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Abstract

Increasing inter-class variance and shrinking intra-class distance are two main

concerns and e↵orts in face recognition. In this paper, we propose a new loss

function termed inter-class angular margin (IAM) loss aiming to enlarge the

inter-class variance. Instead of restricting the inter-class margin to be a constant

in existing methods, our IAM loss adaptively penalizes smaller inter-class angles

more heavily and successfully makes the angular margin between classes larger,

which can significantly enhance the discrimination of facial features. The IAM

loss can be readily introduced as a regularization term for the widely-used Soft-

max loss and its recent variants to further improve their performances. We also

analyze and verify the appropriate range of the regularization hyper-parameter

from the perspective of backpropagation. For illustrative purposes, our model is

trained on CASIA-WebFace and tested on the LFW, CFP, YTF and MegaFace

datasets; the experimental results show that the IAM loss is quite e↵ective to

improve state-of-the-art algorithms.
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1. Introduction

Convolutional neural networks (CNNs) are widely used for face recogni-

tion [1–15], in which recent researches have been focused on increasing the

inter-class variance and reducing the intra-class distance. A typical pipeline

of using a network for training WebFace can be found in Fig. 1, in which the5

network is trained with the loss function in the last layer, and the representation

in the penultimate layer is used as the feature of human faces.

Figure 1: A typical pipeline for training WebFace

Hence the recent e↵orts and achievements in increasing the inter-class vari-

ance and reducing the intra-class distance can be summarized into two cate-

gories.10

First, to optimize the Euclidean distance between facial features, mainly

through regularization. For example, the Triplet loss [6] makes the intra-class

Euclidean distance of features shorter than the inter-class distance. Wen et

al. [16] reduce the intra-class Euclidean distance by adding an extra penalty.

The Marginal loss of [17] and our past work [18] limit both intra-class and inter-15

class Euclidean distances to improve recognition accuracy. The Range loss [19]

overcomes the problem of long-tailed data by equalizing intra-class Euclidean

distance and increasing inter-class Euclidean distance. Except for the Triplet

loss, all above methods add a regularization term on the basis of the Softmax

loss, which is generally adjusted via a regularization hyper-parameter.20

Second, to optimize the angle between di↵erent classes. Optimization of

angles has recently become an attractive way to improve the loss function. The

`2-constrained Softmax loss [20] finds that the `2-norm of the feature is related
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to the quality of images and it restricts the features to lie on a hypersphere

of a fixed radius. The Ring loss [21] normalizes the weights and constrains25

the `2-norm of features to approximate a constant. The L-Softmax loss [22]

transforms the inner product of weights and features, which remains a cosine

value, and multiplies a hyper-parameter to the angle. Based on the L-Softmax

loss, the SphereFace loss [23] performs the `2-normalization of weights. The

AM-Softmax loss [9] and the NormFace loss [24] introduce a scale factor s to30

the cosine value after normalizing the weights and features to make the whole

network easier converge and train. The work of [9, 11] subtracts a constant

margin m from the cosine value, while the ArcFace loss [10] directly adds a

margin to the angle itself. In this second category, [9–11] increase the inter-

class angle and reduce the intra-class angle simultaneously through introducing35

a constant angular margin, and they do not use an additional penalty term as

with the Euclidean distance optimization (see the first category).

Inspired by these recent loss functions and considering the issue, that these

state-of-the-art loss functions only introduce constant margins regardless of the

distinct angles between classes, we propose in this paper a new loss function40

termed inter-class angular margin (IAM) loss. The IAM loss is designed to

act as a regularization term for these state-of-the-art angular losses, aiming

to adaptively enlarge inter-class variance by penalizing more heavily smaller

inter-class angles. Moreover, we also provide an analysis of the proper range

of the regularization hyper-parameter from the perspective of backpropagation.45

Experiments on LFW [25], CFP [26], YTF [27] and MegaFace [28] demonstrate

that our proposed IAM loss is quite e↵ective. It can substantially improve the

performance of the Softmax loss and its variants for face recognition.

The rest of this paper is organized as follows. The related work is introduced

in Section 2. Section 3 proposes our new IAM loss. Section 4 analyzes the range50

of regularization hyper-parameter � and demonstrates the di↵erences between

the IAM loss and other state-of-the-art loss functions. In Section 5, we verify

the e↵ectiveness of the IAM loss through experiments. Finally, Section 6 makes

a summary of this paper.
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2. Related Work55

We begin by introducing some state-of-the-art loss functions that have been

proposed to enhance the Softmax loss in the last layer of CNNs.

The Softmax loss is a powerful loss function expressed in terms of the con-

ditional probability of a sample xi belonging to a class yi, as defined below:

60

Lsoft = �
1

N

NX

i=1

log
ew

T
yi

xi

CP
j=1

ew
T
j xi

, (1)

where N is the size of a batch, C is the number of classes, xi is the feature

vector in the penultimate layer of the network, and wyi denotes the weight of

the class that xi belongs to (and wj represents the weight of the jth class).

Both xi and wj are vectors and their inner product is called target logit [29],

hence Eq.(1) can be rewritten by using the angle ✓i,j between the two vectors:65

Lsoft = �
1

N

NX

i=1

log
ekwyikkxik cos ✓i,yi

CP
j=1

ekwjkkxik cos ✓i,j

. (2)

As with [24, 30, 31], we can first normalize xi and wj , and then multiply

the cosine value of angle between xi and wj by a scale factor s to make the

network easier converge, which leads to a scaled loss as

Lscale = �
1

N

NX

i=1

log
es cos ✓i,yi
CP

j=1
es cos ✓i,j

. (3)

The scaled Softmax loss cannot tighten the intra-class distance or enlarge the

inter-class variance directly. To tackle this issue, recently several enhancement70

methods for Eq.(3) have been proposed. As displayed in Eq.(4), SphereFace [23]

multiplies angle ✓i,yi by a hyper-parameter m:

Lsphere = �
1

N

NX

i=1

log
ekxik cos(m✓i,yi )

ekxik cos(m✓i,yi ) +
CP

j=1,j 6=yi

ekxik cos ✓i,j

. (4)
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In Eq.(4), the boundary for binary classification (C = 2) is m✓i,1 = ✓i,2 (when

yi = 1). Compared with the original boundary ✓i,1 = ✓i,2 in Eq.(3), SphereFace

produces an angular margin, which can increase inter-class variance and reduce75

intra-class distance. However, Eq.(4) cannot converge independently and is

usually optimized with the Softmax loss.

Alternatively, [9] and [11] subtract a margin m from the cosine value of angle

✓i,yi in Eq.(3):

Lcos = �
1

N

NX

i=1

log
es(cos ✓i,yi�m)

es(cos ✓i,yi�m) +
CP

j=1,j 6=yi

es cos ✓i,j
. (5)

Then the binary classification boundary becomes cos ✓i,1 �m = cos ✓i,2 (when80

yi = 1). Unlike Eq.(4), Eq.(5) can converge without using the Softmax loss.

ArcFace [10] has a similar e↵ect to Eq.(5) of [9, 11] except that ArcFace

directly adds a margin to the angle itself:

Larc = �
1

N

NX

i=1

log
es cos(✓i,yi+m)

es cos(✓i,yi+m) +
CP

j=1,j 6=yi

es cos ✓i,j
(6)

The decision boundary under binary classification is now ✓i,1 +m = ✓i,2 (when

yi = 1).85

Eq.(5) and Eq.(6) of [9–11] all aim to optimize the angle between classes,

by adding a constant margin in order to enlarge inter-class variance and shrink

intra-class distance. However, an issue with these state-of-the-art losses is that

the margins introduced are constant regardless of the distinct angles between

classes. Hence we propose the IAM loss as a regularization term to these losses,90

to adaptively increase inter-class variance by penalizing more heavily smaller

inter-class angles.

3. The Proposed Method

We will first propose the IAM loss as an adaptive penalty term for the state-

of-the-art methods in this section, and then analyze the range of the hyper-95
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parameter � from the perspective of back propagation in Section 4. The ratio-

nality of � and the e↵ectiveness of our IAM loss will be verified in Section 5.

To penalize the samples with small inter-class angles, the IAM loss is defined

as

LIAM =
1

N

NX

i=1

log

1
C�1

CP
j=1,j 6=yi

es cos ✓i,j

CP
j=1

es cos ✓i,j
. (7)

Regarding the proposed IAM loss, we would make the following remarks.100

Firstly, the numerator in Eq.(7) approximately describes the average simi-

larity between feature xi and weight wj where j 6= yi. Intuitively, if the angle

between feature xi and wj for j 6= yi is smaller, the numerator will be larger,

which also will result in a larger IAM loss. That is, the IAM loss will adaptively

penalize smaller inter-class angle more heavily in the training process, instead105

of restricting the inter-class margin to be a constant like m. Because of the

independence of IAM loss as a regularization term, it can be added to many

state-of-the-art methods and further promote the recognition accuracy.

Secondly, we note that for each summand in Eq.(7), which can be rewritten

in the form of log(1�pi) (see Eq.(12) below in Section 4), there exists a nonlinear110

monotonic transformation to obtain it from a corresponding summand in Eq.(3),

which can be rewritten in the form of � log pi. Hence when there is only one

observation (i.e. N = 1), optimizing these two losses yields the same solution.

However, as N > 1 in practice, the summation and the nonlinearity of the

transformation render a solution to the optimization in terms of the IAM loss115

in Eq.(7) di↵erent from the solution in terms of the scaled loss in Eq.(3).

Finally, we propose to add the IAM loss as a penalty term to the existing

Softmax loss and its variants like the scaled loss in Eq.(3) with a non-negative

regularization parameter �. The total loss function can be written as

L = Lbase + �LIAM , (8)

where Lbase represents a current established loss such as Eq.(3), Center loss [16],120

AM-loss [9], ArcFace [10], etc. In this way, we further leverage the strength of

6



Algorithm 1 Learning with the IAM loss

Input: Training data {xi}; training labels {yi}; parameters � of Inception-

ResNet-V1; weights of classifier ew; learning rate r; hyper-parameter �; and

maximum number of iterations tm

Output: Parameters � of Inception-ResNet-V1

1: t 1

2: repeat

3: Randomly select a mini-batch of size N from the training set

4: Normalize the features and weights

5: Compute the total loss L = Lbase + �LIAM

6: Update � by � �� r 1
N

PN
i=1[

@Lbase
@exi

+ � @LIAM
@exi

]@exi
@� .

7: Update ewyi by ewyi  ewyi � r 1
N

PN
i=1[

@Lbase
@ ewyi

+ � @LIAM
@ ewyi

]

8: Update ewj by ewj  ewj � r 1
N

PN
i=1[

@Lbase
@ ewj

+ � @LIAM
@ ewj

]

9: t t+ 1

10: until t > tm

both the IAM loss and an established loss to reach a better loss function by

weighting them adaptively via �, as illustrated in Fig. 2 in Section 5.

In the training process, it is easy to optimize the IAM loss by using many

current optimizers such as RMSPROP. We show the gradients in Eq.(9), Eq.(10)125

and Eq.(11), and based on these equations we summarize the optimization pro-

cess in Algorithm 1:

@LIAM

@exi
= � 1

N

NX

i=1

1

1� pi

PC
j 6= ewyi

s( ewyi � fwj)e
s ewT

yi
exiesfwj

T exi

(
PC

j=1 e
sfwj

T exi)2
, (9)

where

pi =
es ewT

yi
exi

CP
j=1

esfwj
T exi

, ewj =
wj

kwjk
, exi =

xi

kxik
;

@LIAM

@ ewyi

= � 1

N

NX

i=1

sexipi ; (10)
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130

@LIAM

@ ewj
=

1

N

NX

i=1

sexi(pij2 � pij1) , (11)

where

pij1 =
es ewT

j exi

CP
j=1

es ewT
j exi

, pij2 =
es ewT

j exi

CP
j=1,j 6=yi

es ewT
j exi

.

4. Discussion

4.1. The Range of Hyper-parameter �

In this section, we will discuss the range of hyper-parameter � in Eq.(8). We

take Eq.(3) as the base loss function and rewrite the equation as135

L = Lscale + �LIAM

= � 1

N

NX

i=1

log pi + �
1

N

NX

i=1

log
1� pi
C � 1

.
(12)

Then, from the perspective of back propagation, we have

@L

@ ewyi

=
1

N

NX

i=1

(�sexi(1� pi)� �sexipi)

= � 1

N

NX

i=1

sexi(1� pi + �pi) ,

(13)

@L

@ ewj
=

1

N

NX

i=1

sexi(pij1 + �pij2 � �pij1) . (14)

We discuss the value of � as follows.

1) � = 0. In Eq.(13), the absolute value of the gradient increases as proba-

bility pi decreases. It implies that if the intra-class angle between exi and ewyi140

is larger, the change of ewyi will be greater in the process of back propagation,

which is conductive to reduce intra-class distance. In Eq.(14), the absolute value

of the derivative for ewj is positively correlated with probability pij1. It indicates

that when the inter-class angle between exi and ewj is smaller, the change of ewj

is greater, which will enlarge inter-class variance.145

8



2) � = 1. As Eq.(13) shows, the derivative depends only on the value of

exi which belongs to the yith class. Based on this, ewyi now can be regarded as

the center of the yith class. Eq.(14) only relates to exi and pij2. Actually, pij2

reflects the proportion of the inner product of exi and weight of the jth class.

When the proportion is larger (i.e. the angle between ewj and exi is smaller), the150

inter-class margin will be increased.

3) � < 1. In Eq.(13), the gradient adds one item ��sexip as the IAM

loss is applied, which increases the absolute value of the gradient. That is,

the proposed IAM loss can optimize better by using a larger gradient to reduce

intra-class distance. As presented in Eq.(14), the gradient is also larger than the155

traditional Softmax loss, which will increase inter-class variance significantly.

4) � > 1. The absolute value of the gradient of Eq.(13) increases as proba-

bility pi increases. It indicates that the change of ewyi will be larger with smaller

intra-class angle, which is against the purpose of reducing intra-class distance.

In Eq.(14), with smaller inter-class angle, the gradient is lower, which is also160

against the purpose of enlarging inter-class variance.

In summary, � should be chosen less than 1, and our IAM loss helps to

improve the optimization of scaled Softmax loss.

4.2. Di↵erences from Other State-of-the-art Methods

In this section, we will discuss the di↵erences between our IAM loss and165

other state-of-the-art loss functions [9, 11, 23, 24, 32, 33].

The AM loss [9] and CosFace [11] add a constant inter-class margin, and

both can be seen as a variant of the Softmax loss. In contrast, our IAM loss

optimizes the inter-class margin adaptively in the training process. A constant

inter-class margin is limited due to the discrepancy between di↵erent classes,170

while the IAM loss can further adjust the inter-class margin. Moreover, the

IAM loss is a regularization term that can be added to many state-of-the-art

losses for further improvement in the classification accuracy.

The SphereFace [23] introduce an angle margin and needs to train with the

Softmax loss. In the experiments on SphereFace, we find that the influence of175
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the Softmax loss is dominant in the most training steps, which is not conducive

to optimize the inter-class margin. The IAM loss acts on the whole training

process to further promote the recognition accuracy, as a regularization term,

which is more flexible and universal. In Table. 6, the accuracy of “Eq.(3) +

IAM” is higher than “SphereFace [23]”, which also shows the priority of the180

IAM loss.

The NormFace [24] proposes to normalize the features and weights, and

adds a scale ‘s’ to make the network easy to converge. It optimizes the cosine

similarity and does not involve the concept of enhancing the inter-class margin,

as indicated in Eq.(3). From Table. 5, we can observe that our IAM loss can185

improve its accuracy remarkably.

The work in [33] reduces the intra-class distance and increases the inter-class

margin based on the class centers and proposes an ACD loss. Its main idea is to

compact the samples predicted correctly to the corresponding class center and

keep the misclassified samples away from the predicted class center. In [33], only190

samples predicted wrongly can be used to increase the inter-class margin and

only the corresponding class centers are considering. In the training process,

the e↵ect of the increased inter-class margin decreases as the wrongly predicted

samples decrease; in contrast, the IAM loss has e↵ects in the whole training

process and measures the average inter-class margin among all classes, which195

can better ensure a large inter-class margin. Additionally, the IAM loss can be

added to many state-of-the-art loss functions, which is more flexible than that

of [33]. The method of [32] is similar to the center loss [16], with the di↵erence

being that [32] weights the distance between correctly predicted samples and

the corresponding class centers di↵erently from the distance between wrongly200

predicted samples and the relevant class centers. In [32], it does not increase

the inter-class margin specifically, while the IAM loss serves for increasing the

inter-class margin.

In short, our IAM loss is more flexible, can adaptively optimize the inter-class

margin, and can be applied to regularize many state-of-the-art loss functions.205
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5. Experiments

5.1. A Toy Example

Table 1: The network for MNIST

Layer Kernel-size Outputs Number

conv [3,3] 32 2

Max-pool [3,3] - 1

conv [3,3] 64 2

Max-pool [3,3] - 1

conv [3,3] 128 2

Max-pool [3,3] - 1

We implement experiments on MNIST dataset [34] to visualize the feature

distribution so that the e↵ect of IAM loss can be displayed intuitively. The

network structure trained for the MNIST dataset [34] is shown in Table 1. The210

“Number” in Table 1 is the quantity of the corresponding layer. We draw 10,000

training samples. The output dimension of the penultimate layer is 3 and the 3D

maps for di↵erent loss functions are shown in Fig. 2. To present the e↵ectiveness

of our IAM loss quantitatively, we also list corresponding recognition accuracies

in Table 2.215

Fig. 2(a) represents the 3D visualization of Eq.(3) on MNIST; in contrast,

Fig. 2(b) is for the combination of Eq.(3) and the IAM loss. Similarly for the

loss functions of [9, 11] in Fig. 2(c) and its regularization by the IAM loss in

Fig. 2(d).

The samples are more separable after adding our IAM loss. For example,220

compared with Fig. 2(a), Fig. 2(b) enlarges the inter-class variance and reduces

the intra-class distance significantly. The samples are clustered to their class

Table 2: Recognition accuracy on MNIST

Eq.(3) Eq.(3) + 0.2⇥IAM [9][11], m = 0.1 [9][11] + 0.2⇥IAM, m = 0.1

99.08% 99.42% 99.24% 99.42%
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(a) Eq.(3) (b) Eq.(3) + 0.2⇥IAM

(c) [9][11], m = 0.1 (d) [9][11] + 0.2⇥IAM, m = 0.1

Figure 2: Three-dimensional maps for di↵erent loss functions
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centers, and these centers are distributed more separately on the whole sphere

surface. A similar pattern can be observed by comparing Fig. 2(d) with Fig. 2(c).

The accuracies showed in Table 2 also confirm the e↵ectiveness of our IAM loss.225

5.2. Experiments on Face Datasets

The face detection and alignment algorithm applied in our experiments are

MTCNN [35]. The face images are pre-whitened before being fed to the net-

work. For illustrative purposes, we adopt Inception-ResNet-V1 [6, 36, 37] as our

training CNN architecture. The training dataset CASIA-WebFace [38] contains230

about 0.49 million face images from 10,575 subjects. During training, we set the

weight decay parameter and batch size to 5e-4 and 90, respectively. The learn-

ing rate begins with 0.1 and is divided by ten at the 60K and 120K iterations.

The datasets LFW [25], CFP [26], YTF [27] and MegaFace [28] are tested for

the evaluation of compared methods.235

LFW [25] contains about 13,000 images and has a list of 6000 pairs to verify.

CFP [26] contains frontal vs frontal and frontal vs profile images. In the exper-

iment, we test the frontal vs. profile protocol, which contains 7,000 pairs with

3,500 same pairs and 3,500 not-same pairs for 500 di↵erent subjects. YTF [27]

contains 3,425 videos of 1,595 di↵erent people, and we test 5,000 video pairs by240

using the average features. MegaFace [28] is an extremely challenging dataset,

in which a probe image should match the correct image from a gallery of about

1 million images.

We use two regularized loss functions to verify the e↵ectiveness of our IAM

loss in experiments: 1) use the IAM loss to regularize the scaled Softmax loss in245

Eq.(3); that is, use Eq.(12) as the loss function; the test accuracies with di↵erent

values of regularization parameter � shall be discussed; and 2) use the IAM loss

to regularize Eq.(5). This will not change our analysis of the derivative of ewyi

and ewj , although the denominators of pi and pij1 are slightly di↵erent.

The evaluation of Eq.(12) is shown in Table 3, and we set the parameter s =250

30. We list the validation accuracies of LFW [25], YTF [27] and CFP [26] over

di↵erent values of � for verifying our analysis in Section 4. As Table 3 shows,
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Table 3: Accuracy for Eq.(12) (i.e. the IAM-regularized Eq.(3))

� LFW YTF CFP

2 98,900% 94.960% 91.471%

1 99.033% 94.640% 92.700%

0.9 99.017% 94.640% 93.200%

0.8 99.117% 95.280% 92.714%

0.7 99.083% 95.06% 92.757%

0.6 99.033% 94.920% 93.017%

0.5 99.100% 94.940% 92.400%

0.4 99.067% 94.720% 92.314%

0.3 99.050% 94.68% 92.600%

0.2 99.067% 94.520% 92.243%

0.1 98.850% 93.920% 91.114%

0 98.567% 93.740% 90.140%

our IAM loss improves the scaled Softmax loss greatly (e.g. from 98.567% to

99.117% when � = 0.8 on LFW), which is even better than the work of [9, 11]

(e.g. 99.117% vs. 99.067% on LFW). Hence Table 3 indicates the e↵ectiveness255

of our method. We note that, when � = 2, the test accuracy is better than

the scaled Softmax loss (� = 0), and we conjecture that the loose intra-class

distance caused by the Softmax loss is the reason.

Then we add the IAM loss as a regularization term to Eq.(5) and the ex-

perimental results are shown in Table 4. The s in the experiment is 30 and260

m = 0.4. As presented in Table 4, the accuracy when � > 1 is worse than that

when � = 0, which is consistent with our analysis of �. Table 4 also confirms

that our proposed IAM loss can improve the face verification accuracy of the

recent angular loss.

Furthermore, in Table 5, we evaluate the universal e↵ectiveness of the IAM265

loss by applying it to regularize state-of-the-art methods [9–11, 16, 20, 21, 23].

The results show that our IAM loss not only can largely improve the performance

14



Table 4: Accuracy for the IAM-regularized Eq.(5)

� LFW YTF CFP

2 99.017% 94.660% 91.586%

1 98.967% 95.100% 92.271%

0.1 99.133% 95.280% 92.843%

0.09 99.150% 95.140% 92.757%

0.08 99.200% 95.220% 93.300%

0.07 98.950% 95.020% 93.071%

0.06 99.150% 95.420% 93.343%

0.05 99.200% 95.520% 93.014%

0.04 99.183% 95.260% 93.271%

0 99.067% 95.300% 93.029%

of the scaled Softmax loss in Eq.(3), but also can further improve the accuracies

of the state-of-the-art methods. To further verify the e↵ectiveness of our IAM

loss on larger test datasets, we show the rank-1 accuracy on MegaFace [28]270

in Table 6. The probe image needs to search one million images to find the

correct matching image, which is one of the most challenging datasets. From

the Table. 6, we can observe that the IAM loss still can improve the state-of-

the-art methods. In short, these experimental results verify the e↵ectiveness of

our IAM loss.275

6. Conclusions

In this paper, we propose a new loss function termed the IAM loss to increase

inter-class variance adaptively. The IAM loss can be used as a regularization

term for the scaled Softmax loss and its variations, and we also analyze the range

of regularization hyper-parameter and its e↵ects. The validity of the IAM loss280

has also been demonstrated by combining it with state-of-the-art losses [9–11,

16, 20, 21]. On the network Inception-ResNet-V1 and the training set WebFace,

our method achieves clearly promising improvements.
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Table 5: Improving state-of-the-art methods

Method LFW YTF CFP

Eq.(3) 98.567% 93.740% 90.140%

Eq.(3) + 0.8⇥IAM 99.117% 95.280% 92.714%

Eq.(3) + 0.9⇥IAM 99.017% 94.640% 93.200%

Center loss [16] 98.833% 95.120% 92.500%

[16] + 0.05⇥IAM 98.950% 95.300% 93.129%

[16] + 0.1⇥IAM 99.083% 95.300% 92.957%

`2-constrained loss [20] 98.983% 94.880% 91.786%

[20] + 0.05⇥IAM 99.033% 95.060% 92.286%

[20] + 0.1⇥IAM 99.033% 95.540% 93.329%

Ring loss [21] 99.117% 94.480% 91.786%

[21] + 0.05⇥IAM 98.967% 94.560% 92.100%

[21] + 0.1⇥IAM 99.033% 94.920% 91.829%

SphereFace [23] 99.100% 95.120% 92.671%

[23] + 0.05⇥IAM 99.067% 95.160% 92.857%

[23] + 0.1⇥IAM 99.133% 95.400% 92.657%

ArcFace [10] 99.067% 94.800% 93.014%

[10] + 0.05⇥IAM 99.100% 94.680% 93.486%

[10] + 0.1⇥IAM 98.983% 94.980% 93.314%

AM-loss [9][11] 99.067% 95.300% 93.029%

[9][11] + 0.05⇥IAM 99.200% 95.520% 93.014%

[9][11] + 0.06⇥IAM 99.150% 95.420% 93.343%

[9][11] + 0.07⇥IAM 98.950% 95.020% 93.017%

[9][11] + 0.08⇥IAM 99.200% 95.220% 93.300%
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Table 6: Face identification on MF1. Rank 1 refers to rank-1 face identification accuracy.

Method MageFace

Eq.(3) 48.779%

Eq.(3) + 0.8⇥IAM 75.230%

Eq.(3) + 0.9⇥IAM 76.825%

Center loss [16] 64.522%

[16] + 0.05⇥IAM 67.249%

[16] + 0.1⇥IAM 69.843%

`2-constrained loss [20] 64.767%

[20] + 0.05⇥IAM 67.619%

[20] + 0.1⇥IAM 71.225%

Ring loss [21] 63.215%

[21] + 0.05⇥IAM 63.141%

[21] + 0.1⇥IAM 64.795%

SphereFace [23] 63.747%

[23] + 0.05⇥IAM 64.560%

[23] + 0.1⇥IAM 65.277%

ArcFace [10] 72.975%

[10] + 0.05⇥IAM 73.071%

[10] + 0.1⇥IAM 73.911%

AM-loss [9][11] 77.263%

[9][11] + 0.05⇥IAM 77.560%

[9][11] + 0.06⇥IAM 78.451%

[9][11] + 0.07⇥IAM 77.671%

[9][11] + 0.08⇥IAM 77.973%
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