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Scientific category: Lymphoid neoplasia 
 
 
Key points  
 
BM-derived MSC can become cancer associated fibroblasts and transfer 

mitochondria to rescue B-ALL cells from ROS-inducing chemotherapy. 

Rescue of B-ALL cells is overcome by microtubule inhibitors which interrupt the 

tunnelling nanotubes used for mitochondrial transfer.  
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Abstract   

We investigated and modelled the mesenchymal stromal cell (MSC) niche in adult 

acute lymphoblastic leukaemia (ALL). We used gene expression profiling, 

cytokine/chemokine quantification, flow cytometry and a variety of imaging 

techniques to show that MSC directly isolated from the primary bone marrow 

specimens of patients with ALL frequently adopted an activated, cancer-associated 

fibroblast phenotype. Normal, primary human MSC and the MSC cell line HS27a 

both became activated de novo, when exposed to the reactive oxygen species 

(ROS)-inducing chemotherapy agents cytarabine (AraC) and daunorubicin (DNR), a 

phenomenon blocked by the anti-oxidant N-acetyl cysteine. Chemotherapy-activated 

HS27a cells were functionally evaluated in a co-culture model with ALL targets. 

Activated MSC prevented therapy-induced apoptosis and death in ALL targets, via 

mitochondrial transfer through tunnelling nanotubes (TNT). Reduction of 

mitochondrial transfer by selective mitochondrial depletion or interference with TNT 

formation by microtubule inhibitors such as vincristine (VCR) - prevented the ‘rescue’ 

function of the activated MSC. Corticosteroids – also a mainstay of ALL therapy – 

prevented the activation of MSC. We also demonstrated that AraC (but not VCR) - 

induced activation of MSC, mitochondrial transfer and mitochondrial mass increase 

in a murine NSG model of disseminated SEM-derived ALL wherein CD19+ cells 

closely associated with nestin+ MSC after AraC but not the other conditions. Our 

data propose a readily clinically-exploitable mechanism for improving treatment ALL 

in which traditional, ROS-inducing chemotherapies are often ineffective at 

eradicating residual ALL, despite efficiently killing the bulk population.  
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Introduction 

 Relapse in ALL arises from putatively dormant, tumour-initiating cells which 

contribute to minimal residual disease (MRD), typically quantified by PCR-

amplification of patient-specific immunoglobulin heavy chain/T cell receptor (Ig/TCR) 

gene re-arrangements1. MRD monitoring shows that relapsed ALL usually has the 

same Ig/TCR re-arrangements found at diagnosis. The intra-clonal origins of 

relapsed ALL are typically accepted 2. Murine models also suggest that relapse of 

ALL does not necessarily arise from genetically-distinct, chemo-resistant cells, but 

more likely occurs due to protection of a subset of cells within a specific niche3,4. The 

niche identified by Duan et al3 was induced by cytarabine (AraC, a DNA synthesis 

inhibitor) and daunorubicin (DNR, which intercalates DNA and prevents 

topoisomerase II progression) and was composed of homogeneous mesenchymal 

stromal cells (MSC) expressing nestin and a-smooth muscle actin (aSMA). By 

contrast, recent data in a T-ALL model in which corticosteroids and vincristine (VCR) 

were used as therapy suggested that T-ALL cells may have a more dynamic 

interaction with bone marrow, without a specific niche5. An important difference 

between the ‘niche’ and ‘no niche’ findings is the chemotherapy agents used to 

generate the model. ‘Niche-generating’ AraC and DNR are DNA damaging agents 

which trigger reactive oxygen species (ROS) in target cells and contrast with 

corticosteroids (potent anti-inflammatory agents) and VCR (a microtubule inhibitor) in 

mechanism of action. The reasoning that ROS generation could be critical to niche 

formation is consistent with a recent study of patient-derived xenograft models of 

acute myeloid leukaemia (AML) in which cells that were resistant to AraC showed 

very high ROS and increased mitochondrial mass. This suggested to us that 
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chemotherapy-induced ROS perturbation might correlate with ALL chemosensitivity 

within the niche 6.  

To investigate, we sought evidence for a protective MSC niche using primary 

specimens from 70 patients enrolled in UKALL14 trial (NCT 01085617). We noted 

the frequent presence of activated MSC/cancer associated fibroblasts (CAF), a 

phenomenon hitherto not described in ALL. We further modelled this process de 

novo, with in vitro work using both primary MSC from healthy donors and an MSC 

cell line, HS27a as well as an in vivo model of ALL. CAF/activated MSC could 

prevent ALL cell apoptosis and death from exogenously-administered ROS-inducing 

agents by mitochondrial transfer along tunnelling nanotubes. Corticosteroids 

prevented the activation of CAF and VCR prevented the formation of the intracellular 

connections necessary for their ability to ‘rescue’ ALL cells from chemotherapy.  

 

Methods 

Cells  

Human specimens and consent  

All primary material was used with informed consent in accordance with the 

Declaration of Helsinki. (16/LO/2055) 

Primary MSC Isolation and Expansion  

Mononuclear cells (MNC) were isolated by density gradient centrifugation (Ficoll, 

Amersham Biosciences, Bucks, UK). MSC were isolated and expanded in Mesencult 

plus Mesencult stimulatory supplements (STEMCELLTM Technologies) plus, 100 
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units/ml penicillin G, 100mg/ml streptomycin, 2mM L-glutamine (PenStrepGlut) 

(Gibco) and 1ng/ml basic FGF (R&D Systems). Passage 4-5 MSC were used in 

experiments. Cell supernatants used were from passage 1 or 2. MSCs were 

characterized based on the International Society for Cellular Therapy (ISCT)7 

criteria, using the Human MSC Functional Identification (R&D Systems) and Human 

MSC Verification kits, (R&D Systems). 

Cell Lines  

Human MSC cell line HS27a (ATCC), B-precursor ALL cell lines REH8, SD19, 

SEM10, TOM111 and murine MSC MS5 (all DSMZ) were grown in RPMI 1640 (MS5, 

αMEM) with 5-20% FBS and Pen-Strep-Glut.  

MSC and ALL co-culture 

MSC were plated on Day 0, ALL cells were added at 24 hours at 1:4 ratio. The cells 

were flow-sorted for use after 3-5 days. For transwell experiments, the ALL cells 

were added onto a transwell insert (0.4 - 1.0 µm) (Greiner Bio-one) at Day 1. 

Mitochondrial depletion 

HS27a cells were cultured in media containing 0.1µg/ml ethidium bromide, 50 µg/ml 

uridine and 1mM sodium pyruvate for 4 weeks.  

Immunocytochemistry  

Cells were fixed with 4% paraformaldehyde, washed, blocked for 2 hours with 1% 

bovine serum albumin (BSA), 10% normal donkey serum (Abcam) and 0.3% Triton 

X-100 (Sigma Aldrich). Primary antibody and antibodies were added for one hour 

each. DAPI (Santa Cruz Biotechnology) and F-actin stain Phalloidin-Atto 633 (Sigma 



	 7	

Aldrich) stain were added for 10 minutes. Images were acquired on the Zeiss axio-

observer Z1 at room temperature with objectives 10xair Plan-NEOFLUAR NA 0.3, 

20xair Plan-NEOFLUAR NA 0.4 and 40xair Plan-NEOFLUAR NA 0.75 using 

Axiovision Rel. 4.8 software and AxioCam MR Rev 3 camera. Fluorochromes used 

include DAPI, red fluorescent protein and cyanine5. No image adjustments were 

required. 

Flow Cytometry  

Samples were incubated with relevant antibodies at 4°C for 30 minutes. 

Fluorescence-minus-one controls were used to account for non-specific background 

staining. Ten thousand intact single cell events were collected on a BD LSRFortessa 

X-20 (Becton Dickinson, Oxford, UK). MSC were sorted from ALL cells antiCD90-

FITC and antiCD19-APC on BD FACSARIA Fusion. Data analysis was with FlowJo 

software (version 10.4.2).  

Mitochondrial transfer  

MSC were stained with MitoTrackerTM Deep Red (ThermoFisher M22426) according 

to manufacturer’s instruction at 37°C for 30 mins. The cells were washed twice, then 

left for three hours to eliminate unbound probe prior to a final wash. The stained 

MSC were co-cultured with ALL cells for 24 – 72 hours. Mitochondrial transfer was 

quantified among the CD19-expressing ALL population.  

Confocal time lapse imaging 

Differentially stained cells were cultured on a 35mm glass bottom dish (Maktek) 

coated with 20µg/ml fibronectin at 37ºC on a heated tray at 5% CO2. Chemotherapy 

was added immediately prior to imaging. Images were acquired on a Zeiss LSM 880 



	 8	

with Airyscan with objective 63xOil Plan-apochromat NA 1.40 at a resolution of 1024 

x 1024 pixels in the x and y directions and 0.5µm steps in z direction. The pinhole 

diameter was set at 1 airy unit. DiO and Deep Red Mitotracker were excited with the 

488 and 633 lasers respectively. Transmitted Photomultiplier Tube was used in 

transmitted mode to generate an image. Imaging processing was done with Oxford 

Instruments, BITPLANE Imaris 9.1 and Carl Zeiss ZEN Black. 

Cell viability and apoptosis assay 

MSC were co-cultured with ALL cells in a 6-well plate +/- AraC 200nM, DEX 200 – 

1000nM, VCR 1.6nM. Other agents used were latrunculin-B 500nM, nocodazole 10-

100nM, colchicine 1.6nM. At 48hrs the cells were collected and stained with CD19 

before staining with Annexin V according to manufacturer’s instruction, finally 

followed by DAPI. The CD19+ as analysed by flow for Annexin V/DAPI to determine 

apoptotic and dead cell populations.  

ROS Quantification  

MSC co-cultured with ALL cells in a 6-well plate with or without drugs. CellRox® 

Green (ThermoFisher C10444) staining was carried out at 24 hours, according to 

manufacturer’s instruction and quantified by flow cytometry. 

Quantification of secreted proteins 

Cytometric Bead Array  

Cytometric Bead Array (BD Biosciences) was carried out according to 

manufacturer’s instruction using human IL6 Flex Set (BD Biosciences 

558276), human IL-8 Flex Set (BD Biosciences 558277) or human MCP-1/CCL2 
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Flex Set (BD Biosciences 558287). Three hundred events/analyte from the live gate 

were collected on a BD FACSAria instrument (Becton Dickinson, Oxford, UK). Data 

were analysed using FCAP Array Software Version 3.0.  

ELISA  

Supernatant was collected from the MSCs at sub-confluence, passage 1-2 and 

stored at -80°C. Semi-quantitative ‘screening’ multi-analyte ELISAs were performed 

on the thawed, passage 1 cell supernatant, using custom-made kits (Custom Mix-n-

Match Multi-Analyte ELISArray Kit, Qiagen 336111). Single analyte quantitative 

ELISA kits (supplementary methods table 2) were used on passage 2 supernatants. 

MTS Tetrazolium cell viability assay 

MTS (CellTitre 96®Aqueous One Solution Reagent) was done according to the 

manufacturer’s instruction. Absorbance was read at 570nm on a BMG FLUOstar 

Galaxy absorbance reader. 

RNA extraction 

RNA was extracted from cells using TRIzol®  (AMbion by Life Technologies, 

15596026) and separated from DNA using chloroform (Sigma Aldrich). Isopropanol 

(Sigma Aldrich) was added and the samples were frozen at -80°C overnight. 

Following thawing and washing with 70% ethanol the pellet of RNA was re-

suspended in RNase free water and the concentration measured on a NanoDrop.  

RT2 Profiler PCR Array 

cDNA was synthesised using the RT2 first strand kit (Qiagen - 330401) according to 

manufacturer’s instruction. The cDNA was then used for RT2 Profiler PCR array 
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according to the manufacturer’s protocol with a pre-defined and pre-prepared 

selection of primers for appropriate CAF defining targets listed in supplementary 

methods, table 3. Each sample was run in triplicate for each gene and quantified 

relative to GAPDH housekeeping control. 

Mitochondrial DNA detection 

DNA was extracted from cells using QIAamp® DNA Blood Mini Kit (Qiagen 51106). 

The DNA was amplified for detection of mitochondrial and nuclear DNA from both 

human and mouse using the primers below. Annealing temperature used was 60 

degrees for 15 to 25 cycles. The PCR product was run in 2% agarose (SIGMA) gel 

and visualised under UV. 

Mouse model 

Disseminated BFP-luciferase-SEM leukaemia was established in 16 8-10-week-old 

NSG mice by tail vein injection. Mice were treated with AraC, VCR, nocodazole, 

AraC with VCR or PBS control. The experimental schema is shown in supplementary 

figures. At sacrifice, SEM cells were flow sorted and MSC were cultured and the 

assays shown were carried out as described. One femur per mouse was sent for 

histopathology.  See supplementary methods for detail. 

Statistical analysis 

The data was analysed on GraphPad Prism 6 software except where indicated. For 

statistical comparisons Chi-squared, unpaired student t-tests or Mantel-Cox test 

were used, as indicated.  
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Results 

To explore the stromal fibroblast niche in ALL, we isolated (68/84) and 

expanded (37/68) MSC from 84 B-ALL bone marrow specimens from 70 patients 

(table 1) participating in the UKALL14 trial. A significant difference in apparent CAF-

related morphology between specimens taken after VCR and DEX exposure (6 of 

16, 38%) and those taken after AraC-exposure (20 of 25, 80%, p=0.006) prompted a 

more comprehensive documentation of CAF, defined by pro-inflammatory cytokine 

secretion, altered morphology with prominent actin stress fibres and a typical gene 

expression profile (GEP). As shown in Figure 1, after combined VCR, 

dexamethasone (DEX) and DNR exposure, the IL8, CCL2, CXCL1, CXCL2 and IL6 

secretion patterns appeared similar to those seen in the healthy donor MSC, 

contrasting with an increase after AraC-containing treatment. In figure 1b, Phalloidin 

and DAPI staining of three samples from each time-point, (red arrows in figure 1a, 

based on available material) shows prominent F-actin- stress fibres (indicated by red 

boxes around the images) at diagnosis and after AraC but not in healthy donors or 

after VCR/DEX. The same specimens in figure 1c showed strong upregulation of 

CAF-associated genes. The unexpected findings of CAF among primary patient ALL 

specimens prompted us to model their generation by chemotherapy drugs.  

First, we evaluated whether clinically-relevant concentrations of DNR, AraC, 

VCR and DEX could generate CAF from healthy donor and/or HS27a MSC. Figure 

2a shows typical CAF cytomorphology in both HS27a and normal healthy donor 

MSC after AraC and DNR but not DEX and VCR. GEP (figure 2b) shows that AraC 

and DNR generated similar CAF-like chemokine and cytokine gene upregulation 

seen in patient specimens, with MMP-1 upregulation particularly prominent. VCR 

upregulated chemokine and cytokine gene expression modestly, but not cytoskeletal 
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and ECM remodelling and growth factor gene expression. After DEX, there was 

striking downregulation of MMP-1. The corresponding cytokine/chemokine levels 

(figure 2c) confirm the pro-inflammatory impact of AraC, DNR and VCR, by contrast 

to anti-inflammatory impact of DEX. To study the functional impact, we ‘primed’ 

HS27a by exposure to AraC, VCR or DEX (DNR was excluded as it, paradoxically, 

extended MSC lifespan), then quantified the survival of a co-cultured B-ALL cell line 

SEM (specifically chosen for its low intrinsic ROS levels and known AraC 

susceptibility) exposed to the same agents. As shown in figure Figure 2d (i-iii), a 

clear pattern of reduced response to AraC, DEX or VCR was seen when the MSC 

were primed with AraC (red arrows) but not with the other agents. A transwell set-up 

(figure 2d (iv)) abolished this impact. 

Next, we tested the concept that control of oxidative stress, via modification of 

reactive oxygen species (ROS) could explain the chemotherapy-induced support 

provided by activated MSC to ALL cells. First, we showed in figure 3a panel (i), that 

AraC and DNR treatment of SEM ALL directly elevated ROS. VCR had no impact, 

whilst DEX reduced ROS. Figure 3a panel (ii) shows the functional impact in 

monoculture and co-culture; whilst all four drugs expectedly readily killed SEM cells, 

co-culture of SEM with HS27a MSC lowered AraC-driven cell death by two thirds, 

DNR-driven death by one third, VCR by about one half but DEX, not at all. To 

confirm the relationship of ROS to the chemotherapy-induced MSC activation, we 

performed reversibility experiments with N-acetyl cysteine (NAC), a glutathione 

precursor antioxidant. As shown in figure 3b, NAC alone did not impact HS27a cells 

whereas NAC prevented both AraC and DNR-induced activation. To confirm the 

critical functional role of ROS control by activated MSC, we quantified ROS, 

apoptosis and cell death of SEM ALL cells after AraC therapy, either alone or in co-
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culture with HS27a MSC. Figure 3c(i) shows that whilst AraC significantly increased 

ROS in SEM cells in monoculture, ROS levels were significantly lowered in co-

culture with HS27a and were no longer impacted by AraC. The corresponding panels 

ii and iii show that the MSC-mediated control of ROS control significantly impacted 

AraC-mediated SEM cell apoptosis and cell death. Cell-cell contact was critical – the 

‘chemoprotection’ of SEM by HS27a was completely lost without direct contact 

(figure 3d). To further confirm the relevance of ROS, figure 3e shows that NAC 

significantly reduced AraC-induced ROS and apoptosis. A reduction in cell death 

was also apparent, albeit not reaching statistical significance.  

Next, we investigated the mechanism for the ROS-induced, MSC-mediated 

chemoprotection of ALL cells. As shown in figure 4a, images of healthy donor and 

SEM co-cultures taken after therapy with AraC show close contact. By contrast, after 

treatment with VCR, contact between the co-cultured cells was minimal. Based on 

published evidence of mitochondrial transfer between MSC and ALL cells12, we 

hypothesised that mitochondrial transfer between activated MSC and B-ALL cells, 

via tunnelling nanotubes (TNT), could explain the CAF-mediated protection of ALL 

cells from ROS-inducing chemotherapy. First, we used a MitoTracker TM assay in 

which a fluorescent dye irreversibly labels mitochondria, to quantitate mitochondrial 

transfer. Figure 4b(i) shows that mitochondrial transfer to B-ALL cells occurred after 

HS27a cells, stained prior with MitoTracker TM, were co-cultured with 3 different B-

ALL cell lines (SD1, TOM-1 and SEM). This was in proportion to baseline ROS (data 

not shown). Cell-cell contact was obligatory – mitochondrial transfer was abolished 

by transwell. Similarly, Figure 4b(ii) shows that spontaneous mitochondrial transfer to 

three primary ALL specimens - but not primary B cells - occurred after co-culture with 

MitoTracker TM -stained healthy donor MSC. Figure 4c (i) shows that AraC, but not 



	 14	

VCR or DEX, stimulated the mitochondrial transfer to SEM ALL cells. In figure 4d we 

confirmed that NAC significantly abrogated both AraC and DNR-stimulated 

mitochondrial transfer to both SEM and REH ALL cells. Next, we directly visualised 

the transfer of mitochondria along tunnelling nanotubes by time-lapse confocal 

imaging. The arrows in figure 4e indicate the progress of two individual mitochondria 

over approximately 20 minutes. Finally, to exclude any possibility of passive transfer 

of mitochondria, we used the murine stromal line MS5 as an alternative mitochondria 

donor. In figure 4f, murine mitochondrial, but not nuclear, DNA is clearly seen in flow-

sorted SEM cells after co-culture, both at baseline and at higher levels after AraC 

treatment. Taken together, our data clearly suggested a role for mitochondrial 

transfer from activated MSC to ALL cells, in protection against ROS.  

To further confirm the functional relevance of mitochondrial transfer, we 

studied the extent to which inhibition of mitochondrial transfer impacted the ability of 

MSC-CAF to protect ALL cells. First, we generated HS27a cells deficient in 

mitochondria following prolonged culture with low dose ethidium bromide and uridine 

which selectively depletes mitochondrial DNA13,14. Depletion was confirmed as 

shown in Figure 5a panels (i) and (ii), by PCR for mitochondrial DNA and 

mitotracker® imaging in depleted cells and non-depleted controls. The mitochondria-

depleted HS27a retained viability, became activated and retained capability to 

interact with SEM cells as imaged in figure 5a (iii). However, the mitochondria-

depleted HS27a cells were clearly defective in their ability to rescue SEM ALL cells 

from AraC-induced apoptosis (figure 5a(iv)) and cell death (figure 5a(v)). Next, we 

used various microtubule inhibitors to block mitochondrial transfer. Figure 5b shows 

that both the actin polymerisation inhibitor latrunculin-B and the microtubule inhibitor, 

nocodazole, significantly blocked AraC-stimulated mitochondrial transfer from HS27a 
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to ALL cells. Then, we quantified the impact of blocking mitochondrial transfer on 

AraC-mediated SEM cell killing using the HS27a/SEM co-culture system. First, we 

confirmed (Fig 5c(i and ii)) that none of the agents used were directly toxic to HS27a 

or SEM cells in monoculture with the exception of VCR and SEM. In figure 5b (ii) we 

show that in the HS27a/SEM co-culture, latrunculin-B, nocodazole and colchicine all 

partially, but significantly, ablated HS27a MSC-mediated protection from AraC. VCR 

entirely ablated the protection, completely restoring AraC toxicity with superadded 

SEM cell killing, due to its own cytotoxic properties. Figure 5c(iii) shows that the 

morphological changes seen in activated HS27a cells are altered by nocodazole and 

colchicine by a clear diminution of visible connections between cells despite the lack 

of impact on HS27a viability. 

Due to the clinical importance of combination therapy in the treatment of ALL, 

we confirmed that combining AraC or DNR with VCR or DEX could block key 

aspects of MSC activation. In figure 6a, both AraC and DNR activate HS27a MSC 

but when either drug is used together with either VCR or DEX, the morphological 

hallmarks of activation do not occur, nor (figure 6b) the typical CAF cytokine 

secretion profile. DEX appears to prevent activation to CAF and VCR acts to prevent 

the consequences. 

To demonstrate in vivo relevance, we generated a disseminated model of ALL 

by tail vein injection of 2 x 106 blue fluorescent protein/luciferase-labelled SEM cells. 

The experimental schema is shown in supplementary figure S1. Three days after 

confirmed engraftment mice were treated with either PBS control, AraC, VCR or 

nocodazole then sacrificed three days later. All agents except PBS control rapidly 

reduced the leukaemia burden (figure 7a i and ii). MSC isolated and cultured from 

the murine bone marrow after AraC showed the typical appearance of CAF by 
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phalloidin, DAPI and αSMA expression which was not evident in control-treated mice 

(figure 7b i and ii). As shown in figure 7c, both ROS levels (7ci) and mitochondrial 

mass (7cii) were significantly elevated in SEM cells after AraC, but not control, VCR 

or nocodazole-treatment of the mice. The presence of murine mitochondrial but not 

nuclear DNA in AraC-treated, sorted SEM cells is shown in supplementary figure S2. 

Figure 7d shows CD19 (brown) and nestin (pink) staining of sections of femur. Red 

boxes highlight CD19 ALL cells closely associated with nestin-stained niche in the 

AraC but not VCR condition. The complete histopathology set is shown in 

supplementary figure S3.  In a therapeutic experiment, five mice/group were treated 

to humane endpoint with PBS, AraC, VCR or AraC+VCR.  Figure 7e (ii) shows that 

only the AraC+VCR combination improved survival compared to PBS control. In a 

separate cohort, where mice were sacrificed three days after treatment, 

mitochondrial mass had increased in the SEM cells only in response to AraC but not 

VCR and was at an intermediate level after AraC+VCR combination (Figure 7e (ii).	

In summary, we identified and cultured CAF directly from the bone marrow of 

patients with ALL undergoing chemotherapy. We modelled the activation process, 

which could be blocked by antioxidants, in vitro and in vivo by administration of ROS-

inducing chemotherapy drugs. Transfer of mitochondria from CAF, along tunnelling 

nanotubes, prevented cell death from ROS-inducing chemotherapy in ALL cells. This 

cytoprotective process was interrupted, in vitro and in vivo, by agents that disrupt 

microtubule formation. 
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Discussion 

We show that MSC isolated from the primary bone marrow of patients being treated 

for ALL commonly adopt an activated, cancer-associated fibroblast-like phenotype 

with cytoskeletal and gene expression changes and high-level proinflammatory 

cytokine secretion. The primary patient data are intriguing but predominantly 

hypothesis-generating, being limited by lack of access to longitudinal specimens. 

However, this does not detract from our frequent identification of CAF, the most 

abundant mesenchymal cell types present within most human carcinomas15 but not 

previously shown in ALL. Among the key characteristics of the primary patient CAF 

were a 16-64-fold increase in transcription of MMP1, a 2-8-fold increase in 

transcription of Nbla00170 (nestin) and pro-inflammatory cytokine secretion, all 

consistent with descriptions of CAF in solid tumors 16. 

To assess the mechanism of CAF generation of activated MSC and to 

understand their functional properties in supporting ALL targets17, we used in vitro 

and in vivo niche models. We easily modelled CAF-formation from healthy donor or 

HS27a MSC in vitro using AraC and DNR at clinically-relevant concentrations. The in 

vitro, chemo-activated MSC appeared morphologically identical to the primary 

patient CAF with a very similar GEP and cytokine secretion pattern in our targeted 

panels. Activation clearly related to an AraC or DNR-mediated rise in intracellular 

ROS and was readily blocked by the antioxidant NAC. AraC-mediated increases in 

SEM target cell ROS levels were closely coupled to apoptosis and cell death in 

monoculture, but when co-cultured with MSC, target cell ROS levels, apoptosis and 

cell death was highly significantly abrogated. Cell-cell contact was clearly required 
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for the process of rescue from oxidative stress  - rescue was absent when a 

transwell was used. An further dissection of the species ROS is important and is 

ongoing. 

 We uncovered mitochondrial transfer, through actin-containing, tunnelling 

nanotubes as the mechanism by which this MSC-mediated protection occurred. 

Whilst it is already known that ALL cells can use tunnelling nanotubes to 

communicate with MSC12 and transfer of mitochondria between cell types is already 

a well-described phenomenon18-22, the transfer of mitochondria in direct relationship 

to chemoprotection from ROS-inducing therapy, has not been described and is of 

particular and immediate relevance to the therapy of ALL. The four drugs we have 

used in our model are the mainstays of ALL treatment. Hyper CVAD17, one of the 

most common therapeutic protocols used internationally for the treatment of ALL 

includes repeating blocks of relatively dose intensive AraC given without VCR or 

DEX. Our data suggests that outcomes of such therapeutic combinations used in 

ALL might benefit from adjustment to ensure that microtubule damaging agents such 

as VCR or anti-inflammatory agents such as DEX are always given with ROS-

inducing agents. Our work demonstrates that when VCR or DEX are combined with 

AraC or daunorubicin, HS27a MSC do not develop the cytopathological hallmarks of 

activated MSC. All these findings – from the activation of MSC through to 

demonstration of mitochondrial transfer were recapitulated in a murine model. 

Our data shed light on a prior study which showed that pre-leukaemic ‘stem cells’ 

cultured in a niche-like environment with MSC were uniformly sensitive to all 

microtubule damaging drugs or corticosteroids tested, in contrast to their resistance 

to the large majority of the other 1904 compounds tested 23. The reason for those 

findings was not clear at the time, but our data suggest that support from the niche 
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provides an explanation. Our work is also consistent with evidence from solid organ 

malignancies 24,25  in which activation of stromal cells with cytotoxic chemotherapy 

induced a stromal cell state, characterised by enhanced ELR-motif cytokine 

secretion which aided cancer cell survival. Our data also give strong support to the 

use of stromal systems for drug discovery in ALL, as described by Frismantas et al 

26. Our data are also consistent with the findings of Ede et al in which MSC protected 

T-ALL from ROS-inducing parthenolide27, albeit release of thiols was described as 

the mechanism. It is likely that Clearly, there are multiple mechanisms at play in 

these complex niches - of particular note is the association of human CD19+ cells 

with a nestin+ niche in the murine femora from AraC-treated mice. Mendez-Ferrer at 

al have previously shown that nestin+ MSC represent bona fide bone marrow niche 

with a close physical interaction with haematopoietic stem cells28 and furthermore, 

that they can transfer mitochondria to AML cells29. 

In summary, our work couples previously disparate strands of evidence from 

the solid tumours with decades-old clinical observations in ALL, to develop a new, 

clinically-testable hypothesis on prevention of chemoresistance in ALL. We plan to 

directly test our observations in a proposed randomised clinical trial (UKALL15) 

comparing our current, standard-of-care regimen with a regimen wherein VCR and 

DEX are always given together with ROS-inducing agents such as AraC and DNR 

and appropriate, longitudinal specimens are collected to assess the relationship 

between MSC activation and outcome in clinical specimens. 
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Table 1 Patient characteristics	

Baseline Characteristic MSC sample 
population 

Not in MSC 
Sample 

population 

p-value* 

    N=70 N=585   
Age, median (range) 43.0(22 - 65) 46.0(23 - 65) 0.068** 
Sex       
  Male 48 (68.6) 310 (53.0) 0.013 
  Female 22 (31.4) 275 (47.0)   
Baseline WBC, median (range) 11.0(.8 - 583.1) 7.9(.11 - 889.6) 0.24** 
PH status       
  PH- 51 (73.9) 392 (68.7) 0.37 
  PH+ 18 (26.1) 179 (31.3)   
  Missing/failed 1 14   
T(4,11)       
  Absent 62 (91.2) 497 (92.4) 0.33 
  Present 6 (8.8) 41 (7.6)   
  Missing/failed 2 47   
Complexity       
  Absent 53 (96.4) 425 (95.1) 0.97*** 
  Present 2 (3.6) 22 (4.9)   
  Missing/failed 15 138   
HoTr/Near-haploidy       
  Absent 55 (96.5) 409 (89.7) 0.10 
  Present 2 (3.5) 47 (10.3)   
  Missing/failed 13 129   
Any Cytogenetic risk factors       
  Absent 28 (50.0) 186 (39.6) 0.13 
  Present 28 (50.0) 284 (60.4)   
  Missing/failed 14 115   
High risk baseline       
  Standard risk 13 (19.4) 64 (11.5) 0.064 
  High risk 54 (80.6) 492 (88.5)   
  Unknown, 

assumed 
standard 

13 (19.4) 64 (11.5) 0.064 
 

*Chi-squared unless otherwise stated 

**Wilcoxon Mann Whitney test 

***Fisher's exact test 
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Figure legends 

Figure 1 Activated fibroblasts are common in primary samples from patients 

with de novo ALL undergoing induction chemotherapy. 

A. Cytokines and chemokines secreted by MSC isolated from the normal healthy 

donor bone marrow or primary patient ALL specimens at diagnosis and after first and 

second course of chemotherapy. IL8 (blue), CCL2 (red), CXCL1 (green), CXCL2 

(purple), IL6 (orange), all in pg/ml are shown on the Y axis. X axis shows each 

sample denoted by UKALL14 trial number (UPN) or healthy donor number (HDN), 

Arrows below the X axis indicate the specimens which were subsequently evaluated 

in more detail  

B. Photomicrographs (40X magnification), showing phalloidin and DAPI staining of 

MSC isolated from primary patient ALL indicated by UPN or HDN  

C.  Gene expression profile of showing fold upregulation (Y axis) of 18 selected 

genes in patient specimens - UPN indicated above the panel - at diagnosis and after 

first and second course of chemotherapy - compared to mean baseline of 3 normal 

healthy donors MSC - isolated from primary patient ALL. Red box around UPN 

indicates specimen with morphological changes. Gene names are shown on the X 

axis. A blue line is drawn at, 2-fold upregulation considered significant. 

 

Figure 2 AraC and DNR activate MSC, de novo which abrogates B-ALL target cell 

responses to chemotherapy agents in co-culture .  
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A. Phalloidin, DAPI or αSMA staining (40x) of HS27a cells or healthy donor MSC: 

baseline or after exposure to the chemotherapy agents indicated.  

B. Gene expression panel showing fold upregulation (compared to untreated) in 

HS27a cells after exposure to the chemotherapy agents indicated in (i) to (iv).  

C. Cytokine bead assays for IL6 (i), IL8 (ii) and CCL2 (iii) (pg/ml, Y axis) following 

exposure of HS27a to the chemotherapy agents indicated on the X axis. All 

statistically significant comparisons (by unpaired t-test) are as depicted: IL8, none 

versus AraC, P < 0.0001, IL8, none vs. DNR, P= 0.002, IL8, none vs. DEX, P= 

0.001, IL8, none vs. VCR, P < 0.0001. CCL2 none vs. AraC, P= 0.0169, CCL2, none 

versus DEX, P = 0.0166, CCL2, none vs. VCR, P= 0.0065  

D. MTS assays showing relative viability of SEM cells (Y axis) after treatment with (i) 

AraC (ii) DEX (iii) VCR for 48 hours, after co-culture with HS27a cells previously 

‘primed’ by chemotherapy pre-treatment denoted on the X axis. Data are shown 

relative to unprimed HS27a, set at 1. AraC primed HS27a are highlighted throughout 

with a red arrow. All statistically significant comparisons (by unpaired t-test) are as 

depicted: (i) no pre-treatment vs. VCR, P = 0.041, AraC vs. VCR, P = 0.022. (ii) no 

pre-treatment vs. VCR, P = 0.0087, AraC vs. VCR, P = 0.0087. (iii) no pre-treatment 

vs. VCR, P = 0.0006, AraC vs. VCR, P = 0.0017 (iv) MTS assay showing relative 

viability of SEM cells (Y axis) after transwell-culture with primed HS27a cells as 

denoted on the X axis. Data are relative to unprimed HS27a, set at 1.  There are no 

statistically significant differences. All data are mean +/- SE of 3 independent 

experiments 
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Figure 3 Reactive oxygen species promote CAF formation and promote MSC-

mediated chemoprotection  

A. (i) ROS levels relative to untreated SEM baseline (1.0), Y axis, after exposure to 

chemotherapy agents indicated on the X axis (ii) percentage cell death (DAPI+, Y 

axis) of SEM cells exposed to the chemotherapy agents indicated either in 

monoculture or during co-culture with HS27a cells, all indicated on the X axis. Bars 

show mean +/- SE of 3 independent experiments. All statistically significant 

comparisons (by unpaired t-test) are as depicted: (i) ROS level, none versus AraC, P 

= 0.0115, none vs. DNR 0.06, none vs. DEX, P = 0.0035. (ii) % cell death, HS27a 

AraC vs. DEX, P = 0.0007, HS27a AraC vs. VCR, P = 0.0003.  

B. Phallodin/DAPI staining of HS27a MSC exposed alone or exposed to DNR or 

AraC with or without NAC 5mM. 

C. (i) CellROX® ROS assay showing mitochondrial mass (Y axis) of SEM cells in 

monoculture, baseline set at 1.0 or after coculture with HS27a cells +/-AraC (X axis). 

Statistically significant comparisons (by unpaired t-test) are as depicted: No HS27a 

none vs. AraC, P = 0.0115, No HS27a none vs. HS27a none, P = 0.0002, No HS27a 

AraC vs. HS27a AraC, p = 0.0001. (ii) % apoptosis (annexinV+, DAPI-, Y axis) of 

SEM cells in monoculture, baseline set at 1.0 or after coculture with HS27a cells +/- 

AraC (X axis). All statistically significant comparisons (by unpaired t-test) are as 

depicted: No HS27a none vs. AraC, p = 0.0009, No HS27a AraC vs. HS27a AraC, p 

= 0.0189. (iii) Cell death (DAPI+, Y axis) of SEM cells in monoculture, baseline set at 

1.0 or after coculture with HS27a cells +/- AraC. All statistically significant 

comparisons (by unpaired t-test) are as depicted: No HS27a none vs. AraC, P = 

0.0102, no HS27a AraC vs. HS27a AraC, P = 0.0001. 
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 D. Cell death (DAPI+, Y axis) of SEM cells in monoculture +/- AraC compared with 

SEM co-cultured in contact with HS27a cells or in a transwell, both with AraC (X 

axis). All statistically significant comparisons (by unpaired t-test) are as depicted: 

HS27a AraC vs HS27a transwell AraC, P = 0.0002.  

E. (i)ROS levels, (ii) apoptosis and (iii) cell death (Y axis) with no treatment, 

AraC treatment or AraC treatment + NAC (X axis). Bars show mean +/- SE of 3 

independent experiments. Significant reductions in ROS (p= 0.002), and apoptosis 

(p= 0.0479), and a non-significant reduction in cell death ((p = 0.08) by unpaired t-

test are shown 

 

Figure 4 AraC and DNR stimulate mitochondrial transfer from healthy donor or HS27a 

MSC to ALL cells via tunneling nanotubes 

A. Phalloidin and DAPI staining of SEM + HD MSC coculture incubated with AraC or 

VCR at 10X and 40X, as labelled. Red arrows indicate SEM (round cells with 

prominent nuclei) in physical contact with MSC.  

B (i) Mitochondrial transfer by mitotracker® assay (MFI, Y axis), from HS27a to 

SEM, TOM1 and SD1 ALL cells in contact or in transwell (X axis). All data are mean 

+/- SE of 3 independent experiments. All statistically significant comparisons (by 

unpaired t-test) are as depicted: SEM HS27a versus HS27a transwell, P < 0.0001, 

TOM1 HS27a versus transwell, P < 0.0001, SD1 HS27a versus transwell, P < 

0.0001. (ii) Mitochondrial transfer by mitotracker® assay (MFI, Y axis), from healthy 

donor MSC to healthy donor B-cells (3 independent experiments) or patient ALL cells 

identified by UKALL14 trial number (UPN) (X axis). 
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C. Mitochondrial transfer by mitotracker® assay (MFI, Y axis) from HS27a to SEM 

after co-culture and either no treatment or treatment with AraC, VCR or DEX. All 

statistically significant comparisons (by unpaired t-test) are as depicted: no treatment 

vs. AraC, P < 0.0001, AraC vs. DEX, P < 0.0001, AraC vs. VCR, P = 0.0003. 

D.  (i) Mitochondrial transfer by mitotracker® assay (MFI, Y axis) of SEM cells in co-

culture with HS27a MSC after no treatment, AraC treatment or AraC plus NAC 5mM. 

All statistically significant comparisons (by unpaired t-test) are as depicted: no 

treatment vs. AraC treatment, P < 0.0001, AraC treatment vs AraC plus NAC, P < 

0.0001. (ii) Mitochondrial mass by mitotracker assay (MFI, Y axis) of SEM cells in co-

culture with HS27a MSC after no treatment, DNR treatment or DNR plus NAC 5mM. 

All statistically significant comparisons (by unpaired t-test) are as depicted: no 

treatment vs DNR treatment, P = 0.0002, DNR treatment vs DNR + NAC, P = 0.0002 

(iii) Mitochondrial mass by mitotracker assay of REH cells in co-culture with HS27a 

MSC after no treatment, AraC treatment or AraC plus NAC 5mM. All statistically 

significant comparisons (by unpaired t-test) are as depicted: no treatment vs AraC 

treatment, P < 0.0001, AraC treatment vs AraC + NAC, P < 0.0001. 

E. Live cell confocal imaging of HS27a, stained with deep red mitotracker® cells in 

co-culture with SEM ALL cells stained with DiO. Images were taken at the timepoints 

indicated (3 minutes apart). The blue and green arrows each indicate the 

progression of two individual mitochondria along a tunneling nanotube.  

F.  Agarose gel images showing PCR products from human nuclear and 

mitochondrial DNA and murine nuclear and mitochondrial DNA, as indicated in each 

quadrant. Lane 1, MS-5 murine MSC, Lane 2 SEM cells, Lanes 3-5 SEM cells sorted 
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after co-culture with MS-5, Lanes 6-8 SEM cells sorted after AraC-treated co-culture 

with MS-5. Human nuclear DNA PCR in lane 5 failed. 

 

Figure 5 Microtubule inhibition blocks mitochondrial transfer and releases ALL cells 

from ROS-induced, MSC-mediated protection  

A. (i) Agarose gel with PCR products from amplification of HS27a mitochondrial 

DNA, +/- mitochondrial depletion. (ii) Fluorescent microscopy imaging after 

mitotracker® dye in HS27a +/- mitochondrial depletion. (iii) 40X imaging of 

mitochondrially-depleted HS27a cells in culture with SEM cells after phalloidin and 

DAPI staining. (iv) % apoptosis (annexinV+, DAPI-, Y axis) of SEM cells treated with 

AraC, SEM cells cocultured with HS27a treated with AraC or SEM cocultured with 

HS27a mito-depleted cells treated with AraC, (X axis). All statistically significant 

comparisons (by unpaired t-test) are as depicted: HS27a versus Mito-deplete 

HS27a, P = 0.0008.  (v) Percentage cell death (DAPI+, Y axis) of SEM cells treated 

with AraC, SEM cells cocultured with HS27a treated with AraC, or SEM cocultured 

with HS27a mito-depleted cells treated with AraC (X axis). All statistically significant 

comparisons (by unpaired t-test) are as depicted: MH27a versus Mito-deplete 

HS27a, P = 0.0043. (vi) Percentage cell death or apoptosis (DAPI+ or 

annexinV+/DAPI- Y axis) of SEM cells + AraC, SEM cells cocultured with HS27a + 

AraC or SEM cocultured with mito-depleted HS27a + AraC, (X axis). All data are 

mean +/- SE from 3 independent experiments. All statistically significant 

comparisons (by unpaired t-test) are as depicted: MH27a versus Mito-deplete 

HS27a, P < 0.0001.  
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B. (i) Mitochondrial transfer from HS27a to SEM cells following microtubule 

damaging blockade. (Mitotracker® MFI, Y axis). Baseline condition is co-culture with 

no added agents, all other conditions are AraC-treated either alone or with 

latrunculin-B (lat-B), and nocodazole (nocod) (X axis). All statistically significant 

comparisons (by unpaired t-test) are as depicted: none versus AraC, P = 0.0005, 

AraC versus AraC + latrunculin-b, P = 0.0028, AraC vs AraC + nocodazole, P < 

0.0001.   

C. (i) % viability (Y axis) after treatment of SEM ALL cells with the agents indicated 

(X axis). (ii) Relative viability (Y axis) after treatment of HS27a cells with the agents 

indicated (X axis). (iii) % cell death (Y axis) after AraC-treatment of SEM either in 

monoculture or coculture with HS27a with nil, lat-B nocod, colchicine or VCR added 

(X axis). All data are mean +/- SE of 3 independent experiments. All statistically 

significant comparisons (by unpaired t-test) are as depicted: MSC none versus lat-B, 

P = 0.0004, MSC none versus nocod, P = 0.0018, MSC none versus colchicine, P = 

0.0167, MSC none versus VCR, P = 0.0002. (iv) Phalloidin and DAPI staining of 

HS27a (40X) after exposure to nocodazole or colchicine.  

 

Figure 6 Combining VCR or Dex with AraC or DNR prevents HS27a MSC from 

developing the characteristic pathology and cytokine secretion patterns of CAF 

A. Phalloidin/DAPI staining of AraC or DNR-treated HS27a cells either alone or with 

VCR or DEX (20X)  

B. Cytokines and chemokines (pg/ml, Y axis) secreted by HS27a after AraC or DNR 

treatment alone or with DEX or VCR. All statistically significant comparisons (by 

unpaired t-test) are as depicted: IL8 AraC vs AraC + DEX, P = 0.0049, AraC vs AraC 
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+ VCR, P = 0.0112; IL6 AraC vs AraC + DEX P = 0.0005; CCL2 AraC vs AraC + 

DEX P = 0.05; IL8 DNR vs DNR + DEX P = 0.0053, DNR vs DNR + VCR P = 

0.0364; IL6 DNR vs DNR + DEX, P = 0.0011, DNR vs DNR + VCR P = 0.04. 

 

Figure 7 Cytarabine - but not vincristine or nocodazole - increases ROS and 

mitochondrial transfer from MSC to ALL cells in a murine xenograft model of 

ALL and stimulates formation of a nestin+ niche. 

A. Live imaging of tumor burden at day -3 and +3 with respect to the treatments 

given. (i) images with colour scale bar and control mouse are shown. (ii) 

Quantifcation of the luciferase expression with region of intensity units on the Y axis 

and experimental conditions on the X axis. P values are 0.0026 for PBS vs AraC, 

0.0023 for PBS vs VCR and 0.0098 for PBS vs nocodazole. 

B. (i) aSMA staining of MSC isolated and expanded from one control and one AraC -

treated mouse (40X) Phalloidin/DAPI staining of MSC isolated and expanded from 3 

control, AraC, VCR or nocodazole-treated mice (20X)  

C. (i) ROS (MFI, Y axis) and (ii) Mitochondrial mass (green mitotracker® MFI, Y axis) 

after treatment of mice bearing SEM xenografts with the agents indicated (X axis). 

Cells were harvested from mice at day +3 after treatment with control, AraC, VCR or 

nocodazole. All statistically significant comparisons (by unpaired t-test) are as 

depicted: (i) ROS: PBS vs Ara-C, P = 0.053, (ii) Mitotracker Mass: PBS vs AraC, P = 

0.0014. 

D. Immunohistochemistry of sections of representative whole femora from AraC and 

VCR-treated mice. Femora are dual-stained with human CD19 (brown) and murine 
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nestin (pink). In the AraC example, CD19+ cells are seen closely associating with a 

nestin+ niche as indicated by the red boxes. In the VCR example, CD19 positive 

cells (indicated by the brown boxes) are not associated with nestin positive cells 

(indicated by the pink boxes) 

E. (i) Mitochondrial mass (green mitotracker® MFI, Y axis) after treatment of mice 

bearing SEM xenografts with the agents indicated. SEM cells were harvested from 

mice treated with PBS, AraC, VCR or AraC+VCR at day +3 after treatment with 

control, AraC, VCR or AraC + VCR. (ii) Kaplan-Meier survival curves (N=5 mice per 

group) for mice treated with PBS (blue), AraC (red), VCR (green) and AraC+VCR 

(purple). All statistically significant comparisons (by unpaired t-test) are as depicted: 

PBS vs AraC, P < 0.0001, AraC vs VCR, P < 0.0001. Survival of AraC + VCR-

treated mice was significantly greater than each of the other 3 groups by Mantel-Cox 

test, PBS vs AraC + VCR, P = 0.0253, AraC vs AraC + VCR, P = 0.0080, VCR vs 

AraC + VCR 0.0305.  

 

Supplementary figure legends 

S1. Schema of in vivo experiments indicating timelines and experimental outputs 

from two independent experiments 

S2. Agarose gel images showing PCR products from DNA extracted from human 

SEM cells xenografted into NSG mice. Murine nuclear and mitochondrial DNA 

and human mitochondrial DNA, is present as labelled. Lane 1, murine control 

bone marrow cells, Lane 2 Human SEM cell control, Lanes 3-6 SEM xenograft 



	 34	

cells sorted on BFP after control treatment Lanes 7-10 SEM xenograft cells 

sorted on BFP after AraC treatment. 

S3. Immunohistochemistry of sections of representative whole femora from each 

treatment group. Femora are single stained for human CD19 (brown) and murine 

nestin (pink) plus dual-stained for human CD19 and murine nestin. In the AraC 

but not the other conditions, CD19+ cells are seen closely associating with a 

nestin+ niche. 
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