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Abstract 

 

cAMP-dependent protein kinase (PKA) plays a central role in important biological 

processes including synaptic plasticity and sympathetic stimulation of the heart. Elevations 

of cAMP trigger release of PKA catalytic (C) subunits from PKA holoenzymes, thereby 

coupling cAMP to protein phosphorylation. Uncontrolled C subunit activity, such as occurs 

in genetic disorders in which regulatory subunits are depleted, is pathological. Anchoring 

proteins that associate with PKA regulatory subunits are important for localising PKA 

activity in cells. However, anchoring does not directly explain how unrestrained “free 

swimming” of C subunits is avoided following C subunit release. In this review, I discuss 

new mechanisms that have been posited to account for this old problem. One 

straightforward explanation is that cAMP does not trigger C subunit dissociation but 

instead activates intact PKA holoenzymes whose activity is restrained through anchoring. 

A comprehensive comparison of observations for and against cAMP-activation of intact 

PKA holoenzymes does not lend credence to this mechanism. Recent measurements have 

revealed that PKA regulatory subunits are expressed at very high concentrations, and in 

large molar excess relative to C subunits. I discuss the implications of these skewed PKA 

subunit concentrations, before considering how phosphorylation of type II regulatory 

subunits and myristylation of C subunits are likely to contribute to controlling C subunit 

diffusion and re-capture in cells. Finally, I speculate on future research directions that may 

be pursued on the basis of these emerging mechanisms. 
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Introduction 

 

cAMP-dependent protein kinase, also known as protein kinase A (PKA), is the major 

intracellular receptor for the ubiquitous second messenger cAMP. Phosphorylation of 

protein substrates by PKA catalytic (C) subunits following cAMP activation is a critical 

link in cAMP-mediated regulation of diverse cellular processes including sympathetic 

stimulation of the heart [1, 2], hormonal enhancement of pancreatic insulin release [3] and 

glycogen breakdown [4], maintenance of lens transparency [5], and synaptic plasticity [6]. 

PKA holoenzymes comprise regulatory subunit homodimers that bind and inhibit C 

subunits. cAMP triggers the release of C subunits by binding to two sites on each regulatory 

subunit. PKA may be divided into two types based on which regulatory (R) subunit isoform 

sequesters the catalytic subunits. Type I PKA (RIα or RIβ) is predominantly cytosolic, and 

there is evidence that PKA of this type is more important in regulating nuclear C subunit 

entry for regulation of gene expression [7, 8]. Type II PKA (RIIα or RIIβ) is enriched in 

the particulate fraction [9]. Each regulatory subunit isoform assembles PKA holoenzymes 

with a unique quaternary structure [10, 11], reflecting the different functions of each 

isoform. For example, RIIβ knockout mice are lean [12] and not susceptible to diet-induced 

insulin resistance [13], whereas knockout of RIα is lethal at the embryonic stage [14]. RIα 

plays a housekeeping role across cell types by increasing in abundance in response to 

chronic elevations of PKA activity [14]. The two major C subunit isoforms (Cα, Cβ) are 

93 % identical in humans [10, 15]. Experiments using fluorescent reporters of cAMP 

concentration [16, 17] and PKA activity [18, 19] have corroborated earlier studies 

indicating that cAMP signals are localised and PKA activity is directed towards specific 

substrates in cells [20, 21]. Understanding how this signalling specificity is achieved has 

been a major focus of cAMP and PKA research over the last three decades. A key role for 

A-kinase anchoring proteins (AKAPs) has emerged from these research efforts. 

 

AKAPs, which were initially identified as contaminants of PKA RII subunit preparations 

[22], present amphipathic anchoring helices that associate with the dimerisation and 

docking (D/D) domain at the N-terminus of PKA regulatory subunits [23, 24]. AKAPs 

typically have a binding preference for RII over RI subunits, and are often themselves 
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attached to cellular membranes [25], which partly explains the enrichment of type II PKA 

in particulate cell fractions [9]. According to the AKAP model, activation of anchored PKA 

leads to the release of C subunits that preferentially phosphorylate substrates in the vicinity 

of the AKAP-PKA complex before recapture. Several AKAPs also bind directly to other 

components of the cAMP signalling cascade, including adenylyl cyclases [26] and 

phosphodiesterases [27, 28]. In these cases, the local coordination of enzymes that 

synthesise, degrade, and respond to cAMP is thought to enable precise spatial and temporal 

control of cAMP/PKA signalling [29, 30]. However, our current conceptions of localised 

cAMP/PKA signalling contain an essential shortcoming: there is no clearly defined 

mechanism for restricting PKA C subunits after their release. This problem was 

encapsulated by Ted Rall over forty years ago who observed that following PKA activation 

we are presented with “the unsatisfying picture of the catalytic subunit of protein kinase 

swimming about, happily phosphorylating a variety of cellular constituents whether they 

need it or not”[31]. 

 

One simple and appealing explanation to solve this problem, which has received 

intermittent support, is that cAMP does not in fact trigger dissociation of PKA C subunits 

from anchored RII subunits. According to this mechanism, C subunits are able to access 

and phosphorylate local substrates while remaining in complex with RII upon cAMP 

activation. In this review, I first weigh up evidence for and against PKA activation without 

C subunit dissociation. I go on to consider alternative mechanisms that are emerging to 

regulate C subunit swimming within cells, including the relative stoichiometries of PKA R 

and C subunits, phosphorylation of the RII subunit inhibitor sequence (IS), and membrane 

insertion of myristylated C subunits. 

 

 

Assessment of evidence for PKA activation without C subunit dissociation 

 

The textbook mechanism of PKA activation via cAMP-induced dissociation of C subunits 

arose from studies in the 1970s showing that cAMP releases C subunits from both type I 

and type II holoenzymes according to cation exchange [32], affinity to casein-sepharose 
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[33] and cAMP agarose [34, 35], size exclusion chromatography [36, 37], and sucrose 

gradient ultacentrifugation [38]. Further in vitro data supporting cAMP-induced C subunit 

dissociation has been provided by small angle x-ray scattering [39], and AlphaScreen 

experiments [40]. The only in vitro study showing no dissociation of C subunit by cAMP 

involved time-resolved emission anisotropy measurements of carboxyfluorescein-labelled 

C subunit (CFC). The authors [41], following up on earlier FRET experiments [42], found 

that adding 50 µM cAMP to RII-CFC holoenzymes did not significantly reduce the 

rotational mobility of CFC indicating that cAMP had not triggered C subunit release. It 

should be noted that non-specific labeling of the C subunit with carboxyfluorescein may 

have blocked the effect of phosphorylation [43] in the IS to prevent complete dissociation 

in this experiment (see ‘Final Comments’ in [44]). The balance of data from experiments 

in living cells also supports a dissociative activation mechanism. FRET measurements 

between RI/RII subunits and C subunits based on microinjection [45, 46], and genetically-

encoded fluorophores [47, 48] are consistent with cAMP rises triggering the dissociation 

of C subunits. Further evidence of C subunit dissociation is provided by two-photon 

fluorescence lifetime imaging microscopy (2p-FLIM) [49], UV crosslinking [50], 

proximity ligation assays [51], and bioluminescence resonance energy transfer (BRET) 

experiments [40, 52]. In support of non-dissociative cAMP activation, isoproterenol does 

not reduce co-immunoprecipitation of C subunits with either AKAP79-RII [51, 53] or 

AKAP18-RII complexes [51]. However, UV crosslinking experiments show that in this 

experiment C subunits likely re-associate with RII subunits following cell lysis during the 

immunoprecipitation process after the cAMP signal has been diluted/degraded [50]. 

Overall, the weight of evidence strongly supports cAMP-induced C subunit dissociation. 

Observations supporting dissociative and non-dissociative activation are summarised in 

Table 1. 

 

Although cAMP induces C subunit dissociation in cells, quantitative 2p-FLIM experiments 

show that physiologically-relevant concentrations of norepinephrine support only a ~12 % 

increase in the level of free C subunits in CA1 hippocampal neurons [49]. Is it possible that 

some intact type II holoenzymes also act as protein kinases during sub-maximal 

stimulations such as this? cAMP is thought to trigger C subunit release via an intermediate 
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in which both cyclic nucleotide binding (CNB) domains of the R subunit are occupied 

while it remains bound to the C subunit (Figure 1) [54, 55]. Indeed, R-C-2cAMP 

complexes have been recorded in native MS experiments [51]. Since these complexes are 

a predicted intermediate in C subunit dissociation [54, 55], their identification is not proof 

that cAMP does not dissociate C subunits from R subunits, but it is worth considering 

whether these intermediates could phosphorylate substrates. The two major interfaces 

between R and C subunits – observed in both RI-C [56] and RII-C [57] crystal structures - 

are between (i) the CNB domains of the R subunit (blue, Fig. 1A) and elements of the C 

subunit large lobe including the G helix and activation loop (green, Fig. 1A) (ii) the IS of 

the R subunit and the substrate binding groove of the C subunit (Fig. 1A). Binding of two 

copies of cAMP to the CNB domains changes their relative orientations [56-58], thereby 

disrupting their interface with the C subunit (Fig. 1B). Dissociation of the IS from the C 

subunit in this ternary 2cAMP-R-C results in simultaneous disinhibition and dissociation 

of the C subunit (Fig. 1C). A cAMP-activated holoenzyme would require that the CNB 

domains in the R subunit are occupied by cAMP in such a way as to propagate an allosteric 

rearrangement that releases the IS from the C subunit while maintaining an R-C interface 

that prevents dissociation. Experiments in genetically-engineered cells lacking PKA Cα, 

RIIα and RIIβ subunits show that RIIα and Cα subunits fused by a synthetic 33-amino acid 

linker can be activated in cells by, e.g., 1 µM isoproterenol [51]. However, these fusions 

do not serve as a realistic model of active holoenzymes since, in these synthetic constructs, 

IS release is possible without C subunit dissociation since the subunits are additionally 

tethered by a synthetic covalent linker (Fig. 1D). By mutating the arginines in the inhibitor 

site of RII, it is possible to generate intact synthetic PKA holoenzymes that are active in 

the absence of cAMP [59]. However, from our current knowledge of PKA structure, it is 

difficult to conceive of a mechanism by which cAMP binding could allosterically release 

the IS without triggering C subunit release. In sum, existing data (Table 1) show that cAMP 

triggers C subunit dissociation in vitro an in vivo, and there is currently no compelling 

evidence that cAMP can trigger phosphorylation via intact PKA holoenyzmes. 

 

 

R subunits are expressed at high concentrations in molar excess of C subunits 
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Once C subunits are released, their range of action will be determined by their diffusion 

rate and their rate of recapture. A key determinant of recapture rate is the availability of 

unoccupied regulatory subunits. Theoretically, fast recapture will be supported by high 

concentrations of R subunits. Faster recapture of C subunits at higher R subunit 

concentrations is exemplified by an in vitro binding study which showed that a higher 

proportion of C subunits associate with R subunits when total R subunit concentration is 

raised in the presence of 50 µM cAMP [7]. Recent experimental measurements reveal that 

R subunits are indeed present at very high cellular concentrations. Quantitative 

immunoblotting of PKA subunits present in protein extracts from human embryonic kidney 

(HEK)-293T cells [50] shows that these cells contain �1.5 µM RII, �0.6 µM RI, and �0.2 

µM C subunits. Analysis of PKA subunits in protein extracts from rat by the same approach 

revealed very high concentrations of R subunits, e.g., in forebrain (608 ng/mg total protein 

for RI, 3266 ng/mg RII), and large (~15-fold) molar excesses of R to C subunits in every 

tissue examined [50]. A different study, employing quantitative proteomic analysis of 

human left ventricle [60], detected a similar skewed stoichiometry with both dominant R 

subunit isoforms in cardiac tissue (RIα at 538 ng/mg; RIIα at 404 ng/mg) in large excess 

of C subunit (52 ng/mg). Studies of PKA subunit degradation rates [61, 62] indicate that it 

is unlikely differences in measured R and C subunit concentrations have arisen from C 

subunit degradation during sample preparation in these studies. Furthermore, 2p-FLIM 

measurements of C subunit occupation of RIIβ in rat organotypic slices are consistent with 

high concentrations of R subunit in molar excess of C subunits [49].  

 

It is challenging to accurately predict free C subunit lifetimes as the rate of C subunit 

binding to C subunit-free R subunits is reduced by RII phosphorylation (~50-fold [43] to 

3.8x104 M-1s-1 for RIIβ), and potentially also by occupation of both CNB domains by 

cAMP ([55] - cAMP mostly exerts its effects by increasing C subunit release rate). 

Furthermore, different studies have yielded inconsistent numbers for R and C subunit 

association and dissociation rates [44, 63, 64]). For a very approximate intermediate figure, 

consider a cell containing 2 µM cAMP-free phosphorylated RII (pRII) subunits in large 

excess of C subunits. C subunits in this cell would be captured by pRII at a rate of ~ 3.8x104 
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M-1s-1 x 2x10-6 M = 0.08 s-1. Taking the inverse gives a mean free C subunit lifetime of 

~13 s. 2p-FLIM experiments have shown that a physiologically realistic level of β-

adrenergic receptor stimulation in CA1 pyramidal neurons produces a level of ~12 % extra 

liberated C subunits that is stable for more than 5 minutes [49], a level that may be in the 

typical range following physiological stimulations [51]. According to R subunit 

concentrations and kinetic parameters for R and C association, during stimulations in which 

only a small fraction of total C subunits are released at any moment in time, C subunits are 

dissociating and re-associating with R subunits over a much shorter timescale than the total 

duration of elevated PKA activity. If R and C subunits were expressed at similar 

concentrations, C subunit recapture would occur very slowly during cAMP impulses that 

release only a small fraction of C subunits at any moment in time, since most R subunits 

would be occupied by C subunits and unavailable for buffering. This may partly explain 

why R:C ratios are highly skewed towards R subunits [50, 60]. 

 

The molar abundance of PKA R subunits calls for reconsideration of the textbook idea that 

latent PKA activity is distributed in tetrameric holoenzymes. C subunits could conceivably 

partition mostly into 2R-1C trimers according to the concentrations measured in, e.g., 

HEK293T cell extracts [50]. A key determinant of tetramer versus trimer partitioning will 

be the degree of cooperativity of C to R subunit binding. Tetrameric structures of RIα-Cβ, 

RIβ-Cβ and RIIβ-Cβ [10] show extensive trans-heterodimer contacts so highly cooperative 

R-C binding that would favour tetramer formation appears to be possible. In addition, with 

molar excesses of R to C subunits, there is the potential for uneven distribution of C 

subunits between different groups of cellular R subunits. For example, sustained local 

differences in cAMP concentration or pRII phosphatase activity could drive accumulation 

of C subunits at specific sub-cellular regions. In summary, high R subunit concentrations 

and skewed R:C ratios will support rapid recapture of released C subunits in cells, and the 

control of C subunit distribution between cellular R subunits merits further investigation. 
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Control of C subunit - inhibitor sequence interactions by phosphorylation, metal 

ions & ATP 

 

The IS of RII subunits contains a serine (alanine in RI) that is phosphorylated upon 

association with the C subunit dependent on ATP and divalent metal ions. Studies with 

bovine PKA in the 1970s discovered that C subunits re-associate more than five times more 

quickly to the dephosphorylated form of RII [65]. More recently, precise on and off rates 

for C subunit association to RII and pRIIβ were determined by surface plasmon resonance 

(SPR) [43]. In the presence of Mg/ATP, the on rate for C subunit binding is ~50 times 

faster when RII is not phosphorylated (RIIβ:C, kon = 2.1x106, Kd = 0.14 nM; pRIIβ:C, kon 

= 3.8x104, Kd = 7 nM). RII phosphorylation precedes activation by cAMP, and is thought 

to regulate activity termination [52]. Kinetic modeling shows that, in theory, rapid pRII 

dephosphorylation is a potent mechanism for suppressing PKA activity [66]. However, the 

field awaits concrete examples of phosphatase-mediated suppression of PKA activity 

through RII dephosphorylation. Remarkably, an analogous site has been identified in RIα, 

although in this case the site is phosphorylated by a different kinase – cGMP-dependent 

protein kinase [67]. 

 

Metal ions play an important role in dictating interactions in the C subunit active site. For 

type II PKA, SPR measurements of C subunit release from pRIIβ induced by 100 nM 

cAMP show that whereas Mg2+/ATP supports rapid and complete dissociation, conducting 

the same experiment with Ca2+/ATP leads to only ~50 % pRIIβ-C dissociation after several 

minutes [43]. Experiments with a model substrate show that while Mg2+ ions are highly 

efficient for turnover catalysis [68] in that they support stable substrate binding and rapid 

product release, Ca2+ ions trap enzyme-product complexes [69]. PKA is anchored in 

proximity to several ion channels that conduct Ca2+ ions including L-type Ca2+ channels 

[70], and it is plausible that high local concentrations of Ca2+ at the mouths of these 

channels could enable Ca2+-cAMP crosstalk in a novel way by trapping C subunit-

substrate/pRII complexes. Conversely, Mg2+ and ATP are essential for high affinity 

binding of C subunits to both RI subunits and protein kinase inhibitor peptide (PKI) [63] 

with the second low-affinity metal binding site in the C subunit playing an essential role in 
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these interactions [71]. Since the IS in RI is a pseudosubstrate, ATP acts as an orthosteric 

inhibitor that supports RI-C complex formation rather than as a substrate for phosphate 

transfer as in RII holoenzymes [11]. The dependence of RI-C interactions on ATP suggests 

that type I PKA activity may rise in response to low energy levels [11]. 

 

 

Membrane insertion of myristylated catalytic subunits 

 

The range of action of liberated C subunits also depends on their diffusion rate, and 

membrane insertion of myristylated C subunits is emerging as an important mechanism for 

controlling C subunit diffusion. The N-termini of most mammalian C subunits are 

myristylated, with the exception of two low abundance splice variants of Cb [72] and a 

splice variant of Ca that is expressed in spermatocytes [73]. Myristylation confers thermal 

stability to the C subunit [74]. NMR experiments show that the C subunit exists in 

equilibrium between ‘myr-in’ and ‘myr-out’ states [75]. In the myr-in conformation, the 

myristyl group is buried in a deep pocket on the kinase domain, forming an attachment 

point for the first ~40 amino acids of the C subunit [76]. Association with RII subunits 

and/or phosphorylation at Ser10 in the C subunit A-helix shifts the equilibrium to the myr-

out conformation in which the myristyl group projects away from the C subunit [75, 77] in 

the general direction of the RII subunit D/D domain [50]. By stabilizing the myr-out 

conformation of the C subunit [78], RII – but not RI – subunits markedly increase C subunit 

binding to liposomes [77] and bicelles [75].  

 

Fluorescence decay experiments with wild type and myristylation-deficient (G2A) C 

subunits fused to photoactivatable GFP in neurons support a key role for myristylation in 

reducing C subunit motility [49]. Tillo and co-workers found that the time constant for 

wild-type C subunit upon norepinephrine stimulation (τ = 2.11 s) is significantly longer 

than for the myristylation-deficient mutant G2A (τ = 0.73 s) [49]. Several genetic studies 

support an increased role for RI compared to RII in regulating nuclear C subunit entry and 

gene regulation (Figure 2A). For example, the tissue-extinguisher locus – a dominant 

regulator of transcription – was found to encode RIα subunits [79, 80]. Cre-dependent 
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luciferase expression in HEK293 cells is more sensitive to RIα than RIIα over-expression 

[7]. Furthermore, Ilouz and co-workers [8] recently found that RIβ but not RIIβ contributes 

to PKA-dependent cAMP-response element binding protein phosphorylation. If C subunits 

released from RII typically associate with cellular membranes (Figure 2B), this may partly 

explain why type II PKA is less important than type I for releasing C subunits that enter 

the nucleus. 

 

 

Perspectives 

 

• Phosphorylation by PKA is a critical step in many biological processes, and 

imbalances in the expression or activity of PKA subunits [81-83] and disruptions 

in PKA anchoring [84] are pathological. A major outstanding issue is to understand 

how the activity of PKA C subunits is spatially and temporally controlled in cells. 

Obtaining a detailed understanding of the molecular basis of PKA targeting may 

reveal novel strategies for pharmacological targeting of cAMP signalling. 

 

• PKA activity is controlled in part by association with AKAP proteins, but anchoring 

does not directly account for restraint of C subunits after they are released following 

cAMP stimulation. Physiological agonists lead to dissociation of C subunits from 

PKA holoenzymes in cells, and there is no definitive data supporting a major role 

for phosphorylation by cAMP-activated intact type II PKA holoenzymes. R 

subunits are highly abundant and in large molar excess of C subunits, which will 

ensure rapid recapture of liberated C subunits. Membrane insertion of myristylated 

C subunit released from type II PKA holoenzymes reduces the rate of C subunit 

diffusion, and RII subunit dephosphorylation increases the rate of C subunit 

recapture. 

 

• The possibility that C subunits preferentially distribute to certain R subunits 

isoforms or to specific AKAP-RII complexes merits investigation. Controlling RII 

dephosphorylation state, and Ca2+ trapping of C-R/substrate complexes are 
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potential mechanisms for regulating PKA activity in cells but the biological 

significance of these mechanisms is yet to be established. Structural information 

concerning PKA anchoring is limited to AKAP peptides bound to D/D domains [23, 

24, 85, 86], isolated AKAP domains [87], and low-resolution structures of full-

length AKAP-PKA complexes [51]. Future structural studies may examine 

interactions to sites on PKA holoenzymes besides the D/D domain including the 

variable loop regions that span the D/D and inhibitor sequences in each regulatory 

subunit. For example, PDE8 associates with the CNB domains of RIalpha to 

enhance the rate of cAMP hydrolysis via a channeling mechanism [88]. More 

accurate values for PKA subunit concentrations [50], C association and dissociation 

rates [43], and cellular cAMP concentrations [89] have been established within the 

last five years. The field would benefit from a renewed focus on kinetic modeling 

of PKA signalling dynamics [52, 90, 91] to accurately calculate, e.g., mean C 

subunit lifetimes under different cellular conditions, taking advantage of these new 

kinetic parameters. Models may factor in complications including the ability of 

substrates to increase dissociation of C subunits from RI and PKI but not RII [39, 

44, 92], fluctuations in PKA subunit levels controlled by ubiquitination [93], and C 

subunit interactions with PKI which also occur in the nucleus [94]. 

  



	 13	

Author Contribution 

 

M.G.G. wrote the paper. 

 

 

Funding 

 

M.G.G. is a Wellcome Trust and Royal Society Sir Henry Dale fellow (104194/Z/14/Z), 

and receives support from the BBSRC (BB/N015274/1). 

 

 

Competing Interests 

 

The Author declares that there are no competing interests associated with this manuscript. 

 

Abbreviations 

 

2p-FLIM, two-photon fluorescence lifetime imaging microscopy; AKAP, A-kinase 

anchoring protein; C, catalytic; CFC, carboxyfluorescein-C; CNB cyclic nucleotide binding; 

D/D, dimerisation and docking domain; HEK, human embryonic kidney; IS, inhibitor 

sequence; PKA, protein kinase A; pRII, phosphorylated RII; RI/RII, regulatory type I/II; 

SPR, surface plamon resonance. 

 

 

 

 

  



Table 1 

 
Observations supporting activation through dissociation Observations supporting non-dissociative activation 

 

In vitro experiments 

Separation using cation exchange resin: for both type I and II PKA purified from 
rabbit skeletal muscle, regulatory subunits can be separated from the catalytic 
subunits by incubation with CM sephadex C-50 in the presence of 100 µM 
cAMP (the regulatory subunits flow through), e.g., [32]a. 

Fluorescence measurements with carboxyfluorescein-labelled C subunit (CFC): 
residual FRET recorded between CFC and texas red-labelled RII at very high (100 µM) 
cAMP concentrations [42]. Adding 50 µM cAMP to RII-CFC holoenzymes did not 
significantly reduce the rotational mobility of CFC according to time-resolved 
emission anisotropy measurements [41], indicating that cAMP had not triggered C 
subunit released.  

Affinity to casein-sepharose column: experiments with PKA purified from 
skeletal muscle PKA (mixture of type I and II) show that cAMP releases 
majority of C subunits enabling their capture with casein-sepharose [33]. 

Native MS of purified RII-C-AKAP79 (297-427) complex [51]: RII-C-2cAMP and 
RII-C-4cAMP sub-complexes detected in the gas phasee. 

Size-exclusion chromatography: 1 µM cAMP triggers separation of R and C 
subunits during size-exclusion chromatography with sephadex G-200 column 
for both type I [36] and type II PKA [36, 37]. 

 

Sucrose gradient ultracentrifugation: R and C subunits for both type I and II PKA 
are separated by sucrose gradient ultracentrifugation when 10 µM cAMP is 
included [38]. 

 

Affinity to cAMP agarose: incubation of either type I [34] or II [35] PKA 
holoenzymes with cAMP agarose leads to recovery of only the R subunits. 

 

Small-angle x-ray scattering: pair-distance distribution functions show decreases 
in radius when 1 mM cAMP is added to either type Iα or type IIβ PKA 
holoenzymes [39], indicative of C subunit releaseb. 

 

AlphaScreen assay: Signal indicating association of GST-RI and biotinylated C 
subunit reduced to background levels at high cAMP concentration [40]. 
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In cultured cells 

UV crosslinking of C subunits to both RI and RII in HEK cells is reduced by 
>70 % when cells are illuminated immediately following stimulation with 1 µM 
isoproterenol [50]c. 

Immunoprecipitation (IP) experiments with HEK cells: Co-IP of C subunits with 
AKAP79-RII [51, 53] and AKAP18-RII [51] is not affected by stimulation with 1 µM 
isoproterenolf. 

FRET between micro-injected fluorescently-labelled PKA subunits: FRET 
between Cα-fluorescein and RIα-rhodamine decreased by cAMP in vitro, and 
by, e.g., 100 nM isoproterenol in micro-injected smooth muscle and fibroflast 
cell lines [45]. Experiments with same micro-injected subunits in Aplysia 
sensory neurons show that FRET changes are proportional to the extent of C 
subunit translocation into the nucleus [46]. 

 

FRET between PKA subunits fused to GFP variants: Isoproterenol triggers 
reduction in FRET between RII-EBFP and C-GFP(E65T) and C and 
accumulation of nuclear C subunits in transfected COS-7 cells [47]. 
Norepinephrine triggers reduced FRET between same reporters in neonatal rat 
cardiac myocytes [48]. 

 

2p-FLIM: Experiments using C-terminally tagged C and RII subunits in 
hippocampal primary neurons show that 20 µM norepinephrine triggers a 12 % 
reduction in the fraction of C subunits associated with RII, with forskolin/IBMX 
stimulation generating a further 70 % reduction [49]. 

 

Proximity ligation assay: HEK293 cells exhibit approximately half as many 
puncta indicating intact PKA holoenyzmes when cells are stimulated with 
isoproterenol and rolipram [51]. 

 

Bioluminescence resonance energy transfer (BRET) recordings: BRET is 
reduced between GFP-tagged Cα and all four R subunit isoforms when HEK293 
cells are stimulated with forskolin/IBMX [52]. BRET between GFP-C and RIIα-
luciferase in COS-7 cells is reduced to baseline levels upon addition of 8Br-
cAMP-AM [40]. 

 

 

  



Figure & Table Legends 

 

Table 1. Observations for and against cAMP-induced dissociation of C subunits. The 

table refers to the following footnotes: (a) Binding to exchanger resin performed at pH 6.7. 

(b) For both holoenzymes, 1 mM cAMP reduces to ~40 % intact holoenzymes. Iα but not 

IIβ holoenzymes can be completely dissociated by additionally adding kemptide substrate 

peptide. (c) The spacer arm in NHS-Diazirine is 3.9 Å long, so a structural rearrangement 

in which the C subunits are retained might reduce crosslinking efficiency between R and 

C subunits. (d) C subunits were non-specifically labelled with amine-reactive probes that 

may have blocked the effect of autophosphorylation on RII-C binding affinity, and 

prevented complete dissociation as discussed in [44]. (e) In most chemical species detected 

by the spectrometer that contained both RII and C subunits, fewer than 2cAMP were 

present per RII subunit. (f) Co-IP performed after lysing cells and diluting in lysis buffer. 

UV crosslinking experiments suggest that RII-C complexes reform following cell lysis 

after isoproterenol stimulation [50]. 

 

Figure 1. Primary pathway for C subunit dissociation. (A) Prior to cAMP binding, R 

subunits (blue) sequester C subunits (green) through an extensive interface involving both 

CNB domains, and through docking of the IS in the substrate binding groove of the C 

subunit. (B) Occupation of the CNB domains by two molecules of cAMP (yellow) leads to 

kinking of a helix that bridges the two domains, and thereby breaks the interface between 

the CNB domains and the C subunit. (C) Subsequent dissociation of the IS disinhibits the 

C subunit and is concomitant with C subunit dissociation. (D) Fusing RII and C subunits 

generates a synthetic version of PKA that may be activated by cAMP without C subunit 

dissociation [51], which has been put forward as evidence that cAMP activates PKA via 

intact holoenzymes. However, this is not a realistic model of activation without 

dissociation since in the synthetic fusion protein cAMP may trigger dissociation of both 

the CNB domain and IS interfaces without full C subunit release due to the covalent linker 

connecting the RII and C subunits. Structural representations are taken from crystal 

structures of truncated RIIβ in complex with either cAMP [57] or myristylated Cα [78]. 

For the sake of clarity, the scheme is simplified to interactions involving single RII 
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protomers, and the RII D/D domain is not shown. In tetrameric PKA holoenzymes, 

interactions between the two R-C heterodimers support cooperative activation by cAMP. 

 

Figure 2. C subunit myristyl group conformations in type I and II PKA. (A) In type I 

PKA, the ‘myr-in’ conformation of the C subunit (green) is stabilised, in which the myristyl 

group (orange) packs against the kinase domain core. Upon release by cAMP (yellow), 

movement of the C subunit is not restricted to cellular membranes, which may partly 

explain why type I PKA is more important for nuclear PKA activity. (B) In complex with 

RII subunits, the myr-out conformation is stabilised. Non-dissociated type II holoenzymes 

can associate with membranes in the absence of anchoring, with membrane-tethered 

AKAPs likely supporting this behaviour. Diffusion of C subunits released from these 

holoenzymes by cAMP is limited due to insertion of myristyl at the N-terminus of the C 

subunit into the intracellular face of membranes including the cell membrane. 
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