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Abstract—This paper investigates performance analysis of a
selection combining scheme, which utilizes a variable gain am-
plify and forward (AF) relay over a Nakagami-m fading channel.
A selection combiner at a destination node chooses the better
link between a relay channel and a direct channel. We derived
exact closed-form expressions for moments of signal to noise ratio
(SNR), ergodic capacity and average symbol error probability
(SEP). Simulation examples confirm that our exact formulas offer
a more accurate analysis tool for selection combining than other
prevailing approximations without extra complexity. The derived
expressions serve as a useful tool for system design due to their
validity for any SNR and arbitrary system parameters.

Index Terms—selection combining, AF relaying, outage prob-
ability, Nakagami-m fading, symbol error probability

I. INTRODUCTION

Internet of things covers many interdisciplinary issues,
such as environmental monitoring, control of industrial pro-
cesses, smart spaces and so on. As a complex technological
innovation, internet of things confirms that future wireless
communications are highly dense and heterogeneous. Dense
networks make it possible for relay transmission, such as
two-hop and multihop networks [1]–[3]. A relay node may
forward a signal with either an amplify and forward (AF)
or a decode and forward (DF) protocol. These two protocols
have been well studied. For example, an approximate bit error
probability was derived in [4] for a Rake receiver at relays and
destination over multipath Nakagami-m fading. A Turbo code
was applied in [5] for asymptotic outage probability in relay
selection networks. The distributed relay processing, ideal
centralized maximal ratio combining and centralized maximal
ratio combining relay processing were employed in [6], which
introduced Nakagami and Gamma distribution for approximate
bit error rate of binary phase shift keying. Incremental DF and
AF relaying were considered in [7] for analyzing the diversity
multiplexing tradeoff. Orthogonal space time block coding was
assumed in [8] for deriving closed formula of higher moments
of end-to-end signal to noise ratio (SNR).

Diversity technique aims at a performance improvement
of a wireless system. Among all different diversity schemes,
selection combining may be the simplest one. The importance
of selection combining has motivated numerous researches.
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Selection combining of direct and relayed paths in space
shift keying was analyzed in [9]. A bit error rate based
selection combining was proposed in [10], which calculated
bit error rate of each branch and selected the branch with
the minimum bit error rate. A single threshold was employed
to select retransmitting relays in [11]. Exact bit error rate
formulas of digital modulation was derived in [12] when an
arbitrary number of relays used selection combining. In [13],
selection combining was employed in cyclic prefixed single
carrier DF relaying protocol and the transmit antenna selection
and receive selection combining was investigated in [14]. An
arbitrary fading parameter m was considered in [15], [16] for
DF relaying systems while Rayleigh fading was studied in
[17]–[19] for AF relaying.

Performance analysis of selection combining in a Nakagami
channel was recently reported but mostly for the case of integer
m [13], [14], [20]. When non integer m is encountered, infinite
series expansion has to be exploited for numerical evaluation,
whose exact analytical evaluation appears to be difficult [16].
Some researchers only provided a loose lower or upper bound
by simplification [21]. Infinite series always requires truncated
partial summation, whose numbers of terms rely on a precision
threshold. For comparison, the previous works are summarized
in Tab.I.

To improve performance evaluation accuracy and reduce
the calculation complexity, this paper investigates performance
analysis of an AF relay system with selection combining over
Nakagami-m fading channel, where m is a positive number
or a non negative number plus one half. Although maximal
ratio combining is the optimal combining technique, it requires
computing the optimal weight for each branch. Selection
combining may be the simplest combining scheme, which
selects the signal with the largest SNR out of multiple branches
and ignores the remaining branches. The decision variable is
computed between the direct link and the relaying link and the
one with a larger magnitude is chosen for selection combining.
In practice, the selection combining technology has been used
in many scenarios, such as the internet of things domain
[3] and power line communications [22]. The exact higher
order moments of the end to end SNR, ergodic capacity and
average symbol error probability (SEP) formulas are obtained.
Different from the additive white Gaussian noise (AWGN)
assumption in most studies, our problem formulation is also
extended to an additive white generalized Gaussian noise
(AWGGN) environment, which is a more general type of noise
model. The exact SEP formula subject to AWGGN implies
that one can obtain the error performance in a more general
scenario, such as Laplace noise and uniformly distributed
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Table I
A SUMMARY OF PREVIOUS WORKS

References Relaying protocol Parameter m Performance analysis Performance expression
[9], [10] DF m = 1 (Rayleigh fading) Bit error rate Approximation
[11], [12] DF m = 1 (Rayleigh fading) Bit error rate Exact value

[13] DF Integer Outage probability Asymptotic value
[14] DF Integer Outage probability, ergodic capacity and SEP Exact value
[15] DF Arbitrary Outage probability Exact value
[16] DF Arbitrary Outage probability, ergodic capacity and SEP Infinite series expansion

[17]–[19] AF m = 1 (Rayleigh fading) Bit error rate Exact value
[20] AF Integer Conditional error rate of binary signaling Exact value
[21] AF Arbitrary SEP Upper bound and asymptotic value

Table II
A SUMMARY OF ABBREVIATIONS

Abbreviation Full form
AF Amplify and forward

AWGGN Additive white generalized Gaussian noise
AWGN Additive white Gaussian noise

DF Decode and forward
PAM Pulse amplitude modulation
QAM Quadrature amplitude modulation
SEP Symbol error probability
SNR Signal to noise ratio

Table III
MATHEMATICAL SYMBOLS

Notation Description
⌊·⌋ Floor function
C·

· Binomial coefficient
erfc (·) Complementary error function

E (·) Expectation operator
pFq (·) Generalized hypergeometric series
Γ (·) Gamma function
Γ (·, ·) The upper incomplete gamma function
G (·) Meijer’s G function
H (·) Fox’s H function

H (x, y) Bivariate Fox’s function
Kν (·) The νth order modified Bessel function of the second kind
Ψ(·, ·; ·) Confluent hypergeometric function
Q (·) Gauss Q function
Qα (·) Generalized Q function

noise. These formulas provide an insight into practical relay
system design. Finally, the abbreviations and mathematical
symbols are summarized in Tabs.II and III.

II. SYSTEM MODEL

Consider a relay system consisting of a source node S, an
AF relay node R, and a destination node D, as shown in Fig.1.
S transmits information to D directly or via R during two
phases. In the first phase, S sends its signals while R and D
listen. In the second phase, S stays silent while R forwards
the amplified signals to D if the relay link is beneficial. We
assume that all channels experience independent Nakagami-
m fading, where m is a positive number or a non negative
number plus one half. Let ps and pr be the transmit powers
of S and R, respectively. Denote by hs, hr and hd the channel
coefficients of the S→R, R→D and S→D links, respectively.
In addition, σ2

r and σ2
d represents noise variances at R and D,

respectively. Thus, the instantaneous SNR of the direct link

Figure 1. System model

and the SNR of the relay link are, respectively, given by [20]

γ1 =
ps |hd|2

σ2
d

(1)

γ2 =

ps|hs|2pr|hr|2
σ2
rσ

2
d

ps|hs|2
σ2
r

+ pr|hr|2
σ2
d

(2)

Assuming that D combines the received signals from the S→D
and S→R→D links by selection combining, the end to end
SNR at D is given by [20]

γ = max (γ1, γ2) (3)

The corresponding cumulative distribution function (CDF)
Fγ (z) is given by [20]

Fγ (z) = Fγ1 (z)Fγ2 (z) (4)

III. PERFORMANCE ANALYSIS

A. Outage Probability

1) m is a positive number: Since hs, hr and hd are
modeled as Nakagami-m random variables, the CDFs of γs
and γr are, respectively, given by [20]

Fγ1 (x) =1− Γ (md, βdx)

Γ (md)
(5)

Fγ2 (y) =1− 2e−(βs+βr)y

Γ (mr)

ms−1∑
l1=0

l1∑
k=0

mr−1∑
l2=0

Ck
l1
Cl2

mr−1

l1!

× β
l1+

1−k+l2
2

s β
mr− 1−k+l2

2
r yl1+mr

×Kk−1−l2

(
2
√
βsβry

)
(6)
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where ms, mr and md are the shape parameters of channel
coefficients hs, hr and hd, respectively. Moreover, βs =

msσ
2
r/
[
psE

(
|hs|2

)]
, βr = mrσ

2
d/
[
prE

(
|hr|2

)]
and βd =

mdσ
2
d/
[
psE

(
|hd|2

)]
denote the corresponding scale param-

eters, where E (·) is the expectation operator, C·
· stands for

the binomial coefficient and Kν (·) is the νth order modified
Bessel function of the second kind [23, eq.(8.432.1)]. Further-
more, Γ (·) is the gamma function [23, eq.(8.310.1)] and Γ (·, ·)
is the upper incomplete gamma function [23, eq.(8.350.2)].

2) m is a non negative number plus one half: The CDF
of γ1 is the same as eq.(5) but the CDF of γ2 is written as
follows [24]

Fγ2 (y) =1−
√
πe−(

√
βs+

√
βr)

2
y
(√

βs +
√
βr

)
Γ (ms) Γ (mr)

⌊ms⌋∑
k1=0

⌊mr⌋∑
k2=0

(⌊ms⌋+ k1)! (⌊mr⌋+ k2)!β
ms
2 − 1

4−
k1
2

s β
mr
2 − 1

4−
k2
2

r

4k1+k2k1!k2! (⌊ms⌋ − k1)! (⌊mr⌋ − k2)!

× y
ms−k1+mr−k2

2 Ψ

[
3− (ms − k1 +mr − k2)

2
,
3

2
;(√

βs +
√

βr

)2
y

]
(7)

where ⌊·⌋ is the floor function and Ψ(·, ·; ·) is the confluent
hypergeometric function defined in [23, eq.(9.210.2)].

Then, the outage probability of the end to end SNR γ is
given by

Pout = Pr (γ ≤ γth) = Fγ (γth) (8)

where γth is a preset threshold. Substituting the correspond-
ing Fγ1 (x) and Fγ2 (y) into eq.(4) yields the exact outage
probability Pout.

B. Moments of SNR

In selection combining, the destination chooses a larger
magnitude as the decision variable between the direct link and
the indirect link. Again, we consider the following two cases
:

1) m is a positive number: In order to calculate the higher
order moment, the CDF of the equivalent SNR is rewritten as

Fγ (z) =Fγ1 (z)Fγ2 (z)

=1− F̄γ1 (z)− F̄γ2 (z) + F̄γ1 (z) F̄γ2 (z)

where F̄ (·) = 1−F (·) is the complementary CDF. Taking the
expectation of γn over the distribution of Fγ (z) via integration
by parts, the higher order moment is obtained as

E (γn) =

ˆ ∞

0

n [1− Fγ (z)] z
n−1dz

=

ˆ ∞

0

n
[
F̄γ1 (z) + F̄γ2 (z)− F̄γ1 (z) F̄γ2 (z)

]
× zn−1dz (9)

The integral of the first two terms in (9) can be obtained from
the integral table identity [23, eq.(6.455)]. Since the fading
parameter is a positive number, one can expand F̄γ1 (z) using
the series identity [23, eq.(8.352.2)]. By substituting the three

terms in (9), the moments of the SNR γ are given by (10),
where pFq (α1, . . . , αp;β1, . . . , βq; z) is called a generalized
hypergeometric series [23, eq.(9.14)].

2) m is a non negative number plus one half: Likewise, the
higher-order moments are computed by integration by parts.
The second and third terms of (9) involve the integral of the
confluent hypergeometric function, which can be solved using
[23, eq.(7.621.6)]. The moments of the SNR γ are given by
(11).

C. Ergodic Capacity

1) m is a positive number: If the magnitude of the received
signal in the relay link is greater, then the destination instructs
the relay to participate in cooperation, otherwise it does not.
Using the rule of integration by parts, the ergodic capacity is
written as

E
[
1

2
log2 (1 + γ)

]
=

ˆ ∞

0

1− Fγ (z)

2 ln 2 (1 + z)
dz

=

ˆ ∞

0

F̄γ1 (z) + F̄γ2 (z)

2 ln 2 (1 + z)
dz

−
ˆ ∞

0

F̄γ1 (z) F̄γ2 (z)

2 ln 2 (1 + z)
dz (12)

When the first term of (12) is tackled, one kind of integral
appears as

J1 =

ˆ ∞

0

Γ (md, βdx)

1 + x
dx (13)

Here, some constant coefficients are omitted. Next, we rewrite
the Gamma and fractional functions in terms of Meijer’s G
function as follows

Γ (md, βdx) =G2,0
1,2

[
βdx

1
md, 0

]
(14)

1

1 + x
=G1,1

1,1

[
x

0
0

]
(15)

where G (·) is the Meijer’s G function [23, eq.(9.301)]. Using
[23, eq.(7.811.1)], J1 is expressed as a Meijer’s G function.
When the second term of (12) is tackled, one kind of integral
appears as

J2 =

ˆ ∞

0

e−(βs+βr)x

1 + x
xl1+mrKk−1−l2

(
2
√
βsβrx

)
dx (16)

Likewise, the exponential function is rewritten as

e−(βs+βr)x = H1,0
0,1

[
(βs + βr)x

−
(0, 1)

]
(17)

where H (·) is the Fox’s H function [25, eqs.(2.9.4),(1.1.1)].
Using [26, eq.(2.6.4)] yields the result J2 in (16). Adding the
constant coefficients and combining J1 and J2, the ergodic
capacity is given by (18), where H (x, y) is the bivariate Fox’s
function [26, eq.(2.2.1)].

2) m is a non negative number plus one half: Similarly,
based on the bivariate Meijer’s function, when m is a non
negative number plus one half, the ergodic capacity is given
by (19).
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E (γn) =
Γ (md + n)

Γ (md)βn
d

+
8n

√
πβmr

r

Γ (mr)

ms−1∑
l1=0

l1∑
k=0

mr−1∑
l2=0

Ck
l1
Cl2

mr−14
l2−kβl1+1−k+l2

s Γ (1 + l2 − k + l1 + n+mr)

l1!Γ
(
1
2 + l1 + n+mr

)
× Γ (k − 1− l2 + l1 + n+mr)

(√
βs +

√
βr

)2(k−1−l2−l1−n−mr)

× 2F1

[
3

2
− k + l2, 1 + l2 − k + l1 + n+mr;

1

2
+ l1 + n+mr;

(√
βs −

√
βr√

βs +
√
βr

)2
]

−
√
πn

2Γ (mr)

ms−1∑
l1=0

l1∑
k=0

mr−1∑
l2=0

md−1∑
l3=0

Ck
l1
Cl2

mr−14
k−l2βl1

s βmr+k−1−l2
r βl3

d Γ (l1 +mr + n+ l3 + k − 1− l2)

l1!l3!
(
βs + βr + βd + 2

√
βsβr

)l1+mr+n+l3+k−1−l2
Γ
(
l1 +mr + n+ l3 +

1
2

)
× Γ (l1 +mr + n+ l3 − k + 1 + l2)

× 2F1

[
l1 +mr + n+ l3 + k − 1− l2, k − l2 −

1

2
; l1 + n+mr + l3 +

1

2
;

(√
βs −

√
βr

)2
+ βd(√

βs +
√
βr

)2
+ βd

]
(10)

E (γn) =
Γ (md + n)

Γ (md)βn
d

+

√
π

Γ (ms) Γ (mr) (n− 1)!

⌊ms⌋∑
k1=0

⌊mr⌋∑
k2=0

(⌊ms⌋+ k1)! (⌊mr⌋+ k2)!β
ms
2 − 1

4−
k1
2

s β
mr
2 − 1

4−
k2
2

r

4k1+k2k1!k2! (⌊ms⌋ − k1)! (⌊mr⌋ − k2)!

×
(√

βs +
√
βr

)1−ms+k1−mr+k2−2n

Γ

(
ms − k1 +mr − k2

2
+ n

)
Γ

(
ms − k1 +mr − k2 − 1

2
+ n

)
−

4π
(√

βs +
√
βr

)
Γ (ms) Γ (mr) (n− 1)!

⌊ms⌋∑
k1=0

⌊mr⌋∑
k2=0

(⌊ms⌋+ k1)! (⌊mr⌋+ k2)!β
ms
2 − 1

4−
k1
2

s β
mr
2 − 1

4−
k2
2

r

4k1+k2k1!k2! (⌊ms⌋ − k1)! (⌊mr⌋ − k2)!

×
[
2
(√

βs +
√
βr

)]k1+k2−2n−ms−mr−2md
{[

2
(√

βs +
√
βr

)]
2mdΓ (2n+ms +mr − k1 − k2 − 1)

−
n!βmd

d Γ (2n+ms +mr + 2md − k1 − k2 − 1)

Γ (1 +md) Γ (1 +md + n)
3F2

[
md,

ms +mr − k1 − k2 − 1

2
+ n+md,

ms +mr − k1 − k2
2

+ n+md; 1 +md, 1 +md + n;
−βd(√

βs +
√
βr

)2
]}

(11)

E
[
1

2
log2 (1 + γ)

]
=

1

2 ln 2Γ (md)
G3,1

2,3

(
βd

0, 1
md, 0, 0

)
+

1

ln 2Γ (mr)

ms−1∑
l1=0

l1∑
k=0

mr−1∑
l2=0

Ck
l1
Cl2

mr−1

l1!
β

l1+l2−mr−k
2

s β
mr+k−l1−l2

2 −1
r

×H2,0,1,1,1
2,(0:1),0,(1:1)

 (βs+βr)
2

βsβr
1

βsβr

(
l1+mr+k−l2

2 , 1
)
,
(
l1+mr−k+l2

2 + 1, 1
)

−; (0, 2)
−

(0, 2) ; (0, 2)


− 1

ln 2Γ (mr)

ms−1∑
l1=0

l1∑
k=0

mr−1∑
l2=0

md−1∑
l3=0

Ck
l1
Cl2

mr−1

l1!l3!
βl3
d β

l1−k+l2−mr−l3
2

s β
mr+k−l2−l1−l3

2 −1
r

×H2,0,1,1,1
2,(0:1),0,(1:1)

 (βs+βr+βd)
2

βsβr
1

βsβr

(
l1+mr+l3+k−l2

2 , 1
)
,
(
l1+mr+l3−k+l2

2 + 1, 1
)

−; (0, 2)
−

(0, 2) ; (0, 2)

 (18)
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E
[
1

2
log2 (1 + γ)

]
=

1

2 ln 2Γ (md)
G3,1

2,3

(
βd

0, 1
md, 0, 0

)
+

√
π

2 ln 2Γ (ms) Γ (mr)

⌊ms⌋∑
k1=0

⌊mr⌋∑
k2=0

⌊ms−k1+mr−k2
2 ⌋∑

l=0

(⌊ms⌋+ k1)!

4k1+k2k1!k2!

× (⌊mr⌋+ k2)!β
ms
2 − 1

4−
k1
2

s β
mr
2 − 1

4−
k2
2

r (ms − k1 +mr − k2)! (−1)
l

(⌊ms⌋ − k1)! (⌊mr⌋ − k2)!22ll! (ms − k1 +mr − k2 − 2l)!

×
(√

βs +
√
βr

)k1−ms+k2−mr+1
{
G3,1

2,3

[(√
βs +

√
βr

)2 0, 1
ms − k1 +mr − k2 − l − 1

2 , 0, 0

]

− 1

Γ (md)βd
G2,0,1,2,1

2,(1:1),1,(2:1)

 (
√
βs+

√
βr)

2

βd
1
βd

md + 1, 1
1; 0
2

ms − k1 +mr − k2 − l − 1
2 , 0; 0


 (19)

D. Average SEP

1) m is a positive number: The average SEP conditioned
on the instantaneous SNR is given by

Pe = E
[
aQ
(√

bγ
)
− cQ2

(√
bγ
)]

(20)

where a, b and c are constants dependent on the modulation
type and Q (·) is the Gauss Q function. Applying the rule of
integration by parts, Pe can be rewritten as

Pe =

ˆ ∞

0

a
√
be−

bx
2

2
√
2πx

Fγ (x) dx

−
ˆ ∞

0

c
√
2be−

bx
2

4
√
πx

erfc

(√
bx

2

)
Fγ (x) dx (21)

where erfc (·) is the complementary error function. The
first and second terms of (21) are denoted by Pe1 and Pe2,
respectively. Let us check Pe1 first. Using [23, eq.(6.455.1)],
the average SEP Pe1 is given by (22).

Analyzing Pe2 is challenging due to the complex nature
of the complementary error function. One type of integral J3
appears as

J3 =

ˆ ∞

0

erfc

(√
bx

2

)
e−(

b
2+βs+βr)xxl1+mr− 1

2

×Kk−1−l2

(
2
√
βsβrx

)
dx (23)

In (23), some constant coefficients are omitted. To simplify
the calculation, we resort to Fox’s H function. Based on [25,
eqs.(2.9.4),(2.9.21)], the complementary error function and the
exponential function can be rewritten in terms of Fox’s H
function as

erfc

(√
bx

2

)
=

1√
π
H2,0

1,2

[
bx

2

(1, 1)(
1
2 , 1
)
, (0, 1)

]
(24)

e−(
b
2+βs+βr)x =H1,0

0,1

[(
b

2
+ βs + βr

)
x

−
(0, 1)

]
(25)

Then using [26, eq.(2.6.4)], J3 can be expressed in terms of
the bivariate Fox’s function. The average SEP Pe2 is given by
(26).Finally, combining (22) and (26) yields the average SEP
Pe = Pe1 −Pe2. This applies to the scenario where the effect
of Q2 (x) is can not be ignored, as in quadrature amplitude

modulation (QAM). If the quadratic term is not taken into
account, c = 0 will be substituted in (26).

In some special scenarios, AWGN perhaps is not an ideal
choice. In [27], AWGGN was proposed for wireless sensor
networks and underwater communications due to its versatility
in providing a good match to various empirically obtained
measurement data. The generalized Gauss distribution is more
accurate in describing the noise probability distribution than
the traditional Gauss distribution in these scenarios. Therefore,
more universal is the analysis of SEP subject to AWGGN,
which is given by

Pe = E
[
aQα

(√
bγ
)]

(27)

where Qα (·) is the generalized Q function defined as

Qα (x) =
Γ (1/α, |Λ0x|α)

2Γ (1/α)
(28)

where Λ0 =
√
Γ (3/α) /Γ (1/α). It is easily seen that Qα (x)

reduces to the traditional Q function when α=2. Some com-
mon noise types are summarized in [28] with different α
values. Applying integration by parts, the SEP subject to
AWGGN is given by (29). As a double check, when α=2,
(29) becomes (22) through some identities, which proves the
correctness of the formula.

2) m is a non negative number plus one half: Due to
mathematical tractability, we only tackle average SEP when
c = 0 with non negative number m. Likewise, using [26,
eq.(2.6.2)], the average SEP is given by (30).

Likewise, to analyze the SEP subject to AWGGN, the exact
closed form formula is given by (31). Similarly, the SEP
expression helps us to accurately assess the joint impact of
the noise distribution and channel fading.

Before closing this section, we point out that higher order
moments of SNR, ergodic capacity and average SEP are all ex-
pressed in exact closed form. All these important performance
metrics help us understand the AF relaying system.

IV. SIMULATION RESULTS

The correctness of all formulas is checked by computer
simulation in this section. According to the location of S,
R and D with respect to each other and channel qualities,
two typical scenarios are considered: all channel gains are
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normalized to unity; the channel gains of the S→R and R→D
links are normalized to unity while the channel gain of the
S→D link is only one tenth, referred to as weak SD. This
corresponds to a scenario where the destination node is far
from the source node or the user is at the cell edge. The noise
variances of all receivers are equal σ2

r = σ2
d = σ2. The source

node and the relay use the same transmission power Ps = Pr.
The average SNR per hop is defined as Ps/σ

2.

Figs.2 and 3 show that the first order moment of SNR
is consistently growing. The simulated and computed curves
agree very well, validating the accuracy of our analysis. As
can be seen from both figures, there is always a gap between
a strong SD channel and a weak SD channel. Other higher
order moments can be similarly drawn using eqs.(10) and (11).
Using the first and second moment, the amount of fading can

easily be evaluated by E
(
γ2
)
/E2 (γ)− 1.

The variation of the ergodic capacity with average SNR per
hop is shown in Figs.4 and 5, where theoretical results are
consistent with simulated curves. The larger fading parameter
offers performance improvement over the smaller one. When
ms = mr = md = 0.5, in high SNR region, the capacity
is 4.1912 at 28dB and 4.5204 at 30dB. This implies that the
multiplexing gain for a non negative integer m is

10× lg 2× (4.5204− 4.1912)

30− 28

= 0.4955 ≈ 1

2
(32)

While for ms = mr = 0.5, md = 1.5, the capacity is 4.4736
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Figure 2. Comparison of ergodic capacity with non negative integer plus
one half parameters
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Figure 3. Comparison of average SNR with positive integer parameters

at 28dB and 4.8049 at 30dB. The multiplexing gain becomes

10× lg 2× (4.8049− 4.4736)

30− 28

= 0.4987 ≈ 1

2
(33)

A similar phenomenon is observed in Fig.5 when m is a
positive integer. The ergodic capacity increases asymptotically
in a linear manner with a slope 1/2. The case of AF relaying
offers a multiplexing gain of 1/2, half the multiplexing gain
in conventional peer to peer communications.

Figs. (6) and (7) shows the average SEP for 4-ary pulse
amplitude modulation (4PAM) and 4QAM, respectively. Here,
two different modulation schemes are due to different expres-
sions eqs.(22), (26) and (30). From Fig.6, when ms = mr =
md = 0.5, in the high SNR region, the SEP is 0.0037466 at
average SNR per hop=28dB and 0.0023726 at average SNR
per hop=30dB. This implies that the diversity gain for non
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Figure 4. Comparison of ergodic capacity with non negative integer plus
one half parameters
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Figure 5. Comparison of ergodic capacity with positive integer parameters

negative integer m is [29]

10 lg (0.0037466/0.0023726)

30− 28
= 0.9921 ≈ min (ms,mr) +md (34)

While for ms = mr = 0.5, md = 1.5, the SEP is 7.5603 ×
10−5 at 28dB and 3.0259× 10−5 at 30dB. The diversity gain
becomes

10 lg (7.5603/3.0259)

30− 28
= 1.9884 ≈ min (ms,mr) +md (35)

A similar phenomenon is observed in Fig.7 when m is a
positive integer. Therefore, a key conclusion is reached: the
diversity gain for a selection combining relaying system in
Nakagami fading channel is min (ms,mr) +md. The reason
is that the error probability of the S→R and R→D links is
limited to the smaller channel quality due to the inherent
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Figure 6. SEP of pulse amplitude modulation (4PAM) with non negative
integer plus one half parameters
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Figure 7. SEP of 4QAM with positive integer parameters

property of relay technology, while the whole error probability
of S→R→D and S→D links is limited to the larger channel
quality because of the decision characteristic of selection
combining.

V. CONCLUSION

Due to low complexity of selection combining, we analyzed
its performance in an AF relaying system over a Nakagami-m
channel. All derived exact formulas are expressed in closed
form using special functions. In addition, the AWGN case
is extended to AWGGN, whose practical importance is often
overlooked. We analyzed the multiplexing gain and diversity
gain which can approximately predict the asymptotic behavior
in the high SNR regime. Simulation results for various fading
parameters and channel qualities confirm the accuracy of the
analysis.
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