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Abstract
Alzheimer’s disease is a complex disorder encompassing multiple pathological features with associated genetic and
molecular culprits. However, target-based therapeutic strategies have so far proved ineffective. The aim of this study is
to develop a methodology harnessing the transcriptional changes associated with Alzheimer’s disease to develop a
high content quantitative disease phenotype that can be used to repurpose existing drugs. Firstly, the Alzheimer’s
disease gene expression landscape covering severe disease stage, early pathology progression, cognitive decline and
animal models of the disease has been defined and used to select a set of 153 drugs tending to oppose disease-
associated changes in the context of immortalised human cancer cell lines. The selected compounds have then been
assayed in the more biologically relevant setting of iPSC-derived cortical neuron cultures. It is shown that 51 of the
drugs drive expression changes consistently opposite to those seen in Alzheimer’s disease. It is hoped that the iPSC
profiles will serve as a useful resource for drug repositioning within the context of neurodegenerative disease and
potentially aid in generating novel multi-targeted therapeutic strategies.

Introduction
Global gene expression profiling can be thought of as a

high content quantitative phenotypic measure character-
ising tissue1, cell type in, for example, the heterogeneous
context of the brain2–4 and revealing diversity within a
previously thought homogeneous population5. Further,
biological state dynamics can be modelled through tem-
poral patterns of expression6. In the therapeutic context,
it has been established that disease-associated expression
changes can distinguish between disease states and are
consistent across independent data sets, thus facilitating
the identification of robust biomarkers7. Disease-
associated gene changes point to modulated pathways
and affected cell types, thus providing valuable insights
into mechanisms8. Interestingly, the quantitative nature of
the transcriptional phenotype has allowed for a direct

mapping of disease to potential therapeutic9–12. Here the
obvious hypothesis is that drugs tending to reverse the
expression changes seen in the disease state may act to
reverse the biological changes associated with the disease
itself. An important caveat here is that some expression
changes associated with Alzheimer’s disease (AD) may in
fact be compensatory and beneficial. Drug repurposing or
repositioning has resulted in successful initiatives across
several maladies13–19. Further, and of more specific
interest to the present project, drugs with profiles showing
significant anti-correlation to AD gene changes have been
shown to be conspicuous for their reported neuropro-
tective activities12. In a recent development, disease-
associated gene expression changes have begun to be
inferred from genomic risk variant data with the
Genotype-Tissue Expression repository20 and harnessed
to predict repurposing candidates for major psychiatric
conditions21. Although there is some intriguing psy-
chotherapeutic association of the candidate drugs in this
approach, the predicted transcriptional perturbation does
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not have an overlap with that seen in diseased brain tissue
[G. Williams, unpublished observation]. In the absence of
further validation of the predicted gene changes, one must
fall back on data from patient samples.
There are no established disease-modifying drugs for

the treatment of AD, there have been no new sympto-
matic treatments licensed for AD for >20 years and the
pipeline of emerging therapies is very limited. Target-
based drug research in AD has led to many insights into
the disease and provided the research community with
useful tool compounds. However, the promising results
seen in the laboratory have so far failed to be carried over
to the clinic and this has led to researchers casting around
for novel, non-target-based approaches22. The main aim
of transcription-based drug discovery is not target dis-
covery, but rather the discovery of drugs that have a
disease-modulating effect based on their global tran-
scriptional activity. A particularly attractive aspect of the
approach is that it naturally lends itself to repositioning
existing drugs thereby bypassing the hurdles that novel
entities must overcome on the road to the clinic. AD has
been extensively studied in relation to the expression
changes following pathological and cognitive decline23–26.
The wealth of data points to consistent and characteristic
changes associated with the disease and thereby makes a
repositioning strategy particularly attractive.
The application of gene expression profiling to drug

repositioning is limited at present by the fact that full drug
profiles are available only on a restricted set of immor-
talised human cell lines. This data is provided by the
Broad Institute connectivity map project (CMAP)11. A
more extensive drug set has been profiled on a variety of
induced pluripotent stem cell (iPSC)-derived cells,
including neural stem cells and differentiated cortical
neurons. However, this data constituting the LINCS
project27 is based on profiling a set of 1000 landmark
genes and then using an optimised linear mapping to
generate full profiles. This motivated the present initiative
to define the full expression profiles of the CMAP can-
didate drugs in the more AD relevant cell type of iPSC-
derived cortical neurons. The new phenotypes can then
be compared to the CMAP profiles and more pertinently
scored against the disease profiles to see whether they
preserve or enhance their anti-correlation with AD. In
this context, iPSC-derived cortical neurons have now
been established as a model system for the study of
neurological diseases especially the tracing of the effects
of disease-related genetic variants28–31. This model pro-
vides for an efficient moderate throughput platform to
assess the transcriptional effects of the candidate drugs in
a more neurological context. It must be remembered,
however, that AD is a complex pathology also involving
multiple cell types, such as microglia and astrocytes. In
this context, assaying drug perturbations within isolated

iPSC cultures facilitates an important but limited insight
into the disease.
The motivation for the work presented here is to gen-

erate a neuronal-specific transcriptional database of
compounds with a view to drug repositioning in AD and
other neurodegenerative conditions. The initial com-
pound set was assembled based on CMAP profiles that
showed a tendency to reverse AD-associated expression
changes observed across a variety of independent studies.
The drug candidates were then profiled for their tran-
scriptional effects on iPSC-derived human cortical neu-
rons. The results indicate that at the global level there is a
degree of correspondence between the CMAP and iPSC
profiles. Furthermore, 51 of the drugs have profiles that
drive transcription changes counter to those in AD. The
consistently regulated genes correspond to those impli-
cated in AD. It is hoped that the transcriptional data for
these drugs will be of use to the wider community of
researchers interested in neurodegenerative conditions
and facilitate further repositioning efforts.

Materials and methods
The AD-associated transcriptional landscape
The NCBI GEO database32 was queried for series con-

taining samples derived from postmortem AD patient
brains for various stages of the disease. Similarly, murine
AD model brain samples were also collected based on
relevant query key words: 5xFAD, 3xTG, Alzheimer’s
disease+mouse. Profiles were generated based on relative
levels of non-disease and disease state sample averages,

with the scaled fold level defined as f ¼ hdi�hci
hdiþhci, where the

brackets indicate averages of the control (c) and disease
(d) samples. The statistical significance is measured by
Student’s t test and those folds falling below the 95%
confidence interval were dropped as were those with folds
of <20%. The human disease versus control AD set
comprises 21 profiles derived from 13 series (NCBI GEO
accession: GSE8442224, GSE3726333, GSE3698034,
GSE3942035, GSE129723, GSE2937836, GSE4835037,
GSE1522225, GSE2697238, GSE3726439, GSE2814640,
GSE528141, GSE1321442) showing intra-profile con-
sistency based on the regression scores for significant
(Student’s t test p < 0.05) correlations, see Supplementary
Table 1. To capture brain region variability, the number of
profiles is greater than the number of series. In Supple-
mentary Table 2, the extent of intra- versus inter-series
AD profile correlation scores are given showing that in
many cases the variability in brain region profiles is
greater than that between independent series. Cognitive
decline was based on decline in Mini-Mental State
Examination (MMSE)43 represented by two profiles from
two independent series and Clinical Dementia Rating
(CDR)44 profiles from one series. Similarly, series
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corresponding to murine models of AD were gathered
from 5xFAD and 3xTG mice resulting in seven profiles
from three series (NCBI GEO accession: GSE5052145,
GSE11975646, GSE10114447, GSE7757448) for the 5xFAD
set and nine profiles from eight series (NCBI GEO
accession: GSE31624, GSE1512849, GSE36237,
GSE9292650, GSE60460, GSE6091151, GSE3698134,
GSE35210) for the 3xTG set. Series corresponding to
BRAAK stage progression (NCBI GEO accession:
GSE1297, GSE84422, GSE48350, GSE10624152) were
generated with a linear mixed model analysis, by fitting
the gene expression level across the samples in the series
to a linear function of the BRAAK stage with categorical
calls on cell type and gender as covariates. The resulting
residual correlation Z score for gene expression against
BRAAK stage constituted the BRAAK profile. Profiles
corresponding to full BRAAK progression were not con-
sidered to be sufficiently different to the overt disease
profiles derived from the same series, where disease
assignment is also based on BRAAK staging. However,
gene expression changes driving mild BRAAK pathology
should capture early disease biology invisible in the overt
profiles. In total, six profiles corresponding to mild
BRAAK pathology, level 0 to level 3, formed the mild
BRAAK AD set. Similar profiles were generated for psy-
chiatric measures MMSE and CDR (NCBI GEO accession:
GSE48350, GSE1297, GSE84422). In the case of the
MMSE profile, the regression signs were reversed as
MMSE scores decrease with disease progression, see Table
1 for an overall comparison of the profile sets.
Representative profiles for each set were based on genes

showing consistent changes across the constituent pro-
files. In particular, the sense changes (upregulation and
downregulation calls) for significantly regulated genes
were summed over the profiles and only those genes
retained that had an absolute regulation fraction of >20%
and with a significant regulation statistic measured by
Student’s t test of p < 0.05. Owing to the categorical nat-
ure of the representative profiles, correlation with the
iPSC profiles was based on an enrichment analysis. The

enrichment score was generated based on a binomial
probability sum with gene probabilities scaled according
to their frequencies in SPIED53.

CMAP profiles
CMAP data were downloaded from the Broad con-

nectivity map site (www.broadinstitute.org/connectivity-
map-cmap) 11. This consisted of probe sets for each
sample ranked according to expression level relative to
batch control. The data consist of 6100 samples covering
1260 drugs and 4 cell types. The relative probe expression
ranks, defined as 1� 2 R�Rmin

Rmax�Rmin
, where R in the rank of a

given gene’s expression change (Rmax being the highest
and Rmin being the lowest ranks), were averaged over
replicates ignoring cell type and filtered based on sig-
nificance using a one-sample Student’s t test. For genes
with multiple probes, the probe with the largest sig-
nificant change was mapped to the gene. This resulted in
a unique profile for each drug in CMAP. The compound
data can be queried through SPIED53.

iPSC profiles
Following the dominant CMAP treatment protocol, cell

cultures were treated for 6 h and at compound con-
centrations of 10 μM. The iPSC expression samples were
generated on the Affymetrix Human Genome U133 Plus
2.0 Array platform from ThermoFisher Scientific.
Human iPSC-derived cerebral cortical neurons

(HyCCNs; Ax0026) were cultured as per the manu-
facturer’s guidelines (www.axolbio.com/page/neural-
stem-cells-cerebral-cortex). Each drug treatment at a
concentration of 10 μM for 6 h was performed on 3
independent HyCCN cultures (average density 300 K/
cm2) and RNA from each treated well extracted by direct
cell lysis and recovery using the Absolutely RNA Micro-
prep Kit (Agilent, as per the manufacturer’s guidelines).
Each drug-treated plate also consisted of a vehicle-only
control set of triplicate cultures. Integrity of total RNAs
was determined using an Agilent Bioanalyser as per the
manufacturer’s instructions and only samples with RNA

Table 1 The AD sets show varying degrees of overlap

AD BRAAKmild COGI 5xFAD 3xTG

AD 11.26 ± 0.45 −1.81 ± 0.38 13.34 ± 1.08 3.38 ± 0.33 0.05 ± 0.11

BRAAKmild 4.43 ± 1.00 −1.03 ± 0.83 −0.35 ± 0.34 −0.04 ± 0.20

COGI 15.10 ± 3.47 3.09 ± 0.70 0.26 ± 0.23

5xFAD 13.23 ± 1.67 0.46 ± 0.21

3xTG −0.06 ± 0.25

The overt AD profile set is highly correlated with the cognitive decline profiles. There is a degree of overlap with the 5xFAD profiles but poor agreement with the mild
BRAAK and 3xTG animal profiles. The 3xTG profile set is conspicuous for not being internally consistent or having significant overlap with the other AD sets. The
numbers in the table correspond to the average Z score across pairs in the sets, excluding correlations of profiles with themselves
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integrity number >7 were progressed to transcriptome
analysis. Transcriptome changes driven by exposure to
the candidate drugs were determined using the Nugen
Ovation V2 labelling system (https://www.nugen.com/
products) followed by Human U133 Plus 2 GeneChips as
per the manufacturer’s instructions (www.thermofisher.
com/order/catalog/product/900466).
The NCBI GEO hosts 145,000 samples on this platform,

making it the most popular array chip. The relative
expression levels of probes were collected for the GEO
data and the iPSC control data. The ranks were scaled to
lie between zero for the highest expression probe and
unity for the lowest. The relative rank of each probe was
defined as r0�r

r0
for r < r0 and

r0�r
1�r0

for r < r0, where r and r0
are the average probe ranks over the iPSC samples and the
set of samples deposited on GEO, respectively. Probes
were then mapped to genes and, in the case of degeneracy,
the probe with the largest relative rank mapping to the
gene. The gene rank profile was taken to be related to the
relative gene expression characterising iPSCs.
Drug treatment profiles were based on statistically fil-

tered ratios of drug-treated and control groups. These
were generated based on a combined set of 554 samples,
which were robust multiarray averaging normalised. The
samples were distributed over 23 plates with the corre-
sponding dimethyl sulfoxide controls. Transcriptional
profiles for the 153 drugs were generated based on nor-
malising to the plate control and multiple plate drug
replicates kept as separate profiles. The drug set is enri-
ched for CMAP based anti-AD potential (153). Rapamy-
cin, which has a well-defined transcriptional signature,
served as a positive control. The expression changes were
either measured as scaled folds filtered for significance
with Student’s t test or as Z scores, with significance based
on the magnitude of Z. Degenerate probes were mapped
to genes based on the dominant probe responses.

Results
AD-associated expression changes
To capture as much as possible of the transcriptional

landscape of AD, different categories were defined based
on overt disease versus healthy profiles, profiles following
early pathological and cognitive measures, together with
those from animal models, as described in ‘Materials and
methods’. There is a good degree of overlap between the
overt AD profiles and those following cognitive decline,
see Table 1, but it was reasoned that there is sufficient
variability to give rise to unique drug candidates, see
section on ‘CMAP candidates’. The early BRAAK stage
profiles show little overlap with overt or cognitive decline
profiles, see Table 1, and thus it is anticipated that these
profiles may shed light on distinct early stage pathology
and early therapeutic intervention. The animal model data
naturally separates into those based on the 5xFAD, which

is consistent with AD as can be seen in Supplementary
Table 3, and those based on 3xTG, showing little overlap
with AD profiles or internal consistency. A similar ana-
lysis also including rat models of AD has been carried out
by Hargis and Blalock54. Animal model data were inclu-
ded in this study because the expression changes seen in
the model systems have established causes, i.e. the inser-
ted mutations, 5xFAD or 3xTG in our case. Consequently,
candidate drugs reversing these changes may have more
focused mechanisms of action. Furthermore, the evidence
for neuroprotection is to a large extent derived from
experiments in animal models.

CMAP candidates
In general, transcription-based repositioning results in

tens of candidates out of a total of just over a thousand
drugs constituting CMAP13–19. The relatively small
number of compounds that are put forward for rigorous
bio-assaying to establish firmer evidence for a disease-
modulating potential of course reflects the experimental
resource required. The basis of the present project was to
select candidates to populate a database of iPSC profiles
for drugs biased towards their predicted anti-AD and
wider neuroprotective activities. It was therefore reasoned
that the thresholds for deeming a drug a repositioning
candidate had to be relaxed to allow for over a hundred
candidates to be taken forward. To this end, five AD-
based profile sets that capture distinct aspects of the
disease were separately queried against CMAP and three
selection criteria were applied. In the first instance, data
were gathered on the anti-correlation rank of each com-
pound, with compounds showing a high rank in either of
the profiles considered as candidates, see Supplementary
Table 4 for the complete candidate list. A second selection
was based on consistency of the anti-correlation across
profiles in each set, and finally some compounds with
conspicuously high anti-correlations with individual pro-
files were added to the set. The full list of compounds is
given in Supplementary Table 4 and consists of 153
compounds. Interestingly, among these drugs are estab-
lished neuroprotective entities and AD therapeutics,
see below.

iPSC profiles
As a first step in establishing the phenotype of the

model cell system, the overall iPSC transcriptional profile
was queried against a database of publicly deposited gene
expression profiles via SPIED12,53, see ‘Materials and
methods’. The top 1000 genes in the iPSC rank profile
consists of 959 upregulated and 41 downregulated genes
and this served as a query in the SPIED search. It is
perhaps worth pointing out here that the level of gene
expression unique to a given cell type will tend to be
elevated relative to a background consisting of a variety of
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tissue types. An analogy would be in the context of divi-
sion of labour one is characterised by what one does not
by what one does not do. The top SPIED hits show a high
correlation with human brain-derived samples, validating
the cell’s lineage, see Supplementary Table 5.

Comparison of iPSC and CMAP profiles
The extent to which an iPSC profile correlates with its

CMAP equivalent can be assessed by querying the CMAP
database with the iPSC profile and ranking the CMAP
equivalent. The extensively studied perturbagen rapamy-
cin served as a positive control and eight independent
profiles were generated to assess the degree to which
these profiles are consistent with each other and with the
rapamycin profile in CMAP. The rapamycin profiles had
consistently high overlaps among themselves, but less so
with the CMAP profile, with only one returning rapa-
mycin as a top hit, rank seven, in a CMAP query, see
Supplementary Fig. 1. In Supplementary Fig. 2, iPSC and
CMAP profile pairs with the four highest CMAP query
ranks are shown. Overall, there are 30 significantly cor-
relating and 8 anti-correlating pairs. The overall com-
parison of the iPSC and CMAP profiles can be framed in
terms of an enrichment analysis for the rank of the
equivalent compound hit and the significance can be
assessed with Kolmogorov–Smirnov (KS) statistic on the
maximal deviation from the zero-enrichment diagonal
line. The KS statistic furnishes an objective measure of the
robustness of the iPSC profiles and suggest that iPSC
profiles based on a Z score threshold of |Z| > 3, see
‘Materials and methods’ for details, capture most of the
compound-associated changes. The enrichment is that of
the rank of a given iPSC compound score with itself in
CMAP. The enrichment plot is shown in Fig. 1. The KS
statistic is highly significant with the chance of a random
compound association beating the enrichment maximum
of p= 5.1E−6.

Relation of iPSC profiles to AD
Further to assessing the extent to which compounds

orchestrate similar expression changes in the cancer cell
lines and differentiated cortical neurons, it is critical to
test whether the drugs also act in an anti-AD manner in
the neuronal context. To this end, the drug profiles were
scored against five representative AD reprofiles derived
from the AD sets defined above, see ‘Materials and
methods’ for details. Table 2 lists the compounds with at
least two significant anti-correlations with the repre-
sentative AD profiles, which will be referred to as AD hit
compounds (ADC). The ADC set show a relatively high
degree of intra-profile correlation as compared to other
iPSC profile pairs, see Fig. 2. The average correlations in
terms of regression Z scores are: 2.43 for ADC pairs and
0.77 for all other pairs. It is therefore of interest to see to

what extent the ADC set regulate a common set of
transcripts. In Fig. 3, the common ADC target genes are
shown demonstrating a high degree of consistency with a
clearly defined set of upregulated and downregulated gene
cohort. To get an idea of the underlying biological net-
works that are being perturbed by the ADC, a pathway
enrichment analysis was performed on each of the profiles
in the ADC set. The consistently positively and negatively
regulated pathways defined by an enrichment in the
upregulated and downregulated gene sets, respectively,

Fig. 1 The overall comparison between the iPSC profiles and
those on the cancer cell lines can be framed as an enrichment
analysis for the rank of iPSC queries against CMAP. For each drug,
the correlation between iPSC and CMAP profiles are ranked against
the remainder of the CMAP data set profiles. For a good agreement
between the profiles, one would expect an enrichment in high rank
scores and this is the case for iPSC profiles. The top plot shows the
rank distributions in bins of 50 with a clear bias for high rank scores.
The bottom plot is the cumulative distribution of ranks contrasted
with the non-enriched diagonal. The significance is measured by an
MC simulation randomising rank orders and counting the number of
times peak deviation from the diagonal exceeds that in the original
enrichment
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Table 2 Compounds with iPSC profiles showing anti-correlation with at least two representative AD profiles, referred to
as the ADC set

AD

BR
AA

Km
ild

CO
G

I

5x
FA

D

3x
TG

TRIOXSALEN -0.22 -0.43 -0.37 -0.33
ALLANTOIN -0.64 -0.35 -1
FLUMETHASONE -0.33 -0.33 -0.33
GALANTHAMINE -0.5 -0.37 -0.33
OXAPROZIN -0.34 -0.2 -0.2
RISPERIDONE -0.29 -0.38 -0.54
SULFAMONOMETHOXINE -0.36 -0.6 -0.33
(cis-) NANOPHINE -0.21 -0.27
ACETYLSALICYLSALICYLIC ACID -0.33 -0.38
ALBENDAZOLE -0.32 -0.6
AMINOPURINE -0.39 -0.24
ATRACTYLOSIDE -0.29 -0.21
BENZTHIAZIDE -0.28 -0.71
BEPHENIUM -0.24 -0.29
BROMOPRIDE -0.29 -0.25
CEPHALOTHIN -0.57 -0.23
CHLORPROMAZINE -0.46 -0.33
CYCLOPENTHIAZIDE -0.25 -0.43
DILAZEP -0.21 -0.41
DIPYRIDAMOLE -0.33 -0.45
DOXORUBICIN -0.36 -0.5
DROPROPIZINE -0.59 -0.2
ERGOCALCIFEROL -0.25 -0.33
ESTRIOL -0.5 -0.38
ETOMIDATE -0.35 -0.33
FENBUFEN -0.38 -0.22
FLUOCINONIDE -0.51 -0.53
GLAFENINE -0.38 -0.26
HYDROFLUMETHIAZIDE -0.39 -0.44
IPRONIAZIDE -0.51 -0.33
KAWAIN -0.22 -0.25
LEVAMISOLE -0.54 -0.47
MESTRANOL -0.24 -0.21
MONOBENZONE -0.29 -0.36
N6-METHYLADENOSINE -0.39 -0.3
NEOSTIGMINE -0.21 -0.31
NETILMICIN -0.78 -0.5
OFLOXACIN -0.33 -0.41
OXANTEL -0.57 -0.41
OXOLINIC ACID -0.5 -0.33
PHENACETIN -0.41 -0.57
PHENINDIONE -0.28 -0.79
PHENOXYBENZAMINE -0.31 -0.22
PROBENECID -0.25 -0.29
PROPARACAINE 5.0-3.0-
PYRANTEL -0.52 -0.2
RONIDAZOLE -0.5 -0.29
TELENZEPINE -0.35 -0.26
THIOGUANOSINE -0.3 -0.25
TRICHLORMETHIAZIDE -0.36 -0.27
XAMOTEROL -0.4 -0.33

DESCRIPTION

furanocoumarin and a psoralen deriva�ve
urea hydantoin used in dermatological prepara�ons
cor�costeroid for topical use 
cholinesterase inhibitor
NSAID
an�psycho�c
an�-myocardial
angiogenesis inhibitor
Aspirin impurity
anthelmin�c
purine analog of guanine and adenine
toxic glycoside 
an�-hypertensive 
anthelmin�c
dopamine antagonist
cephalosporin an�bio�c 
an�psycho�c
an�-hypertensive
adenosine reuptake inhibitor
inhibits blood clot forma�on
chemotherapeu�c
cough suppressant
vitamin D 
steroid, weak estrogen
anaesthe�c
NSAID
Glucocor�coid
NSAID
oral thiazide used to treat hypertension and edema
Monoamine oxidase inhibitor 
seda�ve, anxioly�c, psychotropic 
used to treat parasi�c worm infec�ons
estrogen receptor agonist 
depigmenta�on drug
methylated RNA 
cholinesterase inhibitor
aminoglycoside an�bio�c
an�bio�c
anthelmin�c 
an�bio�c
pain-relieving and fever-reducing drug
Vitamin K antagonist
an�-hypertensive NP
 increases uric acid excre�on in the urine
topical anesthe�c 
anthelmin�c <E-10
nitroimidazole an�bio�c <E-9
an�muscarinic <E-8
chemotherapeu�c <E-4
diure�c <E-2
β1 adrenergic receptor agonist

The numbers are the correlation n""þn##� n"#þn#"ð Þ
n""þn##þn"#þn#" and the associated binomial enrichment score is reflected in the red intensity. The compound descriptions are given

and those with reported neuroprotective activity are highlighted in grey
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are given in Supplementary Table 6, and these point to
key processes associated with AD that underpin the
potential therapeutic action of the drugs. The enrichment
for the AD, Parkinson’s disease and mitochondrial path-
ways in the positively regulated gene sets is driven by the
upregulation of cytochrome c oxidases, ubiquinone oxi-
doreductases and ATP synthases. These are all key players
in mitochondrial function, which is known to be com-
promised in AD55,56, with growing evidence that gene
variation affecting mitochondrial function may play a role
in AD57,58. The downregulated set appears to be less
consistent. Nonetheless, the enrichment of immune-
associated pathways points to a possible anti-
inflammatory activity of the candidate drugs.
Interestingly, the following drugs have been reported to
have neuroprotective activity: fluocinonide59, kawain60–63,
allantoin64, dipyridamole65–67, estriol68, levamisole69,
mycophenolic acid70, neostigmine71, probenecid72,73,
chlorpromazine74, and phenoxybenzamine75, and xamo-
terol has been reported to ameliorate neuroinflammation
and pathology in 5xFAD mice76 and shown to enhance
cognition in a Down syndrome mouse model77. The
atypical antipsychotic risperidone prescribed to manage
psychosis in AD has demonstrated neuroprotection in
animal models of ischemia78. Furthermore, cholinesterase
inhibition is a therapeutic strategy for AD79 and there are
two such inhibitors in the candidate list with galantamine

as an established AD therapeutic80, while neostigmine
exhibits poor blood–brain barrier penetrance and is
therefore not in clinical use for AD. There does not
appear to be any gene expression signature distinguishing
compounds with reported neuroprotective activities from
the other ADC compounds. This is to be expected as not
all compounds have been assayed for neuroprotection and
biological activity is not expected to be solely encoded in
the transcriptome.

Discussion
Neurodegenerative diseases present a therapeutic chal-

lenge due to the difficulty in establishing a clear protein or
mechanistic culprit for classic target-based intervention.
Another hurdle is a consequence of the temporal extent of
disease progression and the probable need to treat before
overt symptom onset. This is a particular problem in
designing clinical trials. With this in mind, alternatives to
target-based approaches are increasingly being pursued.
One recent report compared Parkinson’s disease (PD)
incidence and chronic therapeutic use data from the
Norwegian Prescription Database (www.norpd.no),
showing that salbutamol use reduced PD risk81. A middle
ground between target-based and epidemiological
approaches is a methodology based on the disease phe-
notype gleaned from gene expression changes observed in
pathological states. Underlying this approach is the
observation that disease states can effectively be repre-
sented by characteristic expression changes, in the sense
that these changes are consistent and can function as high
content quantitative biomarkers. One avenue available to
drug repositioning is to use these transcriptional pheno-
types together with the hypothesis that an anti-correlation
in phenotypes is indicative of the therapeutic potential of
the compound. Whereas the transcriptional landscape of
neurodegeneration and AD in particular has been well
characterised, the corresponding data for compounds are
either limited to full profiles defined on non-neuronal
proliferating cells or partial profiles on iPSC-derived
neuronal cells. The basis of the present study is to go
some way to fill this gap in the compound-associated
transcriptome with an emphasis on drugs with an anti-AD
potential.
In the context of defining the neurotherapeutic poten-

tial of candidate drugs, a further development would be to
treat wild-type or mutant AD mice with the compounds
and measure expression changes in the brain, along the
lines of the DrugMatrix project82. This approach would
have the advantage of including non-neuronal factors
contributing to AD pathology such as inflammation.
However, practical considerations limit whole-animal
approaches to smaller drug sets and will therefore form
part of a subsequent endeavour based on a more limited
set of drug candidates selected based on the iPSC data.

Fig. 2 The ADC compounds have relatively high intra-profile
correlations. The correlation Z scores are shown on a heat map with
the ADC component split off to highlight the enhanced correlation.
The average correlation for intra-ADC profiles is 2.43 as opposed to
0.77 for all other pairs
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In the present work, we have established an AD tran-
scriptional profile landscape and shown this to have a high
degree of internal consistency. This disease-associated
transcriptional landscape served as the basis for selecting
a series of candidate drugs from the CMAP database of
cancer cell line profiles, which were then assayed for their
transcriptional effect on iPSC-derived cortical neurons.
The iPSC profiles show a degree of overlap with the
corresponding CMAP profiles, with a highly significant
overall comparison in terms of the ranks observed for
iPSC queries of CMAP. Out of the 153 iPSC drug profiles,
51, termed the ADC set, showed a high degree of anti-
correlation with transcriptional changes seen in AD. A
pathway enrichment analysis performed on each of the
ADC set showed that pathways related to mitochondrial

function were commonly upregulated while commonly
downregulated pathways represented immune-associated
pathways. Interestingly, these pathological features are
found in multiple neurodegenerative disorders, such as
PD and Huntington’s disease, and it would be of interest
to investigate whether these compounds may have wider
therapeutic potential. Notably, 18 of the ADC drugs
already have established neuroprotective ability in pub-
lished studies. Whereas we expect that initial CMAP fil-
tering against AD profiles has led to increased likelihood
of discovering compounds that tend to reverse AD-
associated expression changes in the context of iPSC
cultures, this can only be rigorously assessed by generat-
ing iPSC profiles for a series of compounds randomly
selected from the CMAP database, which is outside the

Fig. 3 The gene expression heat map for genes consistently regulated by the ADC set. Genes were selected based on their having a sum sense
change ratio >33%. Specifically, the sum sense change ratio is defined as 1

P

P
i¼1;¼ ;P sign gið Þ, where gi is the expression change of a gene in the ith

profile. The compounds are clustered with the UPGMA algorithm and the corresponding dendrogram shown at left
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scope of the present study. In conclusion, approaches to
identifying a broader range of candidate therapies for AD
are urgently needed. It is therefore expected that the iPSC
database will serve as a useful platform for drug reposi-
tioning across multiple neuropathological disorders as
well as AD.
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