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Abstract

We introduce a gradient-based learning method to automatically adapt Markov
chain Monte Carlo (MCMC) proposal distributions to intractable targets. We define
a maximum entropy regularised objective function, referred to as generalised speed
measure, which can be robustly optimised over the parameters of the proposal dis-
tribution by applying stochastic gradient optimisation. An advantage of our method
compared to traditional adaptive MCMC methods is that the adaptation occurs
even when candidate state values are rejected. This is a highly desirable property
of any adaptation strategy because the adaptation starts in early iterations even if
the initial proposal distribution is far from optimum. We apply the framework for
learning multivariate random walk Metropolis and Metropolis-adjusted Langevin
proposals with full covariance matrices, and provide empirical evidence that our
method can outperform other MCMC algorithms, including Hamiltonian Monte
Carlo schemes.

1 Introduction

Markov chain Monte Carlo (MCMC) is a family of algorithms that provide a mechanism for gen-
erating dependent draws from arbitrarily complex distributions. The basic set up of an MCMC
algorithm in any probabilistic (e.g. Bayesian) inference problem, with an intractable target density
m(x), is as follows. A discrete time Markov chain { X }?°, with transition kernel Py, appropriately
chosen from a collection of 7-invariant kernels { Py (-, -) }gco, is generated and the ergodic averages

ui(F) =t-1 Z:;é F(X;) are used as approximations to F, (F') for any real-valued function F'. Al-
though in principle this sampling setup is simple, the actual implementation of any MCMC algorithm
requires careful choice of Py because the properties of y; depend on 6. In common kernels that
lead to random walk Metropolis (RWM), Metropolis-adjusted Langevin (MALA) or Hamiltonian
Monte Carlo (HMC) algorithms the kernels Py are specified through an accept-reject mechanism in
which the chain moves from time ¢ to time ¢ + 1 by first proposing candidate values y from a density
go(y|x) and accepting them with some probability «(x,y) and setting x; 1 = y, or rejecting them
and setting x;41 = x;. Since 0 directly affects this acceptance probability, it is clear that one should
choose 6 so that the chain does not move too slowly or rejects too many proposed values y because in
both these cases convergence to the stationary distribution will be slow. This has been recognised as
early as in [22] and has initiated exciting research that has produced optimum average acceptance
probabilities for a series of algorithms; see [30, 31, 32, 15, 6, 8, 34, 7, 35, 9]. Such optimal average
acceptance probabilities provide basic guidelines for adapting single step size parameters to achieve
certain average acceptance rates.

More sophisticated adaptive MCMC algorithms that can learn a full set of parameters 6, such as
a covariance matrix, borrow information from the history of the chain to optimise some criterion
reflecting the performance of the Markov chain [14, 5, 33, 13, 2, 1, 4]. Such methods are typically
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non gradient-based and the basic strategy they use is to sequentially fit the proposal gy (y|x) to the
history of states x;_1, ¢, . . ., by ignoring also the rejected state values. This can result in very slow
adaptation because the initial Markov chain simulations are based on poor initial § and the generated
states, from which 6 is learnt, are highly correlated and far from the target. The authors in [34] call
such adaptive strategies ‘greedy’ in the sense that they try to adapt too closely to initial information
from the output and take considerable time to recover from misleading initial information.

In this paper, we develop faster and more robust gradient-based adaptive MCMC algorithms that
make use of the gradient of the target, V log 7(z), and they learn from both actual states of the
chain and proposed (and possibly rejected) states. The key idea is to define and maximise w.r.t. 6
an entropy regularised objective function that promotes high acceptance rates and high values for
the entropy of the proposal distribution. This objective function, referred to as generalised speed
measure, is inspired by the speed measure of the infinite-dimensional limiting diffusion process that
captures the notion of speed in which a Markov chain converges to its stationary distribution [32]. We
maximise this objective function by applying stochastic gradient variational inference techniques such
as those based on the reparametrisation trick [19, 29, 40]. An advantage of our algorithm compared
to traditional adaptive MCMC methods is that the adaptation occurs even when candidate state values
are rejected. In fact, the adaptation can be faster when candidate values y are rejected since then we
make always full use of the gradient V log 7(y) evaluated at the rejected y. This allows the adaptation
to start in early iterations even if the initial proposal distribution is far from optimum and the chain is
not moving. We apply the method for learning multivariate RWM and MALA proposals where we
adapt full covariance matrices parametrised efficiently using Cholesky factors. In the experiments
we demonstrate our algorithms to multivariate Gaussian targets and Bayesian logistic regression and
empirically show that they outperform several other baselines, including advanced HMC schemes.

2 Gradient-based adaptive MCMC

Assume a target distribution 7 (x), known up to some unknown normalising constant, where = € R"
is the state vector. To sample from 7(x) we consider the Metropolis-Hastings (M-H) algorithm that
generates new states by sampling from a proposal distribution gg(y|z), that depends on parameters 6,
and accepts or rejects each proposed state by using the standard M-H acceptance probability

0) = mi 7(y)qe (x|y)
otz =min {1 T @

While the M-H algorithm defines a Markov chain that converges to the target distribution, the
efficiency of the algorithm heavily depends on the choice of the proposal distribution g (x|y) and the
setting of its parameters 6.

Here, we develop a framework for stochastic gradient-based adaptation or learning of gy (z|y) that
maximises an objective function inspired by the concept of speed measure that underlies the theoretical
foundations of MCMC optimal tuning [30, 31]. Given that the chain is at state x we would like: (i) to
propose big jumps in the state space and (ii) accept these jumps with high probability. By assuming for
now that the proposal has the standard random walk isotropic form, such that ¢, (y|z) = N (y|z, o%1),
the speed measure is defined as

50(2) = 0% x a(x;0), (2)

where o2 denotes the variance, also called step size, of the proposal distribution, while a(z; o) is
the average acceptance probability when starting at z, i.e. a(z;0) = [ a(z,y;0)¢,(y|z)dy. To
learn a good value for the step size we could maximise the speed measure in Eq. 2, which intuitively
promotes high variance for the proposal distribution together with high acceptance rates. In the
theory of optimal MCMC tuning, s, () is averaged under the stationary distribution 7(z) to obtain a
global speed measure value s, = [ 7(z)s,(x)dz. For simple targets and with increasing dimension
this measure is maximised so that o2 is set to a value that leads to the acceptance probability 0.234
[30, 31]. This subsequently leads to the popular heuristic for tuning random walk proposals: tune o'
so that on average the proposed states are accepted with probability 1/4. Similar heuristics have been
obtained for tuning the step sizes of more advanced schemes such as MALA and HMC, where 0.574
is considered optimal for MALA [32] and 0.651 for HMC [24, 9].

While the current notion of speed measure from Eq. 2 is intuitive, it is only suitable for tuning
proposals having a single step size. Thus, in order to learn arbitrary proposal distributions gy (y|x),



where 0 is a vector of parameters, we need to define suitable generalisations of the speed measure.
Suppose, for instance, that we wish to tune a Gaussian with a full covariance matrix, i.e. gz (y|z) =
N (y|z,X). To achieve this we need to generalise the objective in Eq. 2 by replacing o2 with some
functional F(X) that depends on the full covariance. An obvious choice is to consider the average
distance ||y — z||? given by the trace tr(X) = Y, o7. However, this is problematic since it can lead to
learning proposals with very poor mixing. To see this note that since the trace is the sum of variances it
can obtain high values even when some of the components of = have very low variance, e.g. for some
x; it holds o7 a2 0, which can result in very low sampling efficiency or even non-ergodicity. In order
to define better functionals F(32) we wish to exploit the intuition that for MCMC all components of
x need to jointly perform (relative to their scale) big jumps, a requirement that is better captured by
the determinant |3| or more generally by the entropy of the proposal distribution.

Therefore, we introduce a generalisation of the speed measure having the form,

50(37) = exp{ﬁHqg(yM)} X O‘(x;e) = exp{ﬂﬂqg(yu)} X /0‘(%31;9)619(y|$)dy, 3)

where H, (yz) = — [ 40(y|z) log o (y|x)dy denotes the entropy of the proposal distribution and
B > 0 is an hyperparameter. Note that when the proposal distribution is a full Gaussian gx (y|z) =

N (y|z, %) then exp{SH,(y|s)} = const x |§]|g which depends on the determinant of 3. sg(z),
referred to as generalised speed measure, trades off between high entropy of the proposal distribution
and high acceptance probability. The hyperparameter /3 plays the crucial role of balancing the relative
strengths of these terms. As discussed in the next section we can efficiently optimise [ in order to
achieve a desirable average acceptance rate.

In the following we make use of the above generalised speed measure to derive a variational learning
algorithm for adapting the parameters 6 using stochastic gradient-based optimisation.

2.1 Maximising the generalised speed measure using variational inference

During MCMC iterations we collect the pairs of vectors (2, y;)¢+~o Where z; is the state of the chain
at time ¢ and y, the corresponding proposed next state, which if accepted then z;+; = y;. When
the chain has converged each x; follows the stationary distribution 7 (), otherwise it follows some
distribution that progressively converges to 7(z). In either case we view the sequence of pairs (2, y+)
as non-iid data based on which we wish to perform gradient-based updates of the parameters 6. In
practice such updates can be performed with diminishing learning rates, or more safely completely
stop after some number of burn-in iterations to ensure convergence. Specifically, given the current
state x; we wish to take a step towards maximising s¢(x;) in Eq. 3 or equivalently its logarithm,

log so(z:) = log / (2, ;)46 (5l )dy + BHanylor- 4

The second term is just the entropy of the proposal distribution, which typically will be analytically
tractable, while the first term involves an intractable integral. To approximate the first term we work
similarly to variational inference [18, 10] and we lower bound it using Jensen’s inequality,

log sg(w¢) > Fo(ws) = /%(ym) log min {17 m} dy + BH gy (y|a) (5)

To take a step towards maximising Fy we can apply standard stochastic variational inference tech-
niques such as the score function method or the reparametrisation trick [11, 26, 28, 19, 29, 40, 20].
Here, we focus on the case gg(y|x;) is a reparametrisable distribution such that y = Tp(x¢, €) where
To is a deterministic transformation and € ~ p(e). Fy(z¢) can be re-written as

m(To(zt, €)) G0 (e|To (1, €))

Folxt) —/p(e)mm{OJOg @) + log qem(%e)lxt)}d6+57iqe(y|wt>-

Since MCMC at the ¢-th iteration proposes a specific state y; constructed as e; ~ p(e;), yr =
To (x4, €), an unbiased estimate of the exact gradient Vo Fy () can be obtained by

() 40(To (v, ) § T OV e

VoFo(xt,€:) = Vgmin {0, log + log



Algorithm 1 Gradient-based Adaptive MCMC

Input: target 7(z); reparametrisable proposal gp(y|x) s.t. y = To(z,€), € ~ p(e); initial xg;
desired average acceptance probability .
Initialise 8, 8 = 1.
fort=1,2,3,...,do
: Propose €; ~ p(et), yr = To(xs, €1).
: Adapt 0: 0 + 0 + pVoFp(xy, €r).
: Accept or reject y,; using the standard M-H ratio to obtain x4 ;.
: Set ap = 1 if y, was accepted and oy = 0 otherwise.
: Adapt hyperparameter 3: 3 < S[1 + pg(ay — . )] # default value for pg = 0.02.
end for

which is used to make a gradient update for the parameters 6. Note that the first term in the
stochastic gradient is analogous to differentiating through a rectified linear hidden unit (ReLu) in

neural networks, i.e. if log =) + log % > 0 the gradient is zero (this is the case when y; is

m(ze)
accepted with probability one), while otherwise the gradient of the first term reduces to

(Ie(xt|779($t7€t))
QO(TG(ﬂ?t,Gt)\%‘t)'

The value of the hyperparameter [ can allow to trade off between large acceptance probability and
large entropy of the proposal distribution. Such hyperparameter cannot be optimised by maximising
the variational objective Fy (this typically will set 3 to a very small value so that the acceptance
probability becomes close to one but the chain is not moving since the entropy is very low). Thus, 3
needs to be updated in order to control the average acceptance probability of the chain in order to
achieve a certain desired value «,. The value of o, can be determined based on the specific MCMC
proposal we are using and by following standard recommendations in the literature, as discussed
also in the previous section. For instance, when we use RWM v, can be set to 1/4 (see Section 2.2),
while for gradient-based MALA (see Section 2.3) a, can be set to 0.55.

Vologm(To(xt, €)) + Vo log

Pseudocode for the general procedure is given by Algorithm 1. We set the learning rate p; using
RMSProp [39]; at each iteration ¢ we set p; = 1/(14++/G), where 1) is the baseline learning rate, and

the updates of G depend on the gradient estimate Vo Fy (¢, €;) as Gy = 0.9G;+0.1 [V o Fy (x4, et)]2.

2.2 Fitting a full covariance Gaussian random walk proposal

We now specialise to the case the proposal distribution is a random walk Gaussian ¢z, (y|z) =
N (y|z, LLT) where the parameter L is a positive definite lower triangular matrix, i.e. a Cholesky
factor. This distribution is reparametrisable since y = T, (z,€) = x + Le, € ~ N (€0, I). At the ¢-th
iteration when the state is x; the lower bound becomes

Fr(xy) = //\/’(e|07 Imin {0, log w(x; + Le) — logm(z;)} de + B Z log L;; +const.  (7)
i=1
Here, the proposal distribution has cancelled out from the M-H ratio, since it is symmetric, while
Hyo(ylw,) = log |L| + const and log |L| = > | log L;;. By making use of the MCMC proposed
state y; = x4 + Le; we can obtain an unbiased estimate of the exact gradient V , Fr,(x¢),

Vo Fo (w0 er) = [Vyt log 7(y:) Eﬂlower + ﬁdiag(Li117 e L%m), if log m(y;) < log w(zy)
' ,é’diag(LL117 o L%L), otherwise

where y; = x; + Le;, the operation [A];,er zeros the upper triangular part (above the main diagonal)
of a squared matrix and diag(L#117 ..., 7—) is a diagonal matrix with elements 1/L;;. The first case
of this gradient, i.e. when log w(y;) < log m(z;), has a very similar structure with the stochastic
reparametrisation gradient when fitting a variational Gaussian approximation [19, 29, 40] with the
difference that here we centre the corresponding approximation, i.e. the proposal g, (y:|x;), at the
current state x; instead of having a global variational mean parameter. Interestingly, this first case
when MCMC rejects many samples (or even it gets stuck at the same value for long time) is when



learning can be faster since the term V,, log w(y;) x €, transfers information about the curvature
of the target to the covariance of the proposal. When we start getting high acceptance rates the
second case, i.e. log w(y:) > log w(x;), will often be activated so that the gradient will often reduce
to only having the term 6diag(L%l, ceey ﬁ) that encourages the entropy of the proposal to become
large. The ability to learn from rejections is in sharp contrast with the traditional non gradient-based
adaptive MCMC methods which can become very slow when MCMC has high rejection rates. This is
because these methods typically learn from the history of state vectors x; by ignoring the information
from the rejected states. The algorithm for learning the full random walk Gaussian follows precisely
the general structure of Algorithm 1. For the average acceptance rate o, we use the value 1/4.

2.3 Fitting a full covariance MALA proposal

Here, we specialise to a full covariance, also called preconditioned, MALA of the form ¢z, (y|x) =
N(ylz + (1/2)LLTV, logn(x), LL") where the covariance matrix is parametrised by the
Cholesky factor L. Again this distribution is reparametrisable according to y = T(x,¢) =
x+ (1/2)LL"Vlogn(x) + Le, € ~ N(e|0,I). At the t-th iteration when the state is z; the
reparametrised lower bound simplifies significantly and reduces to,

Fr(x) = //\/'(6\0, [)min{O,logﬂ' (xt + (1/2)LL" Vlog m(xs) + Le) — log w(x¢)

1 n
-2 (\|(1/2)LT[V log 7(z¢) + Vlog m(y)] + €[> — He||2)}de + 8 log Lii + const,
=1

where ||-|| denotes Euclidean norm and in the term V log 7 (y), y = x;+(1/2)LLT V log w(z¢)+ Le.

Then, based on the proposed state y; = T (¢, €;) we can obtain the unbiased gradient estimate
V Fr(x, €) similarly to the previous section. In general, such an estimate can be very expensive
because the existence of L inside V log 7(y;) means that we need to compute the matrix of second
derivatives or Hessian VV log 7(y;). We have found that an alternative procedure which stops
the gradient inside V log 7(y;) (i.e. it views V log 7(y;) as a constant w.r.t. L) has small bias and
works well in practice. In fact, as we will show in the experiments this approximation not only is
computationally much faster but remarkably also it leads to better adaptation compared to the exact
Hessian procedure, presumably because by not accounting for the gradient inside V log 7(y;) reduces
the variance. Furthermore, the expression of the gradient w.r.t. L used by this fast approximation can
be computed very efficiently with a single O(n?) operation (an outer vector product; see Supplement),
while each iteration of the algorithm requires overall at most four O(n?) operations. For these
gradient-based adaptive MALA schemes, 3 in Algorithm 1 is adapted to obtain an average acceptance
rate roughly a,. = 0.55.

3 Related Work

Connection of our method with traditional adaptive MCMC methods has been discussed in Section
1. Here, we analyse additional related works that make use of gradient-based optimisation and
specialised objective functions or algorithms to train MCMC proposal distributions.

The work in [21] proposed a criterion to tune MCMC proposals based on maximising a modified
version of the expected squared jumped distance, [ go(y|z:)||ly — 4|2 (2, y; 0)dy, previously
considered in [27]. Specifically, the authors in [21] firstly observe that the expected squared jumped
distance may not encourage mixing across all dimensions of z' and then try to resolve this by
including a reciprocal term (see Section 4.2 in their paper). The generalised speed measure proposed
in this paper is rather different from such criteria since it encourages joint exploration of all dimensions
of x by applying maximum entropy regularisation, which by construction penalises "dimensions that
do not move" since the entropy becomes minus infinity in such cases. Another important difference is
that in our method the optimisation is performed in the log space by propagating gradients through the
logarithm of the M-H acceptance probability, i.e. through log (2, y; 8) and not through a(x¢, y; 6).
This is exactly analogous to other numerically stable objectives such as variational lower bounds and
log likelihoods, and as those our method leads to numerically stable optimisation for arbitrarily large
dimensionality of « and complex targets 7 (z).

'Because the additive form of ||y — z¢||* = >_,(yi — 7;)? implies that even when some dimensions might
not be moving at all (the corresponding distance terms are zero), the overall sum can still be large.



In another related work, the authors in [25] considered minimising the KL divergence
KL[7(z¢)qo (ye|ze)| |7 (y2)go (x¢|y:)]. However, this loss for standard proposal schemes, such as
RWM and MALA, leads to degenerate deterministic solutions where gg(y:|x+) collapses to a delta
function. Therefore, [25] maximised this objective for the independent M-H sampler where the
collapsing problem does not occur. The entropy regularised objective we introduced is different and
it can adapt arbitrary MCMC proposal distributions, and not just the independent M-H sampler.

There has been also work to learn flexible MCMC proposals using neural networks [38, 21, 16, 36].
For instance, [38] use volume preserving flows and an adversarial objective, [21] use the modified
expected jumped distance, discussed earlier, to learn neural network-based extensions of HMC, while
[16, 36] use auxiliary variational inference. The need to train neural networks can add a significant
computational cost, and from the end-user point of view these neural adaptive samplers might be
hard to tune especially in high dimensions. Notice that the generalised speed measure we proposed
in this paper could possibly be used to train neural adaptive samplers as well. However, to really
obtain practical algorithms we need to ensure that training has small cost that does not overwhelm
the possible benefits in terms of effective sample size.

Finally, the generalised speed measure that is based on entropy regularisation shares similarities with
other used objectives for learning probability distributions, such as in variational Bayesian inference,
where the variational lower bound includes an entropy term [18, 10] and reinforcement learning (RL)
where maximum-entropy regularised policy gradients are able to estimate more explorative policies
[37, 23]. Further discussion on the resemblance of our algorithm with RL is given in the Supplement.

4 Experiments

We test the gradient-based adaptive MCMC methods in several simulated and real data. We investigate
the performance of two instances of the framework: the gradient-based adaptive random walk
(gadRWM) detailed in Section 2.2 and the corresponding MALA (gadMALA) detailed in Section
2.3. For gadMALA we consider the exact reparametrisation method that requires the evaluation
of the Hessian (gadMALAe) and the fast approximate variant (gadMALAf). These schemes are
compared against: (i) standard random walk Metropolis (RWM) with proposal N (y|x, 021), (ii)
an adaptive MCMC (AM) that fits a proposal of the form N (y|z, 3) (we consider a computational
efficient version based on updating the Cholesky factor of 32; see Supplement), (iii) a standard MALA
proposal N (y|z + (1/2)0?V log 7(x), o1), (iv) an Hamiltonian Monte Carlo (HMC) with a fixed
number of leap frog steps (either 5, or 10, or 20) (v) and the state of the art no-U-turn sampler (NUTS)
[17] which arguably is the most efficient adaptive HMC method that automatically determines the
number of leap frog steps. We provide our own MALTAB implementation” of all algorithms, apart
from NUTS for which we consider a publicly available implementation.

4.1 TIllustrative experiments

To visually illustrate the gradient-based adaptive samplers we consider a correlated 2-D Gaussian
target with covariance matrix 3 = [1 0.99;0.99 1] and a 51-dimensional Gaussian target obtained by

2
evaluating the squared exponential kernel plus small white noise, i.e. k(x;, z;) = exp{—% (zioi_fg ) -
0.014; ;, on the regular grid [0,4]. The first two panels in Figure 1 show the true covariance
together with the adapted covariances obtained by gadRWM for two different settings of the average
acceptance rate o, in Algorithm 1, which illustrates also the adaptation of the entropy-regularisation
hyperparameter § that is learnt to obtain a certain «,. The remaining two plots illustrate the ability to
learn a highly correlated 51-dimensional covariance matrix (with eigenvalues ranging from 0.01 to

12.07) by applying our most advanced gadMALAf scheme.

4.2 Quantitative results

Here, we compare all algorithms in some standard benchmark problems, such as Bayesian logistic
regression, and report effective sample size (ESS) together with other quantitative scores.

Experimental settings. In all experiments for AM and gradient-based adaptive schemes the Cholesky
factor L was initialised to a diagonal matrix with values 0.1/+/n in the diagonal where n is the
dimensionality of x. For the AM algorithm the learning rate was set to 0.001/(1+4¢/T") where t is the
number of iterations and 7" (the value 4000 was used in all experiments) serves to keep the learning
rate nearly constant for the first 7" training iterations. For the gradient-based adaptive algorithms

https://github.com/mtitsias/gadMCMC.



Figure 1: The green contours in the first two panels (from left to right) show the 2-D Gaussian target, while
the blue contours show the learned covariance, LL ", after adapting for 2 x 10% iterations using gadRWM and
targeting acceptance rates o, = 0.25 and a.. = 0.4, respectively. For o, = 0.25 the adapted blue contours
show that the proposal matches the shape of the target but it has higher entropy/variance and the hyperparameter
[ obtained the value 7.4. For a., = 0.4 the blue contours shrink a bit and 3 is reduced to 2.2 (since higher
acceptance rate requires smaller entropy). The third panel shows the exact 51 x 51 covariance matrix and the
last panel shows the adapted one, after running our most efficient gad MALAf scheme for 2 x 10° iterations. In
both experiments L was initialised to diagonal matrix with 0.1/4/n in the diagonal.
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Figure 2: Panels in the first row show trace plots, obtained by different schemes, across the last 2 x 10* sampling
iterations for the most difficult to sample 2100 dimension. The panels in the second row show the estimated
values of the diagonal of L obtained by different adaptive schemes. Notice that the real Gaussian target has
diagonal covariance matrix 3 = diag(s%, e S%OO) where s; are uniform in the range [0.01, 1].

we use RMSprop (see Section 2.1) where 1 was set to 0.00005 for gadRWM and to 0.00015 for the
gadMALA schemes. NUTS uses its own fully automatic adaptive procedure that determines both
the step size and the number of leap frog steps [17]. For all experiments and algorithms (apart from
NUTS) we consider 2 x 10* burn-in iterations and 2 x 10* iterations for collecting samples. This
adaptation of L or o takes place only during the burn-in iterations and then it stops, i.e. at collection
of samples stage these parameters are kept fixed. For NUTS, which has its own internal tuning
procedure, 500 burn-in iterations are sufficient before collecting 2 x 10* samples. The computational
time for all algorithms reported in the tables corresponds to the overall running time, i.e. the time for
performing jointly all burn-in and collection of samples iterations.

Neal’s Gaussian target. We first consider an example used in [24] where the target is a zero-mean
multivariate Gaussian with diagonal covariance matrix 3 = diag(s?,...,s2,,) where the stds s;
take values in the linear grid 0.01,0.02, ..., 1. This is a challenging example because the different
scaling of the dimensions means that the schemes that use an isotropic step o will be adapted to the
smallest dimension x; while the chain at the higher dimensions, such as z1gg, will be moving slowly
exhibiting high autocorrelation and small effective sample size. The first row of Figure 3 shows
the trace plot across iterations of the dimension gy for some of the adaptive schemes including
an HMC scheme that uses 20 leap frog steps. Clearly, the gradient-based adaptive methods show
much smaller autocorrelation that AM. This is because they achieve a more efficient adaptation of the
Cholesky factor L which ideally should become proportional to a diagonal matrix with the linear grid
0.01,0.02,...,1 in the main diagonal. The second row of Figure 3 shows the diagonal elements of
L from which we can observe that all gradient-based schemes lead to more accurate adaptation with
gadMALA(f being the most accurate.

Furthermore, Table | provides quantitative results such as minimum, median and maximum ESS
computed across all dimensions of the state vector x, running times and an overall efficiency score



Table 1: Comparison in Neal’s Gaussian example (dimensionality was n = 100; see panel above) and Caravan
binary classification dataset where the latter consists of 5822 data points (dimensionality was n = 87; see panel
below). All numbers are averages across ten repeats where also one-standard deviation is given for the Min
ESS/s score. From the three HMC schemes we report only the best one in each case.

Method Time(s) Accept Rate ESS (Min, Med, Max) Min ESS/s (1 st.d.)
(Neal’s Gaussian)

gadMALAf 8.7 0.556 (1413.4, 1987.4, 2580.8) 161.70 (15.07)
gadMALAe 10.0 0.541 (922.2,2006.3, 2691.1) 92.34 (7.11)
gadRWM 7.0 0.254 (27.5, 66.9, 126.9) 3.95 (0.66)
AM 2.3 0.257 (8.7, 48.6, 829.1) 3.71 (0.87)
RWM 2.2 0.261 (2.9, 8.4, 2547.6) 1.31 (0.06)
MALA 3.1 0.530 (2.9, 10.0, 12489.2) 0.95 (0.03)
HMC-20 49.7 0.694 (306.1, 1537.8, 19732.4) 6.17 (3.35)
NUTS 360.5 >0.7 (18479.6, 20000.0, 20000.0)  51.28 (1.64)
(Caravan)

gadMALAf 23.1 0.621 (228.1,750.3, 1114.7) 9.94 (2.64)
gadMALAe 95.1 0.494 (66.6, 508.3, 1442.7) 0.70 (0.16)
gadRWM 22.6 0.234 (5.3,34.3,104.5) 0.23 (0.06)
AM 20.0 0.257 (3.2,11.8,62.5) 0.16 (0.01)
RWM 15.3 0.242 (3.0,9.3,52.5) 0.20 (0.03)
MALA 22.8 0.543 (4.4, 28.3,326.0) 0.19 (0.05)
HMC-10 225.5 0.711 (248.3, 2415.7, 19778.7) 1.10 (0.12)
NUTS 1412.1  >0.7 (7469.5, 20000.0, 20000.0) 5.29 (0.38)

Min ESS/s (i.e. ESS for the slowest moving component of x divided by running time — last column
in the Table) which allows to rank the different algorithms. All results are averages after repeating
the simulations 10 times under different random initialisations. From the table it is clear that the
gadMALA algorithms give the best performance with gadMALAS being overall the most effective.

Bayesian logistic regression. We consider binary classification where given a set of training exam-
ples {y;, s; }7_, we assume a logistic regression likelihood p(y|w, s) = > | y;logo(s;) + (1 —
yi)log(1 — o(s;)), where o(s;) = 1/(1 + exp(—w's;)), s, is the input vector and w the parame-
ters. We place a Gaussian prior on w and we wish to sample from the posterior distribution over
w. We considered six binary classification datasets (Australian Credit, Heart, Pima Indian, Ripley,
German Credit and Caravan) with a number of examples ranging from n = 250 to n = 5822 and
dimensionality of the state/parameter vector ranging from 3 to 87. Table 1 shows results for the most
challenging Caravan dataset where the dimensionality of w is 87, while the remaining five tables
are given in the Supplement. From all tables we observe that the gadMALATf is the most effective
and it outperforms all other methods. While NUTS has always very high ESS is still outperformed
by gadMALATf because of the high computational cost, i.e. NUTS might need to use a very large
number of leap frog steps (each requiring re-evaluating the gradient of the log target) per iteration.
Further results, including a higher 785-dimensional example on MNIST, are given in the Supplement.

5 Conclusion

We have presented a new framework for gradient-based adaptive MCMC that makes use of an entropy-
regularised objective function that generalises the concept of speed measure. We have applied this
method for learning RWM and MALA proposals with full covariance matrices.

Some topics for future research are the following. Firstly, to deal with very high dimensional spaces
it would be useful to consider low rank parametrisations of the covariance matrices in RWM and
MALA proposals. Secondly, it would be interesting to investigate whether our method can be used
to tune the so-called mass matrix in HMC samplers. However, in order for this to lead to practical
and scalable algorithms we have to come up with schemes that avoid the computation of the Hessian,
as we successfully have done for MALA. Finally, in order to reduce the variance of the stochastic
gradients and speed up further the adaptation, especially in high dimensions, our framework could be
possibly combined with parallel computing as used for instance in deep reinforcement learning [12].
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