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Abstract
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1 Introduction

There is an asymmetry of access to data between the management board of a company

and investors. The data available to investors is normally lagged, for instance, they

are informed of the company’s asset values at some point in future. The problem gets

even more complicated in the context of credit derivatives where in addition to this

asymmetry of information, investors also face the risk of default. We analyze hedging

the risk of defaultable claims in a partial information credit risk modeling where it is

assumed that investors receive company’s asset values with some delays. In order to do

this, first, we need to model and measure the arrival rate of default.

The concept of intensity (or stochastic intensity) is a popular approach to model

the arrival rate of default. There are two notions of intensity. The first one is defined

through a hazard-based approach in which the hazard process of a default time is assumed

to be absolutely continuous with respect to the Lebesgue measure. Then the Radon-

Nikodym derivative of the hazard process with respect to the Lebesgue measure is called

the intensity (or hazard rate) process of the default time, see Chapter 5, in particular

Section 5.1.4, of [6].

The second notion is based on Doob-Meyer’s decomposition, where the intensity pro-

cess of the default time τ is defined as the Radon-Nikodym derivative (if it exists) of

the compensator of the default indicator process, (1{τ≤t})t≥0, in an appropriate filtration.

Proposition 5.1.3 of [6] (see also Section 5.1.4 of [6]) shows that an intensity process in

the sense of the first definition, is also an intensity process (once restricted up to the

default time) in the sense of the second one, but the other way around does not always

hold.

Therefore, because of its flexibility, we choose the second notion of intensity to model

the default rate. Note that the existence of the intensity process of a default time is not

always guaranteed, see Proposition 6.1 of [14]. For interesting examples, discussions, and

a general procedure of constructing intensity based on the second notation, we refer to

[16].

Another reason to choose the second notion of intensity is concerning the continuously

delayed filtration in [15] that we apply to model the delay in data and the investors’

information. The existence of the intensity process of a default time and its closed-form

formula based on the second notion, are guaranteed and well investigated in certain

models under the continuously delayed filtration, see Theorem 3.1 of [15]. This theorem

is used to obtain a semi-closed-form formula in Example 4.2 which is one of the important
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cases that we study.

The next step is to choose an appropriate risk management approach. The presence

of the risk of default and the partial information would lead to an incomplete market;

hence, we should use a risk management method that is applicable to incomplete markets.

This is done through the local risk minimization (LRM) approach that we use to identify

hedging strategies of defaultable claims.

The LRM approach has already been applied in managing the risk of defaultable

markets, for example in [3], [4], and [5]. One of the advantages of this method is its

mathematical flexibility. In [28], under some conditions (where square integrability is

one of the important ones) on the underlying process that are reviewed in Section 2.1, it

is shown that finding the hedging strategy of a defaultable claim in the LRM framework

is equivalent to finding the so called Pseudo-Locally Risk Minimizing (PLRM) hedging

strategy which in turn is determined through a special orthogonal decomposition of the

claim known as Föllmer-Schweizer (FS) decomposition. Therefore, we focus on PLRM

hedging strategies, and given a defaultable claim, the aim is to obtain its FS decompo-

sition.

Assuming the existence of a hazard rate process (the first notation of intensity dis-

cussed earlier) and the full observation of the underlying assets, modeled by diffusion

processes, the FS decompositions and hence the PLRM hedging strategies of defaultable

claims are discussed in [3], [4], and [5]. In these works, modeling the risk of default by the

first notion of intensity, plays an important role as it allows to use the results of Chapter

5 of [6].

Normally, in defaultable markets, the default time is not necessarily measurable with

respect to the investors’ information, so the LRM or the PLRM approach is carried out

in an enlarged filtration of the investors’ data to turn the default time into a stopping

time. In simple terms, one starts with a reference filtration containing the information

from non-defaultable markets observable to investors, and then this filtration is expanded

to a new one in which the default time is a stopping time.

It is important to note that a semimartingale in a reference filtration does not preserve

its properties once the filtration is expanded, see [19]. In [5], it is assumed that hedging

stops after default which enables them to dismiss the H-hypothesis (this hypothesis holds

if any martingale in the reference filtration remains a martingale in the expanded one).

In addition, they investigate the recovery of defaultable claims assuming dependency

between the default time and underlying assets.
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One can also assume that the default time is independent of underlying assets. This

is less favored (at least in our model) in finance as there could be correlation between

the default time and underlying assets. In [8] and [9], it is assumed that the information

from underlying assets is contained in the investors’ filtration where the hedging analysis

is carried out.

We challenge the above assumptions by presenting a credit risk model in which in-

vestors cannot fully observe underlying assets. In what follows, we summarize the main

contributions of our work more specifically.

We obtain semi-closed-form formulas for PLRM hedging strategies of defaultable

claims under the continuously delayed filtration. Under some conditions, the final for-

mulas are numerically implementable, and we distinguish the full market’s, managers’,

and investors’ information. The default time may or may not be adaptable with respect

to neither the investors’ nor the managers’ filtration, and it could have correlation with

underlying assets (which are modeled by continuous special semimartingales) and hence

the information available to investors.

In our work, the default rate can be modeled through either notions of stochastic

intensity. This allows to analyze models where the default time is defined economically

and endogenously through the first hitting time of a firm’s assets (for which investors

might not be informed instantly) to a barrier. Normally, in hazard rate approaches to

obtain hedging strategies, e.g. in [3] and [4], it is not economically clear why default

occurs; in other words, the nature of default in terms of asset and liabilities cannot be

explained.

In order to derive the hedging strategy of a defaultable claim, we obtain its FS de-

composition in an enlarged filtration of investors. Although there are general results

that guarantee the existence of the FS decomposition even under different levels of in-

formation, see [8], [10], and [13], obtaining numerically implementable results remains a

challenge. Normally, the main method of finding the FS decomposition is by transfer-

ring the original probability measure to a minimal equivalent local martingale measure

(MELMM), for instance as discussed in [8], [11], and [28].

We obtain semi-closed-form solutions of the PLRM hedging strategies without al-

tering the underlying probability measure and without applying the MELMM method.

We achieve this through applying an enlargement filtration theorem. Then canonical

and Kunita-Watanabe (KW) decompositions are used to represent the PLRM hedging

strategies through solutions of partial differential equations (PDEs) which are numeri-
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cally implementable. The same idea is applied in [24] in the context of structural models

using partial-integro differential equations and finite variation Lévy processes to model

underlying assets.

To the best of our knowledge this is the first time that hedging the risk of delayed

data in defaultable markets is tackled; in particular, under these circumstances.

The paper is outlined as follows. In Section 2, we explain the model and some

preliminaries; in particular, a brief review of the LRM approach is provided in Section

2.1. Canonical and KW decompositions of certain special semimartingales are discussed

in Section 3 which are required to carry out our analysis. Section 4 is devoted to some

applications, examples, and finding the FS decompositions and hence the PLRM hedging

strategies. Finally, we conclude the paper in Section 5. In Section 7.1, some technical

results are reviewed for unfamiliar readers.

2 The Model Setup

We suppose that all the random variables and stochastic processes in our model are

defined on (Ω,F,F ,P) which is a complete filtered probability space satisfying the usual

hypotheses where F = (Ft)t≥0 represents the flow of information from all markets,

including defaultable and non-defaultable ones, and Ft ⊂ F for all t ≥ 0. Since we deal

with more than one filtration in our work, henceforth, it is assumed that all filtrations

applied in this paper satisfy the usual hypotheses.

In our framework, a level of information such as the investors’ or management’s

information is modeled through a filtration. For instance, the evolution of asset values of

a company could be modeled by a stochastic process, then the natural filtration generated

by this process can form a level of information that could be observable to either investors

or the management. The next assumption models the management’s information.

Assumption 2.1. The available information to the management board of a company at

time t≥ 0 on (Ω,F,P) is modeled by a filtration FM = (FM
t )t≥0 such that FM

t ⊂ Ft,

for all t ≥ 0.

Now, we specify stochastic processes that are used to model risky asset values. It

is assumed that the default-free market is composed of two tradable assets: a risky

asset, modeled by a stochastic process X, and a risk-free money market account. The

evolution of the risky asset (for instance the company’s asset values) is observable to the

management, and hence X is an FM -adapted process. Furthermore, we assume that
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• The stochastic process X = (Xt)t≥0, Xt : Ω 7−→ (−∞,∞) is a continuous semi-

martingale (hence a special semimartingale) on (Ω,F,FM ,P) admitting the canon-

ical decomposition X = X0 + M + A, where X0 is a constant, M with M0 = 0,

is an FM -local martingale, and A with A0 = 0, is FM -predictable and of finite

variation. Furthermore, the processes A and the quadratic variation of X (denoted

by [X,X] or [X]) are absolutely continuous1 with respect to the Lebesgue measure,

i.e. for all t ≥ 0,

At =

∫ t

0

as ds, and [X]t =

∫ t

0

bs ds, (1)

where a = (at)t≥0 and b = (bt)t≥0 are FM -adapted càdlàg processes.

• The money market account (that is observable and measurable to both managers

and investors) has a constant value of one at all times. This means thatX represents

the discounted asset values.

The processes A and [X] are FM -predictable, so without any loss in generality, we

can assume that a and b are FM -predictable too, see Proposition I.3.13 of [18]. In fact,

for each t ≥ 0,
∫ t

0
as ds =

∫ t
0
as− ds, P-a.s., and (as−)s≥0 is càglàd and hence predictable.

We suppose that investors are not immediately informed of the true values of the

underlying asset, and they receive information with some delay modeled by a random

time change α = (αt)t≥0. For example, if there is a constant delay l > 0 in receiving the

data, then αt = (t − l)+ = max(t − l, 0), for all t ≥ 0. We formally define the random

time change α in our work as follows.

Definition 2.1. The set α = {αt; t ≥ 0} on (Ω,F,FM ,P) is called a time change if

1. α0 = 0,

2. for every t ≥ 0, αt is an FM -stopping time and αt ≤ t, P-a.s.,

3. for every ω ∈ Ω, the sample path t 7−→ αt(ω), t ≥ 0, is continuous and non-

decreasing.

Remark 2.1. Note that in the literature such as Section 2 of Chapter VI of [12] or in

[21], the random time change α is defined as any right-continuous non-decreasing family

of FM -stopping times. So in this sense, it would be better to call α in Definition 2.1 a

1Since X is continuous, Lemma I.4.24 and Theorem I.4.47 of [18] show that M , A, and [X] are
continuous as well. However this does not imply that A and [X] are absolutely continuous with respect
to the Lebesgue measure.
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continuous delayed time change; however, with some abuse of terminology, we still call

it just a time change. Point (2) of the previous definition indicates that the delay is

observable to the management, and if for all t ≥ 0, we have αt = t, then the information

is up to date. Furthermore, in order to guarantee that the time-changed processes remain

continuous, point (3) additionally imposes the continuity assumption.

It is reasonable to assume that at some point, the management’s information is dis-

closed to investors; hence, the investors’ information can be modeled through a random

time change of the management’s information. Therefore, we can have the following

definition.

Assumption 2.2. The information available to investors is denoted by F I and modeled

by F I
t = FM

αt , t ≥ 0. As usual, F I
∞ is the sigma-algebra generated by all F I

t , t ≥ 0.

Since investors get their data through the random time change α, instead of Xt, t ≥ 0,

we assume that they observe Yt = Xαt, t ≥ 0.

Remark 2.2. In [15], the filtration F I = (F I
t )t≥0 is called the continuously delayed

filtration.

Lemma 2.1. The process Y = Xα = (Xαt)t≥0 is a continuous process on (Ω,F,F I ,P)

admitting the canonical decomposition Yt = Y0 + Aαt + Mαt, t ≥ 0, where Mα, M0 = 0,

is a continuous F I-local martingale; Aα, A0 = 0, is a continuous F I-adapted (hence

F I-predictable) process and of finite variation.

Proof. Continuity of Y , Aα, and Mα follows from the continuity of α, X, A, and M .

Proposition V.1.5 of [26] shows that Mα is an F I-local martingale. Since α is continuous

and of finite variation, then Aα is F I-predictable and of finite variation as well. Corollary

I.3.16 of [18] shows that Y = Y0 + Aα +Mα is the unique canonical decomposition of Y

in F I .

Next, we explain the defaultable market model in our framework. In simple terms,

a defaultable claim is a contingent derivative whose payoff is linked to a default event.

More precisely, a default event on (Ω,F,F ,P) is modeled by an F -stopping time τ :

Ω 7−→ [0,∞) such that τ > 0, P-a.s. and P(τ > t) > 0 for all t > 0. Recall that F

represents the full information. A defaultable claim is then modeled by a triplet (H, τ, T )

explained as follows: the owner of this claim receives H ∈ L2(Ω,F I
T ,P) at the maturity

time 0 < T <∞ if there is no default prior T and zero otherwise, i.e. the payoff is equal

to H1{τ>T}.
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Remark 2.3. It is important to note that τ is an F -stopping time, but it may not be an

FM or F I-stopping time which means that default might not be completely measurable

at the management or investor level. Note that the case of recovery is not considered,

and since the investors should be aware of the value of H at T , H is F I
T measurable.

The latter indicates that unlike investors, the management might be informed of H at

or an earlier time than T . This makes sense financially as it reflects the fact that the

management would have access to a more up to date data that can reveal the true value

of H earlier than the maturity.

Furthermore, we assume that the market models, from the perspective of either the

investors or managers, are arbitrage free.

Although default might occur as a surprise to both investors and managers, it makes

sense to assume that they are both informed of the occurrence of default in markets.

This leads to the following definition.

Definition 2.2. The default indicator process N = (Nt)t≥0 is defined by Nt = 1{τ≤t},

t ≥ 0, and the filtration generated by N is denoted by N = (Nt)t≥0, i.e. Nt = σ(Nu;u ≤
t), t ≥ 0.

There are other equivalent forms of N , for instance, it can be shown that for all

t ≥ 0, Nt = σ(t ∧ τ) ∨ ({τ > t}), where t ∧ τ = min(t, τ) and σ(t ∧ τ) is the sigma-

algebra generated by the random variable t ∧ τ , see Section 4.1 of [6]. Furthermore,

since by Theorem 25, Chapter I of [25], N is a right continuous filtration, we also have

Nt = σ(t ∧ τ), t ≥ 0. From a financial point of view, under N at each time t, the agents

or investors can observe the occurrence of default.

So far, we have defined four filtrations in our model: F , FM , F I , and N . The

information available to investors comes from F I and N . Since τ is not necessarily

F I or FM measurable, any proper analysis from the investors’ perspective requires an

enlargement of F I that turns τ into a stopping time.

Concerning a filtration enlargement, there are two popular choices in finance. The

first is a progressive filtration expansion of F I by τ defined by

(F I
t ∨Nt)t≥0. (2)

On the other hand, it is easy to prove that for any t ≥ 0, the set

{E ∈ F I
∞ ∨ σ(τ) : E ∩ {τ > t} = Et ∩ {τ > t}, for some Et ∈ F I

t }
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is a sigma-algebra. The second notion of filtration expansion of F I by τ is defined by(
{E ∈ F I

∞ ∨ σ(τ) : E ∩ {τ > t} = Et ∩ {τ > t}, for some Et ∈ F I
t }
)
t≥0

. (3)

For more details of these filtration expansions and their applications, we refer to [19]

and [20]. Comparing these two filtration expansions, the former is the favorite one as

the definition of the latter implies the inclusion of partial information from F I up to

infinity (and hence the anticipation of the future) which is not consistent from a financial

perspective, see the discussions of Section 2.1 of [16]2. Also, in [16], a more general type

of filtration expansion is defined as follows.

Definition 2.3. The filtration F I,τ is defined to be any filtration expansion of F I and

N that turns τ into a stopping time, and for all t ≥ 0, it satisfies

F I,τ
t ∩ {τ > t} = F I

t ∩ {τ > t}, (4)

where F I,τ
t ∩ {τ > t} = {E ∩ {τ > t} : E ∈ F I,τ

t }, and a similar definition applies to

F I
t ∩ {τ > t}.

In Section 2.1 of [16], it is shown that both types of the filtration expansions (2) and

(3) satisfy (4), and hence they are special cases. Next, we focus on modeling the arrival

rate of default which can be done using two approaches.

Definition 2.4. Suppose that the hazard process Γ = (Γt)t≥0, Γt = − ln
(
P(τ > t|F I

t )
)
,

is well-defined for all t ≥ 0. Assume that Γ is absolutely continuous with respect to the

Lebesgue measure with a non-negative Radon-Nikodym derivative λ = (λt)t≥0 that is an

F I-adapted càdlàg process. The process λ is called the intensity process of τ . It is also

referred to as the stochastic intensity (or the hazard rate) process.

On the other hand, the process N = (1{τ≤t})t≥0 is an F I,τ -submartingale of class

(D) which means that the set {NS : for finite valued F I-stopping times S} is uniformly

integrable. This provides a second notion of stochastic intensity as follows.

Definition 2.5. By using Doob-Meyer’s decomposition (see for instance Theorem I.3.15

of [18]), there is an increasing F I,τ -predictable process which is the compensator of N .

We further assume that this compensator is absolutely continuous with respect to the

Lebesgue measure with a non-negative Radon-Nikodym derivative λ = (λt)t≥0 which is

2In [16], the filtration expansions (2) and (3) are respectively called minimal and progressive filtration
expansions.
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an F I-adapted càdlàg process. This implies that (Nt −
∫ t∧τ

0
λu du)t≥0 is a uniformly

integrable F I,τ -martingale. The process λ is called the martingale intensity process (or

sometimes just simply intensity) of τ .

Note that in either one of the above definitions, a predictable version of intensity

could be considered; for example since for each t ≥ 0,
∫ t∧τ

0
λu du =

∫ t∧τ
0

λu− du, instead

of λ, one can use λ− which is predictable.

An intuitive reason for the process λ in Definition 2.5 to model the arrival rates of

default is due to results such as Aven’s theorem [2] that uses Meyer’s Laplacian approxi-

mation. For a thorough discussion of the existence, calculation techniques, and examples

of the intensity process in the sense of Definition 2.5, we refer to [16].

Remark 2.4. • If λ is a hazard rate process in the sense of Definition 2.4 and if

F I,τ is the progressive filtration expansion F I ∨ N then by Proposition 5.1.3 of

[6],
(
λt1{t≤τ}

)
t≥0

is in fact an intensity process in the sense of Definition 2.5, but

the converse of this statement does not necessarily hold. Therefore, by adopting the

notion of intensity in the sense of Definition 2.5, we can also study models based

on Definitions 2.4.

• Note that the existence of the intensity process of τ in either senses implies that τ

is a totally inaccessible stopping time (see Definition 4.19 of [17]) which results in

the unpredictability of the default time.

Remember that since we are taking the perspective of investors, the observable asset

values are modeled by the process Y . In our set-up, the hedging process stops after

the default time τ and so, we do not analyze what happens thereafter. Therefore, we

concentrate on the stopped process Y τ . First, we introduce some notation.

• The optional projection of Ñ = (1−Nt)t≥0 = (1{τ>t})t≥0 over the filtration F I is

denoted by Z.

• Note that Z is an F I-supermartingale and admits a canonical decomposition (so,

it is a special semimartingale), see for instance Theorem 7, Chapter III of [25]. We

let this decomposition be given by Z = Z0 + M (z) − A(z) where M (z), M
(z)
0 = 0,

and A(z), A
(z)
0 = 0, are respectively a uniformly integrable F I-martingale and an

increasing (hence of finite variation) F I-predictable process.
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We already obtained the canonical decomposition of the process Y , Y = X0+Mα+Aα

in F I . Note that the canonical decomposition of a special semimartingale in a filtration,

is not preserved in an expanded one. For instance, there is no guarantee that a local

martingale (an example of a special semimartingale) remains a local martingale in an

expanded filtration. One advantage of using Y τ instead of Y is that we are able to

obtain its canonical decomposition in F I,τ . The following lemma points out this.

First, we remind that [Y, Z] stands for the quadratic covariation process of Y and

Z. From the properties of quadratic covariation we have that [Y, Z] = [Mα,M
(z)]. The

predictable quadratic covariation of Mα and M (z) with respect to F I is denoted by

〈Mα,M
(z)〉FI . The definitions and some basic properties of (predictable) quadratic co-

variation are reviewed in Definition 7.1 of the Appendix and the discussions following

it.

Lemma 2.2. The process Y τ is a special semimartingale in the expanded filtration F I,τ ,

and its canonical decomposition is given by

Y τ = Y0 + Aα·∧τ +

∫ ·∧τ
0

1

Z−
d[Y, Z] +M (1), (5)

where Aαs =
∫ αs

0
au du, s ≥ 0, and M (1), M

(1)
0 = 0, is an F I,τ -local martingale.

Proof. Note that Aα·∧τ is F I,τ -predictable and of finite variation. Hence, the key step

to find the canonical decomposition of Y τ = X0 +Mα·∧τ +Aα·∧τ in F I,τ , is to obtain the

canonical decomposition of Mα·∧τ in F I,τ .

Remember that M (z) is a uniformly integrable F I-martingale, and hence it is the

local martingale part of the canonical decomposition of Z in F I . Since Z is uniformly

bounded3, it is easy to show that M (z) is a locally square integrable martingale. By

Lemma 2.1, Mα is continuous, hence locally uniformly bounded and so locally square

integrable. Note that [Y, Z] = [Mα,M
(z)] and since both Mα and M (z) are locally square

integrable martingales, 〈Mα,M
(z)〉FI is well-defined. In fact, since Mα is continuous, the

process [Mα,M
(z)] is also continuous and so we have [Y, Z] = 〈Mα,M

(z)〉FI . Therefore,

one can apply Theorem 7.1 of the Appendix for M := Mα, F := F I , ZF := Z, and

T := τ which leads to the decomposition given by (5).

It only remains to show that (5) is in fact the canonical decomposition. The processes

[Y, Z], Z−, and α are F I,τ -predictable, and so Proposition I.3.5 of [18] shows that the

3The stochastic process X is called uniformly bounded if there is a constant c > 0 such that for all
t ≥ 0 and all ω ∈ Ω, we have |Xt(ω)| ≤ c, and it is called locally uniformly bounded, if it is locally in
the class of uniformly bounded processes.
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processes
∫ ·∧τ

0
1
Z−

d[Y, Z] and Aα·∧τ are F I,τ -predictable as well. Finally, Corollary I.3.16

of [18] implies that (5) is indeed the unique canonical decomposition of Y τ in F I,τ .

Remark 2.5. In order to obtain an explicit form for the canonical decomposition of Y τ

in F I,τ , using Lemma 2.2, we need the explicit form of the canonical decomposition of

Z in F I (i.e. to determine M (z)) which is not an easy problem by itself. Fortunately,

for our main results in this paper, no explicit form of the canonical decomposition of Z,

in F I is required, and this provides an advantage in applications.

2.1 The Risk Management Methodology

Finally, we need to determine the methodology that investors use to gauge and manage

the risk of defaultable claims. We achieve this by finding PLRM (or the closely related

one LRM) hedging strategies. This method has already been applied to hedge the risk of

defaultable claims, see [4] and [5] for example. In this section, we present a short review

of the PLRM approach and its connection to the LRM method within our framework;

for details and discussions in a general set-up, we refer to [28].

Given a defaultable claim with payoff H1{τ>T}, since we are taking the perspective

of investors, what they actually observe is Y = Xα under the filtration F I where H is

F I
T -measurable. However, as it is explained earlier, their proper filtration in which the

hedging must take place is F I,τ where H1{τ>T} is measurable.

Let A(Y ) = Aα·∧τ+
∫ ·∧τ

0
1
Z−

d[Y, Z] so that Equation (5) becomes Y τ = Y0+A(Y )+M (1).

Definition 2.6. Define Θ to be the space of all F I,τ -predictable processes θ such that

E
[∫ T

0
θ2
s d[M (1)]s + (

∫ T
0
|θs dA(Y )

s |)2
]
<∞.

Definition 2.7. An L2-strategy is a pair φ = (θ, η), where θ ∈ Θ and η is a real-valued

F I,τ -adapted process such that the value process V (φ) = θY τ + η is right-continuous and

square-integrable, i.e. Vt(φ) ∈ L2(Ω,F I,τ
t ,P) for each t ∈ [0, T ].

In the above definition, θ and η represent respectively the number of shares invested

in the risky and the risk-free asset.

Following strategy φ, the accumulated revenue (either profit or loss) from trading Y τ

on [0, t], 0 ≤ t ≤ T , is
∫ t

0
θs dY

τ
s , and therefore the accumulated cost at time 0 ≤ t ≤ T

from holding the portfolio based on φ is Ct(φ) = Vt(φ)−
∫ t

0
θs dY

τ
s . A perfect strategy

covers the claim completely, i.e. VT (φ) = H1{τ>T}, P-a.s., and its cost is constant through

time. However, as markets, in particular defaultable ones, are incomplete, this is not
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possible and so in return, according to the (local) risk-minimization approach, we look

for those strategies that minimize the cost in some sense and lead to optimal strategies.

Suppose that an optimal hedging strategy is to cover a claim completely; though a

constant cost process would be too much to ask for, it is reasonable to assume that the

cost process of such optimal strategy should not deviate too much from its historical

mean. This motivates the definition of a hedging strategy to be mean-self-financing if its

cost process is an F I,τ -martingale.

Definition 2.8. An L2-strategy φ = (θ, η) is called mean-self-financing if its cost process

(Ct(φ))0≤t≤T , defined by Ct(φ) = Vt(φ)−
∫ t

0
θs dY

τ
s , 0 ≤ t ≤ T , is an F I,τ -martingale.

Definition 2.9. The risk process R = (Rt(φ))0≤t≤T , associated with the strategy φ and

filtration F I,τ , is defined by Rt(φ) = E
[
(CT (φ)− Ct(φ))2 |F I,τ

t

]
, 0 ≤ t ≤ T .

The main idea in risk-minimization is to minimize the risk process R in the following

sense.

Definition 2.10. An L2-strategy φ = (θ, η) is called risk-minimizing if VT (φ) = H1{τ>T},

P-a.s., and for any L2-strategy φ
′

such that VT (φ
′
) = VT (φ), P-a.s., we have Rt(φ) ≤

Rt(φ
′
), P-a.s., for every 0 ≤ t ≤ T .

If Y τ is an F I,τ -local martingale (i.e. A(Y ) = 0) then the existence of such risk-

minimizing strategy (which is also mean-self-financing) is guaranteed. In this case the

strategies are provided through Galtchouk-Kunita-Watanabe (GKW) decomposition of

the claim which in our context states that the claim H1{τ>T} can be uniquely represented

as H1{τ>T} = H0 +
∫ T

0
θs dY

τ
s + LT , where H0 = E[H1{τ>T}|F I,τ

0 ], θ ∈ Θ, and L is an

F I,τ -square integrable martingale strongly orthogonal to
∫
θ
′
dY τ for all θ

′ ∈ Θ, i.e.

L
∫
θ
′
dY τ is an F I,τ -martingale.

For semimartingales a risk-minimizing optimal L2-strategy in the above sense does

not always exist, see [28] for a counterexample. In this case, risk minimization should

be altered to LRM which is based on the idea that a strategy is optimal if its changes

over a small interval of time does not cause an increase of risk. The exact definitions is

rather technical and can be found in [28]. Instead of LRM, we focus on PLRM which

is a closely related concept and easier to understand. The relationship between the two

approaches will be explained shortly.

Definition 2.11. If we assume that M (1) is an F I,τ -square integrable martingale, an

L2-strategy φ with VT (φ) = H1{τ>T}, P-a.s., is called PLRM if it is mean-self-financing

12



and its cost process (Ct(φ))0≤t≤T is strongly orthogonal to M (1), i.e. (Ct(φ)M
(1)
t )0≤t≤T is

an F I,τ -martingale.

The advantage of PLRM is that it is equivalent of finding a decomposition known

as Föllmer-Schweizer (FS) decomposition. More precisely, by Proposition 3.4 of [28],

the contingent claim H1{τ>T} admits a PLRM strategy φ if and only if H1{τ>T} can be

written as

H1{τ>T} = H0 +

∫ T

0

θs dY
τ
s + LT , (6)

where the equality holds P-a.s., H0 ∈ L2(Ω,F I,τ
0 ,P) is the initial cost to start the hedging

process, the process θ is F I,τ -predictable and belongs to Θ, and L, L0 = 0, is an

F I,τ -square integrable martingale strongly orthogonal to M (1), i.e. LM (1) is an F I,τ -

martingale.

Note that LM (1) is an F I,τ -martingale if and only if 〈L,M (1)〉FI,τ = 0. This holds

because if LM (1) is an F I,τ -martingale, by Lemma 7.1 of the Appendix, 〈L,M (1)〉FI,τ =

0. On the other hand, if 〈L,M (1)〉FI,τ = 0, then by Theorem I.4.2 of [18], LM (1) is a

uniformly integrable F I,τ -martingale.

In this case, the value process of the portfolio (Vt(φ))t≥0 associated with the strategy

φ is equal to

Vt(φ) = H0 +

∫ t

0

θs dY
τ
s + Lt, 0 ≤ t ≤ T,

the number of shares to be invested in the risky and risk-free asset are respectively

equal to θ and ηt = Vt(φ) − θtY
τ
t , 0 ≤ t ≤ T, and finally the cost process is given by

Ct(φ) = H0 + Lt, 0 ≤ t ≤ T.

Equation (6) is known as the FS decomposition, and it was first introduced in [13].

We keep in mind that this decomposition leads to just PLRM hedging strategies and not

necessarily to LRM strategies. In what follows, we discuss conditions under which the

two methods are equivalent, i.e. they lead to the same hedging strategies.

More precisely, first one needs to check that the so called structure condition (SC) is

satisfied, i.e. there exists an F I,τ -predictable process ζ such that A(Y ) =
∫
ζ d[M (1)], and

then to check the P-a.s. finiteness of the process K̂ (called the mean-variance trade-off

process) defined by K̂ =
∫
ζ2 d[M (1)]. Since Y is continuous and the model is supposed

to be arbitrage-free, the SC condition is implied from Theorem 1 of [27].

So in our work, the SC condition is satisfied; if in addition, we also have that M (1)

is an F I,τ -square integrable martingale, 〈M (1)〉FI,τ is P-a.s., strictly increasing, and

E[K̂T ] < ∞, then by Theorem 3.3 of [28], PLRM and LRM strategies are the same.

13



Note that the equivalence between the two strategies (PLRM and LRM) holds in the

one-dimensional case.

Therefore, the goal is to obtain the required FS decompositions and hence to deter-

mine the processes θ and L in F I,τ that satisfy (6). We address this challenge in the next

section through canonical and KW decompositions (see Definition 7.3 of the Appendix)

which lead to the FS decomposition of H1{τ>T} in F I,τ .

3 KW and Canonical Decompositions

The main purpose of this section is to apply and develop KW decomposition techniques

that help finding FS decompositions and PLRM hedging strategies in Section 4. Note

that the results of this section are still valid in the absence of any integrability assumptions

on Y , and they hold under the existence of an intensity in the sense of Definition 2.5.

In what follows, in order to simplify the notation, when we write F I,τLM in an

equation, we refer to an F I,τ -local martingale, and for t ≥ 0, F I,τLMt indicates the

local martingale at t. Also, given a deterministic value 0 < S ≤ ∞, the notation

h ∈ C1,2([0, S)×R) for a real-valued function h, means that h : [0, S)×R→ R is a C1,2

function on (0, S)×R, and the indicated partial derivatives admit continuous extensions

to [0, S)× R.

First, we obtain the canonical decomposition of the process
(
h(αt, Yt)Ñt

)
t≥0

in F I,τ ,

where Ñ = 1−N = (1{τ>t})t≥0 and h ∈ C1,2([0,∞)× R).

Proposition 3.1. Suppose that there exists an intensity λ in the sense of Definition

2.5. Given a function h ∈ C1,2([0,∞) × R), the process
(
h(αt, Yt)Ñt

)
t≥0

is a special

semimartingale in F I,τ , and its canonical decomposition is given by

h(αt, Yt)Ñt = h(0, Y0)−
∫ t∧τ

0

h(αs, Ys)λs dγs +

∫ t∧τ

0

Kh(αs, Ys) dαs

+

∫ t∧τ

0

1

Zs−
d[h(α, Y ), Z]s +M

(2)
t , t ≥ 0,

where γt = t− αt, t ≥ 0, M (2), M
(2)
0 = 0, is an F I,τ -local martingale, Z is the optional

projection of Ñ over F I, and for all (t, x) ∈ [0,∞)× R, Kh(t, x) and Lh(t, x) are given

by

Kh(t, x) = Lh(t, x)− h(t, x)λt,

Lh(t, x) =
∂h

∂t
(t, x) +

∂h

∂x
(t, x)at +

1

2

∂2h

∂x2
(t, x)bt,

14



where the stochastic processes (at)t≥0 and (bt)t≥0 are introduced in (1).

Proof. Using Itô’s formula for the process (h(αt, Yt))t≥0, we have

h(αt, Yt) = h(α0, Y0) +

∫ t

0

Lh(αs, Ys) dαs +Ot, t ≥ 0,

where Lh(t, x) = ∂h
∂t

(t, x) + ∂h
∂x

(t, x)at + 1
2
∂2h
∂x2

(t, x)bt and Ot =
∫ t

0
∂h
∂x

(αs, Ys) dMαs . Note

that O = (Ot)t≥0 is an F I-local martingale. Also, from the assumptions, the process(
Ñt +

∫ t∧τ

0

λs ds

)
t≥0

=

(
1{τ>t} +

∫ t∧τ

0

λs dγs +

∫ t∧τ

0

λs dαs

)
t≥0

,

is an F I,τ -local martingale, because
(
Nt −

∫ t∧τ
0

λs ds
)
t≥0

is a uniformly integrable F I,τ -

martingale according to Definition 2.5. Therefore, for all t ≥ 0, we have

Ñt = −
∫ t∧τ

0

λs ds+ F I,τLMt = −
∫ t∧τ

0

λs dγs −
∫ t∧τ

0

λs dαs + F I,τLMt.

On the other hand, since O is continuous, it is a locally square integrable martin-

gale, and so by Theorem 7.1 of the Appendix, the canonical decomposition of Oτ in

F I,τ is given by Oτ = O0 +
∫ ·∧τ

0
1
Z−

d〈O,M (z)〉FI + F I,τLM , where 〈O,M (z)〉FI =

〈O,Z〉FI = [h(α, Y ), Z]. Therefore, by using the product rule, the canonical decomposi-

tion of
(
h(αt, Yt)Ñt

)
t≥0

is

h(αt, Yt)1{τ>t} = h(0, Y0) +

∫ t

0

h(αs, Ys)dÑs +

∫ t

0

1{s≤τ} dh(αs, Ys)

= h(0, Y0)−
∫ t∧τ

0

h(αs, Ys)λs dγs −
∫ t∧τ

0

h(αs, Ys)λs dαs + F I,τLMt

+

∫ t∧τ

0

(Lh(αs, Ys)) dαs +

∫ t∧τ

0

1

Zs−
d[h(α, Y ), Z]s + F I,τLMt

= h(0, Y0)−
∫ t∧τ

0

h(αs, Ys)λs dγs

+

∫ t∧τ

0

Kh(αs, Ys) dαs +

∫ t∧τ

0

1

Zs−
d[h(α, Y ), Z]s +M

(2)
t , t ≥ 0,

where M (2) is an F I,τ -local martingale and Kh(t, x) = Lh(t, x)−h(t, x)λt, for all (t, x) ∈
[0,∞)×R. Since γ, α, and [h(α, Y ), Z] are F I,τ -predictable processes of finite variation,

the integral terms are F I,τ -predictable and of finite variation, and this together with

Corollary I.3.16 of [18] prove the uniqueness of the decomposition.
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In the next proposition, we obtain a closed-form formula for the KW decomposition

of M (2) versus M (1) where M (1) and M (2) are defined respectively in Lemma 2.2 and

Proposition 3.1.

Proposition 3.2. Suppose that there exists an intensity λ in the sense of Definition 2.5.

Given a function h ∈ C1,2([0,∞) × R), let M (1) and M (2) be respectively the F I,τ -local

martingales in Lemma 2.2 and Proposition 3.1. Then M (2) admits a KW decomposition

versus M (1), in F I,τ , i.e. M (2) =
∫
θ dM (1) + L, where θ = ∂h

∂x
(α, Y )Ñ−, and L given

by
(
−h(ατ , Yτ )Nt +

∫ t∧τ
0

h(αs, Ys)λs ds
)
t≥0

is an F I,τ -local martingale orthogonal (see

Definition 7.2 of the Appendix) to M (1).

Proof. From Proposition 3.1, we have

M (2) = h(α, Y )Ñ − h(0, Y0) +

∫ ·∧τ
0

h(α, Y )λ dγ −
∫ ·∧τ

0

Kh(α, Y ) dα

−
∫ ·∧τ

0

1

Z−
d[h(α, Y ), Z].

By Itô’s formula, we get h(α, Y ) =
∫ ∂h
∂t

(α, Y ) dα+
∫ ∂h
∂x

(α, Y ) dY +
1

2

∫ ∂2h

∂x2
(α, Y ) d[Y ].

So, we have [h(α, Y ), Z] =
∫

∂h
∂x

(α, Y ) d[Y, Z] or in differential notation, d[h(α, Y ), Z] =
∂h
∂x

(α, Y ) d[Y, Z]. Therefore, we obtain

M (2) = h(α, Y )Ñ − h(0, Y0) +

∫ ·∧τ
0

h(α, Y )λ dγ −
∫ ·∧τ

0

Kh(α, Y ) dα

−
∫ ·∧τ

0

∂h

∂x
(α, Y )

1

Z−
d[Y, Z].

(7)

Note that by Proposition 3.1 for (t, x) ∈ [0,∞) × R, Kh(t, x) = Lh(t, x) − h(t, x)λt,

γt = t − αt, and from Lemma 2.2, we have
∫ ·∧τ

0
1
Z−

d[Y, Z] = Y τ − Y0 − Aα·∧τ −M (1) =

Mα·∧τ −M (1), substituting these equations in (7) leads to

M
(2)
t = h(αt, Yt)Ñt − h(0, Y0) +

∫ t∧τ

0

h(αs, Ys)λs ds−
∫ t∧τ

0

Lh(αs, Ys) dαs

−
∫ t∧τ

0

∂h

∂x
(αs, Ys) dMαs +

∫ t∧τ

0

∂h

∂x
(αs, Ys) dM

(1)
s , t ≥ 0.

(8)

By Itô’s formula, we get h(α·∧τ , Y·∧τ ) = h(0, Y0) +
∫ ·∧τ

0
Lh(α, Y ) dα+

∫ ·∧τ
0

∂h
∂x

(α, Y ) dMα.

Hence, for all t ≥ 0, from (8), we obtain

M
(2)
t = h(αt, Yt)Ñt − h(αt∧τ , Yt∧τ ) +

∫ t∧τ

0

h(αs, Ys)λs ds+

∫ t∧τ

0

∂h

∂x
(αs, Ys) dM

(1)
s .
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Finally by noting that for every t ≥ 0, h(αt, Yt)Ñt − h(αt∧τ , Yt∧τ ) = −h(ατ , Yτ )Nt, and

by defining L as the stochastic process
(
−h(ατ , Yτ )Nt +

∫ t∧τ
0

h(αs, Ys)λs ds
)
t≥0

, we get

M (2) =
∫
θ dM (1) + L. Since M (2) and

∫
θ dM (1) are F I,τ -local martingales, L is also

an F I,τ -local martingale. However, L is obviously locally square integrable and of finite

variation; therefore, [L,M (1)] = 0 which means that 〈L,M (1)〉FI,τ = 0. Then by Lemma

7.1 of the Appendix, L is orthogonal to M (1).

Remark 3.1. Note that although τ is an F I,τ -totally inaccessible stopping time (loosely

speaking, this means that it is completely unpredictable), the process θ = ∂h
∂x

(α, Y )Ñ− =
∂h
∂x

(α, Y )1[0,τ ] in Proposition 3.2 is F I,τ -predictable. This is because Y , α, and Ñ− are

all predictable in F I,τ .

The next theorem is vital in obtaining FS decompositions in the next section. Recall

that Y = Xα and α are respectively the investors’ asset observation and the random time

change to model the delay as in Definition 2.1.

Theorem 3.1. Suppose that there exists an intensity λ in the sense of Definition 2.5.

Consider a function h ∈ C1,2([0,∞)× R) and an F I,τ -stopping time T : Ω→ [0,∞).

1. If P-a.s. on {τ ≥ t} and {0 ≤ t < T}, the following equation is satisfied dα-a.s.,

∂h

∂t
(αt, Yt) +

1

2

∂2h

∂x2
(αt, Yt)bαt − λth(αt, Yt) = 0, (9)

then we have

h(α·∧T, Y·∧T)Ñ·∧T +

∫ ·∧T∧τ
0

h(α, Y )λ dγ = h(0, X0) +

∫ ·∧T
0

θ dY τ + L·∧T, (10)

where for t ≥ 0, γt = t − αt, θt = ∂h
∂x

(αt, Yt)Ñt−, Ñt = 1 − Nt = 1{τ>t}, Lt =

−h(ατ , Yτ )Nt +
∫ t∧τ

0
h(αs, Ys)λs ds, and L·∧T = (Lt∧T)t≥0, is an F I,τ -local martin-

gale orthogonal to both M (1) and M
(1)
·∧T (M (1) is the local martingale part of Y τ as

in Lemma 2.2). Furthermore, the equality holds up to an evanescent set.

2. If α is P-almost surely absolutely continuous with respect to the Lebesgue measure,

with the Radon-Nikodym derivative dαt
dt

, and if P-a.s. on {τ ≥ t} and {0 ≤ t < T},
the following equation is satisfied Lebesgue-a.s.,

dαt
dt

(
∂h

∂t
(αt, Yt) +

1

2

∂2h

∂x2
(αt, Yt)bαt

)
− λth(αt, Yt) = 0,
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then we have

h(α·∧T, Y·∧T)Ñ·∧T = h(0, X0) +

∫ ·∧T
0

θ dY τ + L·∧T,

where for t ≥ 0, θt = ∂h
∂x

(αt, Yt)Ñt−, Lt = −h(ατ , Yτ )Nt +
∫ t∧τ

0
h(αs, Ys)λs ds, and

L·∧T = (Lt∧T)t≥0 is an F I,τ -local martingale orthogonal to both M (1) and M
(1)
·∧T.

Furthermore, the equality holds up to an evanescent set.

Proof. Recall that M (2) is the F I,τ -local martingale in Proposition 3.1. Because T is an

F I,τ -stopping time, both M
(2)
·∧T and M

(1)
·∧T are F I,τ -local martingales, and from Proposi-

tion 3.2, the KW decomposition of M
(2)
·∧T versus M

(1)
·∧T is equal to M

(2)
·∧T =

∫
θ dM

(1)
·∧T+L·∧T,

where θ = ∂h
∂x

(α, Y )Ñ− and L is the F I,τ -local martingale of Proposition 3.2 which is

orthogonal to M (1). Note that since L·∧T is an F I,τ -local martingale and of finite vari-

ation, 〈L·∧T,M (1)
·∧T〉F

I,τ
= 〈L·∧T,M (1)〉FI,τ = 0, and by Lemma 7.1 of the Appendix L·∧T

is orthogonal to both M (1) and M
(1)
·∧T.

After plugging the formulas for M (1) (obtained from (5)) and M (2) (given by (7)) into

the aforementioned KW decomposition of M
(2)
·∧T versus M

(1)
·∧T, for t ≥ 0, we get

h(αt∧T, Yt∧T)Ñt∧T − h(0, X0) +

∫ t∧T∧τ

0

h(αs, Ys)λs dγs −
∫ t∧T∧τ

0

Kh(αs, Ys) dαs

=

∫ t∧T

0

θs dY
τ
s −

∫ t∧T∧τ

0

∂h

∂x
(αs, Ys) aαs dαs + Lt∧T, P-a.s..

(11)

Since P-a.s. on {τ ≥ s} and 0 ≤ s < T, condition (9) holds dα-a.s., we have P-a.s.,

Kh(αs, Ys) = ∂h
∂x

(αs, Ys) aαs , dα-a.s., for all 0 ≤ s < T. In addition, the measure dα does

not charge {s ≥ 0;T = s}, and so for all t ≥ 0, we obtain

h(αt∧T, Yt∧T)Ñt∧T +

∫ t∧T∧τ

0

h(αs, Ys)λs dγs = h(0, X0) +

∫ t∧T

0

θs dY
τ
s + Lt∧T, P-a.s..

The left and right-hand sides of the previous equation define two processes which are

modifications of each other. Since they are càdlàg processes, they are equal up to an

evanescence set. This proves part 1.

Now we show part 2 of the theorem. Since α is absolutely continuous with respect to

the Lebesgue measure, for 0 ≤ t ≤ T, (11) becomes

h(αt, Yt)Ñt − h(0, X0) +

∫ t∧τ

0

h(αs, Ys)λs ds−
∫ t∧τ

0

(Kh(αs, Ys) + h(αs, Ys)λs)
dαs
ds

ds

=

∫ t

0

θs dY
τ
s −

∫ t∧τ

0

∂h

∂x
(αs, Ys) aαs

dαs
ds

ds+ Lt, P-a.s..
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Part 2 can be then obtained in a similar way, by noting that P-a.s. on {τ ≥ s}, 0 ≤ s < T,

we have h(αs, Ys)λs − (Kh(αs, Ys) + h(αs, Ys)λs)
dαs
ds

= −∂h
∂x

(αs, Ys) aαs
dαs
ds

, Lebesgue-a.s..

Remark 3.2. The results of Theorem 3.1 are still valid if T = ∞. In fact, the same

lines of proof would work.

The next lemma considers the case of no delay in data. This puts both investors and

managers in the same position with respect to the underlying asset.

Lemma 3.1. Under the same assumption as Theorem 3.1, suppose that there is no delay

in receiving the data, i.e. αt = t for all t ≥ 0. If P-a.s. on {τ ≥ t} and {0 ≤ t < T}, the

following equation is satisfied Lebesgue-a.s., for a function h ∈ C1,2([0,∞)× R),

∂h

∂t
(t,Xt) +

1

2

∂2h

∂x2
(t,Xt)bt − λth(t,Xt) = 0,

then we have

h(· ∧ T, X·∧T)Ñ·∧T = h(0, X0) +

∫ ·∧T
0

θ dXτ + L·∧T,

where for t ≥ 0, θt = ∂h
∂x

(t,Xt)Ñt−, Lt = −h(τ,Xτ )Nt +
∫ t∧τ

0
h(s,Xs)λs ds, and L·∧T =

(Lt∧T)t≥0 is an F I,τ -local martingale orthogonal to the local martingale part of X in

F I,τ . Furthermore, the equality holds up to an evanescent set.

Proof. Since for all t ≥ 0, αt = t, then γ = 0, Y = X, and the result is a direct application

of part 1 of Theorem 3.1.

Remark 3.3. Note that for the F I-semimartingale Y and for all t ≥ 0, we have∫ t
0
θs dY

τ
s =

∫ t
0
θs1{s≤τ} dY

τ
s =

∫ t
0
θs1{s≤τ} dYs, so in view of Theorem 3.1 and Lemma

3.1, if hedging is carried out according to the stopped process Y τ , we may assume that θ

vanishes after τ .

4 Applications and Examples

In this section, we present some results and examples in which FS decompositions and

PLRM hedging strategies are obtained through semi-explicit solutions, based on PDEs.

Proposition 4.1. Consider a defaultable claim (H, τ, T ) and suppose that there exists

an intensity λ in the sense of Definition 2.5. Assume that α : [0,∞) → [0,∞) is a

deterministic time change which is absolutely continuous with respect to the Lebesgue
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measure, and its Radon-Nikodym derivative with respect to the Lebesgue measure is both

positive and continuous. Let H = F (YT ), and for t ≥ 0, λt = g(αt, Yt), bt = f(t,Xt),

where F : R → R, g : [0,∞)× R → [0,∞), and f : [0,∞)× R → [0,∞) are continuous

functions. Suppose that there is a continuous function h : [0, T ] × R → R, such that

h ∈ C1,2([0, T )× R), and h is a solution of the following PDE:

∂h

∂t
(t, x) +

1

2
f(αt, x)

dαt
dt

∂2h

∂x2
(t, x)− g(αt, x)h(t, x) = 0, (t, x) ∈ [0, T )× R,

h(T, x) = F (x).
(12)

Then we have

HÑT = h(0, X0) +

∫ T

0

θs1{s<T} dY
τ
s + LT , (13)

where θt = ∂h
∂x

(t, Yt)1{t≤τ}, 0 ≤ t < T , and L = (Lt)t≥0, L0 = 0, is an F I,τ -local

martingale orthogonal to M (1) (the local martingale part of Y τ in F I,τ as in Lemma

2.2).

Furthermore, suppose that M (1) and L are square integrable martingales, and θ1{·<T}

belongs to Θ (see Definition 2.6). Then the FS decomposition of the defaultable claim is

given by (13).

Proof. For all (t, x) ∈ [0, αT ] × R, define v(t, x) by v(t, x) = h(α−1
t , x). Since t 7→ dαt

dt
is

positive and continuous, v : [0, αT ] × R → R is well-defined and v ∈ C1,2([0, αT ) × R).

Furthermore, we have h(t, x) = v(αt, x), for all (t, x) ∈ [0, T ]×R, therefore (12) becomes

dαt
dt

(
∂v

∂t
(αt, x) +

1

2
f(αt, x)

∂2v

∂x2
(αt, x)

)
− g(αt, x)v(αt, x) = 0, (t, x) ∈ [0, T )× R.

This implies that

dαt
dt

(
∂v

∂t
(αt, Yt) +

1

2

∂2v

∂x2
(αt, Yt)bαt

)
− λtv(αt, Yt) = 0, 0 ≤ t < T .

At this stage, it might be tempting to use part 2 of Theorem 3.1 for v straight away;

however, in order to do so, v needs to be C1,2 on [0,∞) × R. We fix this problem as

follows.

For an integer n ≥ 1, consider the restriction of v on [0, αT− 1
n
] × R, denoted by

v|[0,α
T− 1

n
]×R. Note that αT− 1

n
< αT ≤ T , and this restricted function can be then extended

to a C1,2 function on [0,∞)× R) which we denote by v(n), for instance by Theorem I of

[29]. Therefore, v(n) ∈ C1,2([0,∞)× R) and v(n)|[0,α
T− 1

n
]×R = v; the latter indicates that

for all 0 ≤ t ≤ T − 1
n

and x ∈ R, v(n)(αt, x) = v(αt, x) = h(t, x).
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Let S(n) = T − 1
n
, n ≥ 1, then part 2 of Theorem 3.1 can be applied to v(n) and

T = S(n) which leads to

v(n)(α·∧S(n), Y·∧S(n))Ñ·∧S(n) = v(n)(0, X0) +

∫ ·∧S(n)

0

θ(n) dY τ + L
(n)
·∧S(n), (14)

where for all 0 ≤ t ≤ T− 1
n
, θ

(n)
t = ∂v(n)

∂x
(αt, Yt)1{t≤τ} which is equal to θt = ∂h

∂x
(t, Yt)1{t≤τ},

L
(n)
t = −v(n)(ατ , Yτ )Nt+

∫ t∧τ
0

v(n)(αs, Ys)λs ds, t ≥ 0, and L
(n)
·∧S(n) is orthogonal to M

(1)
·∧S(n).

Next, we take the limit of (14) as n→∞.

Since h is continuous and the distribution of τ has no atoms, by the construction of

v(n), v(n)(α·∧S(n), Y·∧S(n))Ñ·∧S(n) converges to the process v(α·∧T , Y·∧T )Ñ·∧T , uniformly on

compacts4, P-a.s., as n→∞. On the other hand, for all t ≥ 0, we have that∫ t∧S(n)

0

θ(n)
s dY τ

s =

∫ t∧S(n)

0

θs1{s<T} dY
τ
s .

Since θ1{·<T} is F I,τ -predictable and locally bounded, the stochastic integral
∫
θ1{·<T} dY

τ

is well-defined. Obviously,
∫ t∧S(n)

0
θ

(n)
s dY τ

s =
∫ t

0
θs1{s<T}1{s≤T− 1

n
} dY

τ
s , t ≥ 0, hence, by

part (iii) of Theorem I.4.31 of [18], we have
∫ ·∧S(n)

0
θ(n) dY τ converges to

∫ ·∧T
0

θ1{·<T} dY
τ ,

uniformly on compacts, in probability, as n→∞.

Also, L
(n)
t∧S(n) = −v(n)(ατ , Yτ )Nt∧S(n) +

∫ t∧S(n)∧τ
0

v(n)(αs, Ys)λs ds, t ≥ 0, which is equal

to Lvt∧S(n), t ≥ 0, where Lvt = −v(ατ , Yτ )Nt +
∫ t∧τ

0
v(αs, Ys)λs ds, 0 ≤ t ≤ T . It is easy to

check that the sequence {L(n)
·∧S(n);n ≥ 1} converges to (Lvt∧T )t≥0, uniformly on compacts,

P-a.s., as n → ∞. Let L = (Lvt∧T )t≥0, then from the definition of Lv, we can see that

L = Lv·∧T = −
∫ ·∧T∧τ

0
v(α, Y ) dMλ, where Mλ, given by Mλ

t = Nt −
∫ t∧τ

0
λs ds, t ≥ 0, is

a uniformly integrable F I,τ -martingale. Therefore, L is an F I,τ -local martingale. Since

L is of finite variation, 〈L,M (1)〉FI,τ = 0, and so by Lemma 7.3 of the Appendix, it is

orthogonal to M (1).

From the previous argument, the limit of all the terms in (14) exists uniformly on

compacts in probability as n → ∞, and so we obtain v(α·∧T , Y·∧T )Ñ·∧T = v(0, X0) +∫ ·∧T
0

θ1{·<T} dY
τ + L, which leads to

v(αT , YT )ÑT = v(0, X0) +

∫ T

0

θs1{s<T} dY
τ
s + LT .

4A sequence of processes {X(n);n ≥ 1} converges to a process X∗, uniformly on compacts, P-a.s., as

n→∞, if for each t ≥ 0, sup0≤s≤t(|X
(n)
s −X∗

s |) converges to zero P-a.s., as n→∞. Similarly, one can
define uniformly on compacts convergence in probability, and it is obvious that the former implies the
latter.
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Obviously v(0, X0) = h(0, X0), and also from the boundary condition h(T, x) = F (x),

we have that v(αT , x) = h(T, x) = F (x) or v(αT , YT ) = F (YT ) = H which concludes the

result.

Finally, since θ1{·<T} belongs to Θ, we have that (13) is the FS decomposition of HÑT

in F I,τ .

Remark 4.1. Regarding Proposition 4.1, we make the following remarks:

• The indicator process 1{·<T} in
∫
θ1{·<T} dY

τ is to ensure that θ1{·<T} and hence∫
θ1{·<T} dY

τ , are well defined. If ∂h
∂x

(t, x) exists for t = T and x ∈ R, then θT is

well-defined, and we have
∫ T

0
θs1{s<T} dY

τ
s =

∫ T
0
θs dY

τ
s , P-a.s.. This means that

whether or not θ is defined at t = T , it does not affect the FS decomposition.

• Under some assumptions, the solution of PDE (12) with its boundary condition

can be found through Feynman-Kac formula (see for instance Chapter 5 of [7] or

Section 4.4 of [22]) and numerical techniques.

• Note that the previous proposition does not cover the interesting cases where the

time change is absolutely continuous with respect to the Lebesgue measure, but the

Radon Nikodym derivative is not continuous, for instance αt = (t−l)+, where t ≥ 0

and l > 0 is a constant. Nevertheless this case is discussed in Example 4.2.

A special case of the previous proposition is the case of no delay as follows.

Lemma 4.1. Keep the same assumption as in Proposition 4.1, and suppose that αt = t,

for all t ≥ 0. Furthermore, assume that there is a continuous function h : [0, T ]×R→ R,

such that h ∈ C1,2([0, T )× R), and h is a solution of the following PDE:

∂h

∂t
(t, x) +

1

2
f(t, x)

∂2h

∂x2
(t, x)− g(t, x)h(t, x) = 0, (t, x) ∈ [0, T )× R,

h(T, x) = F (x).

Then we have

HÑT = h(0, X0) +

∫ T

0

θs1{s<T} dX
τ
s + LT , (15)

where L = (Lt)t≥0, L0 = 0, is an F I,τ -local martingale orthogonal to the local martin-

gale part of Xτ in F I,τ . Furthermore suppose that L and the local martingale part of

Xτ in F I,τ are square integrable martingales, and θ1{·<T} belongs to Θ. Then the FS

decomposition of the defaultable claim is given by (15).
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Proof. This is a direct application of Proposition 4.1 by letting αt = t, t ≥ 0.

We continue by a very simple case in which no information is released from the firm

to investors.

Example 4.1. Suppose that we would like to obtain the PLRM hedging strategy for a

defaultable claim whose maturity, denoted by T , is before any information released from

the firm. So we assume that there is a constant l > 0 such that T ≤ l and for 0 ≤ t ≤ l

no information is released from the firm which means that the investors’ information is

not updated, i.e. αt = 0 for all 0 ≤ t ≤ l. Let FM be the natural filtration generated

by X and suppose that there exists an intensity λ in the sense of Definition 2.5. Note

that in this example, for each 0 ≤ t ≤ T , Yt = X0, F I
t is a trivial sigma-algebra, and

so λt is deterministic because λ is an F I-adapted process. We can determine the FS

decomposition of the defaultable claim F (YT )ÑT (paid at T ≤ l for a known function

F : R→ R) in F I,τ , as follows.

Since T ≤ l then F (YT ) = F (X0) and the claim is F (X0)1{τ>T}. In this case, it

is easy to observe that Theorem 3.1 is not useful. Nevertheless, an application of the

product rule shows that (h(t)1{τ>t})0≤t≤T is an F I,τ -square integrable martingale where

h(t) = F (X0)
e
∫ t
0 λs ds

e
∫ T
0 λs ds

, 0 ≤ t ≤ T . Therefore, we have F (X0)ÑT =
F (X0)

e
∫ T
0 λs ds

+ LT , for an

F I,τ -square integrable martingale L with L0 = 0. This is indeed the FS decomposition of

this claim because 〈L,M (1)〉FI,τ = 0, and by Lemma 7.1 of the Appendix, L is orthogonal

to M (1).

Now, we consider an example in which managers of a firm have full access to the

information, and τ is defined endogenously by asset values of the firm and hence pre-

dictable to managers but totally inaccessible to investors. Note that this example cannot

be analyzed using hazard rate based models where the intensity process is modeled by

Definition 2.4.

Example 4.2. Consider a defaultable claim (H, τ, T ) and suppose that αt = (t − l)+,

t ≥ 0, for a deterministic constant 0 < l < T , H = F (YT ), and bt = f(t,Xt), t ≥ 0, for

continuous functions F : R→ R and f : [0,∞)× R→ [0,∞).

Assume that X is given by the Black-Scholes geometric Brownian motion model with

parameters µ and σ > 0, Ft = FM
t , t ≥ 0, is the sigma-algebra generated by {Ws; s ≤ t},

where W is a standard Brownian motion, and the default time τ is defined by τ = inf{t >
0;Xt ≤ d}, for a given barrier 0 < d < X0. Then Theorem 3.1 of [15] shows that under
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(F I
t ∨Nt)t≥0, λt = g(Yt), t ≥ 0, in the sense of Definition 2.5 for a continuous function

g : [0,∞) → [0,∞). For instance, by Example 3.2 of [15], for t < τ and t > l, we have

λt = −
∂ψ
∂t

(µ
σ
− σ

2
, l, log d−log(Yt)

σ
)

ψ(µ
σ
− σ

2
, l, log d−log(Yt)

σ
)

, where ψ(θ, t, y) = 1−
∫ t

0
|y|√
2πs3

e−
(y−θs)2

2s ds, for y < 0.

Suppose that there is a continuous function h : [0, T − l] × R → R such that h ∈
C1,2([0, T − l)×R), and it satisfies the PDE, ∂h

∂t
(t, x) + f(t,x)

2
∂2h
∂x2

(t, x)−g(x)h(t, x) = 0 on

[0, T − l)×R, with the boundary condition h(T − l, x) = F (x) to match the final payoff.

We recall that filtration (F I
t ∨ Nt)t≥0 satisfies Equation (4) and hence Definition 2.3.

The FS decomposition of the defaultable claim F (YT )ÑT in F I,τ = (F I
t ∨Nt)t≥0, can be

determined as follows.

Through a C1,2 extension of h to [0,∞)×R and using an analysis similar to the proof

of Proposition 4.1, by part 1 of Theorem 3.1, we can show that

h(T − l, YT )ÑT +

∫ T∧τ∧l

0

h(0, X0)λs ds = h(0, X0) +

∫ T

0

θs1{s<T} dY
τ
s + LT , (16)

where θt = ∂h
∂x

(αt, Yt)1{t≤τ}, 0 ≤ t < T , and L, L0 = 0, is an F I,τ -local martingale

orthogonal to M (1). Clearly, the second term on the left-hand side of (16) becomes

h(0, X0)
∫ l∧τ

0
λs ds which is equal to −h(0, X0)Ñl+h(0, X0)+L

′

l for a process L
′
, L

′
0 = 0,

which is an F I,τ -local martingale. The martingale L
′

is of finite variation, hence L
′

is

orthogonal to the local martingale part of Y τ , i.e. M (1). Therefore (16) becomes

h(T − l, YT )ÑT − h(0, X0)Ñl =

∫ T

0

θs1{s<T} dY
τ
s + (LT − L

′

T ). (17)

Similar to Example 4.1, we can show that

h(0, X0)Ñt∧l =
h(0, X0)

e
∫ l
0 λs ds

+ L
′′

t , t ≥ 0, (18)

where L
′′
, L

′′
0 = 0, is a finite variation F I,τ -local martingale orthogonal to M (1). By

evaluating (18) at t = T and adding it to (17), we have

F (YT )ÑT =
h(0, X0)

e
∫ l
0 λs ds

+

∫ T

0

θs1{s<T} dY
τ
s + (LT − L

′

T + L
′′

T ). (19)

Note that the local martingale L− L′ + L
′′

is orthogonal to M (1).

Furthermore suppose that M (1) and L are square integrable martingales, and θ1{·<T}

belongs to Θ. Then the FS decomposition of the defaultable claim in F I,τ is given by

(19).
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The following example considers a hazard based model (Definition 2.4) in which τ is

defined exogenously, (i.e. not defined based on the management’s information), hence

not adapted to neither the management’s nor to the investors’ filtration, and at the same

time investors receive delayed data.

Example 4.3. Consider a defaultable claim (H, τ, T ). Suppose that X has Markov prop-

erty with respect to FM , and H = F (YT ) for a continuous function F : R → R. For

t ≥ 0, assume that αt = (t − l)+, for a deterministic constant 0 < l < T , bt = f(t,Xt),

and P[τ > t|FM
t ] = e−

∫ t
0 g(s,Xs) ds, for continuous functions f : [0,∞) × R → [0,∞)

and g : [0,∞) × R → [0,∞). We can determine the FS decomposition of F (YT )ÑT in

F I,τ = (F I
t ∨Nt)t≥0 as follows.

Recall that F I is the investors’ information in Assumption 2.2 given by F I
t = FM

αt .

Since for all t ≥ 0, αt ≤ t, we have F I
t ⊂ FM

t and so

P[τ > t|F I
t ] = e−

∫ αt
0 g(s,Xs) dsE[e−

∫ t
αt
g(s,Xs) ds|F I

t ], t ≥ 0.

Using the Markov property, the above expectation can be expressed according to a function

of the triplet (t, γt, Yt), where γt = t− αt and t ≥ 0. If this function is of finite variation

with respect to t then we have an F I-adapted process λ̃ defined by λ̃t = g̃(t, γt, Yt), t ≥ 0,

where g̃ is a function from [0,∞)× [0,∞)×R to [0,∞) (assumed to be continuous) such

that P[τ > t|F I
t ] = e−

∫ t
0 λ̃s ds, for all t ≥ 0.

Hence by Proposition 5.1.3 of [6], (Nt−
∫ t∧τ

0
λ̃s ds)t≥0 is a martingale in (F I

t ∨Nt)t≥0.

Note that on the support of the measure defined by α, we have that γ = l and λ̃ = k(α, Y )

for a continuous function k : [0,∞) × R → R. Following the same steps as in Example

4.2 and an analysis similar to that of Proposition 4.1, by imposing further integrability

conditions, the FS decomposition and the PLRM hedging strategy can be found by solving

the PDE, ∂h
∂t

(t, x) + f(t,x)
2

∂2h
∂x2

(t, x)− k(t, x)h(t, x) = 0 on [0, T − l)×R, with the boundary

condition h(T − l, x) = F (x), for a continuous function h : [0, T − l]× R→ R such that

h ∈ C1,2([0, T − l)× R).

The following example explains the case when τ admits an intensity process with

respect to the investors’ information in the sense of Definition 2.4.

Example 4.4. Consider a defaultable claim (H, τ, T ) where τ may or may not be an

FM -stopping time. Suppose that H = F (YT ) for a continuous function F : R→ R. For

t ≥ 0, assume that αt = (t − l)+, for a deterministic constant 0 < l < T , bt = f(t,Xt),

and P[τ > t|F I
t ] = e−

∫ t
0 g(αs,Ys) ds, for continuous functions f : [0,∞) × R → [0,∞) and

g : [0,∞)× R→ [0,∞).
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Assuming the filtration expansion F I,τ = (F I
t ∨ Nt)t≥0, following the same steps as

in Example 4.2, and an analysis similar to that of Proposition 4.1, by imposing further

integrability conditions, the PLRM hedging strategy and the FS decomposition can be

found by solving the PDE, ∂h
∂t

(t, x)+ f(t,x)
2

∂2h
∂x2

(t, x)−g(t, x)h(t, x) = 0 on [0, T−l)×R, with

the boundary condition h(T−l, x) = F (x), for a continuous function h : [0, T−l]×R→ R
such that h ∈ C1,2([0, T − l)× R).

A special case of this example is when τ is independent of the investors’ information

F I, which leads to P[τ > t|F I ] = P[τ > t], t ≥ 0. In this case, the process Z (the

optional projection of Ñ over F I) is simply a decreasing deterministic function, and the

intensity process exists in the sense of Definition 2.4, Lebesgue almost surely, given by

the deterministic function λt = −∂ lnP[τ > t]

∂t
, t ≥ 0.

Up until now, we have applied only deterministic time changes. The following result

studies the case of a stochastic time change assuming that X is a local martingale.

Proposition 4.2. Consider a defaultable claim (H, τ, T ) where τ may or may not be

an FM -stopping time. Suppose that P[τ > t|F I
t ] = e−

∫ t
0 g(αs,Ys) ds, t ≥ 0, H = F (YT ),

a = 0, and bt = f(t,Xt), t ≥ 0, for continuous functions g : [0,∞) × R → [0,∞),

F : R → R, and f : [0,∞) × R → [0,∞). Assume that there is a continuous function

h : [0, T ] × R → R, such that h ∈ C1,2([0, T ) × R), and h is a solution of the following

PDE:

∂h

∂t
(t, x) +

1

2

∂2h

∂x2
(t, x)f(t, x)− g(t, x)h(t, x) = 0, (t, x) ∈ [0, T )× R,

h(T, x) = F (x).

We assume that αT = T , and γ is absolutely continuous (hence so is α) with respect

to the Lebesgue measure with the Radon-Nikodym derivative βt =
dγt
dt

, t ≥ 0, such that

h(ατ , Yτ )βτ is integrable. Let Ft = P(τ ≤ t|F I
t ), t ≥ 0. If the process m defined by

mt = E[
∫ T

0
h(αu, Yu)βu dFu|F I

t ], t ≥ 0, is continuous at τ , and F I,τ = (F I
t ∨ Nt)t≥0,

then

HÑT = h(0, X0)−m0 +

∫ T

0

(θt1{t<T} − θ∗t ) dY τ
t + LT , (20)

where for 0 ≤ t ≤ T , θ∗t = eΓt
d[m̃, Y τ ]t
d[Y τ ]t

, Γt =
∫ t

0
g(αs, Ys) ds, m̃t = mt∧τ , θt =

∂h
∂x

(t, Yt)1{t≤τ} (excluding the case t = T ), and L = (Lt)t≥0, L0 = 0, is an F I,τ -local

martingale orthogonal to Y τ .

Furthermore, suppose that M (1) and L are square integrable martingales, and θ1{·<T}

and θ∗ belong to Θ. Then the FS decomposition of the defaultable claim is given by (20).
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Proof. Since a = 0, Y is an F I-local martingale, by Theorem 7.1 of the Appendix, then

Y τ is an F I,τ -local martingale, and so LRM reduces to risk-minimization.

Through a C1,2 extension of h to [0,∞)×R and using an analysis similar to the proof

of Proposition 4.1, by part 1 of Theorem 3.1, we can show that

h(αT , YT )ÑT +

∫ T∧τ

0

h(αs, Ys)λs dγs = h(0, X0) +

∫ T

0

θs1{s<T} dY
τ
s + L

(1)
T , (21)

where L(1), L
(1)
0 = 0, is an F I,τ -local martingale orthogonal to Y τ . Because (Nt −∫ t∧τ

0
λs ds)t≥0 is an F I,τ -martingale, the integral on the left-hand side of (21), can be

written as∫ T∧τ

0

h(αs, Ys)λs dγs =

∫ T

0

h(αs, Ys)βs dNs + L
(2)
T = h(ατ , Yτ )βτNT + L

(2)
T , (22)

where L(2), L
(2)
0 = 0, is an F I,τ -local martingale.

By Proposition 5.2.1 of [6], we have

E[h(ατ , Yτ )βτNT |F I,τ
t ] = m0 +

∫ t

0

eΓu dm̃u + L
(3)
t , t ≥ 0,

where for t ≥ 0, m̃t = mt∧τ , mt = E[
∫ T

0
h(αu, Yu)βu dFu|F I

t ], Γt = − ln
(
P(τ > t|F I

t )
)

=∫ t
0
g(αs, Ys) ds as in Definition 2.4, and L(3), L

(3)
0 = 0, is an F I,τ -local martingale of

finite variation. This leads to h(ατ , Yτ )βτNT = m0 +
∫ T

0
eΓu dm̃u + L

(3)
T .

By Theorem 7.1 of the Appendix, the process m̃ is an F I,τ -local martingale and so

is (
∫ t

0
eΓu dm̃u)t≥0. Therefore, (

∫ t
0
eΓu dm̃u)t≥0 admits a KW decomposition versus Y τ in

F I,τ , i.e.
∫ t

0
eΓu dm̃u =

∫ t
0
θ∗u dY

τ
u + L

(4)
t , t ≥ 0, where θ∗ is given by θ∗t = eΓt

d[m̃, Y τ ]t
d[Y τ ]t

,

t ≥ 0, and L(4), L
(4)
0 = 0, is an F I,τ -local martingale orthogonal to Y τ .

So we have h(ατ , Yτ )βτNT = m0 +
∫ T

0
θ∗s dY

τ
s + L

(4)
T + L

(3)
T ; this together with (21)

and (22) lead to the following equation:

h(αT , YT )ÑT = h(T, YT )ÑT

= h(0, X0)−m0 +

∫ T

0

(θt1{t<T} − θ∗t ) dY τ
t + L

(1)
T − L

(2)
T − L

(3)
T − L

(4)
T .

We have already observed that the F I,τ -local martingales L(1) and L(4) are orthogonal

to Y τ . On the other hand, L(2) and L(3) are finite variation F I,τ -local martingales and

hence orthogonal to Y τ (by Lemma 7.1 of the Appendix). Therefore, L defined by

L = L(1) − L(2) − L(3) − L(4) is orthogonal to Y τ which proves the result.
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Remark 4.2. One of the challenges of applying a random time change within the setup

of the previous proposition, is to have random time changes that satisfy αT = T so that

h(αT , YT ) = F (YT ). The condition αT = T is a technical assumption to avoid random

boundary conditions for the PDEs. However, it can be also financially interpreted as

a maturity time that lies on a date when the company’s accounting data are released

so that the investors would have access to almost the same level of information as the

management.

As an example of such time change, consider a random time T1 such that 0 < T1 < T

a.s., and for each t ≥ 0, αt =
T (t− T1)

T − T1

1{t>T1} is an FM -stopping time. Therefore,

(αt)t≥0 defines a random time change based on Definition 2.1. This random time change

represents scenarios in which there is no release of information up until time T1 and then

thereafter the data is getting updated gradually until T .

5 Conclusion

In this paper, we have discussed a partial information credit risk model where the solu-

tions of hedging strategies of defaultable claims are given through the PLRM approach

assuming that the information is received with some delay, and the delay is modeled by

a random time change. In doing so, two notions of intensity are applied which allow for

the default event to be defined both endogenously and exogenously for example as the

first hitting time of underlying assets to a barrier. Under some conditions, the numerical

implementation can be executed through the solution of PDEs.
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7 Appendix

7.1 Definitions and Technical Results

For the convenience of the reader, we recall certain basic notation and definitions. We

suppose that (Ω,F,F ,P) is a complete probability space equipped with a filtration F =

(Ft)t≥0 which satisfies the usual hypotheses and Ft ⊂ F for all t ≥ 0. Let F∞ be the

sigma-algebra generated by all Ft, t ≥ 0.

Definition 7.1. Suppose that U and R are two semimartingales in (Ω,F,F ,P), then

• The quadratic covariation of U and R is denoted by [U,R] and defined by [U,R] =

UR− U0R0 −
∫
U− dR−

∫
R− dU .

• The predictable quadratic covariation of U and R is denoted by 〈U,R〉F and defined

to be an F-predictable process with locally of integrable variation (see Definitions

I.3.7 and I.3.8 of [18]) null at time zero (if such a process exists in the first place)

such that [U,R]− 〈U,R〉F is an F-local martingale.

All the important properties of (predictable) quadratic covariation can be found in

Theorem I.4.47, Proposition I.4.49, and Proposition I.4.50 of [18]. In the following re-

mark, we highlight a few important ones.

Remark 7.1. The quadratic covariation enjoys several nice properties: as a map from

(U,R) to [U,R], it is bi-linear and symmetric. If U is a semimartingale, and R is of

finite variation, then [U,R] = 0 whenever either U or R is continuous. Furthermore,

∆[U,R] = ∆U∆R, which concludes that [U,R] is a continuous process (hence predictable

and by Lemma I.3.10 of [18] with locally of integrable variation) whenever either one of

U or R is continuous.

The superscript F in 〈U,R〉F indicates the relevance to the filtration F , and it can

be dropped if the reference filtration is obvious. Note that if 〈U,R〉F exists, it is uniquely

determined by Corollary I.3.16 of [18] up to an evanescent set. Also, if [U,R] belongs to

the class of locally integrable variation processes or if U and R are locally square integrable

martingales, Theorem I.3.18 and Proposition I.4.50 of [18] guarantee the existence of

〈U,R〉F . In fact, the predictable quadratic covariation is originally defined for locally
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square integrable martingales (see Theorem I.4.2 of [18]), here we have slightly generalized

this by Definition 7.1.

As mentioned earlier, if either one of U or R is continuous, then [U,R] is predictable

with locally of integrable variation. Therefore, [U,R] = 〈U,R〉F by the uniqueness of

predictable quadratic covariation, and the superscript F could be dropped.

Remark 7.2. Suppose that U and R are two semimartingales, by Theorem 29, Chapter

2 of [25], for any càglàd processes K(1) and K(2), we have

[

∫
K(1) dU,

∫
K(2) dR] =

∫
K(1)K(2) d[U,R],

and if 〈
∫
K(1) dU,

∫
K(2) dR〉F and

∫
K(1)K(2) d〈U,R〉F exist according to Definition 7.1,

then the uniqueness of the predictable quadratic covariation shows that

〈
∫
K(1) dU,

∫
K(2) dR〉F =

∫
K(1)K(2) d〈U,R〉F .

Definition 7.2. Two local martingales M and N are called orthogonal if MN is again

a local martingale.

Lemma 7.1. Suppose that M and N are two local martingales such that 〈M,N〉F exists

based on the second part of Definition 7.1. Then M and N are orthogonal if and only if

〈M,N〉F = 0.

Proof. From the definition of quadratic covariation, the orthogonality of M and N is

equivalent to [M,N] being a local martingales. Also, by the definition of predictable

quadratic covariation, [M,N] − 〈M,N〉F is a local martingale. Therefore, the orthogo-

nality of M and N is equivalent to 〈M,N〉F being a local martingale. Because 〈M,N〉F

is a predictable finite variation local martingale, Corollary I.3.16 of [18] shows that

〈M,N〉F = 0.

Remark 7.3. As we discussed earlier, if M and N are two locally square integrable mar-

tingales, then 〈M,N〉F exists. This means that two locally square integrable martingales

are orthogonal if and only if their predictable quadratic covariation is zero.

The following result is a special case of Theorem 2 of [23] (see also [19]), and it is

used to provide the canonical decomposition of a locally square integrable martingale

stopped at a random time in expanded filtrations. Suppose that the process ZF is the

optional projection of the process (1{T >t})t≥0 over the filtration F . Note that ZF is a

special semimartingale and admits a canonical decomposition.
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Theorem 7.1. Suppose that M is a locally square integrable martingale on (Ω,F,F ,P)

and T is a P-a.s. positive random variable on this space such that ∆MT = 0. Let M(ZF )

be the martingale part of the canonical decomposition of ZF in F .

Then the process

MT −
∫

1

ZF−
1{·≤T } d〈M,M(ZF )〉F ,

is a local martingale in any filtration expansion FT of F by T that turns T into a stopping

time and satisfies

FTt ∩ {T > t} = Ft ∩ {T > t}.

Definition 7.3. Assume that processes M and N are two local martingales. Then we

say that N admits a KW decomposition versus M if there is a predictable process ξ such

that the process
∫
ξ2 d〈M〉F is locally integrable and the following decomposition holds:

N = N0 +

∫
ξ dM + L,

where L with L0 = 0, is a local martingale orthogonal to M.

Remark 7.4. In [1], KW decomposition is discussed under four cases. In general, its

existence is not guaranteed, however, if N and M are locally square integrable martingale

or when M is continuous, this decomposition exists. We refer to the aforementioned

reference for further discussions.
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