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ABSTRACT	

It	has	been	proposed	that	accurate	motor	control	relies	on	Bayesian	inference	that	integrates	
sensory	input	with	prior	contextual	knowledge	(Bays	&	Wolpert,	2007;	Körding	&	Wolpert,	
2004;	Wolpert,	Ghahramani,	&	Jordan,	1995).		Recent	evidence	has	suggested	that	modulations	
in	beta	power	(~12-30Hz)	measured	over	sensorimotor	cortices	using	electroencephalography	
(EEG)	may	represent	parameters	of	Bayesian	inference.		While	the	well	characterised	post-
movement	beta	synchronisation	has	been	shown	to	correlate	with	prediction	error	(H.	Tan,	
Jenkinson,	&	Brown,	2014;	Huiling	Tan,	Wade,	&	Brown,	2016),	recent	evidence	suggests	that	
beta	power	may	also	represent	uncertainty	measures	(Tan	et	al.,	2016;	Tzagarakis,	West,	&	
Pellizzer,	2015).		The	current	study	aimed	to	measure	the	neurophysiological	correlates	of	
uncertainty	mediating	Bayesian	updating	during	a	visuomotor	adaptation	paradigm	in	healthy	
human	participants.		In	particular,	sensory	uncertainty	was	directly	modulated	to	measure	its	
effect	on	sensorimotor	beta	power.		Participant’s	behaviour	was	modelled	using	the	
Hierarchical	Gaussian	Filter	(HGF)	in	order	to	extract	the	latent	variables	involved	in	learning	
actions	required	by	the	task	and	correlate	these	with	the	measured	EEG.		We	found	that	
sensorimotor	beta	power	correlated	with	inverse	uncertainty	afforded	to	sensory	prediction	
errors	both	prior	to	and	following	a	movement.		This	suggests	that	sensorimotor	beta	
oscillations	may	more	readily	represent	relative	uncertainty	within	the	sensorimotor	system	
rather	than	error.		Neurophysiological	models	describing	the	generation	of	beta	oscillations	
offer	a	potential	mechanism	by	which	this	neural	signature	may	encode	latent	uncertainty	
parameters.		This	is	essential	for	understanding	how	the	brain	controls	behaviour.	
	
	
HIGHLIGHTS	
	
• The	functional	role	of	sensorimotor	beta	oscillations	is	unknown,	however	increasing	

evidence	suggests	that	beta	power	is	associated	with	Bayesian	inference	important	for	
motor	control.	

• This	study	furthers	these	findings	by	highlighting	that	beta	power	both	prior	to	and	
following	a	movement	readily	correlates	with	the	precision-weighting	afforded	to	sensory	
prediction	errors.	

• Isolating	prediction	error	signalling	from	its	precision-weighting	is	important	for	
understanding	how	Bayesian	inference	may	occur	in	the	brain	and	the	underlying	function	
of	beta	oscillations	in	the	sensorimotor	system.		

• A	unified	theory	of	sensorimotor	beta	activity	may	account	for	behavioural	impairments	in	
patients	with	movement	disorders	in	which	beta	power	is	abnormal,	such	as	Parkinson’s	
Disease.	

• Developing	novel	hypotheses	for	how	a	well-characterised	neurophysiological	impairment	
may	contribute	to	behavioural	symptoms	may	prompt	the	development	of	novel	therapies.	

	

INTRODUCTION	

Accurate	motor	control	under	uncertainty	has	been	proposed	to	rely	on	Bayesian	inference,	
which	integrates	incoming	sensorimotor	information	with	prior	contextual	knowledge	(Bays	&	
Wolpert,	2007;	Körding	&	Wolpert,	2004;	Wolpert	et	al.,	1995).		The	sensorimotor	system	is	
thought	to	represent	a	generative	model,	used	to	predict	the	sensory	consequences	of	a	
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movement	(Bastian,	2006;	Blakemore	&	Sirigu,	2003;	Wolpert	&	Miall,	1996).		Predictions	of	the	
generative	model	are	compared	with	cortical	reafference	to	produce	prediction	errors	(PEs),	
which	in	turn	update	the	internal	model	to	generate	more	accurate	predictions	in	the	future	to	
guide	behaviour.		This	hierarchical	message	passing	has	been	hypothesised	to	occur	via	the	
coupling	of	oscillatory	activity	across	cortical	layers	and	between	distant	cortical	regions	(Arnal	
&	Giraud,	2012;	Arnal,	Wyart,	&	Giraud,	2011;	Bastos	et	al.,	2012).		Indeed,	within	the	
sensorimotor	system,	beta	oscillations	(~12-30Hz),	which	robustly	desynchronise	with	
movement	and	resynchronise	following	movement	(Davis,	Tomlinson,	&	Morgan,	2012;	Engel	&	
Fries,	2010;	Simon	Little	&	Brown,	2014),	have	been	hypothesised	to	have	a	functional	role	in	
Bayesian	inference	important	for	motor	control.		The	post-movement	beta	synchronisation	
(PMBS)	has	been	shown	to	correlate	with	the	magnitude	of	PE	following	an	unexpected	
perturbation	to	a	movement	trajectory	(H.	Tan,	Jenkinson,	et	al.,	2014;	Huiling	Tan	et	al.,	2016)	
and	has	been	associated	with	the	update	of	the	motor	command	needed	to	correct	for	previous	
errors	in	a	visuomotor	adaptation	paradigm	(Torrecillos,	Alayrangues,	Kilavik,	&	Malfait,	2015).	
	
Importantly,	estimates	of	uncertainty	determine	how	readily	PEs	update	the	internal	model.		
For	example	on	a	foggy	day,	uncertain	visual	information	will	produce	less	precise	(more	
uncertain)	PE	signals,	such	that	the	individual	will	rely	more	on	prior	beliefs	to	generate	
predictions	that	guide	behaviour	rather	than	the	visual	information.		However,	previous	studies	
highlighting	the	relationship	between	beta	power	and	PE	have	not	readily	dissociated	between	
the	magnitude	of	the	error	signal	and	its	precision	weighting.		This	is	important	as	evidence	
suggests	that	sensorimotor	beta	power	may	reflect	uncertainty	estimates	associated	with	the	
motor	prediction	(Tan	et	al.,	2016;	Tzagarakis,	West,	&	Pellizzer,	2015).		We	have	previously	
hypothesised	that	beta	power	may	correlate	with	uncertainty	in	the	afferent	input	used	to	
generate	PEs	(Palmer,	Zapparoli,	&	Kilner,	2016).		This	is	supported	by	circumstantial	evidence	
that	the	time	course	of	beta	desynchronisation	accompanying	movement	correlates	with	
somatosensory	attenuation,	which	is	thought	to	reflect	a	reduction	in	the	gain	of	incoming	
afferent	information	to	the	cortex	(Cohen	&	Starr,	1987;	Davis	et	al.,	2012;	Engel	&	Fries,	2010;	
Starr	&	Cohen,	1985).		Indeed,	it	is	hypothesised	that	precision	(inverse	uncertainty)	is	encoded	
by	synaptic	gain	(post-synaptic	responsiveness)	on	superficial	pyramidal	cells	(K.	Friston	&	
Kiebel,	2009;	K.	Friston,	Mattout,	&	Kilner,	2011).		Neuronal	oscillations	have	been	shown	to	
both	modulate	synaptic	gain	and	be	generated	by	changes	in	synaptic	gain,	therefore	this	model	
provides	a	neurophysiological	mechanism	by	which	beta	oscillations	could	either	be	the	cause	
or	consequence	of	modulations	in	precision.		
	
In	the	current	study,	we	aimed	to	measure	the	neurophysiological	correlates	of	states	mediating	
Bayesian	updating	during	a	visuomotor	adaptation	paradigm.		We	induced	PEs	behaviourally,	
by	adding	an	angular	rotation	into	the	visual	feedback	of	participants’	movements	and	
specifically	manipulated	sensory	precision	by	adding	visual	noise	to	the	feedback.		In	this	way,	
we	orthogonalised	PE	and	sensory	precision	by	design.	We	also	modelled	participant’s	
behaviour	using	the	Hierarchical	Gaussian	Filter	(HGF)	in	order	to	extract	the	latent	variables	
involved	in	learning	actions	required	by	the	task	(C.	D.	Mathys	et	al.,	2014;	C.	Mathys,	
Daunizeau,	Friston,	&	Stephan,	2011).		We	posit	that	sensorimotor	beta	power	may	reflect	
uncertainty	in	the	sensorimotor	system.		However,	there	are	multiple	components	of	beta	
power	modulation	with	movement,	therefore	different	uncertainty	estimates	may	dominate	the	
signal	at	different	time	points.		Indeed,	a	recent	study	has	shown	that	beta	power	prior	to	and	
following	a	movement	localises	to	different	neural	substrates	(Alayrangues,	Torrecillos,	Jahani,	
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&	Malfait,	2019).		We	therefore	hypothesised	that:	1)	sensorimotor	beta	power	prior	to	
movement	would	correlate	with	prior	precision	associated	with	sensorimotor	predictions;	2)	
sensorimotor	beta	power	following	a	movement	would	correlate	with	sensory	precision	
associated	with	sensory	prediction	errors.	
	

METHODS	

Participants	

24	healthy	participants	(female=12)	aged	21-37	years	old	(mean	±SD:	25.46	±4.56)	took	part	in	
this	study.	Participants	had	no	history	of	neurological	or	psychiatric	illness	by	self-report.		All	
participants	were	right	handed	and	gave	written	informed	consent	prior	to	taking	part.		This	
study	was	approved	by	the	UCL	Research	Ethics	Committee	and	all	testing	took	place	at	the	UCL	
Institute	of	Neurology,	Queen	Square.		5	participants	were	excluded	for	showing	no	visuomotor	
adaptation	in	the	behavioural	task	(no	significant	difference	in	angular	error	between	the	
angular	perturbation	switch	(APS)	trial	and	the	following	tenth	trial,	p>0.1;	see	Behavioural	
Data	Analysis	for	more	details).		This	suggested	they	were	not	following	the	task	instructions	
correctly.		All	subsequent	analyses	were	carried	out	on	19	participants	(female=9)	aged	21-34	
years	old	(mean	±SD:	25.53±4.03).	
	
Experimental	Setup	

Participants	were	seated	in	front	of	a	laptop	with	their	dominant	hand	resting	on	a	trackpad	
(Sway	MultiTouch	Trackpad,	Speedlink,	London)	under	a	box,	which	hid	their	arm	from	view.		
Participants	completed	the	task	by	sliding	their	finger	in	2D	along	the	trackpad,	which	was	
positioned	perpendicular	to	the	monitor	providing	visual	feedback	of	the	movement.		The	
position	of	the	tip	of	their	finger	on	the	trackpad	was	shown	as	a	circular	cursor	on	the	screen	
during	the	task.		The	sampling	rate	was	capped	at	the	60Hz	refresh	rate	of	the	monitor.		
Participants	completed	a	visuomotor	adaptation	task	(custom	code	using	Cogent	2000	in	Matlab	
2013b).		EEG	data	were	recorded	using	a	BioSemi	128	active	electrode	system	at	a	sampling	
frequency	of	2048Hz.		Two	external	reference	electrodes	were	placed	on	the	participants’	
earlobes.	
	
Task	Procedure:	Visuomotor	Adaptation	Task	

The	task	design	can	be	seen	in	Figure	1	and	was	adapted	from	similar	tasks	used	previously	(H.	
Tan,	Jenkinson,	et	al.,	2014;	H.	Tan,	Zavala,	et	al.,	2014;	Huiling	Tan	et	al.,	2016;	Torrecillos	et	al.,	
2015).		A	start	position	(red	circle)	was	presented	at	the	bottom	of	a	black	screen	at	the	start	of	
a	trial	for	4s.		The	start	position	turned	orange	indicating	a	READY	signal	and	remained	on	
screen	for	1.5s.		At	the	GO	signal,	the	start	position	disappeared	and	a	single	target	appeared	
20cm	above	the	start	position.		The	target	consisted	of	a	small	filled	in	circle	at	the	centre	of	a	
larger	outer	circle.		A	circular	cursor	appeared	on	screen	at	the	position	of	the	tip	of	the	
participants’	index	finger	on	the	trackpad.		Participants	were	instructed	to	move	the	cursor	into	
the	target	zone	following	the	most	direct	path	as	quickly	and	accurately	as	possible.		This	was	to	
encourage	participants	to	explicitly	adapt	to	the	angular	error.		A	trial	ended	when	participants	
reached	the	target	zone.		On	reaching	the	target	participants	were	instructed	to	remain	still	for	
2s	and	then	when	given	the	RETURN	signal	were	instructed	to	return	to	the	start	position	
without	visual	feedback.		A	tactile	marker	on	the	track	pad	indicated	to	the	participant	that	they	
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were	back	in	the	start	position.		The	ISI	between	the	RETURN	signal	and	the	READY	signal	for	
the	next	trial	was	4s.		There	were	387	trials	in	total	with	43	trials	per	block	and	9	blocks.		The	
first	block	was	a	training	block	and	was	not	included	in	subsequent	analyses.		Participants	were	
given	a	few	minutes	rest	between	blocks.	
	
The	visual	feedback	of	the	cursor	given	during	the	trial	was	perturbed	in	two	ways,	which	were	
independent	from	each	other.		Firstly,	an	angular	rotation	was	introduced	on	certain	trials	such	
that	the	position	of	the	cursor	on	the	screen	did	not	always	directly	emulate	the	position	of	the	
participant’s	finger	on	the	trackpad.		The	angular	rotation	in	the	cursor	was	either	30	degrees,	
60	degrees	or	was	veridical	with	the	participant’s	finger	position	(Figure	1B).		When	an	angular	
rotation	was	introduced	on	an	angular	perturbation	switch	(APS)	trial,	this	remained	constant	
for	10	trials	and	then	at	a	random	trial	number	between	11	and	15	a	new	angular	rotation	was	
introduced.		However,	participants	were	told	that	a	new	angular	rotation	could	be	introduced	at	
any	point	after	7	trials.		The	sequence	of	angular	rotations	was	pseudorandomised	but	the	
number	of	different	changes	in	angular	rotation	was	controlled	such	that	there	were	an	equal	
number	of	small	and	large	APS	trials.		Change	in	angular	rotation	was	considered	large	if	the	
rotation	changed	from	0o	to	60o	or	vice	versa	and	was	considered	small	if	the	rotation	changed	
from	0o	to	30o	or	30o	to	60o	and	vice	versa.		Secondly,	a	displacement	in	the	X-axis	was	added	
into	the	visual	feedback	of	the	cursor	and	varied	along	the	cursor	trajectory	in	“high	visual	
noise”	blocks	(Figure	1C).		This	displacement	was	randomly	sampled	at	each	point	of	the	
movement	trajectory	from	a	normal	distribution	(µ=0cm,	σ=~3cm).		This	made	the	cursor	jitter	
along	the	X-axis	throughout	the	trial,	which	made	it	difficult	to	accurately	determine	the	exact	
position	of	the	cursor	at	any	given	point	on	a	given	trial	and	therefore	provided	a	manipulation	
of	the	reliability	of	the	visual	feedback,	which	can	be	likened	to	precision.		In	“no	visual	noise”	
blocks	the	cursor	accurately	tracked	the	participant’s	finger	position	without	any	added	
displacement	except	for	the	angular	rotation.		The	type	of	block	alternated	and	the	noise	level	of	
the	first	block	was	counterbalanced	across	participants,	except	for	the	training	block,	which	was	
always	a	“no	visual	noise”	block.	
	
Each	block	started	with	the	adapted	angular	rotation	from	the	previous	block	and	a	new	
rotation	was	given	after	3	trials.		This	was	to	ensure	that	the	noise	perturbation	and	an	angular	
perturbation	did	not	occur	at	the	same	time.		Participants	were	explicitly	told	this	and	the	first	3	
trials	of	each	block	were	excluded	from	data	analysis.	
	
Behavioural	Data	Analysis	

Data	were	analysed	using	custom	code	written	in	MATLAB	(version	2013b;	MathWorks).		There	
were	four	main	behavioural	dependent	variables	analysed	in	this	task:	angular	error,	average	
velocity,	movement	time	and	path	length.		Velocity	was	calculated	from	the	differentiated	cursor	
position	and	convolved	with	a	Gaussian	kernel	with	a	full-width-half-maximum	(FWHM)	of	
40ms.		Velocity	value	across	the	whole	movement	trajectory	were	averaged	to	calculate	average	
velocity	(AV).		Angular	error	(AE)	was	calculated	as	the	angle	between	a	line	connecting	the	
start	position	and	the	target	and	a	line	connecting	the	start	position	and	the	point	of	maximum	
velocity.		Movement	initiation	was	calculated	as	the	point	in	which	the	cursor	crossed	a	semi-
circular	boundary	with	a	radius	of	5mm	from	the	start	position.		Movement	offset	was	defined	
as	the	time	at	which	the	cursor	reached	the	outer	circle	of	the	target	zone.		Movement	time	(MT)	
was	calculated	as	the	difference	between	the	time	of	movement	offset	and	the	time	of	
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movement	initiation.		Path	length	(PL)	was	calculated	as	the	sum	of	the	differentiated	cursor	
position	from	the	time	of	movement	initiation	to	the	time	of	movement	offset.		If	a	participant	
did	not	respond	correctly	on	a	given	trial,	that	trial	was	excluded	from	all	analyses	based	on	the	
following	criteria:	1)	participants	did	not	return	to	the	start	position	in	time	on	the	previous	
trial	demonstrated	by	movement	during	a	200ms	window	following	the	onset	of	the	ready	
signal;	2)	movement	initiation	was	quicker	than	200ms	following	the	onset	of	the	go	signal;	or,	
3)	participants	did	not	move	following	the	go	signal.		This	resulted	in	a	mean	(sd)	of	3.31	(1.56)	
trials	excluded	per	subject	across	the	whole	task.		A	2x2x10	repeated	measures	ANOVA	with	
factors	change	in	angular	rotation,	visual	noise	and	repetition	number	was	used	to	analyse	each	
dependent	variable.		All	comparisons	were	corrected	for	multiple	comparisons	using	the	
Bonferroni	method	where	applicable.		Where	assumptions	of	sphericity	were	not	met	the	
Greenhouse-Geisser	(GG)	correction	was	applied.	
	
Behavioural	modelling	using	the	Hierarchical	Gaussian	Filter	(HGF)	

We	aimed	to	determine	the	neurophysiological	correlates	of	hidden	beliefs	modelled	using	a	
two-level	HGF	(Figure	2).		In	this	model	Bayesian	updating	occurs	at	multiple	(here:	two)	levels	
in	a	hierarchy	and	the	volatility,	or	uncertainty,	at	each	level	of	the	hierarchy	is	determined	by	
the	volatility	of	the	hidden	state	at	the	level	below.		Hidden	states	evolve	over	time	at	each	level	
via	a	Gaussian	random	walk	with	its	variance	(volatility	or	step	size)	coupled	to	the	level	above	
such	that	different	levels	of	uncertainty	are	represented	at	different	levels	of	the	hierarchy.		The	
HGF	consists	of	two	models.		The	perceptual	model	determines	how	beliefs	evolve	over	time	
given	specific	task	inputs.		The	response	model	then	maps	those	beliefs	onto	actions	by	
determining	how	a	subject	should	behave	given	the	estimated	hidden	states.		In	fitting	the	HGF	
to	the	data,	participant’s	behavioural	responses	are	used	to	estimate	specific	parameter	values	
that	best	explain	how	the	beliefs	described	by	the	perceptual	model	influence	that	individual’s	
behaviour.		For	example,	individual	estimates	of	learning	rate	based	on	the	behavioural	data	
determine	how	quickly	a	participant	will	adapt	to	changes	in	perturbation	level	across	trials.		
The	output	of	the	HGF	is	several	time-series,	which	demonstrate	the	trial-wise	evolution	of	
hidden	beliefs	throughout	the	task	that	are	individual	to	each	subject.		These	trajectories	were	
then	correlated	with	neurophysiological	data	(induced	EEG	activity;	see	below)	to	understand	
how	these	beliefs	were	represented	in	the	brain	in	this	task.	
	

i) The	Perceptual	Model	

In	this	model	beliefs	about	hidden	states	were	updated	over	time	using	a	mean-field	
approximation	to	Bayesian	belief	updating.		Hierarchical	levels	were	linked	by	the	predictions	of	
hidden	states	at	lower	levels,	and	the	ensuing	precision-weighted	PEs	updated	the	predictions	
at	higher	levels.		Estimates	of	uncertainty	and	individual	learning	rates	were	used	to	weight	PEs	
at	different	levels	of	the	hierarchy	to	explain	the	behavioural	data.		In	this	task,	the	manipulation	
of	uncertainty	was	twofold:	(1)	which	visuomotor	perturbation	level	would	govern	a	given	trial	
(0,	30,	or	60	degrees);	and	(2)	how	much	noise	there	would	be	in	the	visual	feedback.		The	
angular	perturbation	level	changed	implicitly	over	the	course	of	the	experiment,	while	feedback	
noise	was	manipulated	explicitly	and	presented	in	separate	blocks.		The	model	estimated	the	
participants’	trial-by-trial	beliefs	about	the	angular	perturbation	level,	corresponding	to	the	
lowest	level	in	the	model,	denoted	by	x1.		Participants	were	told	that	the	perturbation	would	
change	on	a	random	trial	between	7-15	trials	after	it	was	introduced.		Over	the	course	of	the	
experiment,	participants	could	learn	when	the	perturbation	level	was	more	likely	to	change;	
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accordingly,	the	beliefs	about	the	higher-level	structure	of	the	task	are	denoted	by	x2.	The	
inferred	beliefs	constitute	the	hidden	states	of	an	observation	model	(C.	Mathys	et	al.,	2011)	and	
evolve	as	a	Gaussian	random	walk.	The	generative	model	is	hierarchical,	i.e.,	the	hidden	states	at	
a	given	level	determine	the	variance	of	the	random	walk	at	the	level	below:		
	

(1) 𝑝 𝑥! 𝑥!
! =  𝑁 𝑥!; 𝑥!

! ,𝛼 ,	

(2) 𝑝 𝑥!
! 𝑥!

!!! = 𝑁 𝑥!
! ; 𝑥!

!!! , exp 𝜔 .	

	

At	the	lower	level	(Eq.	1),	the	prediction	of	the	visuomotor	rotation	depended	on	the	current	
task	representation	level	and	visual	feedback	noise	𝛼	(assumed	to	be	constant	for	a	given	

block).	At	the	higher	level	(Eq.	2),	the	inferred	task	representation	level	in	a	given	trial	𝑥2
𝑘 	was	

normally	distributed	around	the	validity	level	from	the	previous	trial	𝑥2
𝑘−1 ,	with	the	variance	of	

this	distribution	depending	on	the	learning	step	size	ω.		In	this	paradigm	the	validity	of	the	
visuomotor	perturbation	was	fixed	at	100%	(i.e.,	all	trials	governed	by	e.g.	a	30o	rotation	
required	a	30o	displacement	of	the	motor	action	relative	to	the	visual	input	to	accurately	hit	the	
target),	however	the	second	level	of	the	observation	model	can	efficiently	learn	about	
probabilistic	validity	levels	(cf.	e.g.(Vossel	et	al.,	2014)).		This	model	can	in	principle	be	
extended	with	further	hierarchical	levels	(C.	D.	Mathys	et	al.,	2014)	describing	e.g.	the	volatility	
of	the	perturbation	level;	however,	in	our	paradigm	no	further	manipulations	of	uncertainty	
were	required.	
	
During	the	fitting	of	the	model	to	the	data,	one	can	estimate	the	trial-by-trial	time-series	(at	
each	level	i)	of	the	participants’	beliefs	𝜇𝑖

(𝑘)	(i.e.,	posterior	means	of	states	𝑥𝑖
(𝑘))	and	the	updates	

on	these	beliefs	𝜀𝑖
(𝑘)	(precision-weighted	PEs)	after	observing	an	outcome.	The	variational	

approximation	in	the	HGF	provides	analytic	update	equations	describing	these	time-series:	
	

(3) 𝜇!
(!!!)  −  𝜇!

(!) ~ 𝜓!
(!)𝛿!

(!) =  𝜀!
(!),	

(4) 𝜓!
(!) = !!

(!)

!!
(!),	

(5) 𝜋!
(!) = !

!!
(!),	

(6) 𝛿!
(!) =

 !!
(!)! !!

(!)!!!
(!!!) !

!!
(!!!) − 1.	

	

As	shown	in	equations	3-6,	in	each	trial,	a	belief	update	at	the	second	level,	about	the	task	

representation	𝜇2
(𝑘+1)  −  𝜇2

𝑘 	is	proportional	to	the	PE	at	the	level	below	𝛿1
(𝑘),	weighted	by	a	

precision	ratio	𝜓2
(𝑘).		This	precision	ratio	depends	on	the	precision	(inverse	variance)	of	the	

prediction	at	the	level	below,	𝜋1
(𝑘),	and	the	precision	at	the	current	level	𝜋2

(𝑘).		The	superscript	^	

denotes	the	prediction	before	observing	the	trial	outcome;	accordingly,	𝜋𝑖
(𝑘)	is	the	precision	of	

this	prediction.	At	the	lower	level,	the	updates	take	a	similar	form.		The	numerator	of	the	
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precision	term	includes	the	parameter	of	sensory	uncertainty	and	therefore	the	precision	
weighting	modulates	according	to	the	noise	level	of	the	visual	feedback.	
	

(7) 𝜇!
(!!!)  −  𝜇!

! = 𝜓1
𝑘 𝛿!

(!),	

(8) 𝜓!
(!) = !

!"!
(!) 

(9) 𝜋!
(!) =  !

!!
(!!!)!!!

,	

(10) 𝛿!
(!) =  𝑢(!) − 𝜇!

! = 𝑢(!) − 𝜇!
(!!!)	

(11) 𝜋!
(!) = 𝜋!

(!) + !
!
 

(12) 𝜋!
(!) = 𝜋!

(!!!) + !

!!
(!) 

At	the	lower	level,	the	PE	about	the	observed	perturbation	level	𝛿1
(𝑘)	is	simply	the	difference	

between	the	actual	and	the	predicted	outcome,	where	the	prediction	is	inherited	from	the	
previous	trial	(Eq.	10).		This	PE,	weighted	by	its	variance	and	sensory	noise	𝛼,	is	used	to	update	
the	predictions	about	the	outcome	in	the	next	trial	(Eq.	7&8).		At	the	higher	level,	the	PE	about	
the	visuomotor	perturbation	level	is	used	to	update	the	prediction	of	its	validity	in	the	next	trial	
(Eq.	3).		The	precision	(inverse	variance)	is	updated	according	to	equations	11	and	12.		These	
HGF-derived	time-series	–	fitted	to	each	participant’s	behavioural	data	–	were	used	as	
regressors	in	subsequent	analysis	of	EEG	data.		Initial	variance	parameters	log(𝜎1,2

(0))	were	fitted	
to	individual	participant’s	data	together	with	the	remaining	model	parameters.	
	

ii) The	Response	Model	

To	map	the	estimated	hidden	states	(beliefs)	onto	the	observed	behavioural	data,	we	specified	a	
response	model	for	the	measured	movement	time	(MT).		Visuomotor	adaptation	studies	have	
previously	controlled	for	movement	speed,	such	that	the	only	variable	to	vary	from	trial	to	trial	
is	angular	error,	and	this	is	used	as	a	measure	of	adaptation.		However,	the	speed	in	which	a	
participant	moves	contains	a	lot	of	important	information	related	to	how	confident	they	are,	
which	is	thought	to	reflect	estimates	of	precision.		We	therefore	decided	to	use	movement	time	
as	our	dependent	variable	for	the	response	model	as	this	encompasses	both	speed	and	accuracy	
in	a	single	variable	and	therefore	produces	a	more	holistic	summary	of	how	participants	
behaved.		The	response	model	was	based	on	the	trial-by-trial	estimate	of	surprise,	S	(Vossel	et	
al.,	2014):		
	

(13) 𝑀𝑇 = 𝜁! + 𝑥!(𝜁! + 𝜁!𝑆) + (1 − 𝑥!)(𝜁! + 𝜁!(1 − 𝑆)),	

(14) 𝑆 = !
!!!"#$#%!&(!!)

= !
!!!"#!(!!)

	.	

	

Inputs	x1	were	coded	such	that	they	mapped	onto	a	range	{0,	1}	corresponding	to	{0o,	60o}	
displacement	with	a	30o	displacement	corresponding	to	x1	=	0.5.		Responses	MT	were	calculated	
as	response	speed,	i.e.,	the	reciprocal	of	movement	times.	A	time-resolved	value	S	represents	
attentional	resources,	scales	with	Shannon	surprise	associated	with	the	target	stimulus,	and	
respects	the	same	boundary	conditions	as	responses	and	inputs,	i.e.,	is	confined	to	the	{0,1}	
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interval	with	S	=	0.5	when	𝜇! = 0.5.	Parameters	𝜁	quantify	each	participant’s	MT	values	(𝜁!:	
baseline;	𝜁!	and	𝜁!:	MT	contribution	after	increasing	and	decreasing	the	perturbation	level	
respectively),	with	𝜁!	denoting	the	weight	of	the	attentional	resources	onto	a	given	trial’s	
estimated	MT.	
	
Model	comparison	

In	order	to	determine	that	participants	were	behaving	in	a	Bayes	optimal	manner	throughout	
this	task	and	therefore	validate	the	use	of	the	HGF	in	this	study,	we	compared	two	observation	
models	(HGF	and	a	standard	reinforcement	learning	model;	cf.	Rescorla	and	Wagner,	(1972))	
using	Bayesian	Model	Selection	(BMS).		The	Rescorla-Wagner	(RW)	learning	model	
demonstrates	how	the	association	between	a	conditioned	stimulus	(CS)	and	an	unconditioned	
stimulus	(US)	is	learned	over	time.		This	association	is	updated	in	a	trialwise	manner	depending	
on	a	prediction	error	weighted	by	a	constant	salience	term	that	does	not	vary	over	time,	but	
allows	the	learning	rate	to	vary	on	an	individual	basis.		In	this	experiment	the	CS	can	be	likened	
to	the	angular	rotation	in	the	visuomotor	mapping	and	the	US	is	the	subsequent	motor	action;	
on	each	trial	the	subject	predicts	the	optimal	motor	action	from	the	visual	feedback	from	the	
previous	trial.		In	the	RW	learning	model	equations	below	(eq	15	and	16)	a	prediction	error,	𝛿,	
is	generated	on	each	trial	from	the	difference	between	the	sensory	input,	u	,	and	the	change	in	
association	between	the	CS	and	US	on	the	previous	trial,	𝑣(!!!),	(Eq.	15).		The	change	in	
association	for	the	current	trial,	𝑣(!),	is	determined	by	weighting	the	prediction	error	by	the	
salience	of	the	CS,	α	,	and	adding	this	to	the	change	in	association	from	the	previous	trial	(Eq.	
16).		This	update	equation	modulates	the	association	between	the	CS	and	US	based	on	the	given	
sensory	input	and	a	constant,	individual	learning	rate.	
	

(15) 𝛿(!) = 𝑢(!) − 𝑣(!!!)	

(16) 𝑣(!) = 𝑣(!!!) +  𝛼 ∗ 𝛿(!)	

	

Each	model	is	characterised	by	its	(log)	model	evidence	(LME),	which	quantifies	the	model’s	
goodness	of	fit	relative	to	its	complexity.		We	compared	the	LME	across	participants	and	these	
two	models	using	the	random	effects	BMS	function	implemented	in	SPM	12	(Stephan,	Penny,	
Daunizeau,	Moran,	&	Friston,	2009).	
	
EEG	Data	Analysis:	Pre-processing	

Data	were	pre-processed	using	SPM	12.		EEG	data	were	filtered	using	a	highpass	filter	at	1Hz	
and	a	low	pass	filter	at	100Hz	and	downsampled	to	400Hz.		Bad	channels	were	identified	using	
the	‘threshold	z-scored	difference	data’	detection	algorithm	in	SPM	with	a	threshold	of	8.		If	20%	
of	the	continuous	data	for	a	channel	was	above	this	threshold,	it	was	flagged	as	a	bad	channel	
and	removed	from	analysis	at	a	later	stage.		Due	to	the	length	of	the	trials	being	analysed	
topography-based	artefact	correction	was	applied	to	the	continuous	data	to	remove	eyeblinks.		
Epoched	EEG	data	were	aligned	to:	1)	the	onset	of	the	GO	signal	with	a	time	window	of	-6000ms	
to	1000ms	to	investigate	foreperiod	EEG	activity,	and	2)	to	movement	offset,	defined	as	the	time	
the	participant	reached	the	target,	with	a	time	window	of	-1000ms	to	2000ms	to	investigate	
post-movement	EEG	activity.		For	the	time-frequency	analysis	the	power	of	the	EEG	signal	at	
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each	frequency	from	1	to	99Hz	was	estimated	using	the	wavelet	transform	in	SPM.		A	Morlet	
wavelet	with	7	cycles	for	each	frequency	was	used.	
	
To	measure	topographic	changes	in	beta	oscillatory	activity	over	time,	time	frequency	data	was	
averaged	over	15-30Hz.		Data	was	log	transformed	and	mean	corrected	such	that	the	data	at	
each	sample	point	represented	the	change	in	beta	power	from	the	total	average	beta	power	over	
the	entire	epoch	for	each	channel.		Scalp-by-time	analyses	revealed	a	significant	event-related	
decrease	in	beta	power	during	motor	preparation	at	the	onset	of	the	GO	signal	and	also	a	
significant	event-related	increase	in	beta	power	at	1000ms	post-movement	(Figure	3A-E).		A	
single	ROI	over	sensorimotor	cortex	was	generated	by	thresholding	the	group	level	t-statistic	
images	at	these	two	time	points	at	t=3.61	(p<0.001	uncorrected)	and	overlaying	the	two	
significant	clusters	to	create	one	ROI	that	incorporated	both	the	ERD	and	ERS	(Figure	3F,G,H).		
To	measure	time-frequency	changes	over	sensorimotor	cortex,	EEG	data	were	averaged	over	
the	ROI	electrodes	selected,	log	transformed	and	mean	corrected	such	that	the	data	at	each	
sample	point	at	each	frequency	band	represented	the	change	in	the	power	from	the	total	
average	power	for	that	frequency.	
	
For	14	subjects	analysed	a	technical	error	during	recording	meant	that	the	rebound	period	for	
one	condition	(no	angular	perturbation,	high	visual	noise)	was	1s	less	than	the	other	conditions;	
therefore,	these	trials	(n=53	per	subject)	were	removed	from	the	EEG	analysis	for	movement	
offset	only	for	these	participants.		However,	this	did	not	affect	the	main	results	as	regression	
analyses	were	used	and	there	was	still	a	large	number	of	remaining	trials.		It	is	important	to	
note	that	this	did	not	affect	the	pre-movement	results.	
	
EEG	Data	Analysis:	Statistical	analysis	

The	time-frequency	data	files	for	each	trial	were	converted	into	2D	images	for	statistical	
analysis	in	SPM.		At	the	single	subject	level,	images	aligned	to	the	GO	signal	or	movement	offset	
were	regressed	against	the	behavioural	task	trajectories	of	either	the	design	variables	or	the	
HGF	variables	using	a	GLM	(see	Figure	4	for	details	of	the	regressors	used).		For	the	design	
trajectories,	the	GLM	included	regressors	of	repetition	number,	noise	level	and	visuomotor	
rotation	for	both	pre-movement	and	post-movement	EEG	data.		When	analysing	pre-movement	
data	aligned	to	the	GO	signal,	design	information	from	the	previous	trial	rather	than	the	current	
trial	was	used	as	this	would	have	been	the	only	information	known	to	the	participant	at	the	
time.		For	the	HGF	trajectories,	specific	regressors	from	the	first	(lowest)	level	of	the	hierarchy	
were	used	to	analyse	the	EEG	data	before	and	after	a	movement.		For	images	aligned	to	the	GO	
signal	the	following	HGF	trajectories	were	used:	the	prediction	mean	regarding	the	expected	
visuomotor	rotation	for	the	current	trial	(𝑥!)	and	prior	precision	(𝜋!).		For	images	aligned	to	
movement	offset	the	following	HGF	trajectories	were	used:	sensory	PE	(δu),	precision	(ψ1)	and	
the	posterior	mean	of	the	prediction	(x1).		As	there	was	no	explicit	modulation	of	validity	at	the	
second	(highest)	level	of	the	HGF	and	a	lack	of	any	probabilistic	structure	in	the	trajectories	of	
hidden	states	at	this	level,	regressors	from	the	second	level	were	not	analysed.		The	contrast	
images	from	all	analyses	for	each	participant	were	smoothed	using	the	“SPM_smooth”	function	
with	a	Gaussian	kernel	with	a	FWHM	of	2Hz	and	150ms.		The	smoothed	contrast	images	for	
each	regressor	of	interest	were	then	analysed	at	the	group	level	using	a	one	sample	t-test	to	
identify	any	EEG	activity	in	the	time-frequency	domain	that	showed	a	consistent	correlation	
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with	each	regressor	of	interest	across	participants.		All	statistical	analyses	were	corrected	for	
family-wise	errors	within	SPM	using	random	field	theory.	
	
We	hypothesised	that	sensorimotor	beta	power	(12-30Hz)	would	likely	correlate	with	Bayesian	
model	parameters	within	two	windows	of	interest	prior	to	and	following	movement	based	on	
the	task	design	and	the	average	change	in	beta	power	over	time	across	participants.		For	images	
aligned	to	the	GO	signal,	a	window	of	interest	was	selected	between	the	ready	signal	and	GO	
signal	in	order	to	measure	activity	in	this	time	period	that	may	be	relevant	for	motor	
preparation,	therefore	a	small	volume	correction	with	a	18Hz	by	1000ms	window	centered	at	-
500ms	and	21Hz	(mid-way	between	12Hz	and	30Hz)	was	used.		For	images	aligned	to	
movement	offset	the	average	time-frequency	spectrum	showed	a	significant	increase	in	beta	
power	post-movement	with	the	peak	voxel	at	21Hz	and	1133ms	therefore	a	small	volume	
correction	in	a	18Hz	by	2000ms	window	centred	on	here	was	used	to	include	the	whole	
rebound	period	(see	Figure	3).	
	
RESULTS	
	
Behavioural	results:	Participants	behaved	differently	under	high	and	low	visual	noise	

Out	of	24	participants,	19	successfully	adapted	their	behaviour	to	the	visuomotor	rotation	as	
shown	by	a	significant	mean	decrease	in	initial	angular	error	from	the	first	APS	trial	to	the	tenth	
repetition	of	that	perturbation	(all	p<0.05).		The	5	participants	that	did	not	show	a	significant	
difference	in	angular	error	by	the	tenth	repetition	were	excluded	from	subsequent	analyses	for	
not	completing	the	task	appropriately.		In	the	remaining	sample	of	19	participants,	a	2x2x10	
repeated	measures	ANOVA,	comparing	visual	noise	(no	or	high),	size	of	change	in	angular	
rotation	on	an	APS	trial	(small,	30o	or	large,	60o)	and	repetition	number,	was	conducted	for	
initial	angular	error.		As	expected	there	was	a	significant	main	effect	of	repetition	number	
(F(2.58,46.48)=104.15,	p<0.001	(GG),	ηp2=0.85;	Figure	5A).		Participants	adapted	quickly	to	the	
perturbation	over	repetitions	of	the	same	visual	rotation:	overall	mean	angular	error	
significantly	decreased	from	repetition	1	to	repetition	3	and	then	remained	stable	for	
subsequent	repetitions.		Angular	error	was	also	modulated	by	the	size	of	the	perturbation	as	
expected	i.e.	a	large	change	in	perturbation	(0o	to	60o	or	vice	versa)	generated	a	larger	angular	
error	than	a	small	change	in	perturbation	(0o	to	30o	or	30o	to	60o	and	vice	versa),	but	this	was	
only	significant	for	the	APS	trial	and	the	subsequent	trial	(size	of	angular	rotation	x	repetition	
number:	F(4.68,84.30)=30.32,	p<0.001	(GG),	ηp2=0.63;	large	change	in	rotation:	M±SD	on	APS	
trial=47±6.7;	small	change	in	rotation:	M±SD	on	APS	trial=26.9±5.1).	
	
Similar	results	were	found	for	the	other	behavioural	variables	measured.		Movement	time	was	
greatest	on	APS	trials	and	decreased	with	adaptation	(F(2.02,36.39)=29.24,	p<0.001(GG),	
ηp2=0.62;	Figure	5B).		This	was	driven	by	a	decrease	in	average	velocity	and	an	increase	in	path	
length	on	APS	trials.		Movement	time	was	longer	following	a	large	change	in	perturbation	
compared	to	a	small	change	(F(1,18)=11.17,	p=0.004,	ηp2=0.38)	and	this	was	significantly	
different	for	the	APS	trial	and	the	subsequent	two	trials	as	revealed	by	post-hoc	t-tests	over	
trials	(angular	rotation	x	repetition	number:	F(9,162)=6.58,	p<0.001,	ηp2=0.27).	
	
Path	length	was	greatest	on	APS	trials	and	decreased	with	adaptation	(F(2.37,42.73)=71.16,	
p<0.001	(GG),	ηp2=0.80;	Figure	5C).		Path	length	was	greatest	following	a	large	change	in	angular	
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rotation	compared	to	a	small	change	(F(1,18)=8.90,	p=0.008,	ηp2=0.33)	and	this	was	only	
significant	for	the	APS	trial	and	repetition	3	as	revealed	by	post-hoc	t-tests	(angular	rotation	x	
repetition	number:	F(4.66,83.94)=16.46,	p<0.001	(GG),	ηp2=0.48).		Average	velocity	was	not	
significantly	modulated	by	the	size	of	the	change	in	perturbation	(p=0.069),	however	this	was	
significantly	modulated	by	repetition	number	(F(2.2,40.26)=7.57,	p<0.001	(GG),	ηp2=0.30).		
Participants	significantly	slowed	down	on	APS	trials	and	sped	up	over	subsequent	trials	(Figure	
5D).	
	
As	expected,	under	high	visual	noise	compared	to	no	visual	noise	mean	movement	time	
increased	(main	effect	of	noise:	F(1,18)=64.10,	p<0.001,	ηp2=0.78)	and	overall	average	velocity	
decreased	(main	effect	of	noise:	F(1,18)=11.75,	p=0.003,	ηp2=0.40).		The	rate	of	increase	in	
average	velocity	after	an	APS	trial	was	smaller	under	high	visual	noise	compared	to	no	visual	
noise.		Participants	also	did	not	adapt	as	quickly	or	as	fully	under	high	visual	noise	as	
demonstrated	by	an	overall	increase	in	initial	angular	error	(main	effect	of	noise:	F(1,18)=11.47,	
p=0.003,	ηp2=0.39)	and	path	length	(main	effect	of	noise:	F(1,18)=31.81,	p<0.001,	ηp2=0.64)	
throughout	high	noise	blocks.	
	
Neurophysiological	results:	sensorimotor	beta	power	before	and	after	a	movement	
modulated	with	behavioural	adaptation	
Across	participants,	there	was	a	significant	positive	correlation	between	repetition	number	and	
the	PMBS	such	that	beta	power	was	decreased	following	an	APS	trial	and	increased	with	
subsequent	repetitions	of	the	same	perturbation	(Figure	6A,D;	peak	voxel	at	12Hz,	545ms:	
t=7.10,	p=0.001	FWE).		There	was	a	significant	effect	of	visual	noise	on	beta	power	such	that	
high	noise	blocks	had	higher	post-movement	beta	power	than	no	noise	blocks;	however	this	did	
not	survive	correction	for	multiple	comparisons	(peak	voxel	23Hz,	828ms:	t=3.77,	p=0.080	
FWE,	p=0.001	uncorrected;	Figure	6B,E).		There	was	no	significant	correlation	between	post-
movement	beta	power	and	the	perturbation	level	(Figure	6C,F).	
	
Task	parameters	from	the	previous	trial	were	used	to	identify	the	neurophysiological	effects	of	
these	on	preparation	for	the	next	trial.		We	found	a	significant	positive	correlation	between	
repetition	number	and	beta	power	in	the	preparatory	period	following	the	ready	signal	and	
prior	to	the	GO	signal	(peak	voxel	at	21Hz,	-420ms,	t=4.76,	p=0.018	FWE;	Figure	6G,J).		Beta	
power	was	significantly	reduced	in	this	preparatory	period	following	an	APS	trial	and	increased	
with	subsequent	repetitions.		There	was	no	significant	effect	of	visual	noise	and	no	significant	
effect	of	the	perturbation	level	on	beta	power	(p>0.1	FWE;	Figure	6H,I,K,L).	
	
These	results	demonstrate	that	beta	desynchronisation	prior	to	movement	and	beta	
synchronisation	post-movement	were	significantly	reduced	following	an	APS	trial	and	increased	
over	subsequent	repetitions	of	the	same	perturbation,	possibly	due	to	diminishing	PE	and/or	
increasing	precision.		Thus,	to	formally	assess	the	relationship	between	PE	and	precision	
further,	we	modelled	the	behaviour	from	this	task	using	the	HGF	in	order	to	produce	individual	
trajectories	of	how	hidden	beliefs	evolved	throughout	the	task	and	correlated	these	estimated	
model	parameters	with	the	EEG	data.	
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Modelling	result:	the	HGF	readily	explained	participant’s	behaviour	compared	to	a	non-
Bayesian	learning	model	
In	order	to	determine	that	participants	were	behaving	in	a	Bayes	optimal	manner	throughout	
this	task	and	therefore	validate	the	use	of	the	HGF	in	this	study,	we	compared	the	ability	of	the	
Bayesian	HGF	and	an	alternative	non-Bayesian	learning	model	(the	Rescorla-Wagner	model,	
(Rescorla	&	Wagner,	1972))	to	explain	the	variance	in	participant’s	behaviour.		The	log	model	
evidence	(LME)	from	each	model	was	compared	across	participants.		The	behavioural	data	used	
for	these	models	was	movement	time	as	this	encapsulated	both	the	size	of	the	angular	error	
(due	to	increased	path	length)	and	any	uncertainty	in	the	movement	that	may	be	captured	in	
participant’s	movement	speed.		Across	participants,	movement	time	was	better	explained	using	
the	HGF	compared	to	the	RW	model	(protected	exceedance	probability	=	0.89	i.e.	the	HGF	was	
89%	more	likely	to	explain	the	data	better).		This	suggests	that	participants	behaved	in	a	
Bayesian	manner	and	this	justifies	the	use	of	the	HGF	for	subsequent	analyses.		To	further	test	
how	well	the	HGF	modelled	participants	behavioural	data	in	this	study,	we	compared	the	
simulated	movement	time	data	from	the	HGF	response	model	with	the	observed	movement	
times.		A	linear	regression	analysis	showed	that,	for	all	participants,	observed	movement	times	
across	all	trials	significantly	predicted	the	simulated	movement	times	(all	p<0.001;	group	mean	
adjusted	R2	=	0.2).	
	
	
Modelling	and	neurophysiological	results:	post-movement	beta	synchronisation	(PMBS)	
correlated	with	parameters	involved	in	Bayesian	updating	at	the	sensory	level	
A	GLM	was	used	to	identify	the	neurophysiological	correlates	of	model	parameters	estimated	
from	the	HGF.		For	the	post-movement	period,	a	GLM	including	the	following	regressors	was	
used:	sensory	PE	(δu),	precision	ratio	(ψ1)	and	the	posterior	mean	of	the	prediction	(x1).		There	
was	a	significant	negative	correlation	between	the	PMBS	and	sensory	PE	(peak	at	15Hz,	768ms;	
t=6.72,	p=0.001	FWE;	Figure	7A),	such	that	the	PMBS	was	reduced	when	PE	was	high.		This	
mirrors	the	finding	between	the	PMBS	and	repetition	number,	which	acted	as	a	proxy	for	
adaptation.		Beta	power	was	also	significantly	negatively	correlated	with	the	precision	ratio	
(peak	at	16Hz,	1788ms;	t=5.44,	p=0.005	FWE;	Figure	7B).		When	sensory	precision	was	low,	for	
example	during	blocks	of	high	visual	noise	(α	set	to	high),	the	beta	rebound	was	larger.		In	
addition,	the	posterior	mean	indicating	the	updated	belief	about	the	size	of	the	visuomotor	
rotation	(which	is	then	used	as	the	prediction	for	the	next	trial)	significantly	negatively	
correlated	with	the	PMBS	(peak	at	18Hz,	508ms;	t=4.94,	p=0.016	FWE;	Figure	7C).		The	data	
provides	evidence	that	the	parameters	involved	in	Bayesian	updating	following	a	movement	
may	be	encoded	within	the	PMBS.	
	
Modelling	and	neurophysiological	results:	preparatory	beta	power	correlated	with	
precision,	rather	than	error	
For	the	pre-movement	period,	a	GLM	using	the	following	regressors	was	used	to	analyse	
preparatory	beta	power:	predicted	visuomotor	rotation	before	any	sensory	input	(𝑥!)	and	prior	
precision	(𝜋!).		We	found	a	significant	negative	correlation	between	prior	precision	and	beta	
power	between	the	ready	signal	(-1500ms)	and	the	GO	signal	(0ms;	peak	at	14Hz,	-250ms;	
t=4.66,	p=0.011	FWE;	Figure	8A).		This	shows	that	beta	power	was	suppressed	to	a	greater	
extent	under	high	prior	precision	(least	uncertainty)	compared	to	low	prior	precision	(highest	



14	
	

uncertainty).		There	was	no	significant	correlation	between	beta	power	and	the	estimated	
prediction	mean	𝑥!		(p>0.05,	Figure	8B).	
	
The	prior	precision	value	in	the	HGF	is	taken	from	the	variance	of	the	posterior	from	the	
previous	trial,	which	is	updated	based	on	the	previous	trial	PE;	therefore,	the	prior	precision	
value	incorporates	the	magnitude	of	the	previous	PE	and	an	estimate	of	sensory	uncertainty.		To	
assess	the	extent	to	which	the	relation	between	beta	power	and	prior	precision	can	be	
explained	by		prior	error,	we	conducted	a	series	of	exploratory	analyses	testing	for	the	
interaction	between	error,	visual	noise	and	beta	power.		For	this	we	extracted	the	values	of	beta	
power	in	the	significant	cluster	highlighted	above	(Figure	8A	white	dotted	outline;	12-20Hz,	-
500-0ms)	for	trials	immediately	following	an	APS	trial	and	APS	trials	+10	(behaviour	fully	
adapted)	under	both	high	and	no	visual	noise.		A	2x2	repeated	measures	ANOVA	revealed	a	
significant	interaction	between	trial	number	and	visual	noise	at	this	time	point	(F(1,18)=5.19,	
p=0.035,	ηp2=0.22),	but	no	significant	main	effects	(p>0.1).		Under	no	visual	noise	there	was	a	
significant	difference	in	the	preparatory	suppression	of	beta	power	following	an	APS	trial	
compared	to	the	later	repetition	(p=0.036);	beta	suppression	was	greatest	following	an	APS	trial	
and	increased	with	adaptation.		There	was	no	significant	modulation	of	beta	power	with	trial	
number	for	the	high	noise	blocks	(p=0.32)	(Figure	8C).		A	correlation	analysis	of	beta	power	
over	repetitions	following	an	APS	trial	revealed	a	significant	positive	correlation	between	the	
beta	power	and	repetition	number	for	no	noise	blocks	(r=0.63,	p=0.026;	one-tailed)	and	no	
significant	correlation	for	high	noise	blocks	(r=0.19,	p=0.31;	one-tailed)	(Figure	8D).		This	
analysis	dissociates	the	precision-weighting	from	the	magnitude	of	the	previous	error	and	
therefore	supports	the	hypothesis	that	preparatory	beta	power	in	the	500ms	prior	to	the	GO	
signal	readily	modulates	depending	on	movement	uncertainty	or	prior	precision	rather	than	
error.	
	
	

DISCUSSION	

The	aim	of	this	study	was	to	orthogonalise	the	parameters	of	Bayesian	learning	in	a	visuomotor	
adaptation	paradigm	in	order	to	determine	their	neurophysiological	correlates	within	the	
sensorimotor	system.		We	modulated	visual	noise	independently	from	an	angular	perturbation	
and	used	the	HGF	to	estimate	trial-wise	modulations	of	modelled	parameters	(prediction,	PEs	
and	precision),	which	explained	the	effect	of	these	task	inputs	on	participant’s	behaviour.		In	
line	with	previous	literature	(H.	Tan,	Jenkinson,	et	al.,	2014;	H.	Tan,	Zavala,	et	al.,	2014;	Huiling	Tan	
et	al.,	2016;	Torrecillos	et	al.,	2015),	we	found	that	the	PMBS	readily	tracked	adaptation	error	in	
the	task.		The	PMBS	also	correlated	with	precision	estimates	supporting	recent	evidence	that	
the	PMBS	does	not	solely	modulate	with	PE	(Huiling	Tan	et	al.,	2016),	but	also	represents	
uncertainty	estimates	important	for	determining	how	readily	the	PE	updates	motor	plans.		In	
addition,	we	found	that	preparatory	decreases	in	beta	power	were	more	readily	modulated	by	
uncertainty	not	error	from	the	previous	trial.		Overall,	the	data	suggest	that	sensorimotor	beta	
power	may	readily	reflect	the	precision-weighting	afforded	to	PEs.	
	
Previous	studies	have	consistently	found	a	correlation	between	the	PMBS	and	PE	during	
sensorimotor	learning	tasks,	which	is	supported	by	the	findings	here.		The	PMBS	tracked	
repetition	number	and	significantly	negatively	correlated	with	sensory	PE,	from	the	first	level	of	
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the	HGF,	across	participants.		Although	there	was	only	a	trend	for	a	negative	relationship	
between	the	visual	noise	manipulation	and	the	PMBS,	there	was	a	consistent	negative	
correlation	between	the	precision	ratio	and	the	PMBS.		This	demonstrates	the	increased	
sensitivity	of	using	latent	variables	estimated	from	computational	models	when	determining	
the	neurophysiological	correlates	of	behaviour	(Brodersen	et	al.,	2013)	and	supports	theories	
that	the	PMBS	does	not	solely	modulate	with	PE.	
	
Previous	studies	have	highlighted	that	the	PMBS	readily	represents	changes	in	model	
uncertainty	associated	with	our	prior	beliefs	about	the	sensory	consequences	of	our	
movements.		However,	here	we	manipulated	sensory	uncertainty	and	saw	similar	modulations	
in	the	PMBS.		This	discrepancy	can	be	resolved	by	understanding	computationally	how	
modulating	different	forms	of	uncertainty,	or	precision,	modulate	the	precision-weighting	of	PE.		
Indeed,	in	the	HGF,	there	is	a	precision	ratio	consisting	of	sensory	precision	from	the	level	
below	(numerator)	and	prior	precision	from	the	level	being	updated	(denominator),	which	
denotes	the	weighting	given	to	the	PE	and	dictates	how	readily	the	model	will	be	updated.		
Therefore,	manipulating	sensory	and	prior	precision	has	opposing	effects	on	this	precision-
weighting.		Tan	et	al	(2016)	found	that	increasing	model	uncertainty	correlated	with	a	decrease	
in	the	average	power	of	the	PMBS.		According	to	the	HGF,	decreasing	prior	precision	(inverse	
model	uncertainty)	in	this	way	would	increase	the	precision-weighting	of	PEs	creating	a	
negative	relationship	between	precision-weighting	and	the	PMBS.		Indeed,	in	the	current	study,	
we	found	this	same	negative	relationship,	however	by	modulating	sensory	uncertainty.		This	
suggests	that	independent	of	whether	model	uncertainty	or	sensory	uncertainty	is	modulated,	
the	PMBS	negatively	correlates	with	the	resultant	precision-weighting	afforded	to	PEs.		
Sensorimotor	beta	oscillations	may	therefore	represent	the	summation	of	these	different	
uncertainty	values,	which	are	potentially	encoded	by	different	inputs	into	the	sensorimotor	
cortex.	
	
Moreover,	in	our	study,	pre-movement	preparatory	beta	power	between	the	ready	signal	and	
the	GO	signal	correlated	with	precision	in	the	prediction	of	the	sensory	consequences	of	
movement,	but	not	with	the	estimated	prediction	mean.		Following	the	ready	signal	there	was	a	
decrease	in	beta	power	in	preparation	to	move	and	this	decrease	was	greater	for	trials	with	
higher	prior	precision	(less	model	uncertainty).		This	is	in	line	with	previous	findings	that	beta	
power	during	motor	preparation	was	dependent	on	directional	uncertainty	such	that	beta	
power	decreased	more	when	there	was	less	uncertainty	in	the	target	location	(Tzagarakis	et	al.,	
2015).		This	suggests	that	similar	associations	with	beta	power	and	uncertainty	can	be	seen	
irrespective	of	the	exact	nature	of	the	uncertainty.		The	prior	precision	parameter	produced	by	
the	HGF	is	the	predicted	model	precision	before	any	sensory	input	has	been	received	and	comes	
from	the	posterior	precision	from	the	previous	trial.		This	regressor	therefore	readily	
modulated	with	the	precision-weighting	of	the	previous	PE,	which	was	heavily	influenced	by	the	
external	changes	in	sensory	uncertainty,	therefore	does	not	purely	represent	prior	precision	
without	any	influence	of	sensory	uncertainty.		Indeed,	this	regressor	modulated	very	closely	
with	the	block-wise	changes	in	visual	noise.		The	data	here	are	supported	by	a	recent	paper	
showing	that	foreperiod	beta	power	is	not	related	to	primary	motor	output,	but	more	likely	
reflects	higher	order	processing	of	sensory	afference	needed	for	successful	sensorimotor	
adaptation	(Alayrangues	et	al.,	2019).			
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To	probe	the	relationship	between	error,	uncertainty	and	preparatory	beta	power	further,	we	
carried	out	additional	exploratory	analyses	in	this	time	window	by	comparing	beta	power	on	
trials	with	high	and	low	error	and	high	and	low	visual	noise	in	a	2x2	factorial	design.		This	
aimed	to	orthogonalise	the	effects	of	error	and	noise	on	beta	power.		We	found	a	significant	
interaction	between	these	factors	before	the	GO	signal	to	move.		Beta	power	was	suppressed	
significantly	more	under	no	visual	noise	than	high	visual	noise	on	the	trial	immediately	
following	an	APS	trial	despite	the	same	initial	angular	error	being	produced	in	the	previous	
trial;	however,	this	difference	disappeared	with	adaptation.		This	suggests	that	preparatory	beta	
power	was	not	specifically	modulated	by	sensory	uncertainty	or	error.		Pre-movement	beta	
power	reflected	the	relative	contribution	of	sensory	and	model	uncertainty	estimates	as	
represented	in	the	precision	ratio.		When	there	is	no	visual	uncertainty,	a	new	perturbation	
immediately	increases	the	weighting	on	sensory	information	such	that	the	precision-weighted	
PE	more	readily	updates	the	model	and	adapts	to	the	new	context.		This	is	associated	with	a	
large	decrease	in	beta	power,	which	then	increases	with	adaptation.		However,	under	high	
visual	noise,	sensory	precision	is	suppressed	such	that	model	precision	remains	high	despite	the	
introduction	of	an	angular	perturbation	and	does	not	change	as	readily	over	subsequent	trials	
due	to	the	decreased	precision-weighting	of	PEs.		Beta	power	remains	high	over	subsequent	
trials	despite	the	magnitude	of	the	PE	changing	with	adaptation.		This	suggests	that	preparatory	
beta	power	more	readily	tracks	this	precision-weighting	(in	an	inverse	relationship)	rather	than	
the	magnitude	of	the	PE.		Therefore,	this	study	shows	that	beta	power	both	prior	to	and	
following	a	movement	is	negatively	associated	with	the	precision-weighting	afforded	to	sensory	
prediction	errors	from	the	previous	or	the	current	trial	respectively.	
	
In	support	of	this	hypothesis,	a	recent	study	by	(Vilares	&	Kording,	2017)	showed	that	PD	
patients,	who	have	increased	resting	beta	power	and	reduced	sensorimotor	beta	modulation	
with	movement	(S.	Little,	Pogosyan,	Kuhn,	&	Brown,	2012),	placed	less	weight	on	sensory	
evidence	needed	to	make	Bayes	optimal	decisions	in	a	visual	discrimination	task.		This	can	be	
likened	to	a	reduced	precision-weighting	of	sensory	PEs.		Moreover,	dopaminergic	medication	
(which	decreases	beta	power)	has	been	shown	to	modulate	responses	to	low-level	sensory	PEs	
of	stimulus	outcomes	(Bestmann,	Ruge,	Rothwell,	&	Galea,	2014;	Iglesias	et	al.,	2013).		As	well	as	
guiding	decisions,	it	has	been	suggested	that	modulations	in	sensory	precision	may	be	causally	
involved	in	motor	initiation	based	on	active	inference	(Palmer	et	al,	2016;	Friston	et	al,	2015).		
Indeed,	the	akinetic	role	of	beta	power	in	PD	and	healthy	controls	and	the	association	between	
beta	power	and	sensory	precision	in	this	study	supports	these	ideas.	
	
It	is	important	to	understand	the	neurophysiological	basis	of	beta	oscillations	in	order	to	
determine	how	this	activity	may	influence	behaviour.		Precision	is	thought	to	be	encoded	by	
synaptic	gain	(post-synaptic	responsiveness)	of	superficial	pyramidal	cells	in	the	cortex	(K.	
Friston,	2005;	K.	Friston	&	Kiebel,	2009);	therefore,	the	neuromodulation	of	synaptic	gain	
(precision)	by	dopamine	(known	to	modulate	beta	power)	provides	a	potential	mechanism	by	
which	changes	in	precision	can	modulate	beta	power.		Alternatively,	fast,	synchronous	
oscillatory	activity	can	itself	modulate	synaptic	gain	of	coupled	neurons	(Chawla,	Lumer,	&	
Friston,	1999;	K.	J.	Friston,	Bastos,	Pinotsis,	&	Litvak,	2015).		This	suggests	that	oscillatory	
activity	could	have	a	mechanistic	impact	on	neuronal	processing	and	may	not	simply	be	an	
epiphenomenon	of	population	activity.		The	timing	of	neuromodulatory	changes	in	the	brain	can	
be	quite	slow,	therefore	it	is	likely	that	rapid	attentional	mechanisms	that	appear	to	modulate	
responses	under	different	levels	of	uncertainty	most	likely	rely	on	an	interaction	between	
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neuromodulatory	and	electrophysiological	mechanisms,	which	remains	to	be	elucidated.		
However,	based	on	this	evidence	it	is	feasible	that	beta	oscillatory	activity	measured	with	EEG	
may	correlate	with	changes	in	precision	parameters	(synaptic	gain).	
	
The	results	described	here		should	be	contrasted	with	the	predictive	coding	literature	in	which	
beta	oscillations	are	thought	to	transmit	descending	predictions	rather	than	encoding	ascending	
precision-weighted	PEs	within	a	canonical	microcircuit	(Arnal	&	Giraud,	2012;	Arnal	et	al.,	
2011;	Bastos	et	al.,	2012).		Evidence	for	an	attention-dependent	gain	control	by	high	frequency	
gamma	rather	than	beta	oscillatory	activity	mainly	comes	from	electrophysiological	data	from	
the	auditory	and	visual	cortices,	therefore	the	sensorimotor	system	may	not	adhere	to	this	
scheme	(Adams,	Shipp,	&	Friston,	2013).		Indeed,	the	different	cytoarchitecture	of	the	motor	
cortex	and	the	complex	interaction	with	spinal	cord	circuitry	may	alter	the	oscillatory	dynamics	
within	this	system.		More	work	is	needed	to	understand	how	oscillatory	activity	within	different	
systems	is	generated	in	order	to	identify	potentially	differing	roles	of	the	same	frequency	of	
oscillatory	activity	in	different	brain	regions.	
	
This	study	demonstrates	that	sensorimotor	beta	oscillations	may	play	an	important	role	in	
Bayesian	updating	and	the	representation	of	uncertainty	during	visuomotor	adaptation.		
Specifically,	we	found	that	sensorimotor	beta	oscillations	may	mediate	the	precision-weighting	
of	PEs,	which	is	represented	following	a	movement	during	Bayesian	updating	and	in	the	
precision	surrounding	the	predictions	of	a	movement	before	the	next	trial.		Importantly,	
although	activity	at	the	macro-scale	correlates	with	estimated	model	parameters,	this	does	not	
provide	evidence	that	the	brain	computes	and	uses	these	latent	variables.		Cross-modal	research	
integrating	single	cell,	local	field	potential	and	EEG	recordings	during	behaviour	is	essential	to	
fully	determine	how	this	oscillatory	activity	is	processed	by	the	brain	and	used	to	guide	
behaviour.	
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FIGURES	

	

	

	

Figure	1.	Visuomotor	adaptation	task	design.		A)	Participants	were	instructed	to	move	the	cursor	from	the	start	
position	to	the	target	via	the	most	direct	path	using	a	touchpad.		A	visuomotor	rotation	was	added	to	the	feedback	
of	the	cursor.		Participants	were	told	to	wait	at	the	target	until	the	return	signal	when	participants	were	asked	to	
move	back	to	the	start	position,	which	was	signalled	with	a	tactile	marker:	no	visual	feedback	was	given.		
Participants	then	waited	for	4s	until	the	ready	signal	was	given	then	another	1.5s	until	the	go	signal	was	given	for	
the	next	trial.	B)	Angular	perturbations	introduced	into	the	visual	feedback	of	the	cursor	were	either	60o,	30o	or	
veridical	with	the	participant’s	finger	movement.		The	same	perturbation	remained	constant	for	up	to	15	trials	and	
participants	were	required	to	adapt	to	the	angular	perturbation	over	trials	in	order	to	find	the	most	direct	path	to	
the	target.		C)	Sensory	uncertainty	was	modulated	by	adding	noise	into	the	visual	feedback	on	alternate	blocks.		On	
noise	trials	the	cursor	was	randomly	shifted	along	the	X-axis	continually	throughout	the	movement	such	that	the	
cursor	appeared	to	jitter.		This	made	the	true	movement	trajectory	uncertain.		D)		A	number	of	behavioural	
dependent	variables	were	calculated	from	the	movement	trajectories	on	each	trial.		Angular	error	(AE)	was	
calculated	as	the	angle	between	a	line	connecting	the	start	position	and	the	target	and	a	line	connecting	the	start	
position	and	the	point	of	maximum	velocity.		Movement	initiation	was	calculated	as	the	point	at	which	the	cursor	
crossed	a	semi-circular	boundary	with	a	radius	of	5mm	from	the	start	position.		Movement	time	(MT)	was	
calculated	as	the	length	of	time	from	movement	initiation	until	movement	offset	when	the	cursor	reached	the	
outer	ring	of	the	target	zone.		Path	length	(PL)	was	calculated	as	the	sum	of	the	differentiated	cursor	position	from	
the	time	of	movement	initiation	to	the	time	of	movement	offset.	
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Figure	2.	Overview	of	the	HGF	used	in	this	study.		In	this	study	a	2	level	HGF	was	employed.	At	the	first	level,	the	
perceptual	model	estimates	how	participant’s	beliefs	about	the	perturbation	level	x1	modulate	trial-by-trial	i.e.	
what	perturbation	level	governs	that	trial.		This	prediction	depends	on	the	current	task	representation	level	and	
the	magnitude	of	noise	in	the	visual	feedback	𝛼	(assumed	to	be	constant	for	a	given	block).		Sensory	PEs	at	this	
level	represent	the	error	between	this	prediction	and	the	actual	perturbation	level	that	is	weighted	by	the	sensory	
uncertainty.		At	the	second	level,	the	perceptual	model	estimated	the	probability	with	which	the	perturbation	level	
would	change	over	trials,	x2.		This	level	describes	the	validity	of	the	perturbation	level	and	the	variance	of	this	
depends	on	the	individualised	learning	step	size	ω.		As	there	was	no	explicit	modulation	of	validity	at	this	level	we	
only	analysed	the	data	from	the	first	level.		The	response	model	maps	these	hidden	beliefs	onto	observed	movement	
times	in	order	to	estimate	individual	parameters	that	dictate	learning	rate	based	on	Vossel	et	al	(2014).	MT	=	
movement	time.	
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Figure	3.	Beta	power	(15-30Hz)	modulated	over	sensorimotor	cortex	with	movement.		A)	A	schematic	
demonstrating	the	change	in	hand	velocity	throughout	the	task	with	each	signal.		This	highlights	the	points	at	
which	participants	were	moving	and	the	points	they	remained	still.		B+C)	EEG	data	averaged	over	beta	power	(15-
30Hz)	over	a	selected	ROI	and	over	subjects	in	an	epoch	aligned	to	movement	offset	(B)	and	the	GO	signal	(C).		
D+E)	Time-frequency	plots	demonstrating	the	average	change	in	power	over	time	across	1Hz	frequency	bands	
from	1-60Hz	averaged	over	subjects.		EEG	data	were	epoched	around	movement	offset	(D)	and	the	GO	signal	(E).		
F-H)	An	ROI	was	selected	over	sensorimotor	cortex.		The	white	dotted	line	represents	the	ROI	selected	as	shown	in	
H.		This	incorporated	both	the	average	ERD	over	subjects	at	the	onset	of	the	GO	signal	(F)	and	the	average	ERS	
over	subjects	1s	after	movement	offset	(G).		The	white	dotted	squares	indicate	the	windows	of	interest	that	were	
used	for	small	volume	correction	for	statistical	analyses.	
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Figure	4.	The	trial-wise	trajectories	of	task	inputs	or	hidden	beliefs	estimated	by	the	HGF.		A)	The	task	was	
designed	to	manipulate	perturbation	level	and	visual	noise	orthogonally.		Repetition	number	follows	the	implicit	
changes	in	perturbation	level.		Repetition	1	is	the	first	introduction	of	a	new	perturbation:	the	perturbation	switch	
(PS)	trial.		Visual	noise	was	modulated	in	blocks	of	high	and	low	visual	noise.		Angular	rotation	denotes	the	size	of	
the	perturbation	level	introduced	(0o,	30o	or	60o),	which	stayed	constant	over	subsequent	repetitions	of	that	
perturbation.		These	regressors	were	used	in	a	GLM	to	explain	sensorimotor	beta	power	following	a	movement	and	
before	a	movement.		B)	Estimated	trajectories	from	the	HGF	demonstrating	how	different	hidden	beliefs	evolved	
over	time	throughout	the	task	are	shown	for	an	example	participant.		Hidden	beliefs	estimated	after	sensory	input	
was	received	were	used	to	explain	the	post-movement	beta	synchronisation	(upper	panel)	and	predictions	made	
before	sensory	input	was	received	were	used	to	explain	preparatory	beta	power	before	movement	onset	(lower	
panel).		These	trajectories	were	produced	at	the	first	level	of	the	HGF.	C)	Raw	behavioural	data	from	an	exemplar	
subject	showing	angular	error	and	movement	times	across	all	trials.		Movement	time	was	the	observed	behaviour	
input	into	the	HGF	to	model	hidden	beliefs	across	trials.	
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Figure	5.	The	visuomotor	rotation	and	visual	noise	significantly	modulated	behaviour.		All	behavioural	
variables	were	averaged	over	all	perturbation	sizes	for	the	noise	(green)	and	no	noise	(black)	blocks	and	for	each	
repetition	of	a	perturbation.		A)	Angular	error	was	maximal	on	an	angular	perturbation	switch	(APS)	trial	and	
decreased	over	subsequent	repetitions	with	adaptation.	B)	Movement	time	was	on	average	greater	for	high	visual	
noise	compared	to	no	visual	noise	conditions.	C)	Path	length	modulated	in	a	very	similar	way	to	angular	error	
decreasing	with	repetition	number.		On	average,	path	length	was	significantly	greater	for	high	visual	noise	
compared	to	no	visual	noise	conditions.	D)	Average	velocity	decreased	on	APS	trials	and	increased	over	subsequent	
repetitions	with	adaptation.		Average	velocity	was	significantly	less	under	high	visual	noise	compared	to	no	visual	
noise.	Error	bars	=	standard	error	of	the	mean	(sem).	
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Figure	6.	Beta	power	before	and	after	a	movement	correlated	with	repetition	number.		A-C,	G-I)	A	GLM	
involving	the	design	regressors	(repetition	number,	visual	noise	and	angular	rotation)	measured	the	correlation	
between	EEG	activity	and	each	regressor	of	interest	for	each	subject	individually	for	the	time	period	after	each	
movement	(A-C)	and	before	each	movement	(G-I).		Here	the	time-frequency	plots	show	the	t-statistic	from	a	series	
of	one	sample	t-tests	measuring	the	consistency	of	these	relationships	across	participants.		The	results	show	areas	
in	which	the	data	was	consistently	positively	correlated	(warm	colours)	or	negatively	correlated	(cool	colours)	
with	the	regressor	of	interest	across	participants.		D-F,	J-L)	These	graphs	display	beta	power	(13-30Hz)	averaged	
across	participants	over	trials	in	a	particular	condition.		D+J)	Beta	power	averaged	over	angular	perturbation	
switch	(APS)	trials	(or	APS	trials+1	for	pre-movement	period)	and	adapted	trials	(APS	trial+10	orA	PS	trials+11	
for	pre-movement	period)	to	compare	activity	on	trials	with	a	large	error	and	no	error.		E+K)	Beta	power	
averaged	over	high	visual	noise	and	low	visual	noise	blocks.		F+L)	Beta	power	averaged	over	all	trials	with	a	
particular	sized	angular	rotation:	0	degrees,	30	degrees	or	60	degrees.		The	upper	two	rows	show	data	
corresponding	to	the	post-movement	period	and	the	bottom	two	rows	correspond	to	the	pre-movement	period.		
White	dotted	lines	show	significant	activity	thresholded	at	t=3.61,	p<0.001	uncorrected.		Beta	power	following	a	
movement	positively	correlated	with	repetition	number	consistently	across	subjects	(peak	voxel	at	12Hz,	545ms:	
t=7.10,	p=0.001	FEW;	A,D)	and	visual	noise	(peak	voxel	23Hz,	828ms:	t=3.77,	p=0.080	FWE,	p=0.001	uncorrected;	
B,E).		Beta	power	in	the	preparatory	period	following	the	ready	signal	and	prior	to	the	GO	signal	significantly	
correlated	with	repetition	number	(peak	voxel	at	21Hz,	-420ms,	t=4.76,	p=0.018	FWE;	G,J).		Beta	power	was	
significantly	reduced	in	this	preparatory	period	following	an	APS	trial	and	increased	with	subsequent	repetitions.		
Shaded	error	bands	=	sem.	
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Figure	7.	Post-movement	beta	synchronisation	correlates	with	multiple	components	of	Bayesian	updating.		
A	GLM	involving	regressors	estimated	from	the	first	level	of	the	HGF	measured	the	correlation	between	EEG	
activity	following	a	movement	and	each	regressor	of	interest	for	each	subject	individually.		Here	the	time-
frequency	plots	show	the	t-statistic	from	a	series	of	one	sample	t-tests	measuring	the	consistency	of	these	
relationships	across	participants.		There	was	a	significant	consistent	negative	correlation	between	the	PMBS	and	
prediction	error	(A),	the	precision	ratio	(B)	and	the	posterior	mean	(C)	estimated	at	the	first	level	of	the	HGF	
across	participants.		White	dotted	lines	show	significant	activity	thresholded	at	t=3.61,	p<0.001	uncorrected.	
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Figure	8.	Preparatory	beta	power	inversely	correlated	with	prior	precision.		A+B)	Time-frequency	plots	
showing	the	results	of	a	one	sample	t-test	measuring	the	consistency	of	the	correlation	between	the	estimated	
parameters	of	the	HGF	and	the	EEG	data.		Low-frequency	beta	power	(12-20Hz)	was	consistently	negatively	
correlated	across	participants	with	prior	precision	(A).		There	were	no	significant	consistent	correlations	for	the	
prediction	mean	(B).		C)	Beta	power	was	averaged	over	12-20Hz	and	over	trials	for	four	conditions	in	a	2x2	
factorial	design	(visual	noise	level	(high	vs	low);	repetition	number	(angular	perturbation	switch	(APS)	trial	+1	vs	
PS	trial	+11).		There	was	a	significant	interaction	between	visual	noise	and	repetition	number	(p=0.035,	
Eta2=0.22).		D)	There	was	a	significant	correlation	between	repetition	number	and	beta	power	(12-20Hz)	for	the	
no	noise	condition	(r=0.63,	p=0.026;	one-tailed):	beta	power	increased	with	adaptation	over	repetitions	of	the	
same	perturbation.		There	was	no	significant	correlation	between	repetition	and	beta	power	for	the	high	noise	
condition	(r=0.19,	p=0.31;	one-tailed).		White	dotted	lines	show	significant	activity	thresholded	at	t=3.61,	p<0.001	
uncorrected.		Error	bars	=	sem.	

	


