that
other forces such as gravity can be neglected.

We do not address the details of the solar-wind acceleration
mechanisms that lead to a preferential acceleration and heating
of the alpha particles close to the Sun. Instead, we assume that
one or more mechanisms “charge” an energy source similar to a
battery in the very inner heliosphere by preferentially
accelerating the alpha particles, and that this source is then
continuously “discharged” by the deceleration of the alpha
particles by micro-instabilities. Candidate mechanisms for
generating alpha-particle beams in the solar wind include

cyclotron-resonant wave–particle interactions (Dusenbery &
Hollweg 1981; Hollweg & Isenberg 2002; Isenberg & Vasquez
2007, 2009; Marsch et al. 1982a; McKenzie & Marsch 1982;
Ofman et al. 2002), the dissipation of low-frequency waves in
an inhomogeneous plasma (Isenberg & Hollweg 1982;
McKenzie et al. 1979), and stochastic heating by low-
frequency turbulence (Chandran 2010; Chandran et al. 2010,
2013; Chaston et al. 2004; Chen et al. 2001; Johnson & Cheng
2001; McChesney et al. 1987).
The remainder of this paper is organized as follows. In

Section 2, we derive an analytic expression for Qflow, taking
into account the azimuthal velocities of the ions. In Section 3,
we develop a solar-wind model that accounts for azimuthal
flow, the spiral interplanetary magnetic field, and the decelera-
tion of alpha particles by plasma instabilities and the rotational
force. In Section 4, we present numerical solutions to our
model equations at zero heliographic latitude for heliocentric
distances in the range r0.29 AU 1 AU< < , and we compare
our results with measurements from the Helios spacecraft. In
Section 5, we present numerical solutions at a range of
heliographic latitudes for heliocentric distances in the range

r1.5 AU 4.2 AU< < , and we compare our results with
measurements from the Ulysses spacecraft. In Section 6, we
justify our approximation of neglecting the net force on the
solar wind at r 0.29 AU> . We summarize our conclusions in
Section 7, and in the Appendix we discuss the sensitivity of the
FM/W and A/IC instability thresholds to the alpha-particle
temperature anisotropy.

2. THE HEATING POWER THAT RESULTS FROM
ALPHA-PARTICLE DECELERATION

We work in a non-rotating reference frame and use
heliocentric spherical coordinates r( , , )q f , where the 0q =
direction is aligned with the Sun’s angular-momentum vector.
We assume cylindrical symmetry and steady-state conditions,

t
0, (2)

f
¶
¶

=
¶
¶

=

and we set

U 0. (3)j =q

We restrict our analysis to heliocentric distances 0.29 AU> , so
that the net force on the solar wind can be neglected to a
reasonable approximation. We discuss this “coasting approx-
imation” further in Section 6.
Upon summing the radial and azimuthal components of the

momentum equation for all particle species, invoking the
“coasting approximation,” and making use of Equations (2)
and (3), we obtain
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where Uj ( jr ) is the velocity (mass density) of species j. For

protons j p= , and for alpha particles j a= . The contribution
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of electrons to the momentum density is negligible due to their
small mass. Given Equations (2) and (3), mass conservation
requires that

( )
r r

r U
1

0 (6)j jr2
2r

¶
¶

=

for each particle species.
We neglect finite-Larmor-radius corrections, and thus the

relative drift of alpha particles with respect to the protons is
aligned with the magnetic field B. For concreteness, we take

B B0 and 0, (7)r > <f

where the second inequality follows from the first because field
lines “bend back” in the f̂- direction as the Sun rotates in the

f̂+ direction. Because of Equation (7), we adopt the
convention that the angle By between B and r̂ is negative
(or at least non-positive):

0. (8)B y

Thus,

U U U cos , (9)r r Bp p y= + Da a

and

U U U sin . (10)Bp p y= + Daf f a

The rate Qflow at which bulk-flow kinetic energy is converted
into other forms of energy is given by the negative of the
divergence of the kinetic-energy flux. Making use of
Equations (2) and (3), we can write
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whereU U Uj jr j
2 2 2= + f. The energy that is taken out of the bulk

flow is transformed into waves and thermal energy. Since the
waves cascade and dissipate, we expect that Qflow is in effect
the heating rate that results from alpha-particle deceleration.

With the use of Equations (4) and (10), we express the
gradient of U rp in terms of the gradient of the relative drift

U pD a :
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is of order unity in the solar wind. Because of Equation (6),

r
0. (14)
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From Equation (9), we see that r U( ) r¶ ¶ a is given by the right-
hand side of Equation (12) replacing ( 1)m - in the first term

on the right-hand side with just μ. Likewise, with the use of
Equations (5) and (10), we find that
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From Equation (10), we see that r U( )¶ ¶ af is given by the
right-hand side of Equation (15) replacing ( 1)m - in the first
term on the right-hand side with just μ.
Now that we have expressed the radial derivatives of U ,rp

U ,pf U ra , and Uaf in terms of r U( ) p¶ ¶ D a , we can re-express
Qflow in the form
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Because we neglect resistivity and finite-Larmor-radius correc-
tions, the magnetic field is frozen to each particle species. In the
reference frame that co-rotates with the Sun, the magnetic field
lines are thus parallel to both Up and Ua (Mestel 1968). This
leads to

U
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(We note that the second equality in Equation (17) follows
from the first equality with the use of Equations (9) and (10),
which is just the condition that U Up-a is parallel to B.) With
these expressions forUpf andUaf , we can rewrite Equation (16)
as
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3. SOLAR-WIND MODEL WITH AZIMUTHAL
VELOCITIES AND DIFFERENTIAL FLOW

In this section, we expand upon the assumptions made in
Section 2 to develop a model of the solar wind that will enable
us to evaluate Qflow as a function of r. This model can be
viewed as consisting of four equations for four unknowns:U rp ,
Upf, By , and U pD a . The alpha-particle velocity componentsU ra
and Uaf can be trivially obtained from these quantities using
Equations (9) and (10).
The first of the four equations in our model is Equation (4),

the radial component of the total-momentum equation. Because
we work in the “coasting approximation,” Equation (4)
neglects the plasma pressure, the pressure associated with
waves and turbulence, and gravity, which is reasonable given
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that we focus on heliocentric distances 0.29 AU> (see
Section 6).

The second of the four equations in our solar-wind model is
Equation (5), the ϕ component of the total-momentum
equation, which we rewrite as follows. First, we integrate
Equation (5) to obtain an equation that expresses angular-
momentum conservation:

r U U r U U constant (19)r r
3

p p p
3 r rº + =f a a af

(i.e., r 0¶ ¶ = ), where d2 sinp q q is the rate at which
angular momentum flows out through radius r between
spherical polar angles θ and dq q+ . We note that Equation (6)
implies that

r U constant (20)j j jr
2 rº =

(i.e., r 0j¶ ¶ = ). We then rewrite Equation (19) using
Equations (10) and (20) to eliminate U ra and Uaf , obtaining
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p
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Close to the Sun, the Lorentz force exerts a non-negligible
torque on the solar wind. This torque gradually decreases with
distance from the Sun, and the solar wind behaves like a net-
torque-free plasma outflow at large r. The azimuthal velocity
profiles at large r can be approximated as the result of a plasma
flow that is co-rotating out to a certain distance and then
torque-free beyond this distance. We define this distance from
the Sun as the effective co-rotation radius reff , which is of order
the Alfvén critical radius rA (cf Hollweg & Lee 1989). We
assume that at r reff= , 0By = and the protons and alpha
particles co-rotate with the Sun: U r U r( ) ( )p eff eff= =f af

r sineff qW . This allows us to rewrite Equation (21) as

U
r
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In the numerical calculations below, we set r R10eff = .
The third of the four equations in our model is Equation (17),

which expresses the condition that the proton and alpha-particle
velocities are parallel to B in the reference frame that co-rotates
with the Sun. With the help of Equation (22), we rewrite
Equation (17) as

( )
U

U rU
r rtan (1 ) sin
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. (23)B
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As we will discuss further in Section 4.2, Equation (23) is
similar to Parker’s (1958) equation for the spiral interplanetary
magnetic field (see Equation (53)). However, a new feature of
Equation (23) is the appearance of the second term on the left-
hand side, which describes the effects of differential flow on
the angle By .

The fourth and final equation in our solar-wind model
describes the radial evolution of U pD a . We explain how we
obtain this fourth equation in Section 3.1.

3.1. Determination of U pD a

We consider two non-collisional mechanisms that decelerate
alpha particles in the solar wind: plasma instabilities and the

rotational force.3 We neglect the collisional deceleration of
alpha particles with respect to the protons because the
collisional mean free path is large ( r ) in the fast solar wind at
r 0.29 AU . We discuss instabilities in Section 3.1.1, the
rotational force in Section 3.1.2, and the combined effects of
both mechanisms in Section 3.1.3.

3.1.1. Instability Thresholds

In this paper, we focus on heliocentric distances
r 0.29 AU , at which β (the ratio of plasma pressure to
magnetic pressure) is typically 0.2 (see Figure 4). When

0.2b , the plasma instabilities that are most easily excited by
the differential flow between alpha particles and protons are the
parallel-propagating FM/W mode and the parallel-propagating
A/IC mode (Gary et al. 2000b, 2000a; Li & Habbal 2000; Scarf
& Fredricks 1968; Verscharen et al. 2013b, 2013a). (In
contrast, at smaller values of β, oblique A/IC modes are more
easily excited than these parallel modes (Gary et al. 2000b;
Verscharen & Chandran 2013).) The characteristic value of

U pD a at which the FM/W and A/IC modes become unstable is
vA~ . However, as shown by Revathy (1978), Araneda et al.

(2002), Gary et al. (2003), and Verscharen et al. (2013a), a
temperature anisotropy of the form T T>a a^ ∥ reduces the
minimum value of U pD a needed to excite the A/IC instability,
while a temperature anisotropy of the form T T<a a^ ∥ reduces
the minimum value of U pD a needed to excite the FM/W
instability, where T a^ (T a∥ ) is the alpha-particle temperature
perpendicular (parallel) to B.
When one of these instability thresholds is crossed, resonant

wave–particle interactions cause the corresponding plasma
wave (A/IC or FM/W) to grow and the drift velocity and/or
temperature anisotropy to decrease. The characteristic time
scales on which instabilities grow and reduce U pD a in the solar
wind are much smaller than the time scales associated with
changes in the background parameters. Therefore, if some
mechanism (e.g., the radial decrease in vA) drives the plasma
toward the unstable region of parameter space, then instabilities
rapidly push the plasma back toward the instability threshold,
holding the plasma in a marginally stable state until some other
mechanism (such as the rotational force) reduces U pD a below
the instability threshold.
Verscharen et al. (2013a) derived analytical instability

thresholds for the parallel A/IC and FM/W modes in the
presence of alpha-particle temperature anisotropy under the
assumption that the alpha particles have a bi-Maxwellian
distribution. They found that the minimum value of U pD a
needed to excite the A/IC mode is given by

U v
T

T
w

v T

w T
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4
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and the minimum value of U pD a needed to excite the FM/W
instability is given by
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3 Wave-pressure forces can also reduce U pD a (Barnes 1981; Goodrich 1978;
Hollweg 1974; Isenberg & Hollweg 1983), but we focus on heliocentric
distances that are sufficiently large that these forces can be neglected.
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where

w
k T

m

2
(26)

B
ºa

a

a
∥

∥

is the parallel thermal speed of the alpha particles,

M n

n
ln , (27)i

i p
s º -

a

the subscript i = 1 corresponds to the A/IC mode, the subscript
i = 2 corresponds to the FM/W mode, M 1.6 101

4= ´ - ,

M 6.1 102
4= ´ - , and na and np are, respectively, the number

densities of the alpha particles and protons. These choices for
the parameters M1 and M2 lead to a maximum growth rate of

10m
4

pg = W- for the corresponding instability. For further
details, we refer the reader to the original publication
(Verscharen et al. 2013a).

As discussed by Verscharen et al. (2013b), the A/IC
instability is driven by resonant alpha particles whose outward
velocities are smaller thanU rp —that is, alpha particles that flow
toward the Sun in the proton frame. It is thus not clear how the
A/IC instability could decelerate the bulk of the alpha-particle
population in the solar wind. On the other hand, the FM/W
instability resonates with individual alpha particles whose
outward velocities exceed a certain threshold of order U vp A+
(see discussion by Verscharen et al. 2013a). We thus expect
that it is the FM/W instability and not the A/IC instability that
leads to the ongoing deceleration of alpha particles in the solar
wind, even if the A/IC instability has a lower threshold under
the assumption of bi-Maxwellian particle distributions. Thus,
when the alpha-proton drift is limited by instabilities, we set

U U . (28)p t2D =a

For a discussion of other beam-driven instabilities, we refer the
reader to Gary et al. (2000b), Verscharen & Chandran (2013),
and Hollweg et al. (2014).

3.1.2. The Rotational Force

A second mechanism that decelerates alpha particles in the
solar wind is the rotational force (Hollweg & Isenberg 1981,
1983; McKenzie et al. 1979; McKenzie & Axford 1983). The
basic idea behind the rotational force can be understood with
the aid of Figure 1: at least for the special (hypothetical) case in
which U rp is constant, all ion species besides protons have
negligible densities, and U 0p =f . (These restrictions are not
made in the analysis below.) Because the protons are frozen to
the interplanetary magnetic field, the Sun’s rotation coupled
with the protons’ radial motion causes the magnetic field to

follow a spiral pattern, as first described by Parker (1958). The
behavior of any individual charged test particle can then be
understood by viewing the particle as a bead sliding along a
frictionless wire, where the role of the wire is played by the
magnetic field lines, which rotate with the Sun. Any test
particle with a radial velocity smaller thanU rp behaves like a
bead that is initially at rest: it is flung outward by the forces
resulting from the wire’s rotation. On the other hand, a test
particle with radial velocity exceeding U rp experiences the
opposite effect: it is decelerated as it moves along the rotating
field lines.
To explain this effect, we recount the derivation of the

rotational force given by Hollweg & Isenberg (1981), who
analyzed the motion of cold ions and worked in a reference
frame that co-rotates with the Sun. (The original derivation by
McKenzie et al. (1979) was carried out in a non-rotating
frame.) In order to maintain completeness of the discussion of
the rotational force, we include gravity in this section. Hollweg
& Isenberg (1981) noted that conservation of energy for the
protons implies that

( )v E
GM

r
r

2
sin , (29)p

2
p

2q= + + W
∥

where v p∥ is the proton velocity in the co-rotating frame, G is
the gravitational constant, M is the mass of the Sun, and Ep is
a constant related to the total proton energy. The notation v p∥
(and v a∥ below) is used because, as discussed above, in the co-
rotating frame both the protons and the alpha particles flow
parallel to the magnetic field. Conservation of energy for the
alpha particles implies that

( )v E
GM

r
r

2
sin , (30)2 2q= + + Wa a


∥

where Ea is a constant. We have trivially generalized Hollweg &
Isenbergʼs (1981) original expressions by allowing θ to differ
from 2p . Subtracting Equation (29) from Equation (30) yields

v v
E E

v v
. (31)p

p

p
- =

-

+
a

a

a
∥ ∥

∥ ∥

Equations (29) and (30) lead to the asymptotic scaling
v v rp µ µa∥ ∥ at large r (provided sin 0q ¹ , so that rotation
is relevant). At large r, Equation (31) thus gives

v v
r

r
1

as . (32)p- µ  ¥a∥ ∥

Thus, the difference in the velocities of the two particle species
decreases with distance from the Sun.
We now show that Equations (29) and (30), and hence

Equations (31) and (32), are equivalent to the condition

Q 0, (33)flow =

provided that gravity can be neglected. (McKenzie et al. 1979
argued that gravity can be neglected when treating the
rotational force at r 0.2 AU in the ecliptic plane, and we
neglect gravity throughout our analysis; we discuss this
approximation further in Section 6.) Equation (33) can be

Figure 1. Illustration of the rotational force for protons (blue dot) moving
outwards with velocityU rp and two test particles (red dots) with different radial
velocities Vr (V Ur r1 p< and V Ur r2 p> ). These test particles behave like beads
sliding on a frictionless wire, where the wire is the spiral magnetic field.
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rewritten in the form

U UU U
1

2

1

2
0. (34)p p p

2 2r r +  =a a a· ·

Equations (4) and (5), expressing total-momentum conserva-
tion, can be written as a single vector equation,

U U U U 0. (35)p p pr r +  =a a a· ·

Upon taking the scalar product of Equation (35) with Up and
subtracting the resulting equation from Equation (34), we
obtain

( )( )U U U U 0. (36)p - =a a a· ·

Likewise, upon taking the scalar product of Equation (35) with
Ua and subtracting the resulting equation from Equation (34),
we obtain

( ) ( )U U U U 0. (37)p p p - =a· ·

In the reference frame that co-rotates with the Sun, both the
protons and the alpha particles flow parallel to the magnetic
field. Thus, the proton and alpha-particle velocities in the non-
rotating frame are related to v p∥ and v a∥ through the equations

U b z rv (38)p pˆ ˆ= + W ´∥

and

U b z rv , (39)ˆ ˆ= + W ´a a ∥

where b̂ is the magnetic-field unit vector, ẑW is the angular
velocity of the Sun, and r is the position vector of the point at
which the velocities are being evaluated in a reference frame
centered on the Sun. It follows from Equations (38) and (39)
that U U bp ˆ- µa , and thus Equations (36) and (37) can be
rewritten as

( )U U b 0 (40)ˆ =a a· ·

and

( )U U b 0, (41)p p ˆ =· ·

respectively (where we have assumed that v vp ¹ a∥ ∥ , so that
there is some differential flow). Physically, Equations (40) and
(41) state the essence of the “bead-on-wire” approximation:
ions (the “beads”) can experience forces perpendicular, but not
parallel, to the “wire” (the magnetic field). Because of this, we
should be able to use Equations (40) and (41) to recover
Hollweg & Isenberg’s (1981) results. In fact, all that is required
is to substitute Equation (39) into Equation (40) and to
substitute Equation (38) into Equation (41). After a little
algebra,4 this leads to

b
v

r
2

sin 0 (42)
2

2 2 2ˆ ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟q - W =a

·
∥

and

b
v

r
2

sin 0. (43)
p
2

2 2 2ˆ ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟q - W =·

∥

Equations (42) and (43) are equivalent to Equations (29) and
(30) for the region on which we focus, in which the
gravitational force can be neglected to a good approximation.
Like Hollweg & Isenberg (1981), we have assumed neither

that the protons flow radially nor that the alpha-particle mass
density is small. We conclude that alpha particles and protons
evolving under the influence of the rotational force are
described by the conditions of total-momentum conservation
(either Equations (4) and (5) or, equivalently, Equation (35)),
the condition of parallel flow velocities (either Equation (17)
or, equivalently, Equations (38) and (39)), and the condition
Q 0flow = . This finding explicitly confirms that alpha-particle
deceleration by the rotational force releases no net energy for
plasma heating. We note that from Equation (18), we can
rewrite the expression Q 0flow = as

r
U

r

U U
U

sin cos
. (44)

B

r r
p

2 2 2

p
p

q y¶
¶

D = -
W

Da
a

a


It is worth noting that McKenzie et al. (1979) and Hollweg
& Isenberg (1981) differed in their views on whether the
rotational force involves interaction between the particle
species (cf Hollweg & Isenberg 1983; McKenzie & Axford
1983). The presence or absence of interaction depends upon
which reference frame one works in. As noted by Hollweg &
Isenberg (1981), in a frame of reference that co-rotates with the
Sun, the ions behave like non-interacting particles. Each ion
species flows along the magnetic field lines subject to a fixed
centrifugal potential energy, and the total energy of each
species in the co-rotating frame is separately conserved. In
contrast, in the non-rotating frame used by McKenzie et al.
(1979), the sum of the particle energies is conserved (as shown
above from the expression Q 0flow = ), but neither the proton
energy nor the alpha-particle energy is individually conserved.
Likewise, in this non-rotating frame, neither the proton
momentum nor the alpha-particle momentum is conserved,
but their sum is. Thus, in the non-rotating frame, the “wire” or
magnetic field provides a vehicle through which the two
particle species can exchange momentum, angular momentum,
and energy.

3.1.3. Putting It All Together: the Combined Action of Instabilities and
the Rotational Force

In the previous subsections, we described two different
mechanisms that decelerate alpha particles. In this section, we
describe how these mechanisms decelerate alpha particles over
some arbitrary interval of heliocentric distances r r r( , )1 1 + D .
If the plasma is unstable at r1, with U Up t2D >a , then the

FM/W instability grows and interacts with the alpha particles.
The growing FM/W fluctuations rapidly reduce U pD a toward a
state of marginal stability, in which U Up t2D =a . Unstable
states are transient, and thus we neglect the case U Up t2D >a in
our steady-state model.
If the plasma is marginally stable at r1, with U Up t2D =a ,

then in the absence of instabilities the rotational force acting on
its own would cause U pD a to decrease with a radial derivative

4 We use the identities b b b( ) 0ˆ ˆ ˆ =· · , b b( ) 0ˆ ˆ ˆf  =· · , b z[ (ˆ ˆ W ´·
r b)] 0ˆ =· , and z r( )ˆ ˆf  W ´· = r[cos( ) sin( ) ]ˆq q q-W + .
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r U( ) p¶ ¶ D a given by the right-hand side of Equation (44). If

r

U U
U

r
U

sin cos
, (45)

B

r r

2 2 2

p
p t2

q yW
D <

¶
¶a

a


then the rotational force on its own would be unable to
decelerate the alpha particles sufficiently rapidly to keep U pD a
at or below the threshold for the FM/W instability throughout
the interval r r r( , )1 1 + D . (Here and in Equation (47) below
we have made use of the fact that r U( ) 0t2¶ ¶ < over the radial
intervals on which we focus.) Therefore, when Equation (45) is
satisfied, plasma instabilities maintain the plasma in a margin-
ally stable state between r1 and r r1 + D .5 We note that when
Equation (45) is satisfied at r1 and U Up t2D =a between r1 and
r r1 + D , it can be seen from Equation (18) that

Q 0 (46)flow >

between r1 and r r1 + D .
If the plasma is marginally stable at r1 but

r

U U
U

r
U

sin cos
, (47)

B

r r

2 2 2

p
p t2

q yW
D >

¶
¶a

a


then Equation (44) implies that the rotational force on its own
reduces U pD a sufficiently rapidly that the plasma becomes
stable between r1 and r r1 + D , so that plasma instabilities
cannot be excited. In this case,

Q 0 (48)flow =

between r1 and r r1 + D , and U pD a evolves according to
Equation (44). We note that if we were to mistakenly insist that

U Up t2D =a between r1 and r r1 + D when Equation (47) is
satisfied, then we would mistakenly conclude from Equa-
tion (18) that Qflow is negative. In other words, to maintain the
state U Up t2D =a when Equation (47) is satisfied, energy
would have to be supplied to the plasma in order to overcome
the rotational force.

Finally, if the plasma is stable at r1, with U Up t2D <a , then
the FM/W instability is not excited, and the radial evolution of
the differential flow between r1 and r r1 + D is governed by the
rotational force. In this case, r U( ) p¶ ¶ D a is given by
Equation (44), and Q 0flow = .

For the numerical solutions that we describe later in this
paper, instabilities control the deceleration of the alpha particles
at r rcrit< , where the critical radius rcrit is 2.5AU in the plane
of the ecliptic, and rcrit increases with increasing heliographic
latitude λ. That is, at r rcrit< , U Up t2D =a and Q 0flow > .
Then, at r rcrit , Q 0flow = and the deceleration of the alpha
particles is governed by the rotational force.

3.2. Method of Solution

There are four principal unknowns in our model: U rp , Upf,
U pD a , and By . To solve for these unknowns, we use the

following four equations: Equations (4), (22), (23), and either
Equation (28) or Equation (44). We choose between

Equations (28) and (44) based on the criteria set forth in
Section 3.1.3. In practice, this works out as follows. Motivated
by observations of the fast solar wind, we set U Up t2D =a at
the innermost radius of our numerical solutions. This condition
is just Equation (28). As we integrate outward from this
innermost radius, we continue to use Equation (28) as long as
Equation (45) is satisfied (which is the condition that the
rotational force on its own would be unable to decelerate alpha
particles to a drift velocity below the instability threshold).
However, beyond a certain radius (denoted rcrit), Equation (45)
is violated and the rotational force decelerates alpha particles to
drift velocities smaller thanUt2. At r rcrit> , alpha-particle
deceleration is controlled by the rotational force, and we use
Equation (44) instead of Equation (28) as the fourth equation
in our model. Numerically, we solve our model equations using
a combined Euler and secant method (Press et al. 1992, 347ff).
When solving these four equations, we determine ra and pr

using Equation (20), where we specify the constants p and a
so as to match observations at the inner boundary. In addition,
we determineUt2 empirically, using analytic fits to the observed
profiles of the magnetic field strength, T a^ , and T a∥ . As
described further in Sections 4 and 5, we use different analytic
fits for modeling the ecliptic plane at r 1 AU< and nonzero
heliographic latitudes at r 1.5 AU> .
We choose to estimate vA empirically from observed

magnetic field strengths rather than from the strength of the
spiral magnetic field in our model because the magnetic field
strength in our model omits the contribution from magnetic
fluctuations. Magnetic fluctuations at scales comparable to the
turbulence outer scale Lc (roughly 10 km6 at r 1 AU= ) are
comparable in magnitude to the background magnetic field in
the regions that we are interested in. FM/W instabilities are
most unstable at very small wavelengths, comparable to the ion
inertial length, which is Lc≪ . For instabilities at these small
wavelengths, the magnetic fluctuations at scales Lc~ appear
like a uniform field. It is thus the total magnetic field strength,
including these large-scale magnetic fluctuations, that is
relevant for determining the instability thresholds.

4. NUMERICAL SOLUTION FOR THE INNER
HELIOSPHERE AT ZERO HELIOGRAPHIC LATITUDE

In this section, we choose the innermost radius of our
numerical solution, denoted r0, to be r 0.290 = AU, which is the
perihelion of the Helios satellite mission. To determine the
proton number density n mp p pr= at r r0= , we average the

measured values of n 33.2 cmp
3= - , n 28.3 cmp

3= - , and np =
29.4 cm 3- at r r0 in the fast solar wind reported by Marsch
et al. (1982c) and Bourouaine & Chandran (2013). This gives
n 30.3 cmp

3= - at r r0= . We set U r( ) 700 km srp 0
1= - as a

characteristic fast-solar-wind speed. We then set
r r( ) 0.2 ( )0 p 0r r=a . These boundary values at r r0= allow us

to evaluate the constant μ in Equation (13). We note that, upon
integrating the equations of our model, we obtain n 2.5 cmp

3= -

at r 1 AU= , which is close to the observed average value of
n 2.7 cmp

1= - in the fast solar wind measured by Ulysses,
scaled to r 1 AU= (McComas et al. 2000). We set r R10eff = 
and integrate from r r0= to r 1= AU using 3000 radial grid
points. For the total magnetic field strength, we adopt the radial
profile obtained from fits to Helios measurements in fast-wind

5 Similar bounded-state models have been used to describe the local value of
the plasma temperature anisotropy in space plasmas (cf Denton et al. 1994;
Hellinger & Trávníček 2008; Samsonov & Pudovkin 2000; Samsonov
et al. 2007).
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streams (Mariani et al. 1979)

B r
r

r( ) 3.28 10 G
1 AU

, for 1 AU. (49)5
1.86

⎜ ⎟⎛
⎝

⎞
⎠= ´ <-
-

We use Equation (49) to determine vA.
When evaluating Ut2, we treat T r( )a^ and T r( )a∥ as known

functions of the radius. To determine these functions, we make
use of results from Marsch et al. (1982b), who fit Helios
measurements of T r( )a^ and T r( )a∥ to power laws in r for solar-
wind streams with 600 km s−1 U 700rp< < km s−1 and for solar-
wind streams with U700 km s 800 km sr

1
p

1< <- - . To obtain
power-law fits forT r( )a^ andT r( )a∥ for solar-wind streams with
U 700 km srp

1- , we average the power law indices obtained
by Marsch et al. (1982b) for these two wind-speed ranges. We
then normalize theT a^ power law so thatT (1 AU)a^ matches the
average of the values ofT a^ at r 1 AU= found by Marsch et al.
(1982b) for these two wind-speed ranges, and likewise forT a∥ .
This gives

T
r

7 10 K
1 AU

(50)5
1.37

⎜ ⎟⎛
⎝

⎞
⎠= ´a^

-

and

T
r

8 10 K
1 AU

. (51)5
1.155

⎜ ⎟⎛
⎝

⎞
⎠= ´a

-

∥

Variations in the assumed temperature profiles lead to
significantly different results in our model, as we discuss
further in the Appendix. For reference, we plot the radial profile
of

n k T

B

8
(52)p

p B p

2
b

p
º∥

∥

in Figure 4 that results in our numerical solution, where T p∥ is
the parallel proton temperature, which we evaluate using Helios
observations (Equation (58) below).

4.1. Proton and Alpha-particle Velocities

At all radii explored in this section (0.29–1 AU), r rcrit< ,
and thus U Up t2D =a in our model. We show the radial profiles
of vA,Ut1, U Up t2D =a , andU rp in our model in Figure 2, along
with Helios measurements of U pD a from Marsch et al.
(1982b). We note that in our model the radial proton velocity
U rp increases by about 4% between 0.29 AU and 1 AU to
conserve momentum as the alpha particles decelerate.

The instability thresholdUt1 for the A/IC instability is smaller
than the thresholdUt2 for the FM/W instability at r 0.65 AU
in our model. Nevertheless, the observed drift speed from
Marsch et al. (1982b) follows our profile for the FM/W
instability threshold (i.e., Ut2) very well, even in the range in
whichU Ut1 t2< . This finding supports our assumption that it is
the FM/W instability and not the A/IC instability that limits

U pD a in the solar wind. However, as we discuss further in the
Appendix, this finding is sensitive to variations in the assumed
profiles ofT a^ and T a∥ .

We show the radial profiles of the azimuthal velocity
componentsUpf andUaf in Figure 3. WhileUpf is positive,Uaf
is negative, and both velocities decrease slowly (more slowly
than r1 ) with increasing r. In addition, we show the solution

for Upf without alpha particles (i.e., Equation (22) without the
last term on the right-hand side). The azimuthal component of
the velocity decreases r 1µ - in this case. At the effective co-
rotation radius reff , we have taken both particle species to have
the same azimuthal velocity. Due to the bending of the
magnetic field lines, however, the azimuthal velocity of the
alpha particles changes sign at some point between reff and r0.
These results for the azimuthal flow are in agreement with
previous studies of angular-momentum transport in the solar
wind and show the importance of the differential streaming for
the azimuthal-flow components and angular-momentum trans-
port in the solar wind (Li & Li 2006; Li et al. 2007). Our
model, however, extends these previous treatments by includ-
ing the interplay of micro-instabilities and the rotational force.

4.2. The Parker Spiral Field

The classic description of the interplanetary magnetic field
was given by Parker (1958). The angle By between r̂ and B in
the Parker model (with our sign convention) is given by

B

B U
r rtan

sin
( ). (53)B

r rp
effy

q
= =

W
-

f 

Parker’s model neglects alpha particles and assumes that U rp

andUpf are independent of r in a non-rotating reference frame.
Therefore, the specific angular momentum of the solar wind
increases with distance from the Sun in his model, which
implies an ongoing torque on the plasma. In our model, the
total torque on the solar-wind fluid is zero beyond the effective
co-rotation radius. In a self-consistent solution of the
momentum and induction equations in single-fluid MHD,
Weber & Davis (1967) found a solution that is in some sense
intermediate between Parker’s and ours, in that the tangential
flow velocity decreases with r, but not as rapidly as r 1- because
of the Lorentz force. While our solution assumes zero total
torque, the interaction between protons and alpha particles still
leads to torques that act on the ion species individually.
We compare our torque-free solution for By with Parker’s

solution in Figure 4. As this figure shows, our value for By is
very similar to Parker’s but slightly larger. The reason for this
is that Upf is smaller in our model than in Parker’s (which can
be seen in Figure 3, upon noting that U 20.5 km sp

1=f
- in

Parker’s model at all radii given that we have set r R10eff = ☉).
The smaller ϕ velocities in our model cause the field lines to
“bend back” in the f̂- direction to a greater degree than in
Parker’s model. This difference is accentuated if we set 0r =a
in our model, which leads to an even larger reduction in Upf
(which, again, is shown in Figure 3).

4.3. Heating from Alpha-particle Deceleration

In Figure 5, we plot the value of Qflow in our model solution
for the inner heliosphere in the heliographic equator. The radial
profile of Qflow for r r 1 AU0 < < is well-fit by a power law of
the form

Q
r

R
4.1 10 erg cm s . (54)flow

4 3 1

5.47⎛
⎝⎜

⎞
⎠⎟» ´ - - -
-



The “empirical” perpendicular and parallel heating rates Q j^
andQ j∥ required to explain the observed temperature profiles of
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protons ( j p= ) and alpha particles ( j a= ) in the solar wind
are given by (Chandran et al. 2011; Chew et al. 1956; Sharma
et al. 2006)

Q Bn k U
r

T

B
(55)j j jr

j
B

⎛
⎝⎜

⎞
⎠⎟=

¶
¶

^
^

and

Q
n k U

B r

B T

n2
. (56)j

j jr j

j

3
B

2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

¶
¶

∥
∥

To evaluate these empirical heating rates, we determine B using
Equation (49), and we set nj equal to the value in our solar-wind
model for the inner heliosphere. To evaluateT a^ andT a∥ , we use
Equations (50) and (51). To determine T p^ and T p∥ , we average
the fits from Marsch et al. (1982c) to the proton-temperature
profiles in fast-wind streams with U600 km s r

1
p< <-

700 km s 1- and U700 kms 800 km sr
1

p
1< <- - , which leads to

T
r

2 10 K
1 AU

(57)p
5

1.125
⎜ ⎟⎛
⎝

⎞
⎠= ´^

-

and

T
r

2 10 K
1 AU

. (58)p
5

0.72
⎜ ⎟⎛
⎝

⎞
⎠= ´
-

∥

We plot the empirical heating rates determined in this way in
Figure 5. The values ofQ p∥ andQ a∥ given by Equation (55) are
both negative (cf Hellinger et al. 2011; Hellinger &
Trávníček 2013), but we plot their absolute values.

As Figure 5 shows, Qflow exceeds the empirical heating rate
Q a^ at r0.29 AU 1 AU< . At r 0.42 AU< , Q Qflow p^ .
The ratio Q Qflow p^ decreases as r increases, reaching a value
of 1 4 at r 1 AU= . We conclude that alpha-particle decelera-
tion makes an important contribution to the heating of the fast
solar wind at r0.29 AU 1 AU< < . In addition, the fact that
Q Qflow p^ increases from 1 4 to 1 as r decreases from1 AU
to 0.29 AU suggests that alpha-particle deceleration plays an
important role in the energetics of the solar wind at
r 0.29 AU< .

Figure 2. Radial profiles of vA, Ut1, U Up t2D =a , and U rp in our model in the
heliographic equatorial plane. The points “M82 U pD a ” represent the Helios
measurements in fast-solar-wind streams reported by Marsch et al. (1982b).

Figure 3. Radial profiles of the azimuthal velocities Upf and Uaf in our model
in the heliographic equatorial plane. We also show the profile of the azimuthal
velocity in our model in the limit 0r a .

Figure 4. Angle By between r̂ and B as a function of heliocentric distance r in
the heliographic equatorial plane. We show our torque-free model (Equa-
tion (23)), a torque-free model without alpha particles, and Parker’s model
(Equation (53)), which corresponds to U constantp =f . The axis on the right-
hand side provides the scale for the plot (dashed–dotted blue line) of pb∥
(Equation (52)).

Figure 5. Comparison of Qflow at zero heliographic latitude with the
“empirical” heating rates Q p^ , Q p∥ , Q a^ , and Q a∥ required to explain the
observed profiles of, respectively, T p^ , T p∥ , T a^ , and T a∥ (Equations (55) and
(56)). The parallel heating rates Q p∥ and Q a∥ are negative (cf Hellinger &
Trávníček 2013), but we have plotted their absolute values.
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5. NUMERICAL SOLUTIONS FOR THE OUTER
HELIOSPHERE AT NONZERO HELIOGRAPHIC

LATITUDE

In this section, we present model solutions for the fast solar
wind at heliocentric distances between 1.5 and 4.2 AU for a
range of heliographic latitudes. We then compare our results
with the Ulysses measurements reported by Reisenfeld et al.
(2001), which were taken during the outbound leg of Ulyssesʼs
first orbit. As in Section 4, there are several quantities that we
need to specify in order to solve for the radial profiles ofU rp ,Upf,

U pD a , and By (from which we can then determine U ra and
Uaf using Equations (9) and (10)). We set the innermost radius
in these solutions, denoted r0,U, to be 1.5 AU. We set

n r( ) 1.2 cmp 0,U
3= - , n r n r( ) 0.05 ( )0,U p 0,U=a , and U r( )rp 0,U =

758 km s ,1- in agreement with Ulysses observations (McComas
et al. 2000). In order to match the magnetic field strength seen in
the Reisenfeld et al. (2001) observations, we fit the vA
measurements of Reisenfeld et al. (2001) to a power law of
the form

v
r

r64.7 km s
1 AU

, for 1.5 AU, (59)A
1

0.49
⎜ ⎟⎛
⎝

⎞
⎠= >-
-

and we assume that this same power law holds at all values
of θ. We then determine B using Equations (59), (1), and the
proton density in our numerical solutions. To determine Ut2 in
Equation (25), we adopt the total-alpha-particle temperature
profile inferred by McComas et al. (2000) from Ulysses
observations:

T
T T

r

2

3

1.42 10 K (871 K)
1 AU

, (60)6
0.8

⎜ ⎟⎡⎣ ⎤⎦⎛
⎝

⎞
⎠l

=
+

= ´ -

a
a a^

-

∥

where 90l q=  - is the heliographic latitude in degrees.
Reisenfeld et al. (2001) found that T T 0.87 0.092= a a^ ∥
over their entire data set, covering the radial range

r1.5 AU 4.2 AU< < . For our fiducial model, we thus set

T

T
0.87. (61)=a

a

^

∥

With the above boundary conditions and profiles for T a^ ,
T ,a∥ and vA, we integrate the equations of our model from
r 1.5 AU0,U = out to 4.2 AU at 1500 different values of the
heliographic latitude λ. For each value of λ, we use a grid of

3000 points in the r direction. To connect our results to
Ulysses observations, we use the Ulysses orbital elements from
Balogh et al. (2001, p. 18) to map heliocentric distance r to
heliographic latitude λ along the portion of the Ulysses
trajectory considered by Reisenfeld et al. (2001). This mapping
results in either a multi-valued function r ( )Ulysses l or a single-
valued function r( )l and is plotted as the dashed line in
Figure 6. We also plot in this figure the value of rcrit as a
function of λ in our numerical solutions. The two curves r ( )crit l
and r ( )Ulysses l intersect at r 3.3 AU» . Thus, when Ulysses was
at r 3.3 AU< , alpha particles were decelerated by instabilities
at the spacecraft location. In contrast, at r 3.3 AU> , the local
deceleration of alpha particles at the spacecraft location
resulted from the rotational force.

In Figure 7, we plot the drift speed in our numerical
solutions along the Ulysses orbit, U r r( , ( ))p lD a . We also plot
the Alfvén speed from Equation (59), as well as the observed
values of vA and U pD a from Reisenfeld et al. (2001). By
setting T T 0.87=a a^ ∥ , we obtain solutions for U pD a that are
in good agreement with the observations at r 1.5 AU , but in
poor agreement at larger r. On the other hand, if we replace
Equation (61) with T T 0.80=a a^ ∥ and repeat our numerical
calculations at all 1500 values of λ, then we obtain the drift
speed plotted as a green dashed line in Figure 7, which agrees
well with the measured value of U pD a at r 2 AU> . We are in
fact able to reproduce the observed value of U pD a over the
entire radial range of r1.5 AU 4.2 AU< < by taking T Ta a^ ∥
to transition smoothly from the value 0.87 at r 1.5 AU= to the
value 0.80 at r 2 AU> . To show this, we compute a third
family of numerical solutions at all 1500 values of λ in which
we replace Equation (61) with the temperature-anisotropy

Figure 6. Heliocentric distance of the Ulysses spacecraft as a function of the
spacecraft’s heliographic latitude λ during the outbound leg of its first polar
orbit (black dashed line). The red solid line shows the value of rcrit as a function
of λ in our model (based on Equation (62)). The horizontal line marks the
heliocentric distance r 3.3 AU= beyond which Ulysses was outside the critical
radius r ( )crit l .

Figure 7. Radial profiles of vA and U pD a in our model along the trajectory of
the Ulysses spacecraft during the outbound leg of its first polar orbit. We use
the following temperature anisotropies: (a) T T 0.87=a a^ ∥ ; (b)
T T 0.80=a a^ ∥ ; and (c) Equation (62). The points “R01” show observations
from Reisenfeld et al. (2001). The vertical line shows the position of r ( )crit l .
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profile

T

T

r
0.87 0.035 tanh 3.5

1 AU
1.85 1 . (62)⎜ ⎟

⎡
⎣⎢

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎤
⎦⎥= - - +a

a

^

∥

Although the temperature-anisotropy profile in Equation (62)
enables our model to reproduce the observed U pD a profile, we
are aware of no reason that the temperature-anisotropy profile
should follow this particular form. Thus, all we can conclude is
that, given the observational uncertainty in the alpha-particle
temperature anisotropy, our model could be consistent with the

U pD a measurements. However, it could equally well be
inconsistent with the U pD a measurements if the true alpha-
particle temperature anisotropy deviates sufficiently from the
form in Equation (62).

As discussed above, the FM/W instability is responsible for
the alpha-particle deceleration seen in Figure 7 at r 3.3 AU< .
The drift speed at these heliocentric distances is significantly
smaller than vA, because T T<a a^ ∥ and reducing T Ta a^ ∥
lowers the minimum drift speed needed to excite the FM/W
instability. At r 3.3 AU> , instabilities no longer contribute to
the deceleration of the alpha particles. However, the rotational
force continues to decelerate the alpha particles, leading to a
good agreement between the observations and two of the three
families of solutions that we have computed (the solutions in
which Equation (61) is replaced by either T T 0.80=a a^ ∥ or
Equation (62)).

Reisenfeld et al. (2001) also calculated the values of U pD a
that result from alpha-particle deceleration by the rotational
force. For this calculation, these authors took the rotational
force to be the dominant deceleration mechanism throughout
the radial interval r1.5 AU 4.2 AU< < . The values we obtain
for U pD a are much smaller than the values obtained by
Reisenfeld et al. (2001), because in our model instabilities
control the deceleration at r1.5 AU 3.3 AU< < , a region in
which instabilities are more effective than the rotational force at
decelerating alpha particles. Then, when the rotational force
takes over in our model at r 3.3 AU= , the alpha particles are
already at a much smaller drift speed than in Reisenfeld et al.ʼs
(2001) calculation.

In Figure 8, we plot the energy release rate Q r r( , ( ))flow l in
our model (using Equation (62)) and the empirical proton and
alpha-particle heating rates given in Equations (55) and (56)
evaluated along the Ulysses trajectory. We evaluate the radial
derivatives of na , np, and B in Equations (55) and (56) using
our model solutions (based on Equation (62)), and we
determine T a^ and T a∥ using Equations (60) and (62). We take
T T Tp p p= =^ ∥ , where

T
r

2.58 10 K (223 K)
1 AU

(63)p
5

1.02
⎜ ⎟⎡⎣ ⎤⎦⎛
⎝

⎞
⎠l= ´ +
-

is the proton temperature observed by Ulysses as reported by
McComas et al. (2000), and 90l q=  - is the heliographic
latitude, which in Equation (63) is expressed in degrees.
Matteini et al. (2013) report a weak temperature anisotropy
with T Tp p<^ ∥ for the total proton distribution. However, the
proton-core and the proton-beam populations exhibit opposite
anisotropies. For the sake of simplicity, we assume that the
proton distribution is a single and isotropic plasma component.

As Figure 8 shows, Q Qflow a^ at r 1.8 AU , and Qflow is a
substantial fraction of the alpha-particle heating rate at
r 2.2 AU . However, at larger radii, Q Qflow a^ decreases to
small values, and at r 3.3 AU> , Q 0flow = , since the alpha-
particle deceleration at these radii is governed by the rotational
force.
We note that if we were to set n rp

2µ - , then Equations (59)
and (63) and the condition T Tp p=∥ imply that B T n r2

p p
2 0µ∥ ,

which leads to Q 0p =∥ in Equation (56). This means that Q p∥
in Figure 8 is nonzero only because of the deviation of np from

an r 2- profile. The reason that Q Qp p^≪∥ in Figure 8 is that np

is close to an r 2- profile. The fact that Q Qp p^≪∥ along the
Ulysses orbit given the observed profiles of B, np, and Tp
suggests that turbulent heating results in the inequality
Q Qp p^≪∥ in the solar wind. This inequality was also
obtained in the solar-wind model developed by Chandran
et al. (2011), which included an analytic model of plasma
heating by low-frequency solar-wind turbulence, in which the
turbulence dissipates via Landau damping, transit-time damp-
ing, and stochastic heating.

6. THE COASTING APPROXIMATION

In Equation (4), we assume that the net force on the plasma
is negligible. We call this the coasting approximation. In this
section, we discuss the applicability of this approximation to
the solar wind. Since U rp and U ra asymptote toward constant
values at large r, we expect that the most stringent test for the
coasting approximation occurs at the smallest heliocentric
distances that we consider. We thus focus in this section on the
region

r0.29 AU 1 AU, (64)< <

in which alpha-particle deceleration is controlled by
instabilities.
To estimate the sizes of different forces, we make the

simplifying approximations that, when Equation (64) is
satisfied, B n n rp

2µ µ µa
- , which implies that v rA

1µ - .
Since U rp is only weakly dependent on r in this range of
heliocentric distances, the alpha particles experience an
acceleration of U r U( )r p¶ ¶ Da a , which is also, very roughly,

U r U( )rp p¶ ¶ D a . Since U vp AD ~a in this region, the net
force per unit volume on the alpha particles needed to cause
this deceleration is

F U
v

r
U

v

r

r

r
, (65)r rdecl. p

A
0 p

A0

0 0

4⎛
⎝⎜

⎞
⎠⎟r r~

¶
¶

~a a

-

where the subscript 0 indicates that a quantity is evaluated at
r r 0.29 AU0= = . Within the coasting approximation, the
protons also experience a net force of magnitude Fdecl. as the
alpha particles are decelerated, but the direction of this force is
opposite to the direction of the force experienced by the alpha
particles. We conjecture that the coasting approximation is
valid if Fdecl. is substantially larger than the other forces
experienced by alpha particles and protons. We now estimate
these other forces.
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The gravitational force per unit volume on the protons is
given by

F
GM

r

GM

r

r

r
, (66)G

p

2

p0

0
2

0

4⎛
⎝⎜

⎞
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r r
= ~

-
 

where G is the gravitational constant, and M is the mass of the
Sun. The gravitational force per unit volume on the alpha
particles is smaller than FG by a factor of pr ra , and so we
neglect it henceforth.

The wave pressure force on protons per unit volume exerted
by Alfvén waves is given by

F
r

1

2
, (67)w

w
= -

¶
¶

where w is the wave energy density (Dewar 1970). We
assume that w is dominated by outward-propagating Alfvén
waves, so that

( )z

4
, (68)w

p rms
2

 r
=

+

where zrms
+ is the root mean square value of the Elsasser

variable z v B 4 pd d prº -+ (Dewar 1970). Chandran &

Hollweg (2009) developed an analytical model for reflection-
driven Alfvén-wave turbulence in the solar wind. They found
that

z z
v

v

2

1
, (69)rms rms,A

1 4

1 2

A

A,A

1 2⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟h

h
=

+
+ +

where p p,Ah r rº , and p,Ar and zrms,A
+ are the values of pr and

zrms
+ at the Alfvén critical radius r rA= . With these quantities,

we estimate the wave pressure force density as

( )F
r

z
r

r

r

r

2
. (70)w

p0

0
rms,A

2 A

0

2

0

5⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

r
~ +

-

The rms amplitudes of turbulent velocity fluctuations in the
fast solar wind are similar to the proton thermal velocities
(Marsch et al. 1982c; Marsch 1986; Tu & Marsch 1995). As a
consequence, w is similar to the plasma pressure p, and

p p r ~∣ ∣ . Thus, the plasma pressure force is small compared
to Fdecl. if Fw is small compared to Fdecl..
Equations (65) and (66) yield

F

F

GM

U v r
, (71)

r

G

decl.

p0

0 p A0 0

r

r
~

a



which is 0.17 for r 0.29 AU0 = , v 130 km sA0
1» - , and

0.20 p0r r=a . Equations (65) and (70) yield

( )F

F

z

U v

r

r

r

r

2
. (72)

r

w

decl.

p0 rms,A
2

0 p A0

A

0

2

0

1⎛
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⎞
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⎛
⎝⎜

⎞
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r

r
~

a

+ -

which is 0.25 at r r 0.29 AU0= = for r R10A = , assuming

that z 300 km srms,A
1»+ - as in the numerical simulations of

Perez & Chandran (2013). The value of F Fw decl.∣ ∣ decreases
like r1 as r increases beyond 0.29 AU.
These estimates show that the forces resulting from alpha-

particle deceleration are significantly larger than FG and Fw. We
also note that FG and Fw act in opposite directions, so that their
sum is smaller than either force individually. We conclude that
the coasting approximation is reasonably accurate in the
regions of the heliosphere on which we focus.

7. CONCLUSION

In this paper, we derive the rate Qflow at which energy is
released by the deceleration of alpha particles in the solar wind.
We also develop a solar-wind model that includes solar
rotation, azimuthal flow, and the deceleration of alpha particles
by two non-collisional mechanisms: plasma instabilities and
the rotational force (Section 3.1). We use this model to
evaluate Qflow in the fast solar wind at heliocentric distances
between 0.29 and 4.2 AU.
The analytic expression we derive for Qflow is the first to

account for the azimuthal velocities of the ions (cf Borovsky &
Gary 2014; Reisenfeld et al. 2001). We find that azimuthal flow
makes an important correction to the energy-release rate and
actually causes Qflow to become zero beyond a critical radius
rcrit. In the fast solar wind, r 2.5 AUcrit  in the heliographic
equator. The value of rcrit increases monotonically with
heliographic latitude.
Our finding that Q 0flow = at r rcrit relates to the way that

plasma instabilities and the rotational force work together to
decelerate alpha particles. At r rcrit< , the rotational force is
unable to decelerate the alpha particles rapidly enough to keep
the drift velocity U pD a below the threshold value needed to
excite the parallel-propagating FM/W instability. As a
consequence, differential flow excites FM/W waves, and
resonant interactions between these waves and the alpha
particles reduce U pD a as the plasma flows away from the Sun.
These wave–particle interactions maintain U pD a approximately
at the marginally stable value, which decreases as r increases.

Figure 8. Energy-release rate Qflow and empirical heating rates Q p^ , Q p∥ , Q a^ ,
and Q a∥ (Equations (55) and (56)) evaluated along the trajectory r r( , ( ))l of
the Ulysses spacecraft. The vertical line shows the radius r 3.3 AU= at which
Ulysses crossed the critical radius r ( )crit l (see Figure 6).
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In contrast, at r rcrit , the rotational force is sufficiently strong
that it reduces U pD a below the threshold value needed to excite
instabilities. As a consequence, instabilities do not contribute to
alpha-particle deceleration at r rcrit . As mentioned above,
Q 0flow = at r rcrit . Moreover, because of the corrections to
Qflow resulting from the inclusion of azimuthal flow, Qflow
decreases continuously to zero as r increases from 0.29 AU to
rcrit. In Section 3.1.2, we also show that the previous treatments
of the rotational force by McKenzie et al. (1979) and Hollweg
& Isenberg (1981) are equivalent to the condition Q 0flow = ,
provided that r is sufficiently large that other forces such as
gravity can be neglected.

We present two types of numerical solutions to our model
equations. First, we present a single solution that spans the
radial range r0.29 AU 1 AU< < at zero heliographic
latitude. Second, we present results from 1500 different
solutions at heliographic latitudes ranging from 30° to 80°,
which span the radial range r1.5 AU 4.2 AU< < . We
compare these solutions to Helios and Ulysses observations,
respectively.

Both types of solutions match the differential flow velocities
U pD a measured by Helios and Ulysses for choices of the alpha-

particle temperature anisotropy T Ta a^ ∥ that are consistent with
the observed values. However, the threshold value of U pD a
needed to excite the FM/W instability is sensitive to the value
of T Ta a^ ∥ . As a consequence, there are other profiles of
T Ta a^ ∥ that are also consistent with the T Ta a^ ∥ observations
for which our model does not accurately reproduce the
measured values of U pD a (see Figure 7 and the Appendix).
Thus, the comparison between our results and the observed

U pD a profile is not fully conclusive. Marsch & Livi (1987)
compared theoretical thresholds of the FM/W instability with
observed alpha-particle beams in the solar wind. However, this
study has not taken into account the effect of temperature
anisotropies on the thresholds of beam-driven instabilities,
which we find to be an important parameter.

As the alpha particles decelerate, bulk-flow kinetic energy is
converted into wave energy and thermal energy. Because
waves cascade and dissipate in the solar wind, we expect that
Qflow is in effect a heating rate that results from alpha-particle
deceleration. As we show in Figure 5, Qflow is comparable to
the total empirical proton heating rate, denoted Qp, at
r 0.42 AU , and Qflow exceeds the total alpha-particle heating
rate at r0.29 AU 1 AU< < , indicating that alpha-particle
deceleration is an important heating mechanism in the inner
heliosphere (cf Borovsky & Gary 2014; Feldman 1979;
Šafránková et al. 2013; Schwartz et al. 1981). Moreover, the
increase in Q Qflow p from 1 4 to 1 as r decreases from1 AU
to 0.29 AU suggests that alpha-particle deceleration continues
to be an important heating mechanism at r 0.29 AU< , the
region that will be explored by Solar Probe Plus. In Figure 8,
we show that Qflow is much less than Qp at r 1.5 AU> , and
that Qflow is comparable to the alpha-particle heating rate at

r1.5 AU 2.2 AU< < , which supports the argument of
Reisenfeld et al. (2001) that alpha-particle deceleration is an
important heating mechanism for alpha particles over at least
the inner portion of the Ulysses orbit. On the other hand, we
find that Q 0flow = along the Ulysses trajectory at r 3.3 AU> ,
because at these radii the rotational force decelerates the alpha
particles below the minimum drift speed needed to excite
instabilities, and because deceleration by the rotational force
does not reduce the bulk-flow kinetic energy of the plasma.

Regarding the azimuthal velocities of the ions, we find that
the inclusion of differentially flowing alpha particles in our
solar-wind model leads to a substantial increase in the
azimuthal velocities of both alpha particles and protons, Uaf
and Upf, relative to zero-torque solutions in which alpha-
particles are neglected (Figure 3). The signs ofUaf andUpf are
the same at the effective co-rotation radius r r R10eff=  ,
but are opposite at the heliocentric distances exceeding
0.29 AU on which we focus.
Finally, our model of the spiral interplanetary magnetic field

differs from Parker’s (1958) in two ways. First, we assume that
there is no net torque on the plasma beyond the effective co-
rotation radius reff (which we take to be located at
r r R10eff= = ). In contrast, Parker (1958) takesUpf to be
independent of r. Second, because the inclusion of differen-
tially flowing alpha particles modifies Upf, it also modifies the
angle By between r̂ and B. However, both of these effects are
minor, and our value of By is very close to Parker’s (1958).
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Mallet for helpful discussions. This work was supported by
grant NNX11AJ37G from NASA’s Heliophysics Theory
Program, NASA grant NNX12AB27G, NSF/DOE grant
AGS-1003451, NSF grant AGS-1258998, and DOE grant
DE-FG02-07-ER46372.

APPENDIX
DEPENDENCE OF THE INSTABILITY THRESHOLDS

Ut1 AND Ut2 ON T Ta a^ ∥

The A/IC and FM/W instability thresholds Ut1 and Ut2 in
Equations (24) and (25) depend on the temperature anisotropy
of the alpha particles. To illustrate this dependence, we
consider temperature profiles of the form

T T
r

1 AU
(A1)0 ⎜ ⎟⎛

⎝
⎞
⎠=a

a

^ ^

- ^

and

T T
r

1 AU
(A2)0 ⎜ ⎟⎛

⎝
⎞
⎠=a

a-

∥ ∥
∥

with two new sets of parameters T 0^ , T 0∥ , a^ and a∥, denoted
parameter sets A and B, whose values are given in Table A1 .
Like the temperature profiles considered in Section 4, these
new profiles are in approximate agreement with the Helios
observations of Marsch et al. (1982b).
In Figure A1 , we show the thresholds of both the A/IC and

FM/W instabilities given in Equations (24) and (25) when we
re-calculate the numerical solution presented in Section 4 using
parameter sets A and B instead of Equations (50) and (51). In
Figure A2 , we show the profiles of Qflow in these new
solutions. We find that the Ut1, Ut2, and Qflow profiles for
parameter set A are similar to the corresponding profiles in

Table A1
Parameters in the Temperature Profiles in Equations (A1) and (A2)

Parameter Set T 10 K0
5

^ T 10 K0
5

∥ a^ a∥

A 7.0 8.0 1.40 1.20
B 6.0 9.0 1.37 1.155
Section 4 7.0 8.0 1.37 1.155
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Section 4, but the profiles for parameter set B differ
significantly. Thus, the T a^ and T a∥ profiles are an important
source of uncertainty in our model.

For completeness, we also show in Figure A2 the values of
Qflow under the (unrealistic for the reasons given in
Section 3.1.1) assumption that

U U . (A3)p t1D =a

Given Equation (A3), the value of Qflow for parameter set A is
significantly smaller than in our original solution in Section 4.
For parameter set B, Equation (A3) leads to a value of Qflow

that is smaller than in the model presented in Section 4 at
small r.
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dash–dotted line shows our original solution from Section 4.

14

The Astrophysical Journal, 806:157 (15pp), 2015 June 20 Verscharen et al.

http://dx.doi.org/10.1029/2002JA009337
http://adsabs.harvard.edu/abs/2002JGR...107.1453A
http://dx.doi.org/10.1103/PhysRevLett.103.211101
http://adsabs.harvard.edu/abs/2009PhRvL.103u1101B
http://dx.doi.org/10.1029/JA082i010p01487
http://adsabs.harvard.edu/abs/1977JGR....82.1487B
http://adsabs.harvard.edu/abs/1977JGR....82.1487B
http://adsabs.harvard.edu/abs/1981sowi.conf..326B
http://adsabs.harvard.edu/abs/2014JGR...119.5210B
http://dx.doi.org/10.1088/0004-637X/774/2/96
http://adsabs.harvard.edu/abs/2013ApJ...774...96B
http://dx.doi.org/10.1088/2041-8205/777/1/L3
http://adsabs.harvard.edu/abs/2013ApJ...777L...3B
http://dx.doi.org/10.1088/0004-637X/720/1/548
http://adsabs.harvard.edu/abs/2010ApJ...720..548C
http://dx.doi.org/10.1088/0004-637X/743/2/197
http://adsabs.harvard.edu/abs/2011ApJ...743..197C
http://adsabs.harvard.edu/abs/2011ApJ...743..197C
http://dx.doi.org/10.1088/0004-637X/707/2/1659
http://adsabs.harvard.edu/abs/2009ApJ...707.1659C
http://dx.doi.org/10.1088/0004-637X/720/1/503
http://adsabs.harvard.edu/abs/2010ApJ...720..503C
http://dx.doi.org/10.1088/0004-637X/776/1/45
http://adsabs.harvard.edu/abs/2013ApJ...776...45C
http://dx.doi.org/10.1029/2003JA010053
http://adsabs.harvard.edu/abs/2004JGR...109.4205C
http://dx.doi.org/10.1063/1.1406939
http://adsabs.harvard.edu/abs/2001PhPl....8.4713C
http://dx.doi.org/10.1098/rspa.1956.0116
http://adsabs.harvard.edu/abs/1956RSPSA.236..112C
http://dx.doi.org/10.1088/0004-637X/702/2/1604
http://adsabs.harvard.edu/abs/2009ApJ...702.1604C
http://adsabs.harvard.edu/abs/2009ApJ...702.1604C
http://dx.doi.org/10.1029/94JA00272
http://adsabs.harvard.edu/abs/1994JGR....9911225D
http://adsabs.harvard.edu/abs/1994JGR....9911225D
http://dx.doi.org/10.1063/1.1692854
http://adsabs.harvard.edu/abs/1970PhFl...13.2710D
http://dx.doi.org/10.1029/JA086iA01p00153
http://adsabs.harvard.edu/abs/1981JGR....86..153D
http://dx.doi.org/10.1029/RG017i007p01743
http://adsabs.harvard.edu/abs/1979RvGSP..17.1743F
http://dx.doi.org/10.1029/2002JA009654
http://adsabs.harvard.edu/abs/2003JGR...108.1068G
http://dx.doi.org/10.1029/2000JA000049
http://adsabs.harvard.edu/abs/2000JGR...10520989G
http://dx.doi.org/10.1029/2000GL000019
http://adsabs.harvard.edu/abs/2000GeoRL..27.1355G
http://dx.doi.org/10.1029/GL009i004p00431
http://adsabs.harvard.edu/abs/1982GeoRL...9..431G
http://dx.doi.org/10.1029/1999GL003637
http://adsabs.harvard.edu/abs/2000GeoRL..27...53G
http://adsabs.harvard.edu/abs/2000GeoRL..27...53G
http://dx.doi.org/10.1029/2011JA016674
http://adsabs.harvard.edu/abs/2011JGR...116.9105H
http://dx.doi.org/10.1029/2006GL025925
http://adsabs.harvard.edu/abs/2006GeoRL..33.9101H
http://adsabs.harvard.edu/abs/2006GeoRL..33.9101H
http://dx.doi.org/10.1029/2008JA013416
http://adsabs.harvard.edu/abs/2008JGR...1131.109H
http://dx.doi.org/10.1002/jgra.50540
http://adsabs.harvard.edu/abs/2013JGR...118.5421H
http://dx.doi.org/10.1029/JA079i010p01357
http://adsabs.harvard.edu/abs/1974JGR....79.1357H
http://dx.doi.org/10.1029/JA086iA13p11463
http://adsabs.harvard.edu/abs/1981JGR....8611463H
http://dx.doi.org/10.1029/JA088iA09p07253
http://adsabs.harvard.edu/abs/1983JGR....88.7253H
http://dx.doi.org/10.1029/2001JA000270
http://adsabs.harvard.edu/abs/2002JGR...107.1147H
http://dx.doi.org/10.1029/GL016i008p00919
http://adsabs.harvard.edu/abs/1989GeoRL..16..919H
http://dx.doi.org/10.1088/0004-637X/788/1/35
http://adsabs.harvard.edu/abs/2014ApJ...788...35H
http://dx.doi.org/10.1029/JA087iA07p05023
http://adsabs.harvard.edu/abs/1982JGR....87.5023I
http://dx.doi.org/10.1029/JA088iA05p03923
http://adsabs.harvard.edu/abs/1983JGR....88.3923I
http://dx.doi.org/10.1086/521220
http://adsabs.harvard.edu/abs/2007ApJ...668..546I
http://dx.doi.org/10.1088/0004-637X/696/1/591
http://adsabs.harvard.edu/abs/2009ApJ...696..591I
http://dx.doi.org/10.1029/2001GL013509
http://adsabs.harvard.edu/abs/2001GeoRL..28.4421J
http://dx.doi.org/10.1029/2002GL015128
http://adsabs.harvard.edu/abs/2002GeoRL..29.1839K
http://dx.doi.org/10.1103/PhysRevLett.101.261103
http://adsabs.harvard.edu/abs/2008PhRvL.101z1103K
http://dx.doi.org/10.1103/PhysRevLett.110.091102
http://adsabs.harvard.edu/abs/2013PhRvL.110i1102K
http://adsabs.harvard.edu/abs/2013PhRvL.110i1102K
http://dx.doi.org/10.1002/2013JA019529
http://adsabs.harvard.edu/abs/2014JGR...119.3267L
http://dx.doi.org/10.1086/513866
http://adsabs.harvard.edu/abs/2007ApJ...661..593L
http://dx.doi.org/10.1051/0004-6361:20054624
http://adsabs.harvard.edu/abs/2006A&amp;A...456..359L
http://dx.doi.org/10.1029/2005JA011303
http://adsabs.harvard.edu/abs/2006JGR...111.8106L
http://dx.doi.org/10.1029/1999JA000259
http://adsabs.harvard.edu/abs/2000JGR...105.7483L
http://dx.doi.org/10.1029/2006JA011752
http://adsabs.harvard.edu/abs/2006JGR...111.9101L
http://dx.doi.org/10.1007/BF00174545
http://adsabs.harvard.edu/abs/1979SoPh...63..411M
http://adsabs.harvard.edu/abs/1979SoPh...63..411M
http://adsabs.harvard.edu/abs/1986A&amp;A...164...77M
http://dx.doi.org/10.1029/2003JA010330
http://adsabs.harvard.edu/abs/2004JGR...109.4102M
http://dx.doi.org/10.1029/JA087iA07p05030
http://adsabs.harvard.edu/abs/1982JGR....87.5030M
http://dx.doi.org/10.1029/JA092iA07p07263
http://adsabs.harvard.edu/abs/1987JGR....92.7263M
http://dx.doi.org/10.1029/JA088iA04p02982
http://adsabs.harvard.edu/abs/1983JGR....88.2982M
http://adsabs.harvard.edu/abs/1983JGR....88.2982M
http://dx.doi.org/10.1029/JA089iA07p05386
http://adsabs.harvard.edu/abs/1984JGR....89.5386M
http://dx.doi.org/10.1029/JA087iA01p00035
http://adsabs.harvard.edu/abs/1982JGR....87...35M
http://dx.doi.org/10.1029/JA087iA01p00052
http://adsabs.harvard.edu/abs/1982JGR....87...52M
http://dx.doi.org/10.1103/PhysRevLett.107.201101
http://adsabs.harvard.edu/abs/2011PhRvL.107t1101M
http://dx.doi.org/10.1088/0004-637X/748/2/137
http://adsabs.harvard.edu/abs/2012ApJ...748..137M
http://dx.doi.org/10.1002/jgra.50320
http://adsabs.harvard.edu/abs/2013JGR...118.2771M


Matteini, L., Landi, S., Hellinger, P., et al. 2007, GeoRL, 34, 20105
McChesney, J. M., Stern, R. A., & Bellan, P. M. 1987, PhRvL, 59, 1436
McComas, D. J., Barraclough, B. L., Funsten, H. O., et al. 2000, JGR, 105,

10419
McKenzie, J. F., & Axford, W. I. 1983, JGR, 88, 7251
McKenzie, J. F., Ip, W.-H., & Axford, W. I. 1979, Ap&SS, 64, 183
McKenzie, J. F., & Marsch, E. 1982, Ap&SS, 81, 295
Mestel, L. 1968, MNRAS, 138, 359
Miyake, W., & Mukai, T. 1987, P&SS, 35, 185
Ofman, L., Gary, S. P., & Viñas, A. 2002, JGR, 107, 1461
Parker, E. N. 1958, ApJ, 128, 664
Perez, J. C., & Chandran, B. D. G. 2013, ApJ, 776, 124
Pizzo, V., Schwenn, R., Marsch, E., et al. 1983, ApJ, 271, 335
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,

Numerical Recipes in FORTRAN. The Art of Scientific Computing (New
York: Cambridge Univ. Press)

Reisenfeld, D. B., Gary, S. P., Gosling, J. T., et al. 2001, JGR, 106, 5693

Revathy, P. 1978, JGR, 83, 5750
Samsonov, A. A., Alexandrova, O., Lacombe, C., Maksimovic, M., &

Gary, S. P. 2007, AnGp, 25, 1157
Samsonov, A. A., & Pudovkin, M. I. 2000, JGR, 105, 12859
Scarf, F. L., & Fredricks, R. W. 1968, JGR, 73, 1747
Schwartz, S. J., Feldman, W. C., & Gary, S. P. 1981, JGR, 86, 541
Schwartz, S. J., & Marsch, E. 1983, JGR, 88, 9919
Sharma, P., Hammett, G. W., Quataert, E., & Stone, J. M. 2006, ApJ,

637, 952
Thieme, K. M., Marsch, E., & Rosenbauer, H. 1989, JGR, 94, 2673
Tu, C.-Y., & Marsch, E. 1995, SSRv, 73, 1
Šafránková, J., Němeček, Z., Cagaš, P., et al. 2013, ApJ, 778, 25
Verscharen, D., Bourouaine, S., & Chandran, B. D. G. 2013a, ApJ, 773, 163
Verscharen, D., Bourouaine, S., Chandran, B. D. G., & Maruca, B. A. 2013b,

ApJ, 773, 8
Verscharen, D., & Chandran, B. D. G. 2013, ApJ, 764, 88
Weber, E. J., & Davis, L., Jr. 1967, ApJ, 148, 217

15

The Astrophysical Journal, 806:157 (15pp), 2015 June 20 Verscharen et al.

http://dx.doi.org/10.1029/2007GL030920
http://adsabs.harvard.edu/abs/2007GeoRL..3420105M
http://dx.doi.org/10.1103/PhysRevLett.59.1436
http://adsabs.harvard.edu/abs/1987PhRvL..59.1436M
http://dx.doi.org/10.1029/1999JA000383
http://adsabs.harvard.edu/abs/2000JGR...10510419M
http://adsabs.harvard.edu/abs/2000JGR...10510419M
http://dx.doi.org/10.1029/JA088iA09p07251
http://adsabs.harvard.edu/abs/1983JGR....88.7251M
http://dx.doi.org/10.1007/BF00640041
http://adsabs.harvard.edu/abs/1979Ap&amp;SS..64..183M
http://dx.doi.org/10.1007/BF00676154
http://adsabs.harvard.edu/abs/1982Ap&amp;SS..81..295M
http://dx.doi.org/10.1093/mnras/138.3.359
http://adsabs.harvard.edu/abs/1968MNRAS.138..359M
http://dx.doi.org/10.1016/0032-0633(87)90087-0
http://adsabs.harvard.edu/abs/1987P&amp;SS...35..185M
http://dx.doi.org/10.1029/2002JA009432
http://adsabs.harvard.edu/abs/2002JGR...107.1461O
http://dx.doi.org/10.1086/146579
http://adsabs.harvard.edu/abs/1958ApJ...128..664P
http://dx.doi.org/10.1088/0004-637X/776/2/124
http://adsabs.harvard.edu/abs/2013ApJ...776..124P
http://dx.doi.org/10.1086/161200
http://adsabs.harvard.edu/abs/1983ApJ...271..335P
http://dx.doi.org/10.1029/2000JA000317
http://adsabs.harvard.edu/abs/2001JGR...106.5693R
http://dx.doi.org/10.1029/JA083iA12p05750
http://adsabs.harvard.edu/abs/1978JGR....83.5750R
http://dx.doi.org/10.5194/angeo-25-1157-2007
http://adsabs.harvard.edu/abs/2007AnGeo..25.1157S
http://dx.doi.org/10.1029/2000JA900009
http://adsabs.harvard.edu/abs/2000JGR...10512859S
http://dx.doi.org/10.1029/JA073i005p01747
http://adsabs.harvard.edu/abs/1968JGR....73.1747S
http://dx.doi.org/10.1029/JA086iA02p00541
http://adsabs.harvard.edu/abs/1981JGR....86..541S
http://dx.doi.org/10.1029/JA088iA12p09919
http://adsabs.harvard.edu/abs/1983JGR....88.9919S
http://dx.doi.org/10.1086/498405
http://adsabs.harvard.edu/abs/2006ApJ...637..952S
http://adsabs.harvard.edu/abs/2006ApJ...637..952S
http://dx.doi.org/10.1029/JA094iA03p02673
http://adsabs.harvard.edu/abs/1989JGR....94.2673T
http://dx.doi.org/10.1007/BF00748891
http://adsabs.harvard.edu/abs/1995SSRv...73....1T
http://dx.doi.org/10.1088/0004-637X/778/1/25
http://adsabs.harvard.edu/abs/2013ApJ...778...25S
http://dx.doi.org/10.1088/0004-637X/773/2/163
http://adsabs.harvard.edu/abs/2013ApJ...773..163V
http://dx.doi.org/10.1088/0004-637X/773/1/8
http://adsabs.harvard.edu/abs/2013ApJ...773....8V
http://dx.doi.org/10.1088/0004-637X/764/1/88
http://adsabs.harvard.edu/abs/2013ApJ...764...88V
http://dx.doi.org/10.1086/149138
http://adsabs.harvard.edu/abs/1967ApJ...148..217W

	1. INTRODUCTION
	2. THE HEATING POWER THAT RESULTS FROM ALPHA-PARTICLE DECELERATION
	3. SOLAR-WIND MODEL WITH AZIMUTHAL VELOCITIES AND DIFFERENTIAL FLOW
	3.1. Determination of &#x00394;U&#x003B1;p
	3.1.1. Instability Thresholds
	3.1.2. The Rotational Force
	3.1.3. Putting It All Together: the Combined Action of Instabilities and the Rotational Force

	3.2. Method of Solution

	4. NUMERICAL SOLUTION FOR THE INNER HELIOSPHERE AT ZERO HELIOGRAPHIC LATITUDE
	4.1. Proton and Alpha-particle Velocities
	4.2. The Parker Spiral Field
	4.3. Heating from Alpha-particle Deceleration

	5. NUMERICAL SOLUTIONS FOR THE OUTER HELIOSPHERE AT NONZERO HELIOGRAPHIC LATITUDE
	6. THE COASTING APPROXIMATION
	7. CONCLUSION
	APPENDIXDEPENDENCE OF THE INSTABILITY THRESHOLDS Ut1 AND Ut2 ON T&#x022A5;&#x003B1;/T&#x02225;&#x003B1;
	REFERENCES



