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a b s t r a c t 

Background and objective: In patients treated with hip arthroplasty, the muscular condition and presence 

of inflammatory reactions are assessed using magnetic resonance imaging (MRI). As MRI lacks contrast 

for bony structures, computed tomography (CT) is preferred for clinical evaluation of bone tissue and or- 

thopaedic surgical planning. Combining the complementary information of MRI and CT could improve 

current clinical practice for diagnosis, monitoring and treatment planning. In particular, the different 

contrast of these modalities could help better quantify the presence of fatty infiltration to characterise 

muscular condition and assess implant failure. In this work, we combine CT and MRI for joint bone and 

muscle segmentation and we propose a novel Intramuscular Fat Fraction estimation method for the quan- 

tification of muscle atrophy. 

Methods: Our multimodal framework is able to segment healthy and pathological musculoskeletal struc- 

tures as well as implants, and develops into three steps. First, input images are pre-processed to improve 

the low quality of clinically acquired images and to reduce the noise associated with metal artefact. Sub- 

sequently, CT and MRI are non-linearly aligned using a novel approach which imposes rigidity constraints 

on bony structures to ensure realistic deformation. Finally, taking advantage of a multimodal atlas we 

created for this task, a multi-atlas based segmentation delineates pelvic bones, abductor muscles and 

implants on both modalities jointly. From the obtained segmentation, a multimodal estimation of the 

Intramuscular Fat Fraction can be automatically derived. 

Results: Evaluation of the segmentation in a leave-one-out cross-validation study on 22 hip sides resulted 

in an average Dice score of 0.90 for skeletal and 0.84 for muscular structures. Our multimodal Intramus- 

cular Fat Fraction was benchmarked on 27 different cases against a standard radiological score, showing 

stronger association than a single modality approach in a one-way ANOVA F-test analysis. 

Conclusions: The proposed framework represents a promising tool to support image analysis in hip 

arthroplasty, being robust to the presence of implants and associated image artefacts. By allowing for the 

automated extraction of a muscle atrophy imaging biomarker, it could quantitatively inform the decision- 

making process about patient’s management. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Hip arthroplasty consists of replacing a pathological hip joint

ith a prosthesis. It is the fourth most common surgical proce-
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ure in the US [1] and the second one in the UK [2] . Despite the

eported success of these surgical procedures in improving life

uality, hip implants are associated with a non-negligible failure

ate −6.8% at 13 years from primary surgery in the UK [3] — and a

onsequent need of being replaced in revision surgery. The failure

ate increases up to 14–27% when Metal-on-Metal (MoM) implants

ave been utilised in primary surgery, as this type of prosthesis

s linked to adverse inflammatory reactions and muscular wastage

ue to fat infiltration [3,4] . 
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Diagnosis, monitoring and treatment of patients with hip

implants routinely take advantage of medical imaging. However,

the clinical use of advanced automated imaging analysis pipelines

is currently hampered by the large inter-subject variability of the

musculoskeletal structures, the lack of standardised acquisition

protocols and the required large imaging Field-of-View (FOV) [5,6] .

As a result, current decisions for patient post-surgical management

in hip arthroplasty rely on separate, subjective and qualitative as-

sessments of imaging data. Magnetic Resonance Imaging (MRI)

is often used as preferred modality to assess muscle conditions

on suspicion of inflammation or atrophy, such as in the case of

patients with MoM implants [7] . 

Current approaches for quantification of muscle atrophy on MRI

have several drawbacks. They discard the volumetric information,

as single-slice scoring systems (e.g. Pfirmann score [8] or Bal and

Lowe score [9] ) are the current best practice. They have already

been proven to be un-predictive of 3-dimensional measures in the

rotator cuff muscle [10] . Most methods for volumetric estimation

of fat infiltration require tailored MRI acquisition protocols such as

the Dixon, based on chemical-shift MRI sequences [11] . However,

such techniques are not routinely available in clinical practice,

being very sensitive to magnetic field inhomogeneities in presence

of metal implants, and typically rely on manual delineation of

regions of interest (ROI). 

Computed Tomography (CT) might represent a viable alternative

for the quantification of fat infiltration. Its scanner-independent

range of intensities provides a clear separation between fat and

lean muscle [12,13] at −30 Hounsfield Units (HU). Additionally,

CT is the most appropriate and clinically used modality for bone

pathology diagnosis, surgical planning and post-surgical delivery

assessments, due to its improved visualisation of bones and im-

plants [14] . However, the lack of contrast between muscles and

the presence of metal-induced noise and artefact complicate the

segmentation of individual muscular volumes. 

To diagnose and treat implant failure, as well as to monitor well

functioning implants, a unique framework combining the comple-

mentary information of CT and MRI could therefore have clinical

value for imaging biomarkers extraction and surgical planning. It

would help better delineate both muscular and skeletal structures

concurrently and their relative spatial localisation, towards a more

accurate definition and visualisation of patient-specific anatomy.

This would benefit the customisation of surgical planning as it

would help minimise the damage to healthy musculoskeletal tis-

sue and potentially result in longer-lasting implants after revision,

especially relevant for younger patients [3] . 

The combination of multimodal information requires first to

address several technical challenges arising from the low qual-

ity of clinical data and the presence of strong metal artefact

induced noise. The difference of the patient’s pose within the

CT and MRI scanners also constitutes a major challenge when

aligning both modalities from the same subject. Standard intra-

subject registration for pelvic anatomy usually relies on global

affine transformation, such as the robust and inverse-consistent

block-matching algorithm presented by Rivest-Hénault et al. [15] .

However, to cope with different scanner couches and patient’s

position, the applied transformation should allow for non-linear

deformation of soft tissues while retaining the rigidity of the bones

and implants. To tackle this issue, Staring et al. [16] proposed a

non-linear registration framework where rigidity is promoted

by using an additional penalty term as a soft constraint (during

optimisation). This approach was extended for spine CT-MRI reg-

istration by Reaungamornrat et al. [17] , who added a constraint to

impose injectivity to the transformation model. In the context of

CT synthesis for radiotherapy treatment planning, Dowling et al.

[18] generated a well-aligned CT-MRI training dataset using the

structure-guided nonrigid registration proposed by Rivest-Hénault
t al. [19] . However, their algorithm relies on availability of accu-

ate contours of the same anatomical structure in both modalities,

hich are matched in the registration through the addition of a

oft constraint to the cost function. While being effective, all these

ethods need to find a trade-off between the terms in the cost

unction, which might still cause deviations from a strictly rigid

ransformation and therefore requires a careful selection of the

igidity penalty term weight. To avoid the need for prior rigid

asks, Commowick et al. [20] proposed a two-step strategy that

omputes spatially sparse local rigid transformations through a

odified block-matching approach, and then interpolates a dense

elocity field between the rigid ones. An alternative solution was

roposed by Haber et al. [21] , who presented a mathematical for-

ulation of the registration problem where a non-linear transfor-

ation model is enforced to be strictly rigid in specified areas as

 hard constraint. The authors report a proof of concept on 2D ex-

mples only, and do not explicitly consider the integration of such

ormulation into a broader diffeomorphic registration framework. 

As in pelvic musculoskeletal imaging multimodal non-linear

egistration still lacks robustness and generalisability, in the

iterature the segmentation of the hip joint and muscles has

ostly been performed on single modality scenarios. CT is usu-

lly preferred to obtain bone segmentation and in particular to

dentify the acetabular space. The most successful methods rely

n variations of statistical shape models such as Yokota et al.

22] or on hybrid approaches, combining atlas-based segmentation

ropagation with either statistical shape models [23] or graph-cut

egmentation [24] . However, global intensity thresholding coupled

ith manual editing still remains the most commonly applied

ethod for segmentation in CT [25] , as automated methods are

et to reach satisfactory accuracy. 

The segmentation of musculoskeletal structures in MR images

s currently hampered by the lack of established and easily gen-

ralisable segmentation techniques [5] . Common approaches are

tlas-based [26,27] , or make use of deformable simplex meshes

28] . Semi-automated approaches have been introduced for either

uscle or bone segmentation, requiring user manual initialisaton

f an intra-subject 2D to 3D segmentation propagation [29] or

ser interactive corrections [30] . When considering only bone seg-

entation, robust statistical and active shape models have been

pplied for the hip joint [31,32] , taking advantage of strong shape

riors to cope with the MRI bone contrast variations. Similarly, Xia

t al. [33] tested the use of CT-derived bone models to obtain the

egmentation of T2 MR images either through multi-atlas segmen-

ation propagation or active shape models, showing comparable

obustness and accuracy. Most recently, deep learning approaches

ave been explored either for bone and cartilage segmentation in

R images [34,35] , or for thigh muscle and fat segmentation [36] .

specially for hip arthroplasty, Klemt et al. [37] developed a frame-

ork for the automated segmentation of abductor muscles in MR

mages for both healthy and implanted hip sides, showing robust-

ess against population variability. To the best of our knowledge,

ery little work has been proposed to combine the segmentation

f all relevant musculoskeletal structures of the hip joint. The most

ecent example is the work by Yokota et al. [38] , where a hierarchi-

al multi-atlas approach is employed to obtain automatic segmen-

ation of pelvis, femur and 19 muscles in CT images. However, with

he exception of Klemt et al. [37] , all the discussed methods are

ot directly applicable to hip arthroplasty patients, due to the pres-

nce of strong metal-induced noise and artefact in both imaging

odalities. In this context, we hypothesise that the segmentation

f musculoskeletal structures could be improved by combining CT

nd MRI, as one modality would compensate for the segmentation

f those structures the other modality lacks contrast for. 

Following this idea, we present the first automated pipeline for

he joint segmentation of CT and MRI for patients treated with
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1 https://mi.eng.cam.ac.uk/Main/GMT _ wxDicom . 
2 Manual segmentations were performed using ITKSnap tools. www.itksnap.org . 
oM hip arthroplasty, inclusive of both musculoskeletal struc-

ures and implants. To obtain robust intra-subject multi-modality

lignment, we introduce a novel non-linear, diffeomorphic regis-

ration algorithm that preserves the local rigidity of bones through

ard constraints. Automated segmentation is obtained through

 4-dimensional multi-atlas segmentation propagation approach,

hich combines information from both CT and MRI and employs a

ew atlas of implanted hips we built for this purpose. In addition,

e introduce a novel automated quantification of fatty infiltration,

he Intramuscular Fat Fraction (IFF), which measures the percent-

ge of fat in muscular volumes. Our derivation takes advantage

f both imaging modalities and shows potential as a quantitative

maging biomarker of muscle atrophy. 

The main contributions of our work are twofold. From a

ethodological perspective, the introduction of the proposed

on-linear registration algorithm with rigidity constraints allows

o manage patient’s pose differences between scanner, producing

iologically plausible deformation. The combination of this novel

lgorithm with state-of-the-art super-resolution reconstruction and

etal artefact reduction techniques makes our pipeline robust to

he low-quality of clinical data, characterised by highly anisotropic

esolution and strongly affected by metal artefact induced noise.

rom a clinical perspective, our multimodal imaging biomarker of

atty infiltration provides a quantitative scoring system for abduc-

or muscles atrophy. This arises from the ability to obtain accurate

RI-driven muscle boundary delineation also in the CT space,

ven in the presence of strong artefact induced noise. Moreover,

he fused segmentation allows for patient-specific musculoskeletal

natomy visualisation and volumetric rendering. 

This paper is an extension of the work presented by Ranzini

t al. [39] at the MSKI “Computational Methods and Clinical Appli-

ations in Musculoskeletal Imaging” workshop, held in conjunction

ith MICCAI 2017. Together with a more detailed discussion of

he proposed method ( Section 2 ), this work introduces improved

re-processing steps involving the use of a metal artefact reduc-

ion technique for the CT and a multi-step bias field correction for

he MRI. The methodological validation has also been extended

o include comparisons for healthy gluteus muscle analysis in CT,

n MRI and in our combined framework ( Section 3.1 ). Finally, the

linical application discussed in Section 3.2 presents the extraction

f the Intramuscular Fat Fraction as a muscle atrophy multimodal

maging biomarker from our framework. 

. Methods 

The pipeline proposed in this work provides an automated tool

or the multimodal segmentation of the pelvic bones, the implants

nd the abductor muscles, which are at greatest risk of developing

trophy or hypertrophy after hip arthroplasty. The segmentation is

erformed jointly for both CT and MRI and it is obtained through

 multimodal multi-atlas based approach, which allows us to man-

ge the large population variability of these anatomical structures. 

This section is structured as follows. Firstly, we introduce

ur dataset and we describe the process we applied to generate

ur template images for the multi-atlas segmentation approach.

econdly, we provide a detailed description of our automated

ipeline, and finally we introduce the Intramuscular Fat Fraction

s a potential imaging biomarker for muscular atrophy. 

.1. Dataset 

Our dataset comprises CT and MR images from 38 subjects

hat have been treated with MoM hip arthroplasty. Data was

elected retrospectively, based on availability of images from

oth modalities and atrophy reporting, among patients that were

eferred to Charing Cross Hospital (London, UK) for unexplained
ip pain between 2006 and 2012. Summary demographic statistics

re reported in Table 1 . 

All the MR images were acquired on a Siemens MAGNETON

vanto 1.5T scanner, with the Metal Artefact Reduction Sequence

MARS) presented in Sabah et al. [40] . This is a standard protocol

idely used in clinical practice and includes the collection of two

1-weighted Turbo Spin Echo highly anisotropic images: an axial

cquisition (TE = 8 ms, TR = 509 ms, typical imaging resolution =
.78 × 0.78 × 7.02 mm 

3 ) and a coronal acquisition (TE = 7.1 ms, TR

 627 ms, typical imaging resolution = 1.25 × 1.25 × 6.00 mm 

3 ).

he CT acquisitions have been performed on a Siemens SOMATOM

ensation 16 scanner, with the exception of 8 cases acquired on

 Siemens SOMATOM Definition AS machine. Tube voltage varied

n the range [80,120] kVp. The reconstructed CT images have been

orrected for metal artefact using the wxDICOM software, 1 based

n the Refined Metal Artefact Reduction method proposed by

reece [41] . 

The available dataset was split as follows. Eleven subjects

ere randomly selected for manual segmentation in order to

uild the template dataset for the atlas-based segmentation (see

ection 2.2 ). The remaining 27 were automatically segmented

ith the proposed pipeline and used for the extraction of imaging

iomarkers. 

.2. Template dataset generation for automated segmentation 

The template dataset consists of 11 subjects (10 unilateral, 1

ilateral), whose MR images and CT were acquired on the same

ay. For each subject, the CT and MR images were pre-processed

or image quality enhancement as discussed in Section 2.3 . Given

ts higher contrast for bony structures, the CT images were used

o manually delineate 2 the pelvic bones, the femora and the

mplant(s). Manual segmentation of Gluteus Maximus (GMAX),

luteus Medius (GMED), Gluteus Minimus (GMIN) and Ten-

or Fasciae Latae (TFL) was performed on the MR image after

uper-resolution reconstruction was applied ( Section 2.3 ). The

wo modalities were then registered into the same reference

rame ( Section 2.3 ), and all the manual segmentation masks were

erged into a single multi-label segmentation image. We finally

erformed further manual refinement, in order to guarantee

on-overlapping regions between the segmented structures. 

We therefore organised the template dataset into two subsets,

he implanted hip sides (12 sides) and the non-implanted ones

10). For the sake of simplicity, we refer to these latter as the

ealthy sides, although we acknowledge that the absence of the

mplant does not imply absence of pathology nor implant-induced

rtefact. In order to separate and group all the implanted and the

ealthy hip sides, each template set of CT, MR and label images

as split along the CT-derived sagittal axis of symmetry, and

eoriented according to the presence or absence of an implant

 Fig. 1 ). For this task, we developed a symmetry-detection algo-

ithm that, in analogy with the mechanics of rigid body, computes

he inertia tensor of the CT image using its intensities as mass

alues. Specifically, to balance the high intensity values of the

mplant typically present only on one side, the inertia tensor is

btained from the input CT after averaging it with its left-right

ipped image. The mid-sagittal plane of symmetry can then be

xtracted by the inertia tensor. Simple thresholding at 30 0 0 HU is

hen exploited to assess the presence of implants in each hip side

f the original CT. All implanted sides are then oriented to be on

he left and the healthy sides on the right. 

Within each subset, all the templates were rigidly aligned

nto their mid-space through the robust group-wise registration

https://mi.eng.cam.ac.uk/Main/GMT_wxDicom
http://www.itksnap.org
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Table 1 

Summary of the dataset demographic statistics. Unilateral cases refer to patients with only 

one implanted side, while bilateral cases to subjects with implants on both hip joints. The 

mean age at the time of CT acquisition is also shown, together with the number of cases 

grouped according to the time difference between the CT and the MR acquisition. 

Females Males Total 

Number of subjects 25 13 38 

Unilateral cases 17 12 29 

Bilateral cases 8 1 9 

Mean [Range] age 54.92 [35, 74] 57.08 [37, 69] 55.66 [35, 74] 

MRI within 1 month from CT 21 9 30 

MRI within 6 months from CT 2 0 2 

MRI within 24 months from CT 1 4 5 

MRI within 37 months from CT 1 0 1 

Fig. 1. Examples from the template sets, composed of CT, the respective non- 

linearly registered MRI (see Section 2.3 for processing details), and their fused 

segmentation of hip joint bones and abductor muscles. An implanted (left) and a 

healthy (right) template sides are shown. A single slice is displayed for illustration 

purposes. However, we emphasise that we created template images in the 3D space. 
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framework proposed by Klemt et al. [37] . Only the header orienta-

tion matrices were updated to avoid intensity resampling. 

2.3. Pipeline for automated segmentation 

The proposed segmentation framework processes the inputs

in three sequential blocks of steps: image quality enhancement,

intra-subject MR-CT image registration with rigidity constraints on

bone, and multi-atlas based multimodal segmentation. 

A schematic representation of this pipeline is shown in Fig. 2 .

Taking advantage of the NiPype framework for the implementation

[42] , our pipeline makes use and extends image processing utilities

from NiftyReg , 3 NiftySeg , 4 FSL 5 and SimpleITK . 6 

Image quality enhancement. The purpose of the first processing

block is to enhance the quality of the input images, to deal with

routinely acquired clinical data. The steps we are presenting here

were specifically implemented for the available data types (i.e.

one CT image and two anisotropic MR acquisitions). However, our

modular formulation can be tailored to manage only partial data -

e.g only one MR image available - or extended to include different

acquisitions - e.g. other sequences MR images. 

The two modalities are initially processed separately. Both

the axial and the coronal MRI acquisitions in our datasets are

heavily affected by bias field inhomogeneities. Hence, to each

image we first apply a global N4 bias field correction [43] . The

adipose tissue regions are then extracted automatically using the

Expectation-Maximisation segmentation algorithm [44] and used

as masks to estimate the residual bias field, which is further

corrected on the whole FOV with the N4 algorithm [43] . After this
3 https://github.com/KCL-BMEIS/NiftyReg . 
4 https://github.com/KCL-BMEIS/NiftySeg . 
5 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki . 
6 http://www.simpleitk.org/ . 

b

a

C  

w  

w  
orrection, the intensity histograms of the two MRI acquisitions

re matched by means of SimpleITK HistogramMatchingImage-

ilter. The two views are then combined into a single volume at

 × 1 × 1 mm 

3 resolution using a super-resolution reconstruction

SRR) algorithm [45] . No slice-to-volume registration was required

s motion was negligible. The use of a SRR algorithm has several

dvantages. Firstly, it allows us to compensate for the highly

nisotropic resolution of the acquired data, which would adversely

ffect the subsequent registration to the CT image; secondly, it

ompensates for the lack of 3D MRI acquisition, as 2D multislice

equences are usually preferred in clinical routine due to scanning

ime constraints. An example of super-resolution reconstructed

R image is shown in Fig. 3 . 

To improve the quality of the CT images, we applied a metal

rtefact correction [41] . A cubic interpolation scheme is utilised

o resample the corrected CT to the same isotropic resolution of

he SRR MRI. At this stage, we also extract binary masks for each

ip bone that are needed for the subsequent non-linear registra-

ion, as we want to enforce a rigid transformation on the bony

tructures. The binary masks are generated by multi-atlas based

egmentation using our template CT images and the respective

one segmentations. For each hip side, templates CT are registered

o the target image through affine [46] and following free-form

on-linear registration [47] with default parameters in NiftyReg ;
he template label images are then propagated with the respective

stimated transformation and final consensus is obtained using

he STEPS label fusion algorithm [48] . 

ntra-Subject MR-CT Registration with bone rigid constraint. The

econd block of our pipeline aims at aligning the CT and the SRR

RI of the same subject. This requires a multimodal non-linear

egistration to compensate for different patient’s pose within the

wo scanners while respecting the rigidity of bony structures. 

As a first step, an initial global alignment is achieved by affinely

egistering the SRR MRI to the CT using the symmetric block-

atching algorithm proposed by Modat et al. [46] . A more refined

ocal alignment is then achieved through the non-linear registra-

ion step. In order to prevent implausible deformation of bones,

e used an intensity-based non-linear registration framework that

pplies a strictly rigid transformation to all the voxels within spec-

fied masks, extending the mathematical formulation of hard rigid

onstraints presented by Haber et al. [21] . Given a reference image

 : X → R, defined in the reference space X ∈ R 

3 , and a floating

mage F : Y → F , defined in the floating space Y ∈ R 

3 , we want to

ptimise a transformation model φ : X → Y which is enforced to

e rigid within specific areas defined by a set of masks M j ⊂ X

nd non-linear elsewhere. Therefore, given the cost function 

(R, F ;φ) = (1 − λ) S( F (φ(X )) , R (X )) − λReg (φ) , (1)

here S is a measure of similarity between the reference and the

arped floating image and Reg a regularisation term weighted by

https://github.com/KCL-BMEIS/NiftyReg
https://github.com/KCL-BMEIS/NiftySeg
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://www.simpleitk.org/
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Fig. 2. Proposed pipeline for joint automated segmentation of CT and MR pelvic images. The three blocks composing the pipeline are highlighted: image quality enhancement 

(orange), where the two modalities are firstly processed independently; our novel intra-subject multimodal registration (green), where the proposed rigidly constrained non- 

linear registration provides alignment of the CT and MRI while guaranteeing a rigid behaviour in bones; multi-atlas based automated segmentation (purple), where the joint 

CT and MRI segmentation of the two hip sides are separately obtained and then recombined in the full FOV. 

Fig. 3. Example of the available input axial and coronal MRI acquisitions and the respective super-resolution reconstructed (SRR) MRI, showing how low-resolution informa- 

tion is combined to maintain high resolution in both the imaging planes. 

a

m

w  

v  

c  

t  

c  

r  

l  

e

 

t  

t  

o  

a  

i  

o  
 coefficient λ, we want to solve: 

ax 
φ

C(R, F ;φ) subject to φ(x ) − R j ( x ) = 0 ∀ x ∈ M j ⊂ X 

(2) 

ith R j : R 

3 → R 

3 being a rigid transformation applied to all

oxels x within the j -th mask. Using this formulation, the rigid

onstraint in the bony structures is embedded directly into the

ransformation model as a “hard constraint”. This differs from

urrently proposed approaches based on “soft constraints” such as
egularisation terms in the cost function, which simply penalise

arge deviations from a rigid behaviour within specified regions -

.g. Staring et al. [16] , Reaungamornrat et al. [17] . 

We used a stationary velocity field parametrisation for the

ransformation model, computed over a set of control points { μ}

hrough cubic B-Splines. The scaling-and-squaring exponentiation

f the stationary velocity field allows us to derive diffeomorphic

nd symmetric deformation fields, where the direct and the

nverse transformations are optimised simultaneously [49] . The

ptimisation is performed through a conjugate gradient scheme as
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Algorithm 1 Control point parametrisation update with rigid con- 

straints. 

Compute the gradient, G , of the current cost function value for 

each control point μ: 

G (μ) = ∇C(R, F ;μ) , ∀ μ ∈ { μ} 
Perform a line search along the direction of G: 

for each step in line search do 

Update the current control point parameters: 

μ ← μ + G (μ) , ∀ μ ∈ { μ} 
if stationary velocity field parametrisation then 

Down-scale the control point parameters 

μ ← μ/ 2 n , ∀ μ ∈ { μ} 
end if 

for each mask M j do 

Define the subset { μ} j of the control points within M j 

LTS estimation of the rigid transformation R j : 

R j = LTS ({ μ} j ) 
Update the parameters with the estimated rigid displace- 

ment: 

μ ← R j (μ) ∀ μ ∈ { μ} j 
end for 

if stationary velocity field parametrisation then 

Up-scale control point parameters 

μ ← μ ∗ 2 n , ∀ μ ∈ { μ} 
end if 

end for 

if stationary velocity field parametrisation then 

Scaling-and-squaring exponentiation ( n steps) 

end if 
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by default in NiftyReg . However, we modified the scheme to up-

date the transformation parameters as in Algorithm 1 to introduce

the rigidity constraints. Specifically, at each iteration the gradient

of the cost function is used to update the new parameters of each

control point. Within each mask associated with a rigid region, we

extract the parameters of all the control points and use a Least

Trimmed Square (LTS) regression to robustly estimate the rigid

transformation that best fits the displacement associated with each

control points, discarding 50% of points with highest residuals as

outliers. The obtained rigid transformation is subsequently applied

to update the current estimate of the parameters associated

with each control point within the mask. With the velocity field

parametrisation, the rigidity constraints are applied to the velocity

field after scaling, which represents a small deformation field. The

integration to the final deformation is then approximated through

the composition of this small field by itself several times (squaring

step of the scaling-and-squaring exponentiation). As the scaled

deformation is set to rigid, due to the properties of composition

the final deformation is maintained rigid within the masks. 

Note that our approach provides a formulation for the gradient

computation for both rigid and non-rigid areas that can be easily

incorporated in a gradient-based optimisation scheme, and can

be used in both a velocity field parametrisation and standard

free-form deformation one. In order to ensure smooth transitions

in the deformation field, the proposed algorithm is iterated on a

five-level course-to-fine pyramidal approach, using a final control

point spacing of 5 mm. To account for the local support of the

cubic B-spline parametrisation, the rigid masks are dilated by 1 at

each level of the resolution pyramid. 

Multi-atlas-based automated segmentation. The final block of our

pipeline uses the template datasets in a multi-atlas segmentation

propagation framework to estimate the final segmentation of each
ip side. Given the selected dataset (either healthy or implanted),

he templates CT-MR images are registered to the target CT-MRI

stacked into a 4D volume) through the following steps: 

1. Rigid registration : All the templates are rigidly aligned to the

target independently, using symmetric block-matching [46] . 

2. LTS average of rigid transformations : The optimised rigid ma-

trices are averaged in the log-Euclidean space, discarding

50% of them as outliers through least trimmed square re-

gression. Since all the templates are co-registered to their

mid-space, this guarantees robustness against potentially

failed template registrations. 

3. Affine registration : All the templates are affinely aligned to

the target. Instead of initialising the registration with the

previously computed rigid matrix for each template, we em-

ploy the LTS rigid average for all of them. 

4. LTS average of affine transformations : Similarly to the rigid

case, a LTS average affine transformation is computed. 

5. Non-linear registration : Using the LTS average affine matrix

as initialisation, each template is non-linearly registered

to the target using a multi-channel approach that aligns

simultaneously both imaging modalities. Both CT and MRI

contribute equally to the cost function, hence the optimi-

sation will converge to a final transformation that balances

the alignment of the CTs and the alignment of the MR im-

ages. In this approach, we make use of a standard free-form

deformation registration algorithm, parametrised through

cubic B-splines [47] . A bending energy penalty term is

also added to the cost function to regularise the optimised

deformation field. 

The final estimated non-linear transformations are deployed

o resample the label image of the respective templates onto the

arget space, using a nearest-neighbour interpolation scheme. As

or the bone-mask creation, a final consensus is obtained from

he candidate segmentations by means of the STEPS label fusion

lgorithm, which we modified to use a multi-channel version of

he local normalized correlation coefficient (LNCC) to rank the

emplates, defined as the sum of LNCC values from each channel. 

This procedure is performed for both hip sides separately. The

wo sides are finally reoriented back and recombined to their

riginal full FOV, providing a final multi-label image that can

e overlaid on both CT and MRI, highlighting all the segmented

usculoskeletal structures. 

.4. Imaging biomarkers for muscle atrophy 

The proposed segmentation pipeline provides an automated de-

ineation of regions of interest (ROI) for the extraction of clinically

elevant information. In the context of muscle atrophy, two quanti-

ies are of main interest to define muscular condition: the muscle

ross volume and the quantification of fat infiltration within the

uscle [50] . Whilst the segmentation provides a direct quantifica-

ion of muscle gross volume, further differentiation is needed to

lassify intra-muscular fat and lean tissue within each muscular

OI. From the multi-label segmentation output by our pipeline,

e use each muscle label independently as a mask to identify the

OI where to estimate the fat infiltration. Each mask is eroded by

hree voxels to ignore inter-muscular fat [11] . Within each eroded

OI mask, the CT image is segmented by thresholding at -30 HU

12] , classifying each voxel as either adipose tissue or lean muscle.

rom this classification, we compute the percentage of fat tissue in

he muscle gross volume as the Intramuscular Fat Fraction (IFF): 

FF = 

V fat 

V + V 

, (3)



M.B.M. Ranzini, J. Henckel and M. Ebner et al. / Computer Methods and Programs in Biomedicine 183 (2020) 105062 7 

Fig. 4. Manual selection reproducibility error for the 10 landmarks in CT and in MR images (mean and 95% confidence interval are reported). Each landmark is categorized 

as healthy (H) or implanted (I) according to the hip side it belongs to. Landmarks abbreviations: Greater Trochanter (GT), anterior tip of the Tensor Fasciae Latae (TFL), Pelvic 

Brim (PB), Gluteus Maximus sacrum origin (GMAX) and Ischium (Isc). 
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here the volume V of fat/lean muscle is simply the total num-

er of voxels classified as fat/lean muscle multiplied by the

oxel volume. In other words, MRI helps define the boundaries

f the different muscles, i.e. the different ROIs, while CT helps

ifferentiate fat and lean muscle tissue within each ROI. 

. Results 

.1. Segmentation pipeline validation 

In order to assess the performance of the proposed pipeline,

e designed two sets of experiments. The first aims at evaluating

ur intra-subject registration algorithm, selecting the optimal

egistration parameters and comparing it to the corresponding

ully non-linear approach without using rigidity constraints. The

econd set consists of a leave-one-out cross validation (LOOCV)

ramework to both optimise the multi-atlas-based segmentation

arameters and compare the segmentation results for the CT, the

RI and the combined CT/MRI cases. As an extension to this, a

ested LOOCV was also employed to test the generalisability of

he proposed approach to unseen data. 

Only the 11 template subjects were used in these experiments,

s ground truth information was available. 

.1.1. Intra-subject registration with rigid constraints 

For this experiment, the Normalised Mutual Information (NMI)

as used as a measure of similarity, being the most commonly

dopted solution for multimodal registration, and the bending

nergy was selected as a regularisation term [47] in order to

romote smooth deformations. We registered the full-FOV CT and

RR MR images of each template subject by using our rigidity

onstraint on bones and implants, as well as with fully non-linear

eformation at varying regularisation weight λ. 

The quantification of the registration accuracy was obtained by

omputing the Target Registration Error (TRE) on 10 anatomical

andmarks - 5 for each hip side - manually selected in both

keletal (3 landmarks) and muscular (2 landmarks) structures. The

andmarks were chosen according to three criteria: (1) being easily

dentifiable in both imaging modalities; (2) being spread across the

ull FOV; (3) being located on the structures we aimed to segment.

n addition, the selected landmarks are not gender related, not

ge related and very little susceptible to normal variants (a more

etailed description can be found in Appendix A). With this choice,

e tried to better characterise the registration error on the struc-

ures of interest, although we acknowledge that our landmarks

re not directly linked to clinical relevance. As the identification
f clear landmarks on extended and generally homogeneous struc-

ures such as muscles is not trivial, to account for choice bias the

anual selection was performed twice for each image at different

imes by a non-clinical expert, and the selection protocol was

eviewed by an expert musculoskeletal radiologist. The average

eproducibility error across all the subjects is reported in Fig. 4 . 

Given a transformation φ, the TRE for a specific landmark i was

alculated in a symmetric form as: 

RE i = 

1 

2 

(‖ x i − φ−1 ( y i ) ‖ � 2 + ‖ φ( x i ) − y i ‖ � 2 

)
, (4) 

here x i is the landmark position in the CT space and y i is the

orresponding landmark position in the MRI. 

For each landmark and each subject we computed the average

f the TRE values from the different manually selected landmark

ets. For each subject and for each registration approach, we re-

orted the root mean square error (RMSE) of the TRE values across

he ten landmarks. Fig. 5 (a) shows the RMSE TRE distributions at

arying bending energy weights for the registration with and with-

ut rigid constraints. Overall, the rigidly-constrained registration

lgorithm not only provides clinically plausible deformations, but it

lso outperforms the standard non-linear one in effectively reduc-

ng the TRE RMSE, producing therefore a more accurate alignment

t the landmark locations. We also observed a reduced sensitivity

o the choice of the regularisation parameter. Moreover, the intro-

uced algorithmic steps for the rigidity constraint did not impact

n the total computation time (on the same machine, the rigidly

onstrained non-linear registration required 93 minutes on aver-

ge, compared to 96 minutes for the fully non-linear approach). 

As a further comparison, we additionally manually delineated

he gluteus medius of healthy hip sides on the template CT

mages and we computed the Dice score between the registered

T segmentation and MRI based segmentation. In particular, to

btain a symmetric estimation we computed the average between

he Dice score in the CT space (by warping the manual MRI

egmentation with the inverse transformation) and the Dice score

n the MRI space (by warping the manual CT segmentation with

he direct transformation). In Fig. 5 (b), the distributions of the

ice score values are reported with and without the use of the

igid constraint using the same set of λ. In agreement with the

revious result, higher Dice scores are obtained with the proposed

ethod, with similar improved performances for regularisation

eights lower than 0.1. 

Both experiments have been used to select an optimal bending

nergy weight for further analysis. We selected λ = 0 . 001 , being

he value that yields to the best TRE RMSE, while still providing

igh degree of overlap for the segmented gluteus medius muscles
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Fig. 5. (a) Comparison of TRE RMSE values obtained from the rigidly-constrained 

non-linear registration and the standard fully non-linear one with varying weights 

of the bending energy regularisation term. The TRE RMSE for the affine registration 

is reported as well. (b) Dice Score for gluteus medius segmentation overlap between 

registered CT and MRI (only the healthy hip sides are considered). Wilcoxon rank 

sum test was performed between pairs with same registration parameters, and sta- 

tistically significant differences are reported ( ∗ indicates p -value p < 0.05, ∗∗ indi- 

cates p < 0.01). 
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(median Dice score [minimum, maximum] = 0.89 [0.81, 0.93]).

A visual comparison of the registration results for one case is

presented in Fig. 6 . At equal regularisation ( λ = 0 . 001 ), the Jaco-

bian determinant maps show that the use of the rigid constraints

enforces a volume-preserving deformation within bones and

implant, ensuring anatomical plausibility of the applied transfor-

mation. For a fair comparison, we also reported the outcome of

the standard non-linear registration with its optimal regularisation

weight ( λ = 0 . 5 ). While it promotes smoother transformations, it

does not provide sufficient local deformation in the soft tissue to

compensate for the different patient’s position, especially on the

implanted side. Also, the Jacobian determinant map still shows

volume variations in the bony area, which are instead impeded by

design with our method. 

3.1.2. Leave-one-out cross validation on template data sets 

To assess the performance of the automated segmentation

approach, we designed a LOOCV experiment on the template

datasets. Given the healthy ( N = 10 ) or implanted ( N = 12 ) dataset,

we performed the multi-atlas based automated segmentation step

for each template image using the remaining N − 1 templates

and varying the segmentation propagation and the label fusion

parameters. The obtained segmentations were then compared to

the ground truth by computing the Dice Score for each label.

Three examples of the automated results are shown in Fig. 7 . 

This test was performed with three different settings: (1)

using only the CT images; (2) using only the MR images; and

(3) using the registered 4D CT-MR images. No muscles segmen-

tations were available for the CT, and similarly no bones and
mplant labelling were available on the MRI. Only the available

abels were considered in the single-modality experiments. For

ach setting, we selected the optimal set of multi-atlas-based

utomated segmentation parameters as the ones maximising the

owest Dice Score across subjects and across labels; when different

ets of parameters had values within 0.05 difference, we kept

he one with the highest median Dice Score. The median Dice

core values for bones, muscles and implants obtained with the

est set of parameters for each experiment setting are reported

n Table 2 . As reported in our earlier work [39] , overall the bones

nd the implant are better segmented by the multi-atlas based

egmentation framework with respect to muscles, given their

ower shape and texture variability. Compared to our previously

eported results, however, the introduction of a metal artefact

eduction correction on the CT images as well as the improve-

ents in the MR pre-processing led to an increase of Dice score

alues. By improving the quality of the images, we facilitated

he intra- and inter-subject registrations, therefore improving

he performance of our pipeline. When testing the hypothesis of

ame underlying distributions for Dice Score values obtained with

ingle- or multi-modality (Wilcoxon rank-sum test, 5% significance

evel), significant difference was found only for the segmentation

f the bony structures, although the sample size is too small

o draw any definite conclusion. The implanted side provided

lighlty lower values with our multimodal pipeline. This side is

ore affected by residual metal artefact in CT and lack of metal

ntensity information in the MR, which hamper both the intra- and

nter-subject registration. Moreover, in the multimodal experiment

he multi-atlas segmentation parameters are selected based on

ll the musculoskeletal structures, finding a trade-off between the

egmentation accuracy of bones, muscles and implant. This differs

rom the single-modality cases, where the parameters are selected

nly on bones and implant (CT) or muscles (MRI), therefore being

ore performant on such structures. 

Nonetheless, our proposed 4D framework is able to provide a

onsistent and unified solution to the segmentations of both the

T and the MRI. Our approach guarantees no overlap between the

egmented ROIs, which cannot be ensured by the use of indepen-

ent approaches for muscular segmentation on the MRI and bone

r implant on the CT. On the template datasets, we verified that on

verage 2% of the voxels labeled as muscle on the MRI overlapped

ith CT-labeled bone voxels in our manual segmentations. In

ddition to this, without the use of a registration framework able

o combine the two modalities while maintaining their biological

lausibility, the joint segmentation of both muscular and skeletal

tructures would be more challenging and less accurate on the

ingle modality. To test this hypothesis, we adopted the same

OOCV framework to obtain an automated segmentation of the

luteus Medius on CT images, exploiting the available manual seg-

entations of the healthy side as in Section 3.1.1 . The comparison

f the Dice Score values from CT, MR and combined multimodal

ramework is reported in Fig. 8 . A visual example is also shown

n Fig. 9 , reporting the automated segmentation of GMED and

he ground truth. While our multimodal approach provides a

easonable result, the single modality results are less satisfactory:

he CT-only automated segmentation is not able to clearly recover

he boundary between fat and muscle; in the MRI-only, parts of

he femur are wrongly classified as muscle. Overall, the lack of

ontrast for muscular structures in CT images hampers the tem-

lates manual delineation process, introducing larger variability

n the segmentations propagated to a target space and therefore

indering the accuracy of the final consensus. In the MRI space,

he manual segmentation of the templates is more reliable, but

he qualitative nature of this modality makes the inter-subject

egistrations more difficult in the multi-atlas approach. Our 4D

ultimodal framework takes advantage of both modalities, as the
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Fig. 6. Example of registration results. The central axial and coronal views for the reference CT, the affinely registered MRI, the non-linearly registered MRI with and without 

the use of the rigidity constraints are reported. The coloured insets show the Jacobian determinant maps (in percentage of volume change) for each non-linear deformation. 

Results are displayed with the rigidly-constrained registration optimal regularisation weight ( λ = 0 . 001 ) to showcase the sole effect of the rigidity constraints. The result of 

the optimal fully non-linear regularisation weight ( λ = 0 . 5 ) is also shown. Yellow arrows point at areas where the standard non-linear registration fails to recover a good 

alignment. Differently from this latter, our rigidly constrained non-linear registration allows for more localised deformation and better soft tissue alignment while preserving 

the volume and shape of bones and implant. 

Table 2 

Median Dice Score values and 95% confidence intervals for bones, implant and muscles: comparison between single- 

and multi-modality results. Wilcoxon rank sum test was performed to test the null hypothesis of same distribution for 

the multi-modality- and the respective single-modality-derived Dice Scores (obtained p -values are reported and starred 

are the cases of rejection of the null hypothesis with 5% significance level). N.A. indicates cases where the manual 

segmentation was not available. 

Leave-One-Out-Cross-Validation for model parameter selection 

Healthy side 

CT MR Multimodal p-value 

Bones 0.95 [0.72, 0.97] N.A. 0.93 [0.75, 0.96] 0.036 ∗

Muscles N.A. 0.84 [0.59, 0.93] 0.85 [0.66, 0.92] 0.333 

Implanted side 

CT MR Multimodal p-value 

Bones 0.91 [0.70, 0.94] N.A. 0.89 [0.69, 0.91] 0.005 ∗

Muscles N.A. 0.83 [0.60, 0.93] 0.81 [0.61, 0.92] 0.170 

Implant 0.92 [0.81, 0.95] N.A. 0.91 [0.84, 0.95] 0.371 
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T helps regularising the templates-to-target registration while

xploiting the more trustworthy manual segmentation from the

R, leading therefore to more robust results. 

.1.3. Generalisability analysis 

As a final test of robustness of the proposed segmentation

ipeline, we extended the LOOCV experiment to a nested version,

n order to verify the generalisability of our approach to unseen

ata. In particular, we used N-1 subjects to perform the parameter

election in the same LOOCV fashion as described in the previous

aragraph, and then we tested the performance of the model
ith the selected parameters on the hold-out subject. By iterating

his over all the template cases, we obtained the summary Dice

core statistics reported in Table 3 . These results are in line with

he full dataset LOOCV analysis, which represents the optimal

erformance, showing the robustness of our approach on a more

ealistic setting. The median Dice Scores are unchanged or within

% difference, while a very slight reduction of the Dice score range

n some of the classes is imputable to the use of less templates

or the parameter selection. Overall, we can conclude that our

pproach is able to generalise to unseen data, as it does not show

 significant drop in performance when tested on the hold-out set.
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Fig. 7. Examples of automated segmentation results obtained with the proposed multimodal pipeline. Left, middle and right columns correspond to the subjects with best, 

average and worst mean Dice score across the segmented structures. They also demonstrate the large variability of musculoskeletal shapes, implant types, patient’s position 

and degree of artefacts present in this type of images. For the first case our algorithm achieved plausible segmentation throughout the field of view, while in the second 

case the muscular structures are less well-defined. In the third case, instead, the strong metal artefact in the MR image affected the templates-to-target registration and the 

consequent segmentation accuracy. 

Table 3 

Median Dice Score values and 95% confidence intervals for bones, implant and mus- 

cles obtained from the nested LOOCV ( p -values for 5% significance level of Wilcoxon 

rank sum test between monomodal and multimodal comparisons are shown). N.A. 

indicates that manual segmentation was not available. 

Nested Leave-One-Out-Cross-Validation for Generalisability 

Healthy side 

CT MR Multimodal p-value 

Bones 0.94 [0.65, 0.97] N.A. 0.94 [0.75, 0.96] 0.298 

Muscles N.A. 0.85 [0.65, 0.92] 0.86 [0.71, 0.92] 0.179 

Implanted side 

CT MR Multimodal p-value 

Bones 0.91 [0.64, 0.95] N.A. 0.88 [0.64, 0.92] 0.002 ∗

Muscles N.A. 0.83 [0.60, 0.93] 0.80 [0.58, 0.91] 0.051 

Implant 0.92 [0.70, 0.96] N.A. 0.91 [0.82, 0.94] 0.285 
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3.2. Clinical application: Muscle atrophy assessment 

The remaining 27 subjects in our dataset were employed to

test the accuracy of the proposed Intramuscular Fat Fraction as

a measure of muscle atrophy. For these subjects, fatty atrophy

of gluteus medius was graded by a radiologist according to the

Bal and Lowe visual scoring system [9] : grade 0 corresponds to

no atrophy, grade 1 is less than 30% change in muscle, grade 2
etween 30% and 70%, and grade 3 more than 70% fatty change.

uch radiological scores were available only for the implanted hip

ides, and only the symptomatic side was considered in case of

ilateral hip replacement. 

The CT and MR images of these subjects were processed

ith the presented segmentation pipeline using the best sets of

arameters from Section 3.1 . The IFF for the pathological gluteus

edius was then derived as in Section 2.4 , and the association
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Fig. 8. Dice Score values for healthy-side GMED automated segmentation using 

only CT, only MR or our 4D CT-MR framework. The Dice Score is computed against 

the manual segmentation on the CT space for the CT framework, on the MR space 

for the MR framework, and on the MR space then registered to the CT space for the 

multimodal framework. 
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Table 4 

One-way ANOVA F-test results. The table reports the p-values for the pair-wise 

comparison between the different classes, grouped according to the radiologi- 

cal score, and the p -value for the full test (total). Significance level is set at 5% 

(starred values). 

Group pair MRI manual MRI automated Multimodal automated 

(proposed) 

0 vs 1 4.27E-01 7.79E-01 5.07E-01 

0 vs 2 1.08E-01 6.80E-02 6.32E-02 

0 vs 3 2.82E-05 ∗ 4.86E-06 ∗ 1.11E-07 ∗

1 vs 2 5.20E-01 1.18E-01 2.61E-01 

1 vs 3 3.47E-05 ∗ 1.01E-06 ∗ 3.13E-08 ∗

2 vs 3 4.27E-03 ∗ 1.11E-03 ∗ 1.45E-05 ∗

Total 1.85E-05 ∗ 9.58E-07 ∗ 2.55E-08 ∗

o  

f  

r  

s  

i  

r

4

 

t  

i  

t  

a  

o  

i  

m  

g  

m  

r  

3  

i

 

t  

r  

F

A

a

etween our computed IFF and the gold-standard radiological

core was tested using the one-way ANOVA F-test. Examples for

ach radiological scores of our obtained fat segmentation and the

espective IFF values are reported in Fig. 10 . 

For the sake of comparison, we estimated the IFF from the

R images, i.e. discarding the extra information that the CT could

rovide. In this case, we manually identified a threshold for each

ubject to segment fat and lean muscle within the gluteus medius

ask and we computed the IFF from this segmentation. The

ame analysis was performed with an automated thresholding

n MRI, defined as the average percentile obtained from the

anual thresholding. On our dataset, this corresponded to the

8th percentile of the full range of intensities in the masked MRI. 

Fig. 11 displays the association of the IFF values and the ra-

iological scores for the three analysed cases. The results of the

ne-way ANOVA F-test are reported in Table 4 . These results show

tronger association between the radiological score and IFF when

his latter is computed from the CT image, as it provides improved

eparation between the different atrophy groups. It can be noticed

hat the group with radiological score equal to 1 is the most
ig. 9. An example of GMED automated segmentation from the LOOCV experiments. The

lthough the first two columns show results for the single-modality experiments, we repo

re: 0.68 (CT only), 0.72 (MR only), 0.77 (our multimodal approach). 
verlapping with other groups. As our analysis does not account

or the inter- nor intra-rater variability of this visual score, this

esult is not unexpected as this class represents the intermediate

ituation where no clear atrophy pattern can be distinguished

n the image. Further analysis will therefore be needed to better

epresent this intermediate class. 

. Discussion 

In this work, we presented an automated processing framework

o register and jointly segment same-subject pelvic CT and MR

mages for hip arthroplasty assessment. Our framework allows

o highlight both muscular and skeletal regions of interest on all

vailable modalities. The implant, for example, can be contoured

n the MR image, where the metal artefact completely shadows

t. Visualising the spatial position of the implant with respect to

uscular structures could help better determine the muscles at

reater risk of developing atrophy or the presence of other inflam-

atory lesions. Also, by reducing the burden of manually selecting

egions of interest through an automated segmentation scheme,

D rendering of patient-specific anatomy as well as volumetric

maging biomarkers can be more easily derived. 

We propose a flexible framework which can be readily adjusted

o various types of input data. Despite relying on a dataset of

egistered CT-MRI atlases, the pipeline could be applied to a
 automated segmentation (blue) is overlaid onto the manual ground truth (green). 

rted both images for clearer visualisation of failure. For this case, Dice Score values 
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Fig. 10. Examples of registered CT and MRI for each radiological score, and the automated fat segmentation from the proposed method. The eroded gross muscle boundary 

is reported in green, while in red is the fat segmentation. The derived IFF is also reported, showing an increase of fat infiltration in agreement with the radiological score. 

Fig. 11. Intramuscular Fat Fraction of Gluteus Medius (implanted side), estimated with different thresholding methods and plotted against the corresponding visual radio- 

logical score. In the right-most plot, cases where CT and MRI were acquired with more than 6-month difference are reported as crosses. 
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l  
single modality and still provide the whole musculoskeletal range

of structures while requiring only little modification. However,

further analysis should be performed to test the robustness of the

pipeline when used on single image or on other acquisition types. 

We assessed the impact of all steps in our proposed pipeline

and show their importance to overall better outcomes. The image

quality enhancement step makes the pipeline suitable for routinely

acquired clinical data, heavily corrupted by noise and artefacts.

The use of a tailored bias field correction scheme and of the

super resolution algorithm helps obtain high quality MR images

with isotropic resolution, without the need for longer volumetric

MR acquisitions. The introduction of a Metal Artefact Reduction

(MAR) technique for the CT also improved the accuracy of the

final segmentation by facilitating the registration tasks. 

As the results in Section 3.1 show, our novel CT-MR intra-

subject registration algorithm proved to be more robust to choice

of regularisation parameters and more accurate than standard

same-parametrisation non-linear registration. Although we ac-

knowledge that other non-linear registration frameworks could

be tested, we underline that the purpose of these experiments

was not the identification of the most performing framework,

but rather to assess the impact of the local rigidity constraint. Its

introduction for bony and implant structures is crucial to obtain

clinical trust, as it guarantees fidelity in the applied anatomical

deformations. Indeed, differently from other approaches such

as Staring et al. [16] and Reaungamornrat et al. [17] , our hard-

constraint formulation limits the optimisation only to strictly rigid
ransformations within rigid structures, preserving their shape and

olume. We would also like to underline that our approach does

ot include any a priori knowledge on the considered anatomical

rea. Therefore, while it was applied on preservation of bone

nd implant rigidity in the proposed pipeline, our registration

lgorithm is already applicable to other medical image registration

roblems, provided that masks for the structures to be rigidly

eformed are available. 

For this specific application, we automatically extracted the

one masks using a segmentation propagation approach. As this

ould represent a weakness in our approach, we tested whether

naccuracies in the automated segmentation would adversely

nfluence the subsequent pipeline steps (Appendix B). We found

he method to be fairly robust, and no significant differences in

he TRE estimation, in the final Dice Scores and in the derived IFF

as identified when comparing the use of automated masks with

anual ones. 

Despite the demonstrated improvements on intra-subject reg-

stration accuracy and transformation plausibility, the proposed

ethod still presents some limitations. Firstly, the non-linear

tep is initialised with global registration. If this registration fails

r is not sufficiently accurate, the non-linear step would not

e able to compensate for global misalignment due to limited

apture range and local optima and, consequently, the resulting

nal segmentation would not be reliable. Secondly, the current

arametrisation does not model sliding effects, which can cause

arge discontinuities in the deformation field within the acetabular
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Table 5 

Comparison with literature results. Mean Dice score and standard de- 

viation are reported for different musculoskeletal structures. Literature 

methods were tested on non implanted patients, hence only “healthy”

hip sides were considered for the proposed method. In bold is the highest 

value for each structure. 

Yokota et al. [38] Hiasa et al. [51] Proposed 

(CT only) (MR + synthetic CT) (MR + CT) 

Pelvis – 0.808 ± 0.036 0.882 ± 0.072 

Femur – 0.883 ± 0.029 0.949 ± 0.013 

GMAX 0.921 – 0.906 ± 0.024 

GMED 0.875 0.804 ± 0.040 0.850 ± 0.045 

GMIN 0.697 0.669 ± 0.054 0.826 ± 0.040 

TFL 0.807 – 0.797 ± 0.088 
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D

pace when large femoral rotation occurs between the patient’s

osition in the MR and in the CT scanners. When compared to

igid registration focussed on individual bones only, we found that

he proposed technique was able to correctly recover rotations

p to 8 ◦ along any axis (templates dataset median rotation angle:

 

◦). Future work will therefore address the modelling of sliding

ffects in our registration framework, to improve the rotation

ange captured by our algorithm. 

Should the intra-subject registration succeed, we do not expect

ny of the subsequent steps to fail but rather to be non-optimal

n the worst case. This is due to the robustness of the pipeline.

irst, a robust affine scheme is used for inter-subject registration,

hich allows up to 50% of the pairwise affine registrations to

ail without compromising the final outcome. Second, the fusion

lgorithm automatically selects the template images that appear to

e the most similar to the template and thus the best registered.

his second aspect also enables the pipeline to deal with several

on-linear inter-subject registration failures. In the leave-one-out

ross validation experiment, the presented multi-channel multi-

tlas segmentation approach proved to achieve good accuracy

ith median Dice Score of 0.90 for skeletal and 0.84 for muscular

tructures, in line with the results obtained from the single modal-

ty experiments ( Table 2 ). The implanted sides overall reported a

light reduction in accuracy with respect to the single modality,

ut it is reasonable to expect an improvement on this performance

ollowing further advances in CT-MR registration quality, such as

he introduction of the aforementioned sliding modelling and

ncreased template dataset size. 

A comparison with two of the most recent works presented in

he literature is summarised in Table 5 , reporting the mean Dice

core and standard deviation (if available) for the available seg-

ented structures. Yokota et al. [38] applied a hierarchical multi-

tlas approach for muscle segmentation in CT, while Hiasa et al.

51] proposed a multimodal framework for CT-MR image synthesis,

ollowed by a 2D UNet for segmentation of musculoskeletal struc-

ures. Although definite conclusions cannot be drawn due to differ-

nces in the data, field of view and especially the presence/absence

f metal artefact induced noise, overall our method reported

igher segmentation accuracy. It outperformed the multimodal

egmentation network proposed by Hiasa et al. in all the compared

tructures, though we acknowledge that their use of synthetically

enerated data for training might not be representative of perfor-

ance on real data. While Yokota et al. reported slightly higher

ice score for GMAX, GMED and TFL (still within one standard de-

iation from our result), we obtained improved performance on

he smaller GMIN, typically characterised by higher shape variabil-

ty. Together with the experiment on the gluteus medius ( Fig. 8 ),

his comparison supports the usefulness of a multimodal approach,

s this combines the reliability of manually delineated MR tem-

lates with CT-facilitated templates-to-target registration. 
With the advent of highly performing deep learning approaches

n medical imaging, it can be anticipated that novel segmentation

ethods will outperform atlas-based approaches in musculoskele-

al imaging as well, both in accuracy and speed. However, the

uccess of most deep learning algorithms still depends on the

vailability of large annotated datasets that can be used for train-

ng. Hence, together with the already mentioned advantages, the

roposed multi-atlas based segmentation pipeline can play an

mportant part in helping the development of such datasets. 

The identification of reliable and quantitative imaging biomark-

rs that could be automatically extracted would facilitate the

nterpretation of the image and the assessment of implant failure.

n the case of muscle atrophy, current clinical practice is based

n a visual and qualitative assessment of few 2D slices, which is

herefore strongly subjective and does not account for the whole

uscular volume. The proposed Intramuscular Fat Fraction esti-

ation takes advantage of the multimodality information to auto-

atically and more robustly delineate regions of interest. Whilst

etaining the 3D nature of muscles, our approach also avoids the

eed for manual ROI selection, which is currently the most com-

on practice for 3D fatty infiltration estimation [11,52] . Differently

rom MR-based approaches, the use of a standardised range of

ntensities makes the automated classification into lean muscle

nd fat straightforward in CT. We acknowledge that a large time

ap between the acquisition of the CT and the MRI would jeopar-

ize the reliability of our comparison between the multimodal IFF

stimation and the MRI radiological score, as muscle change could

ave occured in between. However, clinical literature shows that

ignificant gluteus medius atrophy change appears after a mean

nterval of 11 months [4] . In our dataset only six cases had a time

ifference greater than 6 months, and except for one case with

rade 2 atrophy, all the others were associated with no or very

ittle fatty infiltration. For this reason we included all the available

ases in our analysis, in order to maximise the sample size. A very

imilar trend was indeed found even when the aforementioned six

ases were excluded. However, our analysis is still constrained by

he limited number of cases available for each radiological score. It

ould be of interest to extend the IFF analysis to the other gluteal

uscles, including both an estimation of inter-rater variability of

he current visual scoring system and ideally increasing the dataset

o better analyse the role of confounding factors, such as gender or

ime from primary surgery. Further analysis will also be required

n future to better characterise the effect of partial volume as

ell as any residual metal artefact hyper- or hypo-intensities

n the estimation of IFF. Nonetheless, the proposed multimodal

uscle atrophy estimation is advantageous as it combines the

obustness of MRI-driven gross muscle volume segmentation with

 consistent and reproducible fat quantification from CT. 

. Conclusions 

In this paper, we have introduced a novel framework for the

imultaneous automated segmentation of CT and MR images of

atients with hip implants and for a multimodal-driven postop-

rative muscle assessment. The proposed framework represents

 promising tool to support image analysis in hip arthroplasty,

eing robust to the presence of implants and associated image

rtefacts which heavily degrade the image quality. Our framework

nables the automated extraction of multiple imaging biomarkers

e.g. Intramuscular Fat Fraction, volume asymmetries detection,

tc), encouraging research that could quantitatively inform the

ecision-making process about patient’s management. 
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