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Abstract

This paper considers a new family of variational distributions motivated by Sklar’s
theorem. This family is based on new copula-like densities on the hypercube with
non-uniform marginals which can be sampled efficiently, i.e. with a complexity
linear in the dimension d of the state space. Then, the proposed variational densi-
ties that we suggest can be seen as arising from these copula-like densities used as
base distributions on the hypercube with Gaussian quantile functions and sparse
rotation matrices as normalizing flows. The latter correspond to a rotation of the
marginals with complexity O(d log d). We provide some empirical evidence that
such a variational family can also approximate non-Gaussian posteriors and can
be beneficial compared to Gaussian approximations. Our method performs largely
comparably to state-of-the-art variational approximations on standard regression
and classification benchmarks for Bayesian Neural Networks.

1 Introduction

Variational inference [29, 68, 4] aims at performing Bayesian inference by approximating an in-
tractable posterior density π with respect to the Lebesgue measure on Rd, based on a family of
distributions which can be easily sampled from. More precisely, this kind of inference posits some
variational family Q of densities (qξ)ξ∈Ξ with respect to the Lebesgue measure and intends to find a
good approximation qξ? belonging to Q by minimizing the Kullback-Leibler (KL) with respect to π
over Q, i.e. ξ? ≈ arg minξ∈Ξ KL(qξ|π). Further, suppose that π(x) = e−U(x)/Z with U : Rd → R
measurable and Z =

∫
Rd e−U(x)dx <∞ is an unknown normalising constant. Then, for any ξ ∈ Ξ,

KL(qξ|π) = −
∫
Rd
qξ(x) log

π(x)

qξ(x)
dx = −Eqξ(x) [−U(x)− log qξ(x)] + log Z . (1)

Since Z does not depend on qξ, minimizing ξ 7→ KL(qξ|π) is equivalent to maximizing ξ 7→ log Z−
KL(qξ|π). A standard example is Bayesian inference over latent variables x having a prior density
π0 for a given likelihood function L(y1:n|x) and n observations y1:n = (y1, . . . , yn). The target
density is the posterior p(x|y1:n) with U(x) = − log π0(x) − logL(y1:n|x) and the objective that
is commonly maximized,

L(ξ) = Eqξ(x)

[
log π0(x) + logL(y1:n|x)− log qξ(x)

]
(2)
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is called a variational lower bound or ELBO. One of the main features of variational inference meth-
ods is their ability to be scaled to large datasets using stochastic approximation methods [24] and
applied to non-conjugate models by using Monte Carlo estimators of the gradient [57, 35, 60, 63, 38].
However, the approximation quality hinges on the expressiveness of the distributions in Q and re-
strictive assumptions on the variational family that allow for efficient computations such as mean-
field families, tend to be too restrictive to recover the target distribution. Constructing an approx-
imation family Q that is both flexible to closely approximate the density of interest and at the
same time computationally efficient has been an ongoing challenge. Much effort has been dedi-
cated to find flexible and rich enough variational approximations, for instance by assuming a Gaus-
sian approximation with different types of covariance matrices. For example, full-rank covariance
matrices have been considered in [1, 28, 63] and low-rank perturbations of diagonal matrices in
[1, 46, 53, 47]. Furthermore, covariance matrices with a Kronecker structure have been proposed in
[42, 70]. Besides, more complex variational families have been suggested: such as mixture models
[18, 22, 46, 40, 39], implicit models [45, 26, 67, 69, 64], where the density of the variational distri-
bution is intractable. Finally, variational inference based on normalizing flows has been developed
in [59, 34, 65, 43, 3]. As a special case and motivated by Sklar’s theorem [62], variational infer-
ence based on families of copula densities and one-dimensional marginal distributions have been
considered by [66] where it is assumed that the copula is a vine copula [2] and by [23] where the
copula is assumed to be a Gaussian copula together with non-parametric marginals using Bernstein
polynomials. Recall that c : [0, 1]

d → R+ is a copula if and only if its marginals are uniform on
[0, 1], i.e.

∫
[0,1]d−1 c(u1, . . . , ud)du1 · · · dui−1dui+1 · · · dud = 1[0,1](ui) for any i ∈ {1, . . . , d}

and ui ∈ R. In the present work, we pursue these ideas but propose instead of using a family of
copula densities, simply a family of densities {cθ : [0, 1]

d → R+}θ∈Θ on the hypercube [0, 1]
d.

This idea is motivated from the fact that we are able to provide such a family which is both flexible
and allow efficient computations.
The paper is organised as follow. In Section 2, we recall how one can sample more expressive dis-
tributions and compute their densities using a sequence of bijective and continuously differentiable
transformations. In particular, we illustrate how to apply this idea in order to sample from a tar-
get density by first sampling a random variable U from its copula density c and then applying the
marginal quantile function to each component of U . A new family of copula-like densities on the
hypercube is constructed in Section 3 that allow for some flexibility in their dependence structure,
while enjoying linear complexity in the dimension of the state space for generating samples and
evaluating log-densities. A flexible variational distribution on Rd is introduced in Section 4 by sam-
pling from such a copula-like density and then applying a sequence of transformations that include
1
2d log d rotations over pairs of coordinates. We illustrate in Section 6 that for some target densi-
ties arising for instance as the posterior in a logistic regression model, the proposed density allows
for a better approximation as measured by the KL-divergence compared to a Gaussian density. We
conclude with applying the proposed methodology on Bayesian Neural Network models.

2 Variational Inference and Copulas

In order to obtain expressive variational distributions, the variational densities can be transformed
through a sequence of invertible mappings, termed normalizing flows [60]. To be more specific,
assume a series {Tt : Rd → Rd}Tt=1 of C1-diffeomorphisms and a sample X0 ∼ q0, where q0 is a
density function on Rd. Then the random variable XT = TT ◦ TT−1 ◦ · · · ◦ T1(X0) has a density
qT that satisfies

log qT (xT ) = log q0(x)−
T∑
t=1

log det

∣∣∣∣∂Tt(xt)

∂xt

∣∣∣∣ , (3)

with xt = Tt ◦ Tt−1 ◦ · · · ◦ T1(x). To allow for scalable inferences with such densities, the
transformations Tt must be chosen so that the determinant of their Jacobians can be computed
efficiently. One possibility that satisfies this requirement is to choose volume-preserving flows
that have a Jacobian-determinant of one. This can be achieved by considering transformations
Tt : x 7→ Htx whereHt is an orthogonal matrix as proposed in [65] using a Householder-projection
matrix Ht.
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An alternative construction of the same form can be used to construct a density using Sklar’s theorem
[62, 48]. It establishes that given a target density π on (Rd,B(Rd)), there exists a continuous func-
tion C : [0, 1]

d → [0, 1] and a probability space supporting a random variable U = (U1, . . . , Ud)

valued in [0, 1]
d, such that for any x ∈ Rd, and u ∈ [0, 1]

d,

P (U1 6 u1, · · · , Ud 6 ud) = C(u1, · · · , ud) ,
∫ x1

−∞
. . .

∫ xd

−∞
π(t)dt = C(F1(x1), . . . , Fd(xd))

(4)
where for any i ∈ {1, . . . , d}, Fi is the cumulative distribution function associated with πi, so
for any xi ∈ R, Fi(xi) =

∫ xi
−∞ πi(ti)dti and πi is the ith marginal of π, so for any xi ∈ R,

πi(xi) =
∫
Rd−1 π(x)dx1 · · · dxi−1dxi+1 · · · dxd. To illustrate how one can obtain such a con-

tinuous function C and random variable U , recall that πi is assumed to be absolutely continu-
ous with respect to the Lebesgue measure. Then for (X1, . . . , Xd) ∼ π, the random variable
U = G−1(X) = (F1(X1), . . . , Fd(Xd)), where G : [0, 1]

d → Rd, with

G : u 7→ (F−1
1 (u1), . . . , F−1

d (ud)), (5)

follows a law on the hypercube with uniform marginals. It can be readily shown that the cumulative
distribution function C of U is continuous and satisfies (4). Note that taking the derivative of (4)
yields

π(x) = c(F1(x1), . . . , Fd(xd))

d∏
i=1

πi(xi) ,

where c(u1, . . . , ud) = ∂
∂u1
· · · ∂

∂ud
C(u1, . . . , ud) is a copula density function by definition of C.

One possibility to approximate a target density π is then to consider a parametric family of copula
density functions (cθ)θ∈Θ for Θ ∈ Rpc and one parametric family of a d-dimensional vector of
density functions (f1, . . . , fd)φ∈Φ : Rd → Rd for Φ ⊂ Rpf , and try to estimate θ ∈ Θ and φ ∈ Φ
to get a good approximation of π via variational Bayesian methods. This idea was proposed by [23]
and [66], where Gaussian and vine copulas were used, respectively. The main hurdle for using such
family is their computational cost which can be prohibitive since the dimension of Θ is of order d2.
We remark that for latent Gaussian models with certain likelihood functions, a Gaussian variational
approximation can scale linearly in the number of observations by using dual variables, see [54, 31].

3 Copula-like Density

In this paper, we consider another approach which relies on a copula-like density function on [0, 1]
d.

Indeed, instead of an exact copula density function on [0, 1]
d with uniform marginals, we consider

simply a density function on [0, 1]
d which allows to have a certain degree of freedom in the number

of parameters we want to use. The family of copula-like densities that we consider is given by

cθ(v1, . . . , vd) =
Γ(α∗)

B(a, b)

[
d∏
`=1

{
vα`−1
`

Γ(α`)

}]
(v∗)

−α∗
·
(

max
i∈{1,...,d}

vi

)a [(
1− max

i∈{1,...,d}
vi

)b−1
]
,

(6)

with the notation v∗ =
∑d
i=1 vi and α∗ =

∑d
i=1 αi. Therefore θ = (a, b, (αi)i∈{1,...,d}) ∈ (R∗+ ×

R∗+ × (R∗+)d) = Θ. The following probabilistic construction is proven in Appendix A to allow for
efficient sampling from the proposed copula-like density.

Proposition 1. Let θ ∈ Θ and suppose that

1. (W1, . . . ,Wd) ∼ Dirichlet(α1, . . . , αd);

2. G ∼ Beta(a, b);

3. (V1, . . . , Vd) = (GW1/U
∗, . . . , GWd/W

∗), where W ∗ = maxi∈{1,...,d}Wi.

Then the distribution of (V1, . . . , Vd) has density with respect to the Lebesgue measure given by (6).
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The proposed distribution builds up on Beta distributions, as they are the marginals of the Dirichlet
distributed random variableW ∼ Dir(α), which is then multiplied with an independent random vari-
ableG ∼ Beta(a, b). The resulting random variable Y = WG follows a Beta-Liouville distribution,
which allows to account for negative dependence, inherited from the Dirichlet distribution through
a Beta stick-breaking construction, as well as positive dependence via a common Beta-factor. More
precisely, one obtains

Cor(Yi, Yj) = cij

(
E[G2]

α? + 1
− E[G]2

α?

)
,

for some cij > 0 and α? =
∑d
k=1 αk, cf. [13]. Proposition 1 shows that one can transform the

Beta-Liouville distribution living within the simplex to one that has support on the full hypercube,
while also allowing for efficient sampling and log-density evaluations.

Now note that also V − = (1 − V1, . . . 1 − Vd) is a sample on the hypercube if V ∼ cθ, as is the
convex combination U = (U1, . . . , Ud), where Ui = δiVi + (1− δi)(1−Vi) for any δ ∈ [0, 1]

d. Put
differently, we can write U = H (V ), where

H : v 7→ (1− δ) Id +{diag(2δ)− Id}v , (7)

and Id is the identity operator. It is straightforward to see that H is a C1-diffeomorphism for
δ ∈ ([0, 1]\{0.5})d from the hypercube into I1×· · ·×Id, where Ii = [δi, 1− δi] if δi ∈ [0, 0.5) and
Ii = [1− δi, δi] if δi ∈ (0.5, 1]. Note that the Jacobian-determinant of H is efficiently computable
and is simply equal to |

∏d
i=1(2δi − 1)| for δ ∈ [0, 1]

d.

We suggest to take initially at random δ ∈ [0, 1]
d for the transformation H such that

P(δi = ε) = p and P(δi = 1− ε) = 1− p (8)

with p, ε ∈ (0, 1). In our experiments, we set ε = 0.01 and p = 1/2. We found that choosing
a different (large enough) value of ε tends to yield no large difference, as this choice will get bal-
anced by a different value of the standard deviation of the Gaussian marginal transformation. The
motivation to consider U = H (V ) with V ∼ cθ was first numerical stability since we need to
compute quantile functions only on the interval [ε, 1 − ε] using this transformation. Second, this
transformation can increase the flexibility of our proposed family. We found empirically that the
components of V ∼ cθ tend to be non-negative in higher dimensions. However, using sometimes
(more) the antithetic component of V by considering U = H (V ), the transformed density can also
describe negative dependencies in high dimensions. What comes to mind to obtain a flexible density
is then to either optimize over the parameter δ parametrising the transformation H or consider-
ing δ as an auxiliary variable in the variational density, resorting to techniques developed for such
hierarchical families, see for instance [58, 69, 64]. However, this proved challenging in an initial
attempt, since for δi = 0.5, the transformation H becomes non-invertible, while restricting δ on say
δ ∈ {ε, 1− ε}d, ε ≈ 0, seemed less easy to optimize. Consequently, we keep δ fixed after sampling
it initially according to (8). A sensible choice was p = 1/2 since it leads to a balanced proportion
of components of δ equal to ε and 1− ε. However, the sampled value of δ might not be optimal and
we illustrate in the next section how the variational density can be made more flexible.

4 Rotated Variational Density

We propose to apply rotations to the marginals in order to improve on the initial orientation that
results from the sampled values of δ. Rotated copulas have been used before in low dimensions, see
for instance [36], however, the set of orthogonal matrices has d(d−1)/2 free parameters. We reduce
the number of free parameters by considering only rotation matricesRd that are given as a product of
d/2 log d Givens rotations, following the FFT-style butterfly-architecture proposed in [16], see also
[44] and [49] where such an architecture was used for approximating Hessians and kernel functions,
respectively. Recall that a Givens rotation matrix [21] is a sparse matrix with one angle as its param-
eter that rotates two dimensions by this angle. If we assume for the moment that d = 2k, k ∈ N∗,
then we consider k rotation matrices denoted O1, . . .Ok where for any i ∈ {1, . . . , k}, Oi contains
d/2 independent rotations, i.e. is the product of d/2 independent Givens rotations. Givens rotations
are arranged in a butterfly architecture that provides for a minimal number of rotations so that all
coordinates can interact with one another in the rotation defined by Rd. For illustration, consider
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the case d = 4, where the rotation matrix is fully described using 4 − 1 parameters ν1, ν2, ν3 ∈ R
byR4 = O1O2 with

O1O2 =

c1 −s1 0 0
s1 c1 0 0
0 0 c3 −s3

0 0 s3 c3


c2 0 −s2 0

0 c2 0 −s2

s2 0 c2 0
0 s2 0 c2

 =

c1c2 −s1c2 −c1s2 s1s2

s1c2 c1c2 −s1s2 −c1ss
c3s2 −s3s2 c3c2 −s3cs
s3s2 c3s2 s3c2 c3c2

 ,
where ci = cos(νi) and si = sin(νi). We provide a precise recursive definition ofRd in Appendix B
where we also describe the case where d is not a power of two. In general, we have a computational
complexity of O(d log d), due to the fact that Rd is a product of O(log d) matrices each requiring
O(d) operations. Moreover, note that Rd is parametrized by d − 1 parameters (νi)i∈{1...d−1} and
each Oi can be implemented as a sparse matrix, which implies a memory complexity of O(d).
Furthermore, since Oi is orthonormal, we have O−1

i = O>i and |detOi| = 1.

To construct an expressive variational distribution, we consider as a base distribution q0 the proposed
copula-like density cθ. We then apply the transformations T1 = H and T2 = G . The operator G in
(5) is defined via quantile functions of densities f1, . . . , fd, for which we choose Gaussian densities
with parameter φf = (µ1, . . . , µd, σ

2
1 , . . . , σ

2
d) ∈ Rd ×Rd+. As a final transformation, we apply the

volume-preserving operator
T3 : x 7→ O1 · · · Olog dx (9)

that has parameter φR = (ν1, . . . , νd−1) ∈ Rd−1. Altogether, the parameter for the marginal-like
densities that we optimize over is φ = (φf , φR) and simulation from the variational density boils
down to the following algorithm.

Algorithm 1 Sampling from the rotated copula-like density.

1: Sample (V1, . . . , Vd) ∼ cθ using Proposition 1.
2: Set U = H (V ) where H is defined in (7).
3: Set X ′ = G (U), where G is defined in (5).
4: Set X = T3, where T3 is defined in (9).

Note that we apply the rotations after we have transformed samples from the hypercube into Rd, as
the hypercube is not closed under Givens rotations. The variational density can then be evaluated
using the normalizing flow formula (3). We optimize the variational lower bound L in (2) using
reparametrization gradients, proposed by [35, 60, 63], but with an implicit reparametrization, cf.
[14], for Dirichlet and Beta distributions. Such reparametrized gradients for Dirichlet and Beta
distributions are readily available for instance in tensorflow probability [9]. Using Monte Carlo
samples of unbiased gradient estimates, one can optimize the variational bound using some version
of stochastic gradient descent. A more formal description is given in Appendix C.

We would like to remark that such sparse rotations can be similarly applied to proper copulas. While
there is no additional flexibility by rotating a full-rank Gaussian copula, applying such rotations to
a Gaussian copula with a low-rank correlation yields a Gaussian distribution with a more flexible
covariance structure if combined with Gaussian marginals. In our experiments, we therefore also
compare variational families constructed by sampling (V1, . . . , Vd) from an independence copula
in step 1 in Algorithm 1, i.e. Vi are independent and uniformly distributed on [0, 1] for any i ∈
{1, . . . , d}, which results approximately in a Gaussian variational distribution if the effect of the
transformation H is neglected. However, a more thorough analysis of such families is left for
future work. Similarly, transformations different from the sparse rotations in step 4 in Algorithm 1
can be used in combination with a copula-like base density. Whilst we include a comparison with a
simple Inverse Autoregressive Flow [34] in our experiments, a more exhaustive study of non-linear
transformations is beyond the scope of this work.

5 Related Work

Conceptually, our work is closely related to [66, 23]. It differs from [66] in that it can be applied in
high dimensions without having to search first for the most correlated variables using for instance
a sequential tree selection algorithm [11]. The approach in [23] considered a Gaussian dependence
structure, but has only been considered in low-dimensional settings. On a more computational side,
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our approach is related to variational inference with normalizing flows [59, 34, 65, 43, 3]. In con-
trast to these works that introduce a parameter-free base distribution commonly in Rd as the latent
state space, we also optimize over the parameters of the base distribution which is supported on
the hypercube instead, although distributions supported for instance on the hypersphere as a state
space have been considered in [7]. Moreover, such approaches have been often used in the context
of generative models using Variational Auto-Encoders (VAEs) [35], yet it is in principle possible to
apply the proposed variational copula-like inference in an amortized fashion for VAEs.
A somewhat similar copula-like construction in the context of importance sampling has been pro-
posed in [8]. However, sampling from this density requires a rejection step to ensure support on the
hypercube, which would make optimization of the variational bound less straightforward. Lastly,
[30] proposed a method to approximate copulas using mixture distributions, but these approxima-
tions have not been analysed neither in high dimensions nor in the context of variational inference.

6 Experiments

6.1 Bayesian Logistic Regression

Consider the target distribution π on (Rd,B(Rd)) arising as the posterior of a d-dimensional lo-
gistic regression, assuming a Normal prior π0 = N (0, τ−1I), τ = 0.01, and likelihood function
L(yi|x) = f(yix>ai), f(z) = 1/(1 + e−z) with n observations yi ∈ {−1, 1} and fixed covariates
ai ∈ Rd for i ∈ {1, . . . n}. We analyse a previously considered synthetic dataset where the poste-
rior distribution is non-Gaussian, yet it can be well approximated with our copula-like construction.
Concretely, we consider the synthetic dataset with d = 2 as in [50], Section 8.4 and [32] by gener-
ating 30 covariates a ∈ R2 from a Gaussian N ((1, 5)>, I) for instances in the first class, while we
generate 30 covariates fromN ((−5, 1)>, 1.12I) for instances in the second class. Samples from the
target distribution using a Hamiltonian Monte Carlo (HMC) sampler [12, 51] are shown in Figure 1a
and one observes non-Gaussian marginals that are positively correlated with heavy right tails. Using
a Gaussian variational approximation with either independent marginals or a full covariance matrix
as shown in Figure 1b does not adequately approximate the target distribution. Our copula-like con-
struction is able to approximate the target more closely, both without any rotations (Figure 1c) and
with a rotation of the marginals (Figure 1d). This is also supported by the ELBO obtained for the
different variational families given in Table 1.

Table 1: Comparison of the ELBO be-
tween different variational families for
the logistic regression experiment.

Variational family ELBO

Mean-field Gaussian -3.42
Full-covariance Gaussian -2.97
Copula-like without rotations -2.30
Copula-like with rotations -2.19

(a) (b) (c) (d)

Figure 1: Target density for logistic regression using a
HMC sampler in 1a with different variational approxi-
mations: Gaussian variational approximation with a full
covariance matrix in 1b, copula-like variational approxi-
mation without any rotation in 1c and copula-like varia-
tional approximation with a rotation in 1d.

6.2 Centred Horseshoe Priors

We illustrate our approach in a hierarchical Bayesian model that posits a priori a strong coupling of
the latent parameters. As an example, we consider a Horseshoe prior [6] that has been considered
in the variational Gaussian copula framework in [23]. To be more specific, consider the generative
model y|λ ∼ N (0, λ), with λ ∼ C+(0, 1), where C+ is a half-Cauchy distribution, i.e.X ∼ C+(0, b)
has the density p(x) ∝ 1R+

(x)/(x2 + b2) . Note that we can represent a half-Cauchy distri-
bution with Inverse Gamma and Gamma distributions using X ∼ C+(0, b) ⇐⇒ X2|Y ∼
IG(1/2, 1/Y );Y ∼ IG(1/2, 1/b2), see [52], with a rate parametrisation of the inverse gamma den-
sity p(x) ∝ 1R+

(x)xa−1e−b/x for X ∼ IG(a, b). We revisit the toy model in [23] fixing y = 0.01.
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The model thus writes in a centred form as η ∼ G(1/2, 1) and λ|η ∼ IG(1/2, η). Following [23], we
consider the posterior density on R2 of the log-transformed variables (x1, x2) = (log η1, log λ1). In
Figure 2, we show the approximate posterior distribution using a Gaussian family (2b) and a copula-
like family (2c), together with samples from a HMC sampler (2a). A copula-like density yields a
higher ELBO, see Table 2. The experiments in [23] have shown that a Gaussian copula with a non-
parametric mixture model fits the marginals more closely. To illustrate that it is possible to arrive
at a more flexible variational family by using a mixture of copula-like densities, we have used a
mixture of 3 copula-like densities in Figure 2d. Note that it is possible to accommodate multi-modal
marginals using a Gaussian quantile transformation with a copula-like density. Eventually, the flex-
ibility of the variational approximation can be increased using different complementary work. For
instance, one could use the new density within a semi-implicit variational framework [69] whose
parameters are the output of a neural network conditional on some latent mixing variable.

Table 2: Comparison of the ELBO be-
tween different variational families for
the centred horseshoe model.

Variational family ELBO

Mean-field Gaussian -1.24
Full-covariance Gaussian -0.04
Copula-like 0.04
3-mixture copula-like 0.08

(a) (b) (c) (d)

Figure 2: Target density for the horseshoe model using
a HMC sampler in 2a with different variational approxi-
mations: Gaussian variational approximation with a full
covariance matrix in 2b, copula-like variational approxi-
mation including a rotation in 2c and a mixture of three
copula-like densities with a one rotation and marginal-
like density in 2d.

6.3 Bayesian Neural Networks with Normal Priors

We consider an L-hidden layer fully-connected neural network where each layer l, 1 6 l 6 L + 1
has width dl and is parametrised by a weight matrix W l ∈ Rdl−1×dl and bias vector bl ∈ Rdl .
Let ξ ∈ Rd0 denote the input to the network and f be a point-wise non-linearity such as the ReLU
function f(a) = max{0, a} and define the activations al ∈ Rdl by al+1 =

∑
i h

l
iW

l
i· + bl for

l > 1, and the post-activations as hl = f(al) for l > 2, and h1 being the input vector. We consider
a regression likelihood function L(·|aL+2, σ) = N (aL+2, exp(0.5σ)), and denote the concatena-
tion of all parameters W , b and σ as x. We assume independent Normal priors for the entries
of the weight matrix and bias vector with mean 0 and variance σ2

0 . Furthermore, we assume that
log σ ∼ N (0, 16). Inference with the proposed variational family is applied on commonly con-
sidered UCI regression datasets, repeating the experimental set-up used in [15]. In particular, we
use neural networks with ReLU activation functions and one hidden layer of size 50 for all datasets
with the exception of the protein dataset that utilizes a hidden layer of size 100. We choose the
hyper-parameter σ2

0 ∈ {0.01, 0.1, 1., 10., 100.} that performed best on a validation dataset in terms
of its predictive log-likelihood. Optimization was performed using Adam [33] with a learning rate
of 0.002. We compare the predictive performance of a copula-like density cθ and an independent
copula as a base distribution in step 1 of Algorithm 1 and we apply different transformations T3 in
step 4 of Algorithm 1: a) the proposed sparse rotation defined in (9); b) T3 = Id; c) an affine au-
toregressive transformation T3(x) = {x− fµ(x)}exp(−fα(x)), see [34], also known as an inverse
autogressive flow (IAF). Here fµ and fα are autoregressive neural networks parametrized by µ and α
satisfying ∂fµ(x)i

∂xj
= ∂fα(x)i

∂xj
= 0 for i 6 j and which can be computed in a single forward pass by

properly masking the weights in the neural networks [17]. In our experiments, we use a one-hidden
layer fully-connected network with width dIAF

1 = 50 for fµ and fα. Note that for a d-dimensional
target density, the size of the weight matrices are of order d · dIAF

1 , implying a higher complexity
compared to the sparse rotation. We also compare the predictions against Bayes-by-Backprop [5]
using a mean-field model, with the results as reported in [47] for a mean-field Bayes-by-Backprop
and low-rank Gaussian approximation proposed therein called SLANG. Furthermore, we also report
the results for Dropout inference [15]. The test root mean-squared errors are given in Table 3 and
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Table 3: Variational approximations with transformations and different base distributions. Test root
mean-squared error for UCI regression datasets. Standard errors in parenthesis.

Copula-like Independent copula Copula-like Independent copula
with rotation with rotation with IAF with IAF

Boston 3.43 (0.22) 3.51 (0.30) 3.21 (0.27) 3.61 (0.28)
Concrete 5.76 (0.14) 6.00 (0.13) 5.41 (0.10) 5.82 (0.11)
Energy 0.55 (0.01) 2.28 (0.11) 0.53 (0.02) 1.30 (0.10)
Kin8nm 0.08 (0.00) 0.08 (0.00) 0.08 (0.00) 0.08 (0.00)
Naval 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Power 4.02 (0.04) 4.19 (0.04) 4.05 (0.04) 4.15 (0.04)
Wine 0.64 (0.01) 0.64 (0.01) 0.64 ( 0.01) 0.64 (0.01)
Yacht 1.35 (0.08) 1.38 (0.12) 0.96 (0.06) 1.25 (0.09)
Protein 4.20 (0.01) 4.51 (0.04) 4.31 (0.01) 4.51 (0.03)

Table 4: Copula-like variational approximation without rotations and benchmark results. Test root
mean-squared error for UCI regression datasets. Standard errors in parenthesis.

Copula-like Bayes-by-Backprop SLANG Dropout
without rotation results from [47] results from [47] results from [47]

Boston 3.22 (0.25) 3.43 (0.20) 3.21 (0.19) 2.97 (0.19)
Concrete 5.64 (0.14) 6.16 (0.13) 5.58 (0.12) 5.23 (0.12)
Energy 0.52 (0.02) 0.97 (0.09) 0.64 (0.04) 1.66 (0.04)
Kin8nm 0.08 (0.00) 0.08 (0.00) 0.08 (0.00) 0.10 (0.01)
Naval 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01)
Power 4.05 (0.04) 4.21 (0.03) 4.16 (0.04) 4.02 (0.04)
Wine 0.65 (0.01) 0.64 (0.01) 0.65 ( 0.01) 0.62 (0.01)
Yacht 1.23 (0.08) 1.13 (0.06) 1.08 (0.09) 1.11 (0.09)
Protein 4.31 (0.02) NA NA 4.27 (0.01)

Table 4; the predictive test log-likelihood can be find in the Appendix E in Table 6 and Table 7.
We can observe from Table 3 and Table 6 that using a copula-like base distribution instead of an
independent copula improves the predictive performance, using either rotations or IAF as the final
transformation. The same tables also indicate that for a given base distribution, the IAF tends to
outperform the sparse rotations slightly. Table 4 and Table 7 suggest that copula-like densities with-
out any transformation in the last step can be a competitive alternative to a benchmark mean-field
or Gaussian approximation. Dropout tends to perform slightly better. However, note that Dropout
with a Normal prior and a variational mixture distribution that includes a Dirac delta function as
one component gives rise to a different objective, since the prior is not absolutely continuous with
respect to the approximate posterior, see [25].

6.4 Bayesian Neural Networks with Structured Priors

We illustrate our approach on a larger Bayesian neural network. To induce sparsity for the weights in
the network, we consider a (regularised) Horseshoe prior [56] that has also been used increasingly
as an alternative prior in Bayesian neural network to allow for sparse variational approximations,
see [41, 19] for mean-field models and [20] for a structured Gaussian approximation. We consider
again an L-hidden layer fully-connected neural network where we assume that the weight matrix
W l ∈ Rdl−1×dl for any l ∈ {1, . . . , L+ 1} and any i ∈ {1, . . . , dl−1} satisfies a priori

W l
i·|λli, τ l, c ∼ N (0, (τ lλ̃li)

2I) ∝ N (0, (τ lλli))
2I)N (0, c2), (10)

where(λ̃i
l)2 = c2(λli)

2/(c2 + τ2(λli)
2), λli ∼ C+(0, 1), τ li ∼ C+(0, bτ ) and c2 ∼ IG(ν2 , ν

s2

2 ) for
some hyper-parameters bτ , ν, s2 > 0. The vector W (l)

i· represents all weights that interact with the
i-th input neuron. The first Normal factor in (10) is a standard Horseshoe prior with a per layer
global parameter τ l that adapts to the overall sparsity in layer l and shrinks all weights in this layer
to zero, due to the fact that C+(0, bτ ) allows for substantial mass near zero. The local shrinkage
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Table 5: MNIST prediction errors.
Variational approximation with Horseshoe prior and size 200× 200 Error Rate

Copula-like with rotations 1.70 %
Copula-like without rotations 1.78 %
Copula-like with IAF 2.04 %
Independent copula with IAF 2.88 %
Independent copula with rotations 2.90 %
Mean-field Gaussian 3.82 %
Copula-like without rotations and δi = 0.99 for all i ∈ {1, . . . , d} 5.70 %

parameter λli allow for signals in the i-th input neuron because C+(0, 1) is heavy-tailed. However,
this can leave large weights un-shrunk, and the second Normal factor in (10) induces a Student-
tν(0, s2) regularisation for weights far from zero, see [56] for details. We can rewrite the model in a
non-centred form [55], where the latent parameters are a priori independent, see also [41, 27, 19, 20]
for similar variational approximations. We write the model as ηli ∼ G(1/2, 1), λ̂li ∼ IG(1/2, 1),

κl ∼ G(1/2, 1/b2τ ), τ̂ l ∼ IG(1/2, 1), βli ∼ N (0, I), W l
i· = τ lλ̃liβ

l
i , τ

l =
√
τ̂ lκl, λli =

√
λ̂liη

l
i

and (λ̃li)
2 = c2(λli)

2/(c2 + (τ l)2(λli)
2). The target density is the posterior of these variables, after

applying a log-transformation if their prior is an (inverse) Gamma law.
We performed classification on MNIST using a 2-hidden layer fully-connected network where the
hidden layers are of size 200 each. Further details about the algorithmic details are given in Ap-
pendix D. Prediction errors for the variational families as considered in the preceding experiments
are given in Table 5. We again find that a copula-like density outperforms the independent copula.
Using a copula-like density without the rotation also performs competitively as long as one uses a
balanced amount of its antithetic component via the transformation H with parameter δ; ignoring
the transformation H or setting δi = 0.99 for all i ∈ {1, . . . , d} can limit the representative power
of the variational family and can result in high predictive errors. The neural network function for
the IAF considered here has two hidden layers of size 100 × 100. It can be seen that applying the
rotations can be beneficial compared to the IAF for the copula-like density, whereas the two transfor-
mations perform similarly for the independent base distribution. We expect that more ad-hoc tricks
can be used to adjust the rotations to some computational budget. For instance, one could include
additional rotations for a group of latent variables such as those within one layer. Conversely, one
could consider the series of sparse rotations O1, · · · ,Ok, but with 2k < d, thereby allowing for
rotations of the more adjacent latent variables only.
Our experiment illustrates that the proposed approach can be used in high-dimensional structured
Bayesian models without having to specify more model-specific dependency assumptions in the
variatonal family. The prediction errors are in line with current work for fully connected networks
using a Gaussian variational family with Normal priors, cf. [47]. Better predictive performance for
a fully connected Bayesian network has been reported in [37] that use RealNVP [10] as a normal-
ising flows in a large network that is reparametrised using a weight normalization [61]. It becomes
scalable by opting to consider only variational inference over the Euclidean norm of W l

i· and per-
forming point estimation for the direction of the weight vector W l

i·/||W l
i·||2. Such a parametrisation

does not allow for a flexible dependence structure of the weights within one layer; and such a model
architecture should be complementary to the proposed variational family in this work.

7 Conclusion

We have addressed the challenging problem of constructing a family of distributions that allows for
some flexibility in its dependence structure, whilst also having a reasonable computational com-
plexity. It has been shown experimentally that it can constitute a useful replacement of a Gaussian
approximation without requiring many algorithmic changes.
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Appendices
A Proof of Proposition 1

Proof. Let f : Rd → R+ be a positive and bounded function. We have by definition, using the
expression of the density of the Dirichlet and Beta distributions, see [13], and setting ud = 1 −∑d−1
i=1 ui,

E [f(V1, . . . , Vn)] =
Γ(α?)

B(a, b)

∫
[0,1]d

f

{
gu1/ max

j∈{1,...,d}
uj , . . . , gud/ max

j∈{1,...,d}
uj

}

× ga−1(1− g)b−1

{
d∏
`=1

uα`−1
`

Γ(α`)

}
Leb(g, u1, . . . , ud−1)

=

d∑
k=1

Γ(α?)

B(a, b)
Ak , (11)

where

Ak =

∫
[0,1]d

1

{
uk = max

j∈{1,...,d}
uj

}
f {gu1/uk, . . . , gud/uk}

× ga−1(1− g)b−1

{
d∏
`=1

uα`−1
`

Γ(α`)

}
Leb(g, u1, . . . , ud−1) . (12)

Then by symmetry, without loss of generality, we only need to consider A1. Using the
change of variable, (g, u1, u2, . . . , ud−1) 7→ (g, u1, gu2/u1, . . . , gud−1/u1), which is a C1-
diffeomorphism from ∆1 = {(g, u1, . . . , ud−1) ∈ [0, 1]

d
: u1 = maxj∈{1,...,d} uj} to ∆̃1 =

{(g, u1, w2, . . . , wd−1) ∈ [0, 1]
d

: maxj∈{2,...,d−1} wj 6 g, g/u1 − g −
∑d−1
j=2 wj 6 g}, we get

that

A1 =

∫
∆1

f {g, . . . , gud/u1} ga−1(1− g)b−1

{
d∏
`=1

uα`−1
`

Γ(α`)

}
Leb(g, u1, u2, . . . , ud−1)

=

∫
∆̃1

f

{
g, w2, . . . , wd−1, g/u1 − g −

d−1∑
i=2

wi

}
ga−1(1− g)b−1

×

{
d−2∏
`=2

(u1w`/g)α`−1

Γ(α`)

}
uα1−1

1

Γ(α1)

(1− u1 −
∑d−1
i=2 u1wi/g)αd−1

Γ(αd)

gd−2

ud−2
1

Leb(g, u1, w2, . . . , wd−1)

=

∫
∆̃1

f

{
g, w2, . . . , wd−1, g/u1 − g −

d−1∑
i=2

wi

}
ga−1(1− g)b−1

×

{
d−2∏
`=2

wα`−1
`

Γ(α`)

}
uα

?−2
1

Γ(α1)

(g/u1 − g −
∑d−1
i=2 wi)

αd

Γ(αd)
g−α

?+α1+1Leb(g, u1, w2, . . . , wd−1)

=

∫
∆̃1

f

{
g, w2, . . . , wd−1, g/u1 − g −

d−1∑
i=2

wi

}
ga−1(1− g)b−1

×

{
d−2∏
`=2

wα`−1
`

Γ(α`)

}
gα1−1

Γ(α1)

(g/u1 − g −
∑d−1
i=2 wi)

αd−1

Γ(αd)
(u1/g)α

?−2Leb(g, u1, w2, . . . , wd−1) .

Now using the change of variable (g, u1, w2, . . . , wd−1) 7→ (g, g/u1 −
∑d−1
i=2 wi, w2, . . . , wd−1) =

(g, wd, . . . , wd−1), which is a C1-diffeomorphism from ∆̃1 to

∆̄1 = {(g, wd, w2, . . . , wd−1) : max
j∈{1,...,d}

wj 6 g} ,
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we obtain since g/u1 = g +
∑d
j=2 wj that

A1 =

∫
∆̄1

f(g, w2, . . . , wd−1, wd))g
a−1(1− g)b−1

×

{
d∏
`=2

wα`−1
`

Γ(α`)

}
gα1

Γ(α1)

g +

d−1∑
j=1

wj


−α?

Leb(g, w1, w2, . . . , wd−1) .

Combining this result, (11) and (12) completes the proof.

B Butterfly rotation matrices

Suppose d = 2k for some k ∈ N and let ci = cos νi and si = sin νi. For d = 1, define R1 = [1].
AssumeRd has been defined. Then define

R2d =

[
Rdcd −Rdsd
R̃dsd R̃dcd

]
,

where R̃d has the same form as Rd except that the ci and si indices are all increased by d. So for
instance

R2 =

[
c1 −s1

s1 c1

]
, R̃2 =

[
c3 −s3

s3 c3

]
.

Suppose now that d is not a power of 2 and let k = dlog de. We construct Rd as a product of k
factors O1 · · · Ok as used in the construction of R2k . For any i ∈ {1, . . . k}, we then delete from
Oi the last 2k − d rows and columns. Then for every ci in the remaining d× d matrix that is in the
same column as a deleted si is replaced by 1. As an example, for d = 5, we have

R5 =


c1 −s1 0 0 0
s1 c1 0 0 0
0 0 c3 −s3 0
0 0 s3 c3 0
0 0 0 0 1



c2 0 −s2 0 0
0 c2 0 −s2 0
s2 0 c2 0 0
0 s2 0 c2 0
0 0 0 0 1



c4 0 0 0 −s4

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
s4 0 0 0 c4

 .

C Optimization of the variational bound

Recall that for independent random variables Zi ∼ G(αi, 1), for i ∈ {1, . . . d}, we have(
Z1∑d
j=1 Zj

, . . . Zd∑d
j=1 Zj

)
∼ Dirichlet(α1, . . . , αd), cf. [13]. Similarly, for independent random

variables Zd+1 ∼ G(a, 1) and Zd+2 ∼ G(b, 1), it holds that Zd+1

Zd+1+Zd+2
∼ Beta(a, b). Recall

that the parameter of the rotated variational family is ξ = (θ, φ, δ), where θ is the parameter of
the copula-like base density, whereas φ = (φf , φR) denotes the parameters of the quantile trans-
formation and the rotation, respectively. Furthermore, the parameter δ of the transformation H
is kept fix. Using Proposition 1 and Algorithm 1 for some fixed δ, we can construct a function
(z, φ) 7→ fφ,δ(z), z = (z1, . . . zd+2), that is almost everywhere continuously differentiable such
that fφ,δ(Z1, . . . Zd+2) ∼ qξ, where qξ is the density of the proposed variational family with pa-
rameter ξ = (θ, φ, δ), that is the variational density qξ is the pushforward density of independent
Gamma densities with parameter θ through the transport map fφ,δ . Differentiability with respect to
φf can be achieved by a continuous numerical approximation for the quantile function of a stan-
dard Gaussian and applying appropriate (re)normalisation. Furthermore, there exists an invertible
standardization function Sθ with (z, θ) 7→ Sθ(z) = (P (Z1 6 z1) , . . . ,P (Zd+2 6 zd+2)) contin-
uously differentiable such that S−1

θ (H) is equal to (Z1, . . . Zd+2) in distribution, where H is a
(d + 2)-dimensional vector of iid random variables with uniform marginals on [0, 1]. In particular,
the distribution of H does not depend on ξ. The cumulative distribution function of Z1 say at the
point z1 is the regularised incomplete Gamma function γ(z1, α1) that lacks an analytical expression
though. However, one can apply automatic differentiation to a numerical method that approximates
γ(z1, α1) yielding an approximation of ∂γ(z1,α1)

∂α1
. Let us define

l(z, φ, δ) =
logL(y1:n|fφ,δ(z)) + log π0(fφ,δ(z))

log qξ(fφ,δ(z))
.
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Then L(ξ) = E [l(Z, φ, δ)] = E
[
l(S−1

θ (H), ξ)
]
, where in the first expectation, the law of the

random variable Z depends on θ. For a differentiable function g : Rn → Rm, we denote by∇xg(x)

the Jacobian of g, that is ∇xg(x)ij = ∂gi(x)
∂xj

. Following the arguments in [14], we obtain for the
Jacobian of the variational bound

∇θ,φL(ξ) = E
[
∇θ,φl(S−1

θ (H), φ, δ)
]

= E
[
∇zl(S−1

θ (H), φ, δ)∇θ,φS−1
θ (H) +∇θ,φl(S−1

θ (H), φ, δ)
]

= E [∇zl(Z, φ, δ)∇θ,φZ +∇θ,φl(Z, φ, δ)] , (13)

where ∇φZ = 0 and ∇θZ = ∇θS−1
θ (H)|H=Sθ(Z) can be obtained by implicit differenti-

ation of Sθ(Z) = H which results in ∇θZ = −(∇zSθ(Z))−1∇θSθ(Z). So for instance
∂Z1

∂α1
= − 1

pα1
(Z1)

∂γ(Z1,α1)
∂α1

, with pα1 being the density function of Z1 and recalling that θ =

(a, b, α1, . . . αd). We can thus optimize the variational bound using stochastic gradient descent with
unbiased samples from (13). We remark that for instance in tensorflow probability [9], such implicit
gradients are used by default as long as one simulates from the copula-like density using Proposition
1, implements the density function cθ from (6) and applies the bijective transformations according
to Algorithm 1. In this case, optimization using the proposed density proceeds analogously as if one
would use any reparametrisable variational family such as Gaussian distributions.

D Additional details for Bayesian Neural Networks with Structured Priors

In the MNIST experiments, we train the network on 50000 training points out of 60000 and report
the prediction error rates for the test set of 10000 images. We used a batch-size of 200 and used
4 Monte Carlo samples to compute the gradients during training and 100 Monte Carlo samples for
the prediction on the test set. We used Adam with a learning rate in {0.0005, 0.0002} for 20000
iterations. The hyper-parameter for the Horseshoe prior were ν = 4, s = 1, so c ∼ IG(2, 8),
corresponding to a t4(0, 22) slab. Furthermore, for the global shrinkage factor, we have used bτ ∈
{0.1, 1}. The variational parameters of the copula-like density are restricted to be positive and we
have defined them as the softmax : x 7→ log(exp(x) + 1) of unconstrained parameters, initialised so
that softmax−1(αi) ∼ N (2, .01), softmax−1(a) = 15 and softmax−1(b) = 2. We have sampled δ
according to (8) and initialised νi ∼ U(−0.2, 0.2) and the log-standard deviations of the marginal-
like distribution as log σi = −3. We aimed for an initial mean of 0 for βli and of −3 for the log
of the remaining variables. We therefore choose µi so that the quantile of an initial Monte Carlo
estimate for the mean of Vi has the desired initial mean.
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E Additional results for Bayesian Neural Networks with Gaussian Priors

Table 6: Variational approximations with transformations and different base distributions. Test log-
likelihood for UCI regression datasets. Standard errors in parenthesis.

Copula-like Independent copula Copula-like Independent copula
with rotation with rotation with IAF with IAF

Boston -2.85 (0.07) -2.84 (0.09) -2.78 (0.1) -2.88 (0.09)
Concrete -3.29 (0.03) -3.30 (0.02) -3.22 (0.02) -3.26 (0.02)
Energy -1.04 (0.02) -2.34 (0.05) -0.93 (0.03) -1.78 (0.07)
Kin8nm 1.08 (0.01) 1.07 (0.01) 1.10 (0.01) 1.03 (0.01)
Naval 5.74 (0.05) 5.23 (0.05) 5.97 (0.05) 5.01 (0.05)
Power -2.82 (0.01) -2.85 (0.04) -2.83 (0.04) -2.85 (0.01)
Wine -1.01 (0.01) -1.02 (0.02) -1.02 (0.02) -1.02 (0.02)
Yacht -2.01 (0.04) -2.03 (0.06) -1.69 (0.06) -1.94 (0.07)
Protein -2.87 (0.00) -2.94 (0.00) -2.90 (0.01) -2.93 (0.01)

Table 7: Copula-like variational approximation without rotations and benchmark results. Test log-
likelihood for UCI regression datasets. Standard errors in parenthesis.

Copula-like Bayes-by-Backprop SLANG Dropout
without rotation results from [47] results from [47] results from [47]

Boston -2.79 (0.08) -2.66 (0.06) -2.58 (0.05) -2.46 (0.06)
Concrete -3.25 (0.03) -3.25 (0.02) -3.13 (0.03) -3.04 (0.02)
Energy -1.00 (0.03) -1.45 (0.02) -1.12 (0.01) -1.99 (0.02)
Kin8nm 1.09 (0.01) 1.07 (0.00) 1.06 (0.00) 0.95 (0.01)
Naval 5.45 (0.12) 4.61 (0.01) 4.76 (0.00) 3.80 (0.01)
Power -2.83 (0.01) -2.86 (0.01) -2.84 (0.01) -2.80 (0.01)
Wine -1.02 (0.01) -0.97 (0.01) -0.97 (0.01) -0.93 (0.01)
Yacht -1.92 (0.06) -1.56 (0.03) -1.88 (0.01) -1.55 (0.03)
Protein -2.89 (0.01) NA NA -2.87 (0.01)
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