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Abstract 
Sporadic Creutzfeldt-Jakob Disease (sCJD) is a rare but devastating 

neurodegenerative disorder characterised by misfolding, propagation and deposition 

of the prion protein in the brain, leading to neuronal death and rapid cognitive and 

functional decline. As there is no obvious genetic cause of sCJD, the epigenetic 

status of sCJD patients may clarify spontaneous prion disease aetiology or reveal 

biomarkers of the disease. Blood from patients was profiled to document genome-

wide differential DNA methylation. 

38 loci were identified as being differentially methylated in sCJD blood, including 

two which associated with disease severity as measured by the MRC Scale score. 

Of 7 loci considered for replication, 5 showed similar effects in a second cohort of 

patients, but not in patients of Alzheimer’s disease, iatrogenic CJD, or inherited 

prion disease, suggesting these effects are specific to the sporadic form of CJD. 

Notably hypomethylation at a site in the promoter of AIM2, an inflammasome 

component, retained its association with disease severity. 

Hypomethylation of FKBP5, a gene known to regulate the cellular response to 

cortisol, prompted further investigation which revealed that circulating cortisol is 

indeed elevated in sCJD patients. Profiling of frontal cortex-derived DNA showed 

that differential methylation observed in blood is absent from the brain methylome. 

Machine learning classification of sCJD based on genome-wide methylation data 

was able to classify sCJD and healthy control status with an accuracy of 87.04%. 

This is an appreciable level of accuracy but importantly sets precedence for further 

classification of prion patients in more complex clinical and research settings, as 

well as assisting differential diagnosis of less conventional rapid dementias. 
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Impact Statement 
Sporadic prion disease is a rare but devastating neurodegenerative disease, with 

136 mortalities in the UK during 2018. This study of DNA methylation in the blood of 

these patients has identified one gene (AIM2) which appears to become 

progressively demethylated as the disease progresses, making it a promising 

biomarker for patient monitoring, particularly during therapeutic intervention. 

Another gene (FKBP5) is also demethylated in sporadic prion disease and has 

established connections to psychiatric disorders and a system which communicated 

between the brain and the periphery, namely the hypothalamic-pituitary-adrenal 

axis. It possible that this system is dysregulated early in the disease process as 

there is no correlation with clinically presentations of disease severity. FKBP5 has 

also been implicated in a number of other dementias and psychiatric disorders yet 

its involvement in neurodegeneration remains unclear. Further work showed that 

cortisol, an anti-inflammatory agent, is elevated in sporadic prion disease patient 

serum. This finding strengthens the case for deeper investigation into the role of 

FKBP5, a known suppressant of cortisol action, and peripheral inflammation in 

neurodegenerative diseases. 

Machine learning classification models using our DNA methylation dataset was 

shown to have promising accuracy (87.04%) and could be further employed in 

analysis of prion disease subgroups, particularly in subclinical carriers. 

At a Departmental scale, this work establishes an analytical pipeline for analysis of 

methylation data at the Genetics, Epigenetics and Bioinformatics group of the MRC 

Prion Unit at UCL, affiliated with the National Prion Clinic at UCLH NHS Foundation 

Trust. A blood-derived DNA extraction protocol was also optimised to complement 

the current Neurogenetics extraction protocol, using 1/40th of the volume yet yielding 

sufficient blood-derived DNA for methylation analysis. This work represents the 

foreground of a more detailed examination of prion and rapid dementia patients in 

the context of DNA methylation, which may prove clinically useful. 
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1 Introduction 

Prion diseases are transmissible neurodegenerative disorders with unique 

aetiologies and pathologies, which affect a broad range of mammalian species. The 

first prion disease to be identified was scrapie, which has been endemic in parts of 

Europe since the 18th century (Plummer, 1946). Scrapie was known to be an 

infectious disease, and early experiments by Cuillé and Chelle not only 

demonstrated that healthy sheep could be infected through contaminants present in 

the paddocks previously occupied by scrapie sheep, but that the disease could also 

be experimentally transmitted into goats (Cuillé and Chelle, 1936). This lead to the 

hypothesis that scrapie was caused by a slow-acting virus, as sheep developed 

symptoms relatively slowly as per several other slow-acting viruses which affect the 

nervous system (Ter Meulen and Hall, 1978). However unlike other viruses a 

“scrapie agent” could not be isolated, nor cultured, nor inactivated by heat or 

treatment with formalin in the same way viruses could be (Parry, 1962). 

In 1957 it was reported that tribespeople in the Fore region of Papua New Guinea 

were weathering an epidemic of a neurodegenerative disease they called Kuru, 

meaning “to shiver” or “to be afraid” (Gajdusek and Zigas, 1957). The disease was 

observed to present with ataxia and a mild tremor, followed by progressive loss of 

motor and cognitive functions. Brain homogenate extracted from those who died 

from Kuru was shown to induce similar pathology in chimpanzees if inoculated 

intracerebrally (Beck et al., 1966), prompting a separate experiment where 

inoculation of homogenate from a Creutzfeldt-Jakob Disease (CJD) patient was also 

shown to induce neuropathology. CJD had been first described in the 1920s 

(Creutzfeldt, 1920) yet was still acknowledged as “an ill-defined term for a group of 

subacute presenile encephalopathies characterized clinically by dementia, 

involuntary movements (myoclonic jerks), and other less constant findings that often 

include ataxia” (Gibbs Jr. et al., 1968). Indeed, the condition’s second namesake, 

Alfons Jakob, is thought by some to have identified bona fide CJD as Hans 

Creutzfeldt’s descriptions do not overlap with current understanding of prion disease 

pathology (Katscher, 1998). Transmission of prion disease pathology into 

chimpanzees using CJD patient brain homogenate by Gajdusek established the 

cause of CJD as transmissible and thus analogous to the scrapie agent. 

In 1981 Prusiner et al. reported the purification of a hydrophobic protein component 

from the scrapie agent (Prusiner et al., 1981). The following year Prusiner published 

a manuscript which considered the agent in detail and employed for the first time 
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the descriptor “prion”, a contraction of “proteinaceous infectious particle”, to 

distinguish the agent from viruses and other infectious nucleotide-based particles 

(Prusiner, 1982). Prions were subsequently purified from CJD patient brains and 

shown to contain epitopes present in the scrapie prion preparations being used in 

laboratories (Bockman, JM. , Kingsbury, DT., McKinley, MP., Bendheim, PE., 

Prusiner, 1985). To this day definitive diagnosis of CJD is only possible through 

detection of prion protein aggregates in brain tissue by post-mortem histological 

examination. 

Creutzfeldt-Jakob disease is now understood to result from template-driven 

misfolding of the human prion protein (Griffith, 1967; Prusiner, 1991), from which 

follows a rapidly progressive dementia with co-existent signs such as myoclonus.  

1.1 The Prion gene and its protein  
Human PRNP is located on chromosome 20 and encodes a 253-residue protein 

(PrP) in two exons, of which only the second is translated. The product’s primary 

sequence is highly conserved across mammals (Prusiner and Scott, 1997). The 

mature protein is 209 amino acids long, contains an internal disulphide bond and 

two sites that can be variably glycosylated, and is membrane anchored (Prusiner 

and Stahl, 1991). PrP has a modular structure which is displayed in Figure 1. 

Normal genotype at codon 129 of PrP can be homozygous or heterozygous for 

methionine or valine and is a major disease modifying factor. Its effects on disease 

will be discussed in later sections of this thesis. 

The relationship between PrP function and dysfunction remains unclear. While there 

is evidence to suggest it has multiple neurotrophic roles, Prnp-/- mice are 

phenotypically quite normal with some minor alterations to neuronal and immune 

function emerging with age (Zomosa-Signoret et al., 2008). It is thought this is due 

to PrP’s role in maintaining axonal myelin, and decreased proteolysis or loss of 

glycolipid membrane anchoring produces similar effects (Bremer et al., 2010). PrP 

has been shown to increase neurogenesis in the dentate gyrus of the hippocampus 

in a dose-dependent manner, yet as of itself this increased neural proliferation does 

not result in a greater final volume of mature neurons (Steele et al., 2006). 

Recombinant PrP has been shown to induce synaptogenesis in vitro, while native 

PrP has been identified as a receptor for amyloid-β through which synaptic function 

and long-term potentiation are inhibited (Laurén et al., 2009). PrP coordinates 

common divalent metal cations in various regions of the brain (Pushie et al., 2011), 

in particular Cu2+ which induces morphological changes in full length PrP structure 
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towards a more beta-sheet based conformation (Thakur et al., 2011) and promotes 

its own clathrin-mediated internalisation (Zomosa-Signoret et al., 2008).  The normal 

physiological functions of PrP have been reviewed extensively (Zomosa-Signoret et 

al., 2008). 

 

 

 

Figure 1: Tertiary structure of PrP. Histidine residues (magenta) in the N-terminal octarepeat domain 
coordinate Zn2+ and Cu2+ cations. N-teminal and C-terminal fragments can be produced through α or 
β-cleavage. Figure from McDonald and Millhauser, 2014. 

 

The native structure of PrP is commonly termed PrPC to distinguish it from the 

misfolded, aggregated form associated with CJD (Prusiner, 1991), which is termed 

PrPSc  (from PrP-Scrapie). Thinking beyond the supposedly necessary 

characteristics of an infectious agent, this being a nucleic acid component, Griffith 

hypothesised that the scrapie agent could derive its infectious characteristic through 

molecular templating (Griffith, 1967). This proposal was vindicated through studies 

of Prnp-/- mice which demonstrated that native PrPC is necessary for infection by 

PrPSc-containing inocula, which has led strength to an early model of prion disease 
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whereby PrPSc, arising stochastically, self-templates using PrPC as a substrate. 

Further work has provided evidence that the label PrPSc is reductionist and perhaps 

unhelpful, due in part to the existence of various strains of prion particles with 

distinct conformations (Safar et al., 1998) and phenotypic effects (Prusiner, 1991). 

But most strikingly recent findings suggest that the presence of PrPSc aggregates 

does not necessarily correlate with clinical presentation, nor spatially with neuronal 

loss (Sandberg et al., 2014; Alibhai et al., 2016). As such expansion of the “protein 

only” model to account for concepts such as prion strains is ongoing, with labels 

such as PrPI and PrPL becoming more common when referring to infectious and 

toxic (lethal) moieties. Current models of PrPI suggest its structure is fibrillar in 

nature, and fragmentation of infectious prion fibrils into smaller assemblies through 

sonication has been shown to almost double a sample’s infectious titre (Terry et al., 

2016; Vázquez-Fernández et al., 2016). An alternative hypothesis, the “virino” 

model, postulates that PrPSc is in fact associated with a nucleotide species and that 

the two are necessary to infect cells and cause pathology (Kimberlin, 1982). This 

model also accounts for strain variation which may be influenced by specific 

sequences of oligonucleotides but does not explain subclinical prion infection. To 

date no nucleotide fraction has been successfully purified from infectious prion 

isolates and the model has been largely disregarded. 

1.2 Creutzfeldt-Jakob Disease 
CJD is the most common human prion disease and can be separated into three 

varieties based on aetiology: sporadic, familial and acquired. Sporadic CJD (sCJD) 

accounts for 85-90% of cases (Zanusso et al., 2016) whilst a number of dominant 

alleles of the prion protein gene (PRNP) are known to cause inherited prion disease 

(IPD). Other cases can be acquired, for example through consumption of prion-

contaminated food which can cause variant CJD (vCJD).   

A second form of acquired prion disease, iatrogenic CJD (iCJD), mostly arises from 

contaminated cadaveric pituitary-derived human growth hormone inocula and 

contaminated dura mater transplants. The former was recognised in the UK in 1985 

(Powell-Jackson, Kennedy and Whitcombe, 1985) and in total 77 British growth 

hormone recipients (out of 1849 total) who had all received the same preparation of 

growth hormone have developed iCJD. Subsequent genotyping has revealed that a 

polymorphism at codon 129 in the prion protein modifies the incubation period 

before disease onset, where possession of the valine allele has been associated 

with earlier disease onset (Collinge, Palmer and Dryden, 1991; Rudge et al., 2015). 
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196 dura mater transplant recipients have developed iCJD, with the majority (123) 

of cases occurring in Japan where dura mater repair after neurosurgery was a 

common practice (Brown et al., 2006). A specific brand of dura mater – LyoDura – 

was used in all instances where infection has been observed (Yamada et al., 2009). 

Cases of iCJD have also been linked to neurosurgery, corneal transplant and blood 

transfusion from a donor carrying vCJD prions, although improved patient screening 

and instrument decontamination has since been effective in reducing exposure of 

patients to prion contaminants. 

Variant CJD (vCJD) emerged in the United Kingdom in 1996 (Will et al., 1996) and 

was recognised as distinct from “classical”, sporadic CJD on account of a much 

younger age of onset, longer disease duration and neuropathology involving 

deposition of kuru-like “florid” plaques of prion protein (PrP). The first 10 victims of 

vCJD were identified by the CJD Surveillance Unit which was instituted in 1990 to 

monitor the effects of a bovine spongiform encephalopathy (BSE) epidemic in the 

UK and potential transmission of BSE to humans. vCJD was subsequently 

characterised through molecular strain analysis of PrP and murine bioassays as a 

strain of BSE that had indeed infected humans through the food supply (Collinge et 

al., 1996; Bruce et al., 1997; Hill et al., 1997). To date, 228 cases of vCJD have 

been documented, 175 of which occurred in the UK (The University of Edinburgh, 

2017). With one exception (Mok et al., 2017), all individuals were homozygous for 

methionine at codon 129 of PRNP. 

Inherited Prion Disease (IPD) was first documented in the Backer family in 1920s 

Germany: 70 years later a D178N mutation in PRNP (Kretzschmar, Neumann and 

Stavrou, 1995) was identified in DNA extracted from the preserved brain tissue of 

one of the family members.  This mutation and several others (see Figure 2), as well 

as octapeptide repeat insertions, are now known to clinicians and used to diagnose 

IPD. As with iCJD, codon 129 genotype of the PRNP allele which encodes the 

mutation is known to modify some forms of inherited prion disease (Gambetti et al., 

2003), notably D178N which causes Fatal Familial Insomnia if the mutant PRNP 

allele encodes 129M. 

Sporadic CJD (sCJD) can be distinguished from other rapidly progressive 

dementias by observing increased signal on T2 weighted and diffusion weighted 

MRI sequences in the striatum, thalamus or cortex, increased 14-3-3 protein in 

cerebrospinal fluid, and periodic sharp wave complexes in electroencephalograms 

(Zanusso et al., 2016). However, a definite diagnosis according to WHO criteria can 
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only be made through neuropathological observation of aggregated PrPSc 

deposition in the brain. Subsequently there are cases where diseases such as 

rapidly progressive Alzheimer’s Disease, Lewy Body Dementia, and viral 

encephalitis have been mistaken for CJD. It is also highly likely that cases of sCJD 

have been masked in patients with existing dementia diagnoses. As shown in 

Figure 3, deaths per million per year in the UK have risen from 0.5 in 1988 to 1.8 in 

2017 (The National CJD Research and Surveillance Unit, 2017), possibly due to 

improved diagnostics and awareness but perhaps also due to a shift in median 

population age or other unknown factors. 

 

 

Figure 2: Known genotypes associated with familial cases of CJD (Mead, 2006). Some of the 
pathogenic mutations listed above have been reported in simplex cases of CJD and could reflect the 
chance occurrence of a rare variant in patients with sporadic CJD. 
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Figure 3: Deaths per million per year from sCJD between 1986 and 2017 in the UK (The National CJD 
Research and Surveillance Unit, 2017). 

Prion diseases have a heterogeneous clinical presentation both between and within 

subtype. To better delineate patient progression and outcome, a scale of disease 

severity was published in 2013 after monitoring patients enrolled in the UK National 

Prion Monitoring Cohort over the course of 373 patient-years (Thompson et al., 

2013). The MRC Prion Disease Rating Scale (henceforth referred to as the MRC 

Scale) was designed such that patients could be scored retroactively based on 

commonly documented clinical parameters, and allows cross-sectional analysis of 

biomarkers and disease features across disease progression. Despite the scale 

proving useful for patient monitoring and triage, both important aspects of patient 

management, prion disease remains incurable. To facilitate rational drug design and 

improve patient treatment and management, deeper knowledge of the disease 

aetiology and pathology is needed. 

  

1.3 Epigenetics 
Epigenetics can be summarised as the study of how the action of genes can be 

temporally and spatially regulated, a process which has been known to direct 

physiological development since Conrad Waddington’s coining of the term 

“Epigenotype” in 1942 (Waddington, 1942). Outside the original context of 

developmental biology epigenetics has also been studied in the context of disease, 

most notably cancer of which epigenetic dysregulation has become a hallmark 

(Brown and Strathdee, 2015), and recently such dysregulation has been 

convincingly linked to neurodegenerative diseases such as Alzheimer’s Disease (De 
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Jager et al., 2014; Lunnon et al., 2014), Amyotrophic Lateral Sclerosis (Xi et al., 

2013) and Parkinson’s Disease (Masliah et al., 2013).  

There are three canonical branches of epigenetics: the action of non-coding RNAs, 

modifications to histone proteins which coordinate chromatin structure, and 

modification of DNA, principally methylation of cytosine residues. Partly due to the 

chemical stability of the latter epigenetic mark and the comparative molecular 

fragility of protein and RNA, DNA methylation has been enthusiastically researched 

in many biological contexts. DNA methylation predominantly occurs at the 5’-carbon 

of cytosine in cytosine-guanine dinucleotides (CpGs) which are both relatively 

depleted and unevenly distributed across the human genome. CpGs cluster into 

genomic features known as CpG islands, defined as regions of >200bp containing 

>50% GC composition and an observed to expected CpG ratio of >60% (Bird, 

1986). CpG islands are frequently located upstream, on, or downstream of gene 

transcription start sites and often extend into the gene body (Gardiner-Garden and 

Frommer, 1987). Although around 70% of all CpGs in the human genome are 

methylated, these islands are characterised in part by the absence of methylation.  

This is notable as compared to a fixed random rate of mutation of cytosine residues, 

methylcytosine is 42 times more likely to mutate via deamination to thymine (Cooper 

and Youssoufian, 1988). This suggests that CpG islands are conserved during 

evolution in part due to their lack of methylation (Sved and Bird, 1990; Serge 

Saxonov, Berg and Brutlag, 2006). As early as 1986 Adrian Bird suggested these 

regions may serve as binding platforms for protein factors, and in doing so prevent 

the binding of enzymes that introduce DNA methylation as well as providing an 

accessible substrate for transcription factors, chromatin modifiers or repressors. 

Thanks to genome-wide sequencing, we now know that 72% of all annotated 

promoters overlap with CpG islands (S. Saxonov, Berg and Brutlag, 2006). 
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1.4 DNA Methylation Machinery 
 

1.4.1 DNA Methylation Writers 
DNA methylation is introduced by DNA methyltransferases (DNMTs), a family of 

enzymes of which three have been identified in humans: DNMT1, DNMT3A and 

DMNT3B. These enzymes were originally identified in bacteria and are highly 

conserved, sharing the same 10 motifs between prokarya and eukarya (Kumar et 

al., 1994). DNMT1, DNMT3A and DMNT3B take cytosine and S-adenosyl-L-

methionine (SAM) as their substrates, the latter of which is the methyl-donor. In 

brief, the methylation reaction begins with a nucleophilic attack on the 6’-carbon of 

cytosine by a conserved cysteine-thiolate residue of the DNMT, after which the 

cytosine is everted from the double helix into the catalytic pocket of the DNMT. The 

now-anionic 5’-carbon of cytosine attacks the donor methyl group of SAM and S-

adenosyl-L-homocysteine (SAH) is expelled. Beta-elimination separates the DNMT 

from the cytosine moiety and loss of a proton resolves the stabilised purine ring 

structure to 5-methyl-cytosine (5mC) (Bestor and Verdine, 1994). This process is 

allosterically stabilised by proton transfer between the 3’-nitrogen of cytosine and a 

proximal carboxylic amino acid and, importantly, can be competitively inhibited by 

the reaction’s by-product SAH. A summary of the reaction is presented in Figure 4. 

 

Figure 4: Chemical structures of DNMT substrates and reaction products during methylation of 
deoxycytidine, the nucleotide analogue of cytosine. This figure is adapted from Bestor and Verdine, 
1994. 
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The first eukaryotic protein to be identified as having methyltransferase activity was 

purified from murine cell culture, after which the peptide sequence was determined 

by Edman sequencing and used to generate nucleotide probes to investigate a 

cDNA library. One cDNA product was found to encode a transcript of a gene 

homologous to bacterial DMNTs (Bestor et al., 1988). This methyltransferase was 

able to symmetrically methylate hemi-methylated DNA in vitro, as well as restore 

symmetrical methylation at CpG sites in murine cells transfected with hemi-

methylated DNA, while de novo methylation of similarly transfected unmethylated 

DNA was not observed. This confirmed the existence of a hypothesised 

maintenance DMNT which ensures symmetrical DNA methylation is restored after 

semi-conservative DNA replication (Stein et al., 1982). In humans this is encoded by 

DNMT1. DNMT1 has been found to colocalise with replication forks during S phase 

of the cell cycle, as has UHRF1. Studies have shown that Uhrf1-/- mouse embryonic 

stem (ES) cells exhibit significant global hypomethylation and that UHRF1 has a 

seven times higher binding affinity for symmetrical CpG-containing sequences when 

hemi-methylated rather than fully methylated (Bostick et al., 2007). This suggests 

that UHRF1 binds to hemi-methylated CpG dyads post-replication and recruits 

DNMT1, which restores methylation on the nascent strand. Intriguingly, further work 

revealed that DNA-bound UHRF1 everts 5mC out of the helix in a similar fashion to 

DNMT1 (Arita et al., 2008; Avvakumov et al., 2008; Hashimoto et al., 2008). 

DNMT3A and DNMT3B were identified in human and murine genomes by a 

methyltransferase motif homology search (Okano, Xie and Li, 1998) which was 

prompted after low levels of de novo DNA methylation were observed in Dnmt1 

knockdown recombinant murine stem cells (Lei et al., 1996). DNMT3A and 

DNMT3B were found to have equal methyltransferase activity for unmethylated and 

hemi-methylated substrate DNA. Further research revealed that they have relaxed 

substrate specificity and can methylate symmetrical CpApG and GpTpC triads, 

though it binds preferentially to CpG dyads. The rarity of non-CpG methylation in the 

human genome, taken with the above, suggests that DNMT3A and DNMT3B hemi-

methylate cytosines in these three contexts, before DNMT1 introduces symmetrical 

methylation on the unmethylated strand at CpG loci only (Ramsahoye et al., 2000).   

A fourth gene lacking methyltransferase activity was identified as having a cysteine-

rich region homologous to similar regions in the de novo DNMT3s (Aapola et al., 

2000).This gene was named DNMT3-Like (DNMT3L) and was found to only be 

significantly expressed in germline cells. Dnmt3Lnull mice are sterile and Dnmt3L+/- 

offspring of maternal Dnmt3L-/- mice are nonviable. It emerged that this was 
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because loss of Dnmt3L function lead to a failure to methylate maternally imprinted 

genes during oogenesis (Bourc’his et al., 2001). Further work revealed that 

[Dnmt3a-/-, Dnmt3b+/-] oocytes were also unable to establish imprinting, suggesting 

that DNMT3A and DNMT3L in combination are responsible for initiating imprinting 

during development (Hata et al., 2002). Immunoprecipitation studies of DNMT3L 

revealed that it binds specifically to histone protein H3 and that successive 

methylation of H3K4 prevented this interaction (Ooi et al., 2007). It is thus clear that 

post-meiotic de novo DNA methylation depends at least in part on the underlying 

chromatin landscape being amenable to DNMT3L binding. 

1.4.2 DNA Methylation Erasers 
DNA methylation is removed through passive and active mechanisms. The former 

can rely on exclusion of DNMT1 or UHRF1 from the nucleus, leading to a dilution of 

5mC across successive generations. Another form of passive removal also relies on 

replication-based dilution of 5mC, but in this instance 5mC is oxidised by TET1, 

TET2 or TET3 to 5-hydroxymethylcytosine (5hmC). DNMT1 has a considerably 

weaker substrate affinity for 5hmC and so DNA methylation is not maintained over 

successive generations and is diluted out in a similar fashion (Hashimoto et al., 

2012). 

Suggested active mechanisms of DNA demethylation also involve TET enzymes. 

One proposed mechanism is that 5mC is oxidised to 5hmC which is then 

deaminated to 5-hydroxyuracil (5hU) by activation-induced deaminase (AID). 5hU 

would then be replaced by cytosine through base excision repair as several DNA 

glycosylases have high affinity for 5hU:G pairs. However in vitro work has 

demonstrated that bulkier adducts to the cytosine ring increasingly block AID 

activity, thus this mechanism is unlikely (Nabel et al., 2012; Rangam et al., 2012). 

TET enzymes are also capable of successively oxidising 5hmC to 5-formylcytosine 

and 5-carboxylcytosine (5caC). These moieties are substrates for the thymine DNA 

glycosylase TDG, and depletion of TDG in murine ES cells leads to detectable 

increases in 5caC (He et al., 2011). Modular structures and catalytic pathways of 

enzymes involved in DNA methylation and demethylation are summarised in 

Figures 5 and 6 (Wu and Zhang, 2014a). 
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Figure 5: Writers, maintainers, and erasers of DNA methylation. Catalytic domains responsible for DNA 
methylation, 5mC oxidation and 5fC/5caC excision are shown in light blue, green and magenta 
respectively. Domain abbreviations are as follows: ADD, ATRX-DNMT3-DNMT3L; BAH, bromo-
adjacent homology; CXXC, zinc-finger Cysteine-X-X-Cysteine; DSBH, Double-Stranded β-Helix; 
MTase, DNA methyltransferase domain; PHD, Plant homeodomain; PWWP, proline-tryptophan-
tryptophan-proline motif; SRA, SET and RING associated; RING, Really interesting new gene; UBL, 
ubiquitin-like domain; UDG, Uracil DNA Glycosylase. Figure adapted from Wu and Zhang, 2014a 

 

 

Figure 6: Catalytic pathways of passive demethylation (TET only) and active demethylation (TET & 
Base Excision Repair) mechanisms. Figure adapted from Wu and Zhang, 2014b 

 

1.4.3 DNA Methylation actors  
DNA methylation has a range of functions exquisitely dependent on local genomic 

and epigenomic context (Jones, 2012). Typically, methylation at promoters 

correlates with gene silencing, while active promoters are unmethylated. This 

means of regulation is tightly linked with chromatin structure and modifications: in an 

active promoter the transcription start site (TSS) is depleted of nucleosomes. 

Nucleosomes which flank an active TSS bear H3K4me3 marks which prevent 

DNMT3L binding, or may contain H2A.Z, a histone protein which also blocks de 
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novo methylation. The relationship between H2A.Z and methylation is bidirectional, 

as depletion of H2A.Z deposition results in global hypermethylation, while disruptive 

mutation of DNMTs increases H2A.Z presence (Zilberman et al., 2008). 

Furthermore, chromatin immunoprecipitation sequencing (ChIP-Seq) analyses of 

TET1 distribution revealed that TET1 localises to active promoters which overlap 

CpG islands (Wu and Zhang, 2011), as TET1’s CXXC motif binds strongly to 

unmethylated CpG dyads (Zhang et al., 2010). TET presence at these sites 

therefore maintains demethylated regions by oxidising local 5mC as part of its 

previously described role in removal of methylation.  

Conversely, silenced promoters tend to contain nucleosomes and methylated CpGs. 

A well-studied example is the DNA mismatch repair protein MLH1, which is 

frequently silenced in cancer. Methylation of MLH1’s promoter directly correlates 

with nucleosome occupancy and in turn with decreased expression. Treatment of 

MLH1-silenced cells with 5-aza-2’-deoxycytidine, a cytosine analogue resistant to 

methylation, is sufficient to demethylate the promoter, remove nucleosomes and 

restore expression (Lin et al., 2007). It is thus clear that DNA methylation emerges 

from and can remodel the underlying chromatin landscape. 

An essential function of DNA methylation in humans is repression of transposon 

activity in somatic cells (Walsh, Chaillet and Bestor, 1998). Transposons are 

parasitic DNA sequences that can copy and paste themselves across the genome. 

In humans transposons are thought to comprise almost 60% of the total genome (de 

Koning et al., 2011), with copies of one sequence (Alu) comprising up to 10% of the 

human genome. As well as impairing overall genomic stability in somatic cells which 

can contribute towards progression of cancer (Roman-Gomez et al., 2008), in some 

instances disease can be caused by gene-specific insertions in the germline 

(Dombroski et al., 1991). Transposons and indeed all repeat elements are enriched 

with CpG dinucleotides compared to the rest of the genome, albeit less so than CpG 

Islands, with Alu sequences alone containing 23% of all genomic CpGs (Luo, Lu 

and Xie, 2014). These sequences are highly methylated in somatic cells, and 

demethylation is associated with increased activity and subsequently is reflected in 

the global demethylation observed in many types of cancer.  

Study of the difference in methylation landscapes of the active and inactive X 

chromosome has greatly informed our understanding of consequences of DNA 

methylation based on genomic context. Contrary to expectations, a ground-breaking 

study discovered that the active chromosome is 2.4 times more methylated than the 
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inactive chromosome (Hellman and Chess, 2007). Subsequent experiments 

confirmed that the inactive chromosome was mostly methylated at promoter 

regions, while the active chromosome exhibited extensive gene-body methylation, 

particularly in exons. As well as correlating with active transcription, gene-body DNA 

methylation has been linked to alternative splicing by preventing interactions 

between CTCF and DNA. CTCF is a scaffolding protein which binds to DNA with 

relatively low specificity and in doing so coordinates chromatin loops. This is thought 

to affect the kinetics of RNA Polymerase II during transcription, affecting the 

incorporation of additional exons (Shukla et al., 2011; Racko et al., 2018). An 

important example of this is to be found in activation of CD4+ T-Cells, where in 

naïve cells CD45 is unmethylated at exon 5, allowing CTCF to bind. Subsequently 

an isoform of CD45 containing exon 5 is expressed. However, exon 5 is methylated 

in activated CD4+ T-Cells, preventing CTCF binding and excluding exon 5 from the 

transcript (Marina et al., 2015). CTCF frequently colocalises with TET1 and reporter 

constructs with a CTCF binding site are hypomethylated compared to analogous 

constructs lacking a binding site, suggesting that CTCF may be able to establish 

demethylation (Stadler et al., 2011).  

Canonically, DNA methylation has been assumed to block binding of proteins such 

as CTCF and transcription factors such as those which bind to cAMP-Response 

Elements (CREs). This model stems from early work describing how methylation of 

CREs in the proenkephalin promoter inhibit expression in cell culture, and a reporter 

gene study of promoter CRE methylation which showed similar effects on β-globin 

expression (Iguchi-Ariga and Schaffner, 1989; Comb and Goodman, 1990). Yet 

recently evidence has emerged that CpG methylation of motifs may increase the 

binding affinity of some transcription factors, such as CEBPβ  (Zhu, Wang and Qian, 

2016). This is perhaps surprising as until recently this property was associated only 

with proteins containing a Methyl-Binding Domain (MBD), members of a family 

known as MBD proteins. 

The first two MBDs to be identified were Methyl-CpG Binding Proteins 1 and 2 

(MeCP1 and MeCP2 respectively), although MeCP1 was later discovered to be a 

protein complex containing MBD1 (Meehan et al., 1989; Lewis et al., 1992; Cross et 

al., 1997). Identification of the MBD allowed cDNA screening for new family 

members, leading to the identification of MBD2, MBD3 and MBD4, of which MDB1, 

MDB2 and MBD4 were found to specifically bind methylated DNA in vitro and in 

murine cell culture (Hendrich and Bird, 2015).  
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Perhaps unsurprisingly, although their shared function is to bind methylated DNA, 

different MBDs play different roles. MBD1 interacts with chromatin assembly factor 

1, and the two proteins localise to heterochromatin in the nucleus (Reese et al., 

2003). This suggests that MBD1 may play a role in establishing heterochromatin, or 

at least in its maintenance. As well as an MBD, MBD1 contains a transcriptional 

repression domain at its C-terminus which can silence genes without the assistance 

of chromatin assembly factor 1 (Ng, Jeppesen and Bird, 2002). Yet MBD1 is also 

alternatively spliced into at least five isoforms which can contain either zero, two or 

three CXXC motifs, motifs which as described previously have high binding affinity 

to unmethylated CpG dyads (Saya et al., 2002). Because of this, transcriptional 

repression and chromatin remodelling promoted by MBD1 is likely to depend on 

expression levels of the splice isoforms, particularly the balance between the 0/2 

and 3 CXXC motif containing isoforms, as well as local density of DNA methylation 

in the sequences it binds to. While these four MBD1 isoforms are promiscuous, the 

fifth isoform lacks a CXXC domain and so only binds to methylated DNA. It has 

been shown to block TET1 binding and therefore prevent oxidation of 5mC (P. 

Zhang et al., 2017). In this sense it can be considered to have a more defined and 

perhaps distinct role from the other isoforms, which are less competitive and thus 

poorer inhibitors of TET1 but as a result allow fine tuning of TET1 activity depending 

on the local genomic landscape. 

MBD2 has been shown to recruit the MeCP1 complex, and in doing so associates 

with histone deacetylases which facilitate gene silencing (Ng et al., 1999). However, 

MBD2 also has two isoforms, of which MBD2a has an N-terminal domain which 

allows it to interact with RNA helicase a, a factor in CRE-binding (CREB) 

complexes. In doing so, MBD2a can actually activate expression of genes governed 

by CREB through binding to methylated, and thus canonically silenced, CREs 

(Fujita et al., 2003). 

MeCP1 is now also known as the NuRD complex. NuRD on its own cannot bind to 

methylated DNA, relying instead on MBD2 to recruit it. Interestingly, alongside 

MBD1, the closely-related MBD3 was also identified as part of the NuRD complex 

(Zhang et al., 1999). This prompted knockout experiments in mice where Mbd3-/- 

was found to be embryonically lethal, while Mbd2-/- mice were viable and could 

produce offspring (Hendrich et al., 2001). This suggested both differences in 

function and potential redundancy between the two genes and so NuRD complexes 

containing tagged MBD2 and MBD3 were purified and analysed. Strikingly the two 

MBD-NuRD complexes did not copurify and tagged complexes were found to 
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contain different subunits (Le Guezennec et al., 2005). Le Guezennec et al. 

hypothesise that MBD2/NuRD complexes bind to demethylated DNA and establish 

histone deacetylation, which favours binding of MBD3/NuRD complexes to 

deacetylated nucleosomes rather than to DNA. Thus deacetylation and 

transcriptional suppression can be established by MBD2 and maintained by MBD3.   

To further complicate matters, two paralogues of MBD3 have been identified with 

mutually opposing functions. MBD3L1 replaces MBD3 in the NuRD complex and 

can interact directly with MBD2, enhancing silencing of methylated genes without 

the need to bind to deacetylated nucleosomes (Jiang, Jin and Pfeifer, 2004). 

Conversely, MBD3L2 can compete with MBD2 for binding of the NuRD complex but 

lacks an MBD domain. In doing so, it can displace the NuRD complex, potentially 

clearing the way for transcriptional reactivation (Jiang et al., 2005). 

Less complex are the known roles of MBD4-6. MBD4 is a thymine glycolase with 

high affinity for symmetrically methylated CpGs where one methylated cytosine has 

undergone deamination to thymine (rather than uracil, the deamination product of 

unmethylated cytosine). In doing so it excises the thymine and plays a role in 

mismatch repair (Hendrich et al., 1999). The recently discovered proteins MBD5 

and MBD6, despite containing MBDs, do not show any ability to bind methylated 

DNA in vitro. However, they do localise to heterochromatin, suggesting a potential 

role in remodelling or maintenance (Sasai et al., 2010). 

It is clear from the above that MBD1-3 and MBD3L1-2 play complex functions 

depending on their splice isoform ratio, their relative stoichiometries, their 

subcellular localisation, and their interactions with underlying the chromatin and 

methylation landscape.  

Unlike MeCP1, MeCP2 is a single protein. Situated on the X chromosome, MeCP2 

is notorious for developing germline mutations which can cause the 

neurodevelopmental disorder known as Rett’s Syndrome, almost exclusively in 

females. Rett’s syndrome is characterised by early loss of speech, coordination, 

microcephaly, ataxia and autism, although it is typically non-lethal (Amir et al., 

1999). Like MBD1, MeCP2 contains both an MBD and a transcriptional repression 

domain which coordinates histone deacetylases. In fitting with the post-natal 

emergence of Rett’s Syndrome, MeCP2 is most highly expressed in mature neurons 

rather than developing precursors or other brain cell types such as astrocytes or glia 

(Kishi and Macklis, 2004). Here, incredibly, the absolute level of MeCP2 seems to 

correlate tightly with the level of CpG methylation, with high throughput ChIP-
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sequencing revealing that ~70% of CpGs (the proportion of genome-wide CpGs that 

are typically methylated in human brain (Ehrlich et al., 1982)) associate with MeCP2 

(Skene et al., 2010). This blanketing of neuronal DNA suggests a generic epigenetic 

control of transcriptional regulation, and indeed its role is more complex than simple 

transcription repression. Counter-intuitively, while disruption or upregulation of 

MeCP2 dysregulates thousands of genes 85% of those genes are upregulated in 

both cases (Chahrour et al., 2008). Like MBP2, MeCP2 associates with CREB1 at 

CREs near actively transcribed genes, as well as covering regions of methylated 

DNA and preventing TET-induced demethylation. 

As discussed above, DNA methylation has a complex bidirectional relationship with 

both underlying chromatin modifications and associated proteins which in turn are 

differentially enriched across genomic features. It is also clear that this relationship 

is extremely dynamic but also partitioned into several stages between DNA 

methylation and demethylation, and chromatin condensation and relaxation, 

allowing for subtle and adaptive control of gene expression. It is therefore not 

surprising that DNA methylation can be influenced by a cell’s environment, be this 

during differentiation in response to intercellular signalling, over the course of a 

disease or even as a lasting response after tobacco smoke exposure (Joehanes et 

al., 2016). With the recent development of new high-throughput technologies to 

measure changes in DNA methylation, epigenetic research has become 

increasingly useful in uncovering novel biological mechanisms and providing new 

insight into disease processes. 

1.5 Measuring DNA Methylation 
There are two approaches to measuring DNA methylation (global and specific) and 

methodology varies between them. Early research focused on global levels of DNA 

methylation, and so techniques such as high-performance liquid chromatography 

UV (HPLC-UV) (Kuo et al., 1980) or liquid chromatography mass spectrometry 

(LCMS) (Song et al., 2005) were developed to hydrolyse DNA, separate cytosine 

and 5mC through chromatography and then calculate the global 5mC/C ratio. 

Antibodies against 5mC can be used in ELISAs to measure global methylation with 

greater ease but a trade off in accuracy. These methods are useful when large 

changes in methylation are expected, such as in analysis of tumour-derived DNA. 

Due to their genomic abundance and enrichment of CpG sites, methylation levels at 

transposons such as LINE-1 are also studied as a surrogate marker of global DNA 

methylation levels (Yang et al., 2004).  
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A subsequent quantitative development in the study of global DNA methylation is 

the luminometric methylation assay (LUMA) (Karimi et al., 2006), which incorporates 

the restriction endonucleases HpaII and MspI. HpaII only cuts DNA at unmethylated 

CCGG sequences, while MspI recognises the same sequence but is insensitive to 

methylation. Each DNA sample is digested in two separate reactions using EcoRI 

and each respective enzyme, after which the EcoRI 5’-AATT and HpaII/MspI 5’-CG 

overhangs are filled in using a DNA Polymerase extension assay. This is done in a 

pyrosequencer, which uses predefined stepwise addition of nucleotides, 

incorporation of which is coupled with a luciferase reaction that produces light, to 

sequence DNA. The ratio between the light signal during the incorporation of 

guanosine and cytosine in paired MspI and HpaII-digested samples is equivalent to 

the global proportion of 5mC.   

The second approach to studying DNA methylation is site-specific and early 

methods also made use of restriction enzymes. DNA can be fragmented and then 

digested with the methylation-sensitive HpaII enzyme which only cuts at 

unmethylated sites, before PCR using primers which anneal around the CpG of 

interest. The amount of product generated from intact fragments, normalised to a 

separate control amplicon from the same sample which does not contain CCGG, 

can be used to quantitate differences in methylation between samples within the 

amplicon, albeit with low resolution. Another approach using next generation 

sequencing is to digest DNA using HpaII, sequence the fragmented products and 

align them to a reference genome: the number of sequencing reads at each intact 

HpaII site corresponds to the methylation level at that site (Kurdyukov and Bullock, 

2016).  

The current gold standard approach to detecting DNA methylation is to begin with 

bisulphite conversion (Frommer et al., 1992). This chemical process results in the 

deamination of unlabelled cytosine to uracil, which is typically followed by PCR 

resulting in a conversion to thymine. Methylated cytosines are highly resistant to 

conversion and so remain unaffected.  After this treatment CpG sites can be 

assayed for cytosine or thymine using standard genotyping techniques, allowing for 

a ratio of C:T and thus a ratio of methylated:unmethylated cytosine at the site to be 

calculated. However, the product of bisulphite conversion is fragmented, single 

stranded DNA with increased sequence redundancy, which has consequences for 

long-term storage and assay design. After conversion a simple melt curve qPCR or 

the difference in Ct between two qPCR reactions with primers specific to the 
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methylated and unmethylated site can be used to calculate relative methylation 

levels. 

In the absence of a prior hypothesis, measuring DNA methylation at hundreds of 

thousands of loci is required. Whole Genome Bisulphite Sequencing (WGBS) is the 

most expensive means of detecting methylation on this scale in terms of sample 

input, cost and analysis. Because most of the data collected does not relate to 

cytosine methylation, Reduced Representation Bisulphite Sequencing (RRBS) is a 

more cost-effective approach which involves digesting genomic DNA using MspI to 

enrich the sample for fragments terminating in a digested CpG before bisulphite 

treatment and sequencing.  

Illumina Infinium arrays are cheaper per sample than the previous two techniques 

but are limited to measuring methylation at approximately 27,000, 450,000 or 

850,000 sites, and the distribution of probes on the former two arrays is mostly 

restricted to CpG islands and shores.  Moreover, the arrays can currently only be 

used to investigate human DNA preventing study of methylation in mouse models of 

disease. Yet the cost-efficiency of the array has permitted the analysis of sufficient 

numbers of samples to power studies of genome-wide DNA methylation, and as a 

result the array has become widely used. The technology underpinning the Infinium 

array is described in more detail in the next section. 

1.5.1 The 450K Array 
The 450K Infinium beadchip array contains probes targeting 485,764 CpG sites 

genome-wide, covering 99% of RefSeq genes with an average of 7 probes per gene 

(Illumina, 2012). Each probe contains over 100 nucleotides, of which two at the 

centre correspond to the CpG site. There are two types of probe chemistries and 

the first (Type I) is inherited from the 450K’s 27K precursor array. These consist of a 

pair of probes at each site, one of which recognises unmethylated CpGs and 

contains a CA corresponding to GT sequences where unmethylated cystosines are 

converted to thymines, and one which recognises methylated CpGs and contains a 

CG corresponding to an unconverted guanine-cytosine pair. Because DNA 

methylation is thought to generally correlate across short sections of DNA (~50bp), 

CpGs underlying the probe hybridisation site are assumed to be methylated or 

unmethylated per probe type and the probe sequence is designed to reflect this 

(Bibikova et al., 2006; Eckhardt et al., 2011). The second type (Type II) uses one 

probe per site and at the 3’ end is a cytosine to complement the guanine of a CpG 

pair, allowing either adenine or guanine to be incorporated upon hybridisation to 
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unmethylated or methylated DNA. In doing so probes per site decreases from 2 to 

1, and underlying CpG sites are accommodated for by including variable “R” 

nucleotides, preventing bias towards different hybridisation efficiencies of 

methylated or unmethylated DNA amplicons. Probes lose binding efficiency after 

inclusion of more than 3 R nucleotides, and so while allowing greater target 

capacity, Type II probes can only reliably target sites in regions of low CpG density 

(Bibikova, Barnes, et al., 2011). 

Once DNA is hybridised to probes, labelled nucleotides are incorporated in a single-

nucleotide extension step. With methylated DNA cytosine or guanine are 

incorporated and if DNA is unmethylated adenine or thymine are incorporated. The 

former nucleotides are labelled with biotin and the latter with 2,4-dinitrophenol. 

Immunochemistry can then be used to identify methylated and unmethylated loci 

based on green or red fluorescence respectively. Site-specific signal intensity is 

recorded and output per sample in intensity data (iDAT) files. The process of 

hybridisation and extension based on probe type is illustrated in Figure 7. 
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Figure 7: Type I (A) and II (B) 450K probe chemistries. Type I probes are complementary to either 
methylated or unmethylated DNA, hybridisation of DNA to either probe is linked to a single nucleotide 
extension at the site immediately adjacent to the CpG target which is identified by 
immunofluorescence. Type II probes allow incorporation of either adenine or guanine at the site 
complementary to the target cytosine, meaning the same probe can report either a methylated (red) or 
unmethylated (green) signal (Figure from Bibikova, Le, et al. 2011). 

 

1.5.2 Addressing technical limitations of the 450K Array 
The technical limitations of the 450K array have been extensively discussed in the 

research community and reviewed in the literature. The intensities in iDAT files are 

used to calculate a ratio called “β” (𝛽𝛽 = 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀𝑦𝑦 𝑓𝑓𝑓𝑓𝑦𝑦𝑓𝑓𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓
𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀𝑦𝑦 𝑓𝑓𝑓𝑓𝑦𝑦𝑓𝑓𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓+𝑈𝑈𝑓𝑓𝑈𝑈𝑀𝑀𝑀𝑀ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀𝑦𝑦 𝑓𝑓𝑓𝑓𝑦𝑦𝑓𝑓𝑀𝑀𝑓𝑓𝑓𝑓𝑓𝑓+𝛼𝛼

), 

where α is a corrective factor.  β varies from 0 (totally unmethylated) to 1 (totally 

methylated) and so is an intuitive measure of DNA methylation, but in 2010 Du et al. 

showed that a logit-transformed variant of  β, “M”, leads to less bias during statistical 

manipulation of extreme β values (Du et al., 2010).  

In 2013 Chen et al. published a list of cross-reactive probes included on the array 

(Y. A. Chen et al., 2013), suggesting these probes could not be considered reliable. 
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In the same year Triche et al. devised a pipeline (normal-exponential out-of-band, or 

“noob”) for correcting background fluorescence (Triche et al., 2013). By that time it 

was also known that the two different probe chemistries present on the array lead to 

heteroscedastic bias between type I and II probes, possibly because Type II probes 

had higher background signal and so β values are compressed away from 0 and 1, 

and towards the median of β = 0.5 (Dedeurwaerder et al., 2011; Pidsley et al., 

2013). A number of normalisation strategies were subsequently published to correct 

this bias and thus increase Type II assay sensitivity (Maksimovic, Gordon and 

Oshlack, 2012; Pidsley et al., 2013; Teschendorff et al., 2013).  

Illumina’s GenomeStudio software allows basic manipulation of 450K data, but not 

the adjustments detailed above. Researchers began to develop and expand upon 

multiple diverse packages using the statistical platform R for data processing, 

quality control and complex analysis. Wrappers such as RnBeads and ChAMP 

began to gather these functions into relatively user-friendly programming steps in 

2014 (Assenov et al., 2014; Morris et al., 2014). Interest also surrounded the issue 

of cellular heterogeneity and how imbalances of cell composition between and 

within sample groups could contaminate data. Houseman et al. published a 

reference-based method for blood and later a reference-free method for other 

tissues to gauge cell composition from methylation data, which researchers adopted 

as a tool to regress out the effects of such changes from EWAS (Houseman et al., 

2012; Houseman, Molitor and Marsit, 2014). Such corrections are now regarded as 

“critical” for epigenetic analysis of heterogeneous tissues (Jaffe and Irizarry, 2014). 

In 2016 a list of probes overlapping single nucleotide polymorphisms with mean 

allele frequencies of 5% and above was published and while these may have utility, 

for example in imputing ethnic background of the sample donor, many studies 

routinely exclude these probes from analysis (Zhou, Laird and Shen, 2016). Various 

permutations of these corrections are regularly applied in any study which 

incorporates 450K array data, and discussions of the technical constraints of the 

Illumina BeadChip platforms and how best to process data continue.  
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1.6 DNA Methylation in Neurodegeneration 
Many studies of altered DNA methylation in disease have a major limitation in that it 

is difficult to establish whether the observed effects are causal or a consequence of 

pathogenesis. This is particularly difficult to resolve in studies of central nervous 

diseases, where the affected tissue can only be sampled post mortem and therefore 

pathology is usually advanced. Study of blood-derived DNA as a proxy tissue is a 

useful means of identifying methylation sites which may become increasingly 

altered across the course of the disease, and in some instances such changes have 

been found to reflect similar changes in the brain (Masliah et al., 2013). Although 

familial neurodegenerative diseases have been studied, it is perhaps sporadic 

disease where study of DNA methylation might prove most useful, as these forms of 

disease are the most prevalent and lack Mendelian genetic determinants. Instead, 

alongside disease modifying polymorphisms, risk has been linked to lifestyle factors 

such as exercise (Sofi et al., 2011), diet and Body Mass Index (Luchsinger and 

Gustafson, 2009), years of education (Larsson et al., 2017), smoking history (Wang 

et al., 2011), sleep disturbance (Clark and Warren, 2013) and late-life depression 

(Singh-Manoux et al., 2017). Study of differential methylation in disease may reveal 

how these factors modify disease risk and pathogenesis, as well expand upon 

understanding of the disease mechanism itself. Yet dementia and other forms of 

neurodegeneration are frequently heterogeneous in clinical presentation, age of 

onset, disease duration and neuropathological profile, confounding dissection of 

nuanced pathological mechanisms.  

1.6.1 DNA Methylation and Amyotrophic Lateral Sclerosis  
Amyotrophic Lateral Sclerosis (ALS) is a complex and variable neurodegenerative 

disorder characterised by the progressive death of motor neurons (Zarei et al., 

2015). As with many neurodegenerative diseases, almost 95% of cases are 

sporadic and median age of onset is 64. ALS is incurable and disease duration is 

typically 2-3 years, although some individuals such as the late Stephen Hawking 

have been known to survive for much longer after initial diagnosis.  

Several genes are associated with both familial and sporadic ALS and of these 

C9orf72 is the most common (Dejesus-hernandez et al., 2011; Renton et al., 2011). 

A hexanucleotide expansion (GGGGCC) in this region is associated with disease 

development, and profiling of blood-derived DNA revealed an association with 

expansion length, shorter disease duration, and hypermethylation of a CpG island 

adjacent to the expansion (Xi et al., 2013). This is remarkably similar to 
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observations that in peripheral blood mononuclear cell-derived DNA the length of a 

GAA expansion in FXN, the most common cause of Friedreich’s Ataxia (FA), 

positively correlates with upstream hypermethylation and downstream 

hypomethylation. Upstream hypermethylation in turn inversely correlated with age of 

onset and FXN expression, while downstream hypomethylation correlated positively 

with earlier age of onset (Evans-Galea et al., 2012). Because of the difficulty of 

accurately sequencing the length of such repeat expansions, altered DNA 

methylation at the expansion boundary was thus a useful prognostic marker in FA 

and is potentially useful in ALS. Similarly, Nuclear Magnetic Resonance Imaging of 

ALS patient brains identified an association with increased C9orf72 promoter 

methylation in blood and reduced grey matter loss over time (McMillan et al., 2015).  

As DNA methylation varies between cell types, studies of leukocyte-specific 

methylation in whole blood have also been used as a proxy measure of leukocyte 

proportions in monozygotic twins discordant for ALS. Researchers found that over 

the disease course regulatory T-cells are gradually depleted and macrophage 

populations increase, which in combination leads to increased production of the 

inflammatory cytokines IL-1, IL-6 and TNF-α (Lam et al., 2016). This reduction of 

regulatory T-cells mirrors findings from ALS model mouse research, and further 

investigation showed that the demethylated region specific to regulatory T-cells in 

the first intron of FOXP3 was hypermethylated in this cell population in rapidly 

progressive ALS patients (Beers et al., 2017). This dysregulation of cytokine 

production in the periphery is particularly notable as motor neuron axons are outside 

the blood-brain barrier, and thus particularly vulnerable to aberrant and cytotoxic 

leukocyte activity. Findings such as these raise the possibility of epigenetic therapy, 

and follow-up work by Beers et al. showed that in vitro expansion of regulatory T-

cell populations could restore normal inhibition of effector T-cells, suggesting 

extraction, expansion and re-transfusion of ALS patient regulatory T-cells may have 

a therapeutically effect (Beers et al., 2017). 

1.6.2 DNA Methylation and Parkinson’s Disease 
Parkinson’s Disease (PD) is the second most common neurodegenerative disease 

and is clinically characterised by rigidity and tremor, followed by psychological 

symptoms and cognitive decline. The median age of onset is 60 and risk increases 

with age, while median disease duration is 15 years (Lee and Gilbert, 2016). Males 

are between 1.5 and 4 times more likely to develop PD, potentially in part due to the 

neuroprotective role of oestrogen in dopaminergic neurons which are particularly 
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vulnerable in PD (Gillies et al., 2014). There are multiple subtypes of PD, each with 

a wide range of clinical presentations and trajectories, making management of the 

disease difficult. 

PD is also associated with several genes, although mutations in these genes are 

not completely penetrant and so a complex array of factors are thought to underlie 

pathogenesis. SNCA, also known as alpha-synuclein, is heavily deposited in post-

mortem PD brain and so has been a primary focus of research in molecular and 

genetic studies of PD. Aggregated deposits such as these “Lewy Bodies” are 

observed in many dementias and proteopathic seeding and protein dysmetabolism 

are thought to underlie many neurodegenerative diseases. SNCA expression was 

found to be elevated in the substantia nigra of PD patient brains (Gründemann et 

al., 2008), and a CpG island overlapping the promoter was found to be 

hypomethylated in PD patient substantia nigra, putamen and cortex-derived DNA 

(Jowaed et al., 2010). It is possible that increased expression of a protein prone to 

aggregation and deposition could over time be sufficient to initiate pathogenesis, in 

which case demethylation of the promoter region may be a necessary step during 

the early stage of disease. Demethylation and upregulation of SNCA in HEK 293 

cells was shown to be induced by dopamine (Matsumoto et al., 2010). While there 

are obvious differences between HEK 293 cells and neurons, these data do suggest 

an explanation for how dopaminergic neurons in the substantia nigra may be 

particularly vulnerable during PD pathogenesis. Increased expression of SCNA 

initiates a positive feedback loop: SCNA sequesters DNMT1 in the cytoplasm, 

excluding it from the nucleus and resulting in a 30% global reduction of DNA 

methylation in PD frontal cortex-derived DNA (Desplats et al., 2011). Given that 

neurons are post-mitotic, it is likely that this decrease in methylation is specific to a 

non-neuronal cell type which loses DNA methylation over successive mitotic 

generation.  

Methylation potential has been proposed as a prognostic and diagnostic marker in 

PD. The plasma SAM/SAH ratio is a measure of the physiological capacity to 

regulate DNA methylation, with higher values indicating greater capacity. This ratio 

correlates positively with DemTect score, a measure of cognitive function (Kalbe et 

al., 2004), and negatively with platelet SCNA levels (Obeid et al., 2009). This is 

particularly relevant within the context of PD as a common prodrug therapeutic, L-

Dopa, must be methylated to become active. This process depletes cerebral SAM 

by between 36-76% in PD patients receiving L-Dopa. Consequently, these has been 

speculation that supplementing PD patient diets with folate and vitamin B12 may 
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prevent hyperhomocysteinaemia and potentially delay disease progression (Müller, 

Woitalla and Kuhn, 2003). Whether there is a connection between SAM/SAH 

dysmetabolism and disease severity or rate of progression remains uninvestigated 

and altered DNA methylation profiles in patients being treated with L-Dopa may be 

worth studying. 

1.6.3 DNA Methylation and Alzheimer’s Disease 
Alzheimer’s Disease (AD) is the most common form of dementia. Risk increases 

with age, and while a number of dominant causative mutations can cause familial 

forms of the disease, over 95% of cases are late onset Alzheimer’s Disease (LOAD) 

(Lu et al., 2013). Some cases of LOAD may not be sporadic in the purest sense as 

a common and potent genetic risk factor has been identified, namely the 

apolipoprotein 4 allele APOE4 which is enriched more than two-fold in LOAD 

patients compared to the general population (Saunders et al., 1993; van der Flier et 

al., 2011). Study of familial AD has revealed mutations in genes which handle 

metabolism of the amyloid precursor protein (APP). Neuropathological hallmarks of 

Alzheimer’s disease include deposition of aggregated forms of amyloid-β, a 

metabolite of APP, and deposition of hyperphosphorylated tau, a microtubule 

associated protein, into structures respectively named plaques and tangles. These 

two proteins have been studied extensively and while multiple biological processes 

are known to be involved in AD pathology, pathogenesis remains incompletely 

understood as non-demented individuals can exhibit AD-like pathology without 

developing clinical symptoms (Lue et al., 1996).  

Early studies of DNA methylation in AD showed decreased immunoreactivity of 

5mC in neurons and glia of the post-mortem entorhinal cortex, an area of the brain 

affected at the start of AD pathogenesis, while neuronal DNMT1 immunoreactivity 

was also found to be reduced (Mastrianni et al., 2003). Interestingly this decrease in 

5mC correlates with the abundance of neurofibrillary tangles, deposition of which 

correlates well with the development of clinical symptoms. Hyperphosphorylation of 

tau was also shown to be dependent on the availability of SAM, as the tau 

phosphotase PP2A is activated by methylation at L309, thus a decreased SAM/SAH 

ratio leads to tau hyperphosphorylation in N2A cells and mouse brain (Sontag et al., 

2007). A decreased SAM/SAH ratio has also been found to result in PSEN1 and 

BACE1 promoter demethylation and upregulation, which in turn shifts APP 

metabolism towards producing greater fractions of amyloid-β (Fuso et al., 2005). 
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SAM is a methyl donor in many biological reactions, so to what extent dysregulation 

of DNA methylation contributes to this imbalance is unclear. 

DNA derived from frontal cortex and hippocampal tissue is not differentially 

methylated at genes known to harbour causative mutations in AD, such as APP and 

PSEN1 (Barrachina and Ferrer, 2009). However, a DNMT3B haplotype (rs998382, 

rs2424913) was found to increase risk of developing AD to an odds ratio of 3.03 

(Pezzi et al., 2014), and subsequently shown to interact with the APOE4 allele to 

synergistically increase risk to an odds ratio of 11.13, almost double the expected 

ratio of both haplotypes combined (de Bem et al., 2016). The precise relationship 

between the two haplotypes and potential of increased AD risk is unclear. 

As well as differential methylation at genes known to cause or predispose towards 

AD, with the advent of genome-wide methylome profiling dozens of genes have also 

been shown to exhibit differential methylation in AD in various tissues, as reviewed 

by Qazi et al. (Qazi et al., 2018). Reflective of the broad range of cellular 

dysfunction associated with AD, these genes relate to pathways such as 

inflammation and oxidative stress (COX-2, NGB, NF-κB, UQCRC1), cytoskeletal 

and cellular morphology (SYP, SORBS3, SPTBN4, ANK1, CDH23), and 

neurotrophic activity (BDNF, CREB, CREB5, TBXAR2). Of these, ANK1 has been 

reproducibly identified as becoming hypermethylated and indeed dysregulated as 

Braak stage increases in AD cortex across multiple cohorts of patients and in 

several studies, the latest of which implicate this gene in other neurodegenerative 

diseases such as Huntington’s Disease and Parkinson’s Disease (De Jager et al., 

2014; Lunnon et al., 2014; Mastroeni et al., 2017; Smith et al., 2019). However, 

while the biological functions of these genes make them good candidates for further 

research in the absence of functional studies their roles in disease pathogenesis 

and progression remain incompletely understood.  

1.7 Clinical aspects of DNA methylation 
It is important to note that the changes in DNA methylation observed in the 

neurodegenerative diseases discussed above are relatively modest, and rarely 

exceed 10%. However, due in part to the large changes in DNA methylation 

characteristic of the diseases, DNA methylation has been most successfully 

connected to clinical research in the context of cancer. While genome-wide 

alterations in DNA methylation are a hallmark of cancer, specific changes such as 

hypermethylation of the MLH1 promoter is almost diagnostic of sporadic 

endometrial cancer (Simpkins et al., 2002). Furthermore, measuring methylation at 
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the MLH1 promoter can triage patients who may have developed endometrial 

cancer as a consequence of Lynch syndrome, where MLH1 hypermethylation is not 

involved, rather than sporadic cancer more efficiently than genetic sequencing, with 

obvious benefits to counselling and disease management (Bruegl et al., 2014).  

Site-specific altered methylation was considered as a diagnostic tool in the context 

of breast cancer as early as 1997 and then considered as a prognostic tool in 2003 

(Huang et al., 1997; Chen et al., 2003). With the advent of genome-wide 

technologies, profiling DNA methylation in different tissues from various types of 

cancer patients has become easier and more rewarding. Oncologists have recently 

used the 450K array to establish a reference dataset of 9 control neurological 

tissues and 82 brain tumour classes, which were able to classify sample type using 

a simple random forest machine learning tool (Capper et al., 2018). Sensitivity and 

specificity of the machine learning model was 0.989 and 0.999 respectively, and in a 

replication cohort 977/1,104 patient samples could be matched to a tumour class, of 

which 838/977 classifications matched decisions made by histopathologists. The 

remaining 139 patient samples were further profiled in terms of DNA copy number 

and targeted sequencing, leading to diagnostic revisions in 129 of 139 cases. 

Because of the genetic heterogeneity of brain tumours, methylation analysis 

provides a cost-effective way to not only inform diagnosis but also potentially 

identify rare novel subclasses of cancer. 

The extent of lymphocyte invasion into a tumour is recognised to be prognostic of 

patient outcome, with greater infiltration associating with improved survival (Fridman 

et al., 2017). Using a support vector regression model, tumour-derived DNA 

methylation data can be deconvoluted to infer the proportions of immune cells 

present in a tumour biopsy, thus potentially improving patient stratification 

(Chakravarthy et al., 2018). Given the above, it is likely that DNA methylation data 

will increasingly inform cancer diagnosis and prognosis, with translational potential 

for studies of neurodegenerative disease. 

While brain biopsies are invasive and technically complex, liquid biopsies such as 

cerebral-spinal fluid and peripheral blood are more comfortable for the patient and 

easier to perform. A recent study found that, due to the large changes in DNA 

methylation found in cancer, methylation-dependent immunoprecipitation (MeDIP) 

of circulating tumour DNA from plasma has potential for cancer diagnosis (Shen et 

al., 2018). Because of the low abundance of normal cell-free DNA, let alone that 

derived from tumours, bisulphite conversion is likely to destroy extracted material 
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and thus be refractory to analysis.  MeDIP-sequencing bypasses this problem as 

sequences are enriched for by differences in regional methylation between case 

and control. Shen et al. found 14,716 DMRs between 24 pancreatic cancer patients 

and 24 matched controls, the majority of which (9,931) were hypermethylated in 

patients. Further work shows that this technique can be used to classify cancer type 

(pancreatic, breast, lung, renal, bladder, AML). Because of the uniquely dramatic 

changes to the methylome observed in cancer it may be that this technique is not 

tractable for profiling neurodegenerative diseases, but nevertheless this work is 

illustrative of the huge translational potential of studying DNA methylation. 

The prodrug 5-azacytidine, a cytosine analogue which cannot be methylated by 

DNMTs, was approved by the American Food and Drug Administration in 2004 for 

the treatment of myelodysplastic syndromes (MDS) , a group of blood cancers, and 

acute myeloid leukaemia (AML) (KAMINSKAS, FARRELL and WANG, YONG-

CHENG SRIDHARA, RAJESHWARI PAZDUR, 2005). Like many 

chemotherapeutics, 5-azacytidine interferes with DNA replication and does so by 

irreversibly inhibiting the action of DNMT1 (Friedman, 1981). As with any treatment 

which non-specifically disrupts DNA replication and thus cell division, there are 

many side effects from treatment with 5-azacytidine, including fever, gastrointestinal 

effects, headaches, dizziness, weakness and insomnia. Another analogue, 5-aza-2’-

deoxycytidine, was subsequently approved in 2006 by the FDA and by the 

European Commission for treatment of AML in 2012 (Agency, 2013). This analogue 

differs from 5-azacytidine in that it specifically inhibits DNMT1, whereas 5-

azacytidine can also be incorporated into RNA and inhibit RNA methyltransferases. 

Curiously there are to date no trials directly comparing the clinical efficacy of these 

drugs in AML, and a meta-analysis of both treatments revealed no significant 

difference between the two (Almasri et al., 2015). A comparative study in AML cell 

lines revealed disparate effects on cell function and viability, possibly as 5-

azacytidine also affects RNA processing and in fact is preferentially incorporated 

into RNA (Hollenbach et al., 2010). The effect of these drugs on genome-wide DNA 

methylation is relatively unknown as studies of DNA methylation in response to drug 

application in vitro has focused on genes previously associated with AML, and 

changes where observed did not tend to correlate with altered gene expression 

(Estey, 2013). Cultured bone marrow samples from MDS and AML patients which 

were profiled on the 450K array after 5-azacytidine treatment showed widespread 

differential methylation at 65, 769 probes, of which 65,664 were demethylated, 

albeit at a modest level (median Δβ = -0.028) after 24 hours. However, these effects 
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were found to cluster strongly with patient identity rather than treatment status, 

suggesting the data may be confounded by non-experimental factors (Tobiasson et 

al., 2017). 

1.8 Study Rationale and Aims 
As described above, study of DNA methylation in neurodegenerative disorders can 

not only uncover new associations between the disease and candidate genes, but 

also reveal new biomarkers, prognostic markers and targets for therapeutic 

intervention. Nuanced studies of specific genes have also correlated DNA 

methylation with known risk factors for the disease, such as an association with 

BDNF promoter methylation with blood C-Reactive Protein and homocysteine 

levels, and with APOE4 status in AD patients, suggesting a use of BDNF 

methylation as a proxy for disease risk (Chang et al., 2014). In the tauopathy 

Peripheral Supranuclear Palsy, a known risk haplotype at 17q21.31 acts as a 

methylation quantitative trait locus, with increased dosage of the risk allele 

correlating with degree of hypomethylation at the MAPT locus in both blood and 

brain (Li et al., 2014). In addition, association of magnitude of differential 

methylation with disease severity has been established in AD, where Braak staging 

was found to correlate with degree of hypermethylation at the ANK1 locus in the 

entorhinal cortex (De Jager et al., 2014; Lunnon et al., 2014). Methylation as a 

proxy measure of anticipated disease severity and risk is thus also potentially useful 

for patient counselling and monitoring. 

Except for codon 129 genotype, there are few routinely employed prognostic or risk 

markers for sCJD. PrP is the main candidate protein for targeted intervention, and 

treatments address general disease symptoms rather than specific biological 

pathways. Prion disease research and prion patient treatment could therefore 

potentially benefit from a study of the sCJD methylome. For example, changes to 

DNA methylation which associate with disease severity or rate of progression could 

serve as biomarkers for study of novel therapeutics, while changes which seem to 

be established before clinical decline may reflect pathogenic events.   

Study of DNA methylation in sCJD blood is a more practical and useful approach 

than study of brain tissue for several reasons: blood is much more accessible from a 

clinical perspective and so has promise as a source of disease biomarkers. 

Moverover, sCJD is a rare disease and not all patients have post mortem 

examination, whereas nearly all patients donate research blood when blood is taken 

for genetic testing to exclude mutations in PRNP, resulting in a larger sample 
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resource for study and greater statistical power. Blood can be sampled 

longitudinally, allowing correlation of the methylome at various stages of disease 

with clinical phenotype such as disease severity and rate of decline. Additionally, 

while prion-infected brain tissue is an Advisory Committee for Dangerous 

Pathogens (ACDP) category level 3 biohazard, blood from patients diagnosed with 

prion disease can be handled at ACDP containment level 2 meaning it can be 

processed in laboratories and hospitals without the need for specialised facilities or 

training. Finally, blood subtypes have been extensively studied and phenotyped for 

decades, and bioinformatic tools to deconvolute the effects of cellular heterogeneity 

in blood are significantly more advanced than the equivalent for brain tissue. 

There is a dearth of non-PRNP risk factors in sCJD and so a genome-wide 

approach is necessary to identify novel targets. Of the genome-wide methods 

considered earlier, the most cost-effective technology which permits study of 

enough samples to power a genome-wide study is the Illumina Infinium 450K array. 

This platform also benefits from extensive use in the literature, an abundance of 

open-access software to process and manipulate data, and good correlation with 

other validated technologies such as pyrosequencing (Pearson’s R2=0.967, 

(Dedeurwaerder et al., 2011)).  

The initial aim of the study was to profile genome wide methylation using 450K 

arrays in a control and sCJD cohort and investigate differential methylation between 

both groups, correlate methylation values in the sCJD group with clinical metadata, 

and use an array of bioinformatic tools to infer whether differential methylation might 

affect particular biological pathways, originate from specific leukocyte classes, 

overlap functional genomic features or prove useful as a diagnostic or prognostic 

tool as described above in the context of cancer. 

In the results and discussion chapters I will describe the results of this initial stage of 

the research, how findings were validated and replicated using pyrosequencing and 

how replicated findings were tested for specificity in DNA derived from other prion 

disease and patients with different neurodegenerative dementias. I will then explore 

the tissue specificity of observed epigenetic dysregulation and its effects on 

physiological function. Finally the the utility of 450K data as a diagnostic tool in 

predicting sCJD status will be considered. 
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2 Methods 

2.1 Discovery Study using Illumina Infinium 450K Beadchip 
2.1.1 Sample Selection 
Sporadic CJD samples were obtained from patients referred to the National Prion 

Clinic (London, UK) or the National CJD Research and Surveillance Unit 

(Edinburgh, UK) under a national referral system. Patients were enrolled into the 

National Prion Monitoring Cohort Study which entailed a visit to hospitals, hospices 

or patient homes by National Prion Clinic staff followed by a review of diagnosis of 

probable sCJD according to published World Health Organisation criteria (World 

Health Organisation, 2003) by senior clinicians (J. Collinge, S. Mead and/or P. 

Rudge). The Cohort Study allowed longitudinal monitoring of patients via further 

visits and telephone assessments, and the connection of each patient’s genetic, 

clinical, and neuropathological data over the course of the disease. This eventually 

lead to the development of the Medical Research Council Prion Disease Scale, a 

measure of disease severity between 20 (healthy) and 0 (moribund) based on 

clinical and care milestones, which in many cases could be retrospectively applied 

to patient samples taken before the development of the Scale based on clinical 

records (Thompson et al., 2013). Diagnosis of definite sCJD was confirmed 

postmortem by the Neuropathology Division of the National Hospital for Neurology 

and Neurosurgery (University College London Hospitals NHS Foundation Trust), 

according to the World Health Organisation criteria.  

For the discovery study 114 patients enrolled in the Cohort Study with pathologically 

confirmed definite sCJD were selected. 112 control samples were from healthy, 

non-cognitively impaired elderly volunteers recruited by the Medical Research 

Council Prion Unit from the National Blood Service (31 samples), or from healthy 

non-cognitively impaired elderly volunteers recruited by Cardiff and Vale NHS 

Hospital (75 samples). All donors were from the UK and of white British ethnic 

origin. Sample demographics for this section of the work and all subsequent 

sections are displayed below in Table 1. 
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Study 
Stage Group Number of 

individuals 
Average Age 

(range) 
Sex (% 

F) 

Codon 129 
(%) 

MM:MV:VV 

Average MRC 
Scale Score 

(range) 

Exploratory 
sCJD 114 68.0 (49-85) 50.9 46:22:32 6 (0-20) 

Control 106 69.0 (41-83) 55.7 Unknown 20 

Replication 
sCJD 72 59.9 (26-86) 58.3 54:23:23 4.5 (0-20) 

Control 114 78.2(61-93) 64.9 Unknown 20 

Specificity 

Control 114 78.2(61-93) 64.9 Unknown 20 
AD 59 71.8 (58-87) 47.5 Unknown NA 

iCJD 18 46.4 (41-53) 11.1 27:73:00 11.7 (1-18) 
IPD 11 48.5 (38-68) 72.7 44:44:12 18.6 (13-20) 

Brain 
sCJD 58 68.8 (40-87) 42.9 65:25:10 0 

Control 33 74.0 (41-89) 54.2 Unknown 0 
 

Table 1: Demographics of patient and control samples used in experiments. 

  

The clinical and laboratory studies were approved by the local research ethics 

committee of the National Hospital for Neurology and Neurosurgery (University 

College London Hospitals NHS Foundation Trust) and Cardiff and Value Hospital 

(Cardiff and Vale University Health Board), and the Institute of Neurology 

(Department of Brain Sciences, University College London) respectively. All patient 

samples were obtained with written consent from patients, next of kin, carers or 

Independent Mental Capacity, with ethical approval provided from the Scotland A 

Research Ethics Committee. 

Samples were selected from these two groups based on age and sex matching 

between control and sCJD groups. As control samples were less plentiful than sCJD 

samples, 56 male and 56 female donors within the typical age range of sCJD age of 

onset (55-85 years of age) were selected and matched with sCJD patients of 

equivalent age and sex.  Inclusion preference was given to patients enrolled in the 

Cohort Study from whom multiple tissue samples had been taken (specifically brain 

tissue, and RNA-stabilisation tube-stored blood for study of RNA). Where available 

clinical data such as PRNP codon 129 genotype, MRC Scale score, MRC Scale 

slope, and age of onset were linked to patient samples for associative analysis of 

these data with DNA methylation. In total 114 sCJD and 106 control samples were 

selected for study. Group demographics are displayed in Figure 8. 
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Figure 8: Violin plots of age density per sample group in the 450K array discovery study. Numbers per 
group are displayed above each plot. 

 

2.1.2 Extraction of genomic DNA from blood 
Extraction of genomic DNA from blood took place in a Class II MSC hood, with all 

used/unneeded materials being discarded into a container of 2 M NaOH and left to 

sterilise overnight. In order to optimise DNA extraction from whole blood, several 

kits and conditions were tested. These are listed below: 

Zymo Quick gDNA MiniPrep Kit 

Several conditions were trialled using this kit: the manufacturer’s protocol (a), the 

manufacturer’s protocol with proteinase K digestion steps (b, c), and the protocol 

with a proteinase digestion step and a subsequent leukocyte pelleting and wash 

step. 

a) 200 µl blood was mixed with 800 µl genomic lysis buffer, mixed by vortexing 

and left to stand for 5 minutes at room temperature. This was then 

transferred to a purification column which was centrifuged in a benchtop 

microfuge for 30 seconds at 10,000 g before the column was washed with 

200 µl DNA pre-wash buffer, centrifuged again under the same settings and 
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then washed with 500 µl DNA wash buffer. After another centrifugation step 

50 µl DNA elution buffer (preheated to 65oC) was incubated on the column 

for 5 minutes at room temperature before DNA was eluted by centrifugation 

at top speed for 30 seconds. 

b) As (a) with additional protease K (200 µl of 2x Digestion Buffer, 20 µl 

protease K) treatment for 10 min at 65oC before mixing with lysis buffer. 

c) As (a) with additional protease K treatment overnight. 

d) As (b) with centrifugation at maximum speed for 30 seconds, discarding of 

supernatant and resuspension of the pellet in 200 µl dH20 before mixing with 

lysis buffer. 

ZymoBeads 

a) 50 µl blood was mixed with 200 µl genomic lysis buffer, before mixing with 

10 µl ZymoBeads. After a 5 minute incubation at room temperature the tube 

was centrifuged at 1,500 g for 1 minute and the supernatant aspirated. The 

pellet was resuspended in 200 µl genomic lysis buffer before another 

centrifugation and aspiration. The pellet was resuspended in 200 µl DNA 

pre-wash buffer and transferred to a fresh tube before centrifugation and 

aspiration of the supernatant. The pellet was then resuspended in 500 µl g-

DNA wash buffer before a final centrifugation and aspiration. Elution buffer 

was preheated to 65 oC, 50 µl were mixed with the pellet and incubated for 5 

min before centrifugation at 10,000 g for 1 minute. The supernatant 

containing purified DNA was collected. 

b) As (a) but volume of blood increased to 200 µl and genomic lysis buffer to 

800 µl. 

PAXgene Blood DNA Kit 

Samples were processed according to Qiagen protocol but all volumes 

reduced by 1/5 to conserve sample volume. 1 ml buffer BG was mixed with 

10 µl PreAnalytiX protease. 1.7 ml blood was added to 5 ml buffer BG1 and 

mixed by inversion. Samples were centrifuged for 5 minutes at 2,500 g, after 

which the supernatant was discarded and 1 ml buffer BG2 was added and 

mixed by vortexing for 5 seconds. After centrifugation at 2,500 g for 2 

minutes the supernatant was discarded and 1 ml buffer BG3/PreAnalytiX 

protease was mixed with the pellet by vortexing for 20 seconds. Samples 

were incubated at 65oC for 10 minutes before a brief vortex and addition of 1 

ml 100% isopropanol. Samples were inverted 20 times before centrifugation 

at 2,500 g for 3 minutes. The supernatant was discarded and residual 
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isopropanol was mopped up using a cotton bud. The pellet was washed with 

1 ml 70% ethanol before centrifugation at 2,500 g for 3 minutes. The 

supernatant was discarded and tubes were left inverted for 10 minutes at 

room temperature, before precipitated DNA was dissolved in 200 µl buffer 

BG4 at 65oC for one hour, followed by overnight incubation at room 

temperature. 

Illustra Nucleon BACC3 Genomic DNA Extraction Kit  

8 ml of blood was poured into a 50 ml falcon tube containing solution A (30 

ml dH20, 10 ml reagent A) and mixed for 4 minutes. The tube was 

centrifuged at 1300 g for 5 minutes and supernatant discarded. The pellet 

was resuspended in 2 ml reagent B and transferred to a 15 ml falcon tube to 

which 500 µl Sodium perchlorate was added and mixed by shaking, followed 

by addition of 2 ml chloroform and more mixing by shaking. 300 µl resin 

beads were added to the suspension without shaking which was the 

centrifuged at 1300 g for 3 minutes. The supernatant was decanted into a 

fresh 15 ml falcon tube and DNA precipitated by addition of 2 ml ethanol. 

DNA was spooled onto the tip of a heat-sealed glass Pasteur pipette and left 

to air dry before resuspension in 500 µl Tris-EDTA buffer. 

 

2.1.3 DNA Quality Control 
Concentration and integrity of extracted genomic DNA was measured by 

TapeStation (Agilent), or a QuBit 2.0 fluorometer (Thermo Fisher) and agarose gel 

electrophoresis. A Clean and Concentrator kit (Zymo) was used to clean and/or 

concentrate fragmented (TapeStation DIN value <0.7) or dilute samples ([DNA] < 25 

ngµl-1).  Sample concentrations were adjusted to 25 ngµl-1. 

2.1.4 Bisulphite Conversion 

500 ng of DNA in 20 µl was bisulphite converted in a Veriti thermocycler (Thermo 

Fisher) overnight using an EZ DNA Methylation-Gold kit (Zymo) according to the 

manufacturer’s protocol. Briefly, 130 µl CT conversion reagent was mixed with 20 µl 

DNA and incubated in a thermal cycler for 10 min at 98oC, 150 min at 64 oC, then 

maintained overnight at 4oC.The following day converted samples were loaded into 

spin columns, washed and then desulphonated. After two more washes column-

bound bisulphite DNA was eluted in two volumes of 15 µl elution buffer then stored 

at -80oC. 
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2.1.5 Infinium Beadchip Hybridisation 
Bisulphite DNA was sent to UCL genomics for array hybridisation in accordance 

with the Infinium HD Assay 15019519_B, 2011 (Illumina, 2015). Briefly, bisulphite 

DNA was amplified, enzymatically fragmented, precipitated and resuspended before 

hybridisation. Samples were hybridised to Illumina Infinium 450K beadchips in two 

batches of 12 (July 2015, August 2015) and three batches of 96 (August 2015, 

December 2015, February 2016). Each batch of samples was spatially randomised 

across a 96-well plate to prevent segregation of CJD and control samples between 

separate beadchips, which might predispose the data to batch effects. A total of 112 

controls, 116 sCJD samples and 20 vCJD samples were hybridised, with each 

batch of 12 or 96 samples containing a methylated, unmethylated and commercial 

leukocyte DNA standard (Zymo, Zymo, AMSBIO). Beadchips were then washed, 

stained and dried before imaging using an iScan (Illumina). IDAT files were 

generated and delivered from UCL Genomics via dropbox. 

 

2.2 Data Analysis of Illumina Infinium 450K Beadchip Study 
2.2.1 Case-Control Study Using RnBeads 
RnBeads version 1.6.1 (Assenov et al., 2014) and dependent packages 

(RnBeads.hg38, biomaRt, GenomicRanges, GEOquery, ggbio, GOstats, Gviz, 

IlluminaHumanMethylation450kmanifest, methylumi, rtracklayer, sva, 

RefFreeEWAS, MCLUST, hexbin) were downloaded from 

https://bioconductor.org/biocLite.R and loaded into R version 3.2.4 (Team, 2016). 

IDAT files were deposited into a working directory subfolder named “data” and a 

second empty subfolder was created titled “analysis”: these were assigned to the 

variables “idat.dir” and “report.dir” respectively. The manifest .csv file containing 

sample IDs, technical data and patient metadata was placed in the working directory 

and assigned to the variable “sample annotation”. Case-control analysis settings 

were configured by Dr. Holger Hummerich and performed using the hg38 build of 

the human genome, default preprocessing, QC, normalisation and exploratory 

functions, and RefFreeEWAS to correct for cellular heterogeneity (Houseman, 

Molitor and Marsit, 2014), as well as inclusion of age and sex as covariates. Multiple 

testing was compensated for using Benjamini-Hochberg correction. The code used 

to define these parameters is displayed below in Box 1. The pipeline was run on an 

independent server using 20 core parallel-processing and completed analysis after 

30 hours and 18 minutes. 

https://bioconductor.org/biocLite.R
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library(RnBeads) 

 

rnb.options(assembly = "hg38", 

filtering.sex.chromosomes.removal=TRUE, 

identifiers.column = "Sample_ID", import = TRUE, 

preprocessing = TRUE, qc = TRUE, exploratory = TRUE, 

export.to.bed = FALSE, export.to.trackhub = NULL, 

exploratory.region.profiles = character(0), 

differential = TRUE,  

differential.comparison.columns = "Sample_Group", 

differential.site.test.method="refFreeEWAS", 

differential.adjustment.sva = TRUE, 

covariate.adjustment.columns = c("Gender","Age"), 

filtering.cross.reactive = TRUE, 

inference.sva.num.method = "leek", 

differential.adjustment.celltype = TRUE, inference = 

TRUE, inference.targets.sva = c("Sample_Group"), 

differential.enrichment = TRUE, logging.disk = TRUE, 

enforce.memory.management=TRUE) 

 

rnb.run.analysis(dir.reports = report.dir, 
sample.sheet = sample.annotation, data.dir = 
idat.dir, data.type = "infinium.idat.dir", 
save.rdata = TRUE) 

 

Box 1: rnb.options used to define parameters for the rnb.run.analysis function. Report 
and data directories were defined as “report.dir” and “idat.dir”, while sample sheet 
location was defined as “sample.annotation”. 
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2.2.2 Case-Control Study Using ChAMP 
ChAMP version 2.10.2 (Morris et al., 2014) and limma version 3.36.5 (Ritchie et al., 

2015) were downloaded from https://bioconductor.org/biocLite.R and loaded into R 

version 3.3.4. IDAT files and manifest .csv file were placed directly into the working 

directory. These were processed and corrected as per documentation (Data import, 

QC, BMIQ normalisation, SVD, batch correction using ComBat (Johnson, Li and 

Rabinovic, 2007), Houseman or EpiDISH (version 1.2.0) reference-based celltype 

correction (Houseman, Molitor and Marsit, 2014; Teschendorff and Zheng, 2017)) 

on a local dual-core processor machine with 32Gb RAM. Limma was then used to fit 

the corrected data to the following linear regression model:  

Corrected Beta ~ Sample_Group + Age + Sex 

 

https://bioconductor.org/biocLite.R
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The code used to complete this pipeline is displayed below in Box 2. 

 

 

 

 

 

library(ChAMP) 
library(limma) 
library(EpiDISH) 
myLoad<-champ.load() 
champ.QC() 
myNorm<-champ.norm() 
champ.SVD() 
myCombat<-champ.runCombat(batchname=c(“Slide”,”Array”) 
champ.SVD() 
 
#Houseman Correction 
myRefbase<-champ.refbase(beta=myCombat) 
CorrectedBeta<-myRefbase$CorrectedBeta*100 
 
#EpiDISH Correction 
ref.m <- centDHSbloodDMC.m[,1:6] 
out.l <- epidish(myCombat, ref.m, method = "RPC") 
message("Mean value for each estimated Cell Proportion:") 
print(colMeans(out.l$estF))cellFrac<-as.matrix(out.l$estF) 
message(names(which.min(colMeans(cellFrac))), 
        " has the smallest cell proportion, all other cell 
proportions will be corrected by linear regression.") 
lm.o <- lm(t(myCombat) ~ cellFrac[,-
1*which.min(colMeans(cellFrac))]) 
EpiBeta <- t(lm.o$res)+rowMeans(beta) 
CorrectedBeta<-EpiBeta*100; 
message("Correction for cellular heterogeneity between 
samples is complete.\n") 
 
#CorrectedBeta used in final linear model 
Mod <- model.matrix(~0 + Sample_Group + Age + Sex,  
data = myLoad$pd) 
colnames(Mod)[1:2] <- 
levels(factor(myLoad$pd$Sample_Group)) 
Contrast.matrix <- makeContrasts(sCJD - CTRL,  
levels = Mod) 
Fit <- lmFit(CorrectedBeta, Mod) 
Fit <- contrasts.fit(Fit, Contrast.matrix) 
Fit <- eBayes(Fit) 
BonferroniLimmaLong <- topTable(Fit,  
number = nrow(CorrectedBeta), coef = 1, 
adjust.method="bonferroni",p.value = 1.00 ) 
 

Box 2: ChAMP pipeline run in the working directory containing sample manifest.csv and .idat files. 
Either Houseman or EpiDISH correction is used depending on the analysis 
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Differential methylation (Δβ) values at CpG sites, p values and Bonferroni adjusted 

p values were extracted, and association between corrected beta values at these 

sites with MRC Scale Score and Slope (Thompson et al., 2013; Mead et al., 2016) 

and PRNP codon 129 genotype was tested for using bivariate Pearson’s correlation 

in SPSS version 25 (Corp., 2017).  

Bumphunter (Jaffe et al., 2012) was used within ChAMP to identify Differentially 

Methylated Regions (DMRs) from corrected data using default configuration. 

2.2.3 Inference of Signal Origin Using eFORGE 

To infer possible cell or tissue type specificity of results, the list of cg codes (eg. 

cg10636246) corresponding to significantly Differentially Methylated Positions 

(DMPs) were uploaded to eFORGE version 1.2 (Breeze et al., 2016). Site-specific 

associations with functional elements and modifications were investigated by 

associating the list with DNAse1 hypersensitive sites (DHSs) and Histone 3 (H3) 

marks using default parameters. 

2.2.4 Study of Differentially Variable Methylation Sites Using iEVORA 
To assess differential variability of methylation at CpG sites between sCJD and 

control samples, the iEVORA algorithm (Teschendorff et al., 2012, 2016) was 

downloaded from Teschendorff et al. 2016 (Supplementary Software 1) and applied 

to 450K corrected beta data in R version 3.3.4.  

2.2.5 Study of Genomic and CpG Feature Distribution Using GOLDMINE 
ChIP-Seq data from T-Cells, B-Cells, Monocytes, Neurotrophils and Natural Killer 

Cells (E04_15, E031_15, E062_15, E030_15, E046_15 respectively) were 

downloaded from the Roadmap resource (Roadmap Epigenomics Consortium et al., 

2015) 

(http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmM

odels/coreMarks/jointModel/final/). These were aligned to the hg19 build of the 

human genome, which was labelled with coding gene regions, Dnase 

Hypersensitive Sites, Transcription Factor Binding Sites and Enhancer Sites. DMRs 

and DMPs were aligned to the genome and genomic and CpG feature distribution of 

each group was called.  

http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/
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2.2.6 Study of Common Motifs Amongst Differentially Methylated Regions 

and Positions 
DMR sequences were input to MEME-Suite in FASTA format (Bailey et al., 2009). 

Identified motifs were probed for common transcription factor binding using MEME-

Suite’s TOMTOM tool under default settings. 

2.2.7 Enrichment Analysis of Differentially Methylated Transcription Factor 

binding sites and Differentially Methylated Genes 
Transcription factors found to be associated with DMRs (TOMTOM) and DMPs 

(Goldmine), and genes overlapping DMRS and DMPs respectively were uploaded 

separately to Enrichr (E. Y. Chen et al., 2013; Kuleshov et al., 2016) which 

associated uploaded genes with gene ontology and biological pathways using 

publicly available repositories. 

2.2.8 Machine Learning Classification of 450K Dataset  
CaRET version 6.0-81 (Kuhn, 2008) was used as a wrapper for machine 

classification of disease phenotype in a blinded subset of 450K array data. The 500 

and 5000 most significantly altered probes were screened for pairwise correlation 

and redundant probes were discarded. Beta values at remaining loci from 105 sCJD 

patient and 105 controls were united, randomised and partitioned into a training set 

(75% of samples) and a test set (25% of samples). 10-fold 10-repeat Recursive 

Feature Elimination (RFE) was used to select features for model training from the 

top 500 probes (ranked by significance of difference between sCJD and control 

groups) with iterative removal of one probe at a time.  

RFE-selected probes, probes corresponding to the 38 DMPs and the top 5000 

probes as ranked by significance were all used to train stochastic gradient boosting 

machine (gbm) models and averaged neural network models (avNNet) using 10-fold 

10-repeat crossvalidation in all instances. gbm models were tuned by adjusting the 

number of boosting iterations and tree depth, while avNNet models were tuned by 

adjusting number of hidden neuronal layers and weight decay value. 

Finally a stack of random forest (ranger), gradient boosting machine (gbm), 

multivariate adaptive regression splines (earth), support vector machine 

(svmRadial), and averaged neural network (avNNet) models were generated, 

compared for accuracy and then combined using generalise linear regression to 

form a meta-model using the caretStack function. 
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2.3 Validation and Replication Using Pyrosequencing 

2.3.1 Sample Selection 
A second age and sex-matched cohort of 72 sCJD and 114 control samples was 

assembled according to the same methods and criteria as described in Section 

2.1.1. Sample demographics are displayed below in Figure 9. 

 

 

Figure 9: Violin plots of age density per sample group involved in replication and test for disease 
specificity. Numbers per group are displayed above each plot 

 

2.3.2 Bisulphite PCR for Pyrosequencing 

Sites for validation and replication were selected based on statistical significance, 

effect size and biological function. Pyrosequencing assays overlapping cg03546163 

(FKBP5), cg00052684 (FKBP5), cg25114611 (FKBP5), cg17714703 (UHRF1), 

cg02481950 (METTL9), cg02448796 (KCNAB2), cg04286737 (PRNP), cg05001044 

(MIR1977), cg11823178 (ANK1), cg14008593 (TTLL10), cg10636246 (AIM2), and 

cg17515347 (AIM2) were automatically designed using PyroMark Assay Design 

version 2.0 (Qiagen), and manually adjusted to fit the following criteria: 
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i) Primers do not overlap CpG sites 

ii) Forward and Reverse primer length does not exceed 25 nucleotides 

iii) Sequencing primer’s annealing temperature is 40oC 

Primers were then checked for specificity using BiSearch (Arányi et al., 2006). 
Forward, reverse and sequencing primers were ordered through EuroFins.  

Samples were bisulphite converted using an EZ-96 DNA Methylation-Gold kit 

(Zymo) according to manufacturer’s instructions. Assay PCR reactions were 

optimised using bisulphite converted DNA and a thermocycler configuration with a 

variable extension step temperature (Table 2, Table 3). Temperatures which 

produced the greatest amount of specific product were used in subsequent 

reactions. PCR was performed using HOTFIREPol kits (Solis Biodyne). 

 

 

 

Bisulphite PCR  

Mastermix Per 2 µl DNA 

10x Buffer B1 2 µl 

10 mM dNTPs 0.2 µl 

25 mM MgCL2 1.32 µl 

H2O 13.28 µl 

10 µM Primers  1 µl 

HOT FIRE pol 0.2 µl 

Table 2: Reaction mixture for bisulphite PCR using HOTFIREPol reagents 
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Stage Temperature Duration Number of 
cycles 

Stage I 95oC 15 min X 1 

    

Stage II 95oC 45 s  

 52-62oC 45 s X 35  

 72oC 3 min  

    

Stage III 72 oC 10 min X 1 

    

Total  3h 3 min  

Table 3: Thermocycler settings for bisulphite PCR featuring a 52-62oC variable extension step in 
increments of 2 oC across 6 sets of 2 columns of a 96 well plate.  

 

Optimum PCR elongation conditions of 56oC were determined for cg03546163, 

cg00052684, cg25114611, cg17714703, cg17515347, cg11823178, 58 oC for 

cg02481950, cg02448796, cg04286737 and 62oC determined for cg10636246, 

cg05001044, cg02481950. Primer sequences are detailed below in Table XX. 
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Table 4: Primer sequences and annealing temperatures for bisulphite PCR reactions used in 
replication assays 
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2.3.3 Pyrosequencing 

A PyroMark Q24 was used for result validation and a PyroMark Q96 was used for 

replication (Qiagen). 20 µl of each PCR reaction product was added to 60 µl 

sepharose bead solution (2 µl sepharose beads, 40 µl pyrosequencing binding 

buffer, 18 µl H2O) in a 96 well plate. The plate was sealed and vortexed at 1500 rpm 

using an IKA MS 3 vortexer with a 96-well plate adaptor (IKA, UK) for at least 5 

minutes and no more than 10 minutes. 25 µl 0.3 µM sequencing primer was added 

to each well of a PyroMark Q24 or Q96 plate and placed on the vacuum 

workstation.  Bead-immobilised DNA was then passaged through a vacuum 

workstation (Qiagen) before mixing with sequencing primer in the PyroMark plate for 

10 seconds.  The plate was heated at 80oC for 2 minutes, allowed to cool for 5 

minutes and then inserted into the pyrosequencer. A PyroMark cartridge was loaded 

with PyroMark reagents (Qiagen) according to volumes computed by PyroMark 

assay design and inserted into the pyrosequencer. Nucleotide dispensation order 

was generated by inputting the target sequence before and after bisulphite 

conversion. Where possible a non-CpG cytosine was selected as a bisulphite 

conversion control. 93 samples were assayed per pyrosequencing run as well as 

methylated and unmethylated standards and a zero-template control.  

2.4 Testing Disease Specificity of Replicated Differentially Methylated 

Sites Using Pyrosequencing 
A third cohort of 59 Alzheimer’s Disease (AD), 18 Iatrogenic CJD (iCJD) and 11 

Inherited Prion Disease (IPD) patients was assembled from the National Prion Clinic 

and Dementia Research Centre’s register of samples according to the same criteria 

as described in Section 2.1.1. AD patient samples were collected with consent by 

the Dementia Research Centre in compliance with the local research ethics 

committee of the National Hospital for Neurology and Neurosurgery (University 

College London Hospitals NHS Foundation Trust). 

Due to differences in age of onset, disease duration and prevalence per sex in iCJD 

and IPD, in this instance age and sex matching was less exact between disease 

and control groups. Sample demographics are displayed above in Figure 9. 

Samples were assayed for methylation at cg03546163 (FKBP5), cg17515347 

(AIM2), cg10636246 (AIM2), cg17714703 (UHRF1), cg02481950 (METTL9) and 

cg11823178 (ANK1). 
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2.5 Testing Tissue Specificity of Replicated Differentially Methylated 

Sites Using Pyrosequencing 
A fourth cohort of frontal-cortex derived DNA samples from 33 non-prion and 58 

sCJD patients was assembled from the National Prion Clinic’s register of samples 

as described in Section 2.2.1. Non-sCJD patient frontal cortex tissue was obtained 

from Cambridge Brain Bank (Cambridge, UK), while sCJD patient frontal cortex 

tissue was obtained from the Neuropathology Division of the National Hospital for 

Neurology and Neurosurgery (University College London Hospitals NHS Foundation 

Trust). Samples were assayed for methylation at cg03546163 (FKBP5), 

cg17515347 (AIM2), cg10636246 (AIM2), cg04286737 (PRNP), cg17714703 

(UHRF1), cg02481950 (METTL9), and cg11823178 (ANK1). 

2.6 Testing Leukocyte Specificity of Replicated Differentially 

Methylated Sites Using Magnet Assisted Cell Sorting and 

Pyrosequencing 

2.6.1 Sample Selection 
Fresh whole blood was collected prospectively from 7 sCJD patients and 13 healthy 

relatives/spouses of patients during home visits to patients by National Prion Clinic 

staff (T. H. Mok, A. Nihat, H. Odd, P. Rudge,), with research and ethical consent 

being obtained as described in Section 2.1.1. Sample demographics are shown in 

Figure 10 below. 
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Figure 10: Violin plots of age density per sample group from the Magnet-Assisted Cell Sorting 
experiment cohort. Numbers per group are displayed above each plot. 

 

2.6.2 Magnet Assisted Cell Sorting 
MACS was used to enrich cell fractions for T-Cells, B-Cells, Neutrophils and 

Monocytes using antibodies raised against CD4+, CD15+, CD19+ and CD14+ 

respectively. The MACS (Miltenyi) protocol was optimized using blood samples 

donated from non-MRC staff and students at UCL’s Institute of Neurology, with 

consent provided according to the criteria of the research ethics committee of the 

National Hospital for Neurology and Neurosurgery (University College London 

Hospitals NHS Foundation Trust). This allowed comparison of the effects of filtering 

blood prior to MACS and washing micro-bead conjugated cell pellet prior to column 

loading on final DNA yield.  

Sorting took place in a Class II MSC hood, with all used/unneeded materials being 

discarded into a container of 2 M NaOH and left to sterilise overnight. According to 

the manufacturer’s protocol, Whole Blood Column Elution Buffer was warmed to 

ambient temperature before starting MACS. Depending on blood sample volume, 1 

to 1.5 ml aliquots of blood were passed through 30 µm filters into 15 ml falcon 
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tubes. 75 µL antibody-conjugated Microbeads per 1.5ml whole blood was added to 

the tube, mixed gently and incubated for 15 min on ice. The sealed tubes containing 

cell mixtures were then removed from the MSC hood and centrifuged at 445 g for 10 

minutes at room temperature. Tubes were returned to the MSC hood and after 

aspiration of the supernatant the cell pellet was resuspended in 1 ml ice-cold 

separation buffer (PBS, 0.5% BSA, 2mM EDTA, pH 7.2). Labelled cell mixtures 

were loaded onto Whole Blood Columns set in a QuadroMACS magnetic separator 

and flowthrough was collected in a 15 ml falcon tube. Each column was washed 

three times with 3 ml separation buffer before the column was removed from the 

QuadroMACS separator and eluted with 5 ml Whole Blood Column Elution Buffer. 

Sealed tubes containing eluted cells were removed from the MSC hood and 

centrifuged at 445 g for 10 minutes at room temperature. Tubes were returned to 

the MSC hood and 4.7 ml supernatant was aspirated. The pellet was resuspended 

in the residual supernatant and 100 µl of cell suspension was added to 300 µl TriZol 

reagent (Zymo) and stored at -20oC for downstream RNA analysis. DNA was 

immediately extracted from the remaining 200 µl of suspension using a Quick gDNA 

MiniPrep Kit (Zymo) with a 10 min proteinase K incubation step as described in 

Section 2.1.2. 

2.7 Statistics and Graphics 
Pyrosequencing data were analysed in SPSS version 25 (Corp., 2017), which was 

also used to correlate corrected beta values with patient metadata. All other 

analyses were performed in R (Team, 2016). Genome-wide inflation values (λ) were 

calculated by dividing the median chi-squared statistic of probe p values by the 

expected median (Devlin and Roeder, 1999; Hinrichs et al., 2012). Plots were 

generated using ggplot2 version 3.0.0 (Wickham, 2016), or qqman version 0.1.4 

(Turner, 2018) and edited in Inkscape version 0.91 (Harrington, 2005). Where 

shown, box plots adhere to Tukey representation (Mcgill, Tukey and Larsen, 1978), 

where upper and lower hinges of the box correspond to the interquartile range, the 

median line divides the box and two whiskers protrude to the largest value up to 1.5 

times the interquartile range. Outlying points are plotted individually. Where there 

are significant differences between experimental groups, a black bar with asterisks 

denotes the Bonferroni-adjusted significance level (* = p< 0.05, ** = p< 0.01, *** = 

p<0.001). 
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3 Using Illumina’s 450K Infinium Beadchip to investigate 
genome-wide DNA methylation in whole blood from sporadic 
prion disease patients 
The principle aim of this project was to investigate differences in DNA methylation in 

blood both between sCJD patients and control volunteers, as well as within the 

sCJD patient group, to uncover molecular markers of the disease. In order to 

accomplish this, a new blood-derived DNA extraction protocol and bisulphite 

conversion protocol had to be established, as routinely used blood-derived DNA 

extraction protocols were high yield but low throughput. Moreover, an analysis 

pipeline for 450K Beadchip data would have to be selected and different settings 

tested to remove unreliable data and improve quality control metrics such as 

technical or batch variability and genome-wide significance inflation. Finally, I aimed 

to perform exploratory analysis and linear modelling of the data to examine the 

genomic distribution and potential biological consequences of differential 

methylation, as well as test for associations with disease traits.  

3.1 Relevant Methods and Sample Demographics 
2.1.1 Sample Selection (page 54)  

2.1.2 Extraction of genomic DNA from blood (page 56)  

2.1.3 DNA Quality Control (page 58)  

2.1.4 Bisulphite Conversion (page 58)  

2.1.5 Infinium Beadchip Hybridisation (page 59)  

2.2 Data Analysis of Illumina Infinium 450K Beadchip Study (page 59)  

2.2.1 Case-Control Study Using RnBeads (page 59)  

2.2.2 Case-Control Study Using ChAMP (page 61)  

2.2.3 Inference of Signal Origin Using eFORGE (page 63)  

2.2.4 Study of Differentially Variable Methylation Sites Using iEVORA (page 63)  

2.2.5 Study of Genomic and CpG Feature Distribution Using GOLDMINE (page 63)  

2.2.6 Study of Common Motifs Amongst Differentially Methylated Regions and 
Positions (page 64)  

2.2.7 Enrichment Analysis of Differentially Methylated Transcription Factor binding 

sites and Differentially Methylated Genes (page 64)  

2.7 Statistics and Graphics (page 72) 
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Group Number Average Age 
(range) Sex (% F) Codon 129 (%) 

MM:MV:VV 

Average 
MRC Scale 

Score 
(range) 

sCJD 114 68.0 (49-85) 50.9 46:23:32 6 (0-20) 
Control 106 69.0 (41-83) 55.7 Unknown 20 

 

Table 5: Demographics of patients and controls whose samples were used in the initial discovery 
cohort. 

 

3.2 Sample Preparation 

3.2.1 DNA Extraction from Whole Blood 
As this project would involve multiple extractions of DNA from EDTA-stored blood, I 

initially compared several extraction protocols as detailed in Section 2.1.2. While the 

Prion Unit Neurogenetics Division has an established protocol (illustra Nucleon 

BACC3 Genomic DNA Extraction Kit) which far exceeded any other method in 

terms of DNA yield as well as yield as a function of input volume, batches of 

samples were limited to six at a time. The PAXgene protocol had similar batch 

constraints and performed the worst out of all methods. Batches for all other 

protocols were limited by the capacity of a benchtop microfuge, allowing 24 samples 

to be processed per batch. DNA yield was low in general, which was the second 

most important limiting factor during optimisation as bisulphite conversion kits 

recommend 500 ng input DNA for optimal conversion and fragment recovery. 

During optimisation 3 EDTA-stored blood samples were processed using each 

method and the average yields are presented in Table 6.  

 

Method Proteinase 
K 

Starting 
Volume 

(µl) 

Final 
Volume (µl) 

[DNA] 
(ngµl-1) 

DNA 
(ng) 

DNA per starting 
volume (ngµl-1) 

ZymoBeads No 50 35 0.3 10.5 0.21 

ZymoBeads No 200 35 0.6 21 0.105 

gDNA 10 min 200 50 11.6 580 2.9 

gDNA Overnight 200 50 1 50 0.25 
gDNA with pellet 

wash step 10 min 200 50 3.4 170 0.85 

PAXgene No 1700 200 0.05 10 0.05 

Prion Unit Protocol No 4000 500 413 206500 51.265 
 

Table 6: Performance of ZymoBeads and gDNA kits (Zymo), PAXgene (Qiagen) and the Prion Unit’s in 
house DNA extraction protocol. 
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As a function of input sample volume, protocol duration and complexity, throughput, 

and output quantity the Zymo Quick gDNA MiniPrep Kit with a 10-minute proteinase 

K digestion step was best suited for extraction of >500 ng DNA from small volumes 

of blood and was used for all subsequent extractions of genomic DNA from blood. 

3.2.2 Bisulphite Conversion 
As the quality and consistency of bisulphite conversion is essential in studies of 

DNA methylation I compared two conversion kits (Zymo and Qiagen), the main 

difference between which was bisulphite reaction incubation length (150 and 300 

minutes respectively). For each method, 5 patient DNA samples, a methylated 

control and unmethylated control (Zymo) and a commercially-sourced leukocyte 

DNA sample (AMSBIO) were converted and hybridised to two Illumina 450K 

beadchip arrays. 

Preliminary analysis in GenomeStudio showed very poor detection of CpG sites 

(based on signal intensity) in samples converted using the Qiagen kit (Figure 11), 

while Zymo bisulphite conversion kits produced DNA which was successfully probed 

at almost half a million CpG sites according to GenomeStudio’s detection algorithm 

(unpublished). I therefore used the Zymo conversion kit for all subsequent 

experiments. 

As bisulphite-converted DNA resembles RNA in terms of high uracil content and 

single stranded conformation, I analysed the integrity of Zymo bisulphite-converted 

DNA using a high-sensitivity Agilent RNA ScreenTape. Bisulphite converted DNA 

was found to be present in fragments between 25-2000 nucleotides long, as shown 

in Figure 12. As 450K array probes are approximately 100 nucleotides in length, this 

distribution of fragment length after conversion suggests appreciable probe target 

availability.   
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Figure 11: Detection rate of CpGs in bisulphite-converted DNA derived from Qiagen and Zymo 
protocols. Although the exact method is unpublished, detection p is likely calculated from iDAT file 
signal intensity per probe by GenomeStudio software compared to a reference null signal. X-axis 
labels refer to the penultimate two digits of a sample code, or commercially-sourced leukocyte DNA 
(AMS). 

 

 

Figure 12: High-Sensitivity RNA Screentape of bisulphite conversion products of genomic DNA. 
Samples were derived from patients (B1-F1), unmethylated and methylated control DNA (G1 & H1), a 
commercially-sourced leukocyte control DNA sample (A2) and DPEC-treated water (B2). 
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3.3 Analysing 450K data using RnBeads  

3.3.1 Pre-processing and Quality Control 
RnBeads is a one-step, powerful analytical pipeline for the analysis of 450K data 

capable of automatically generating thousands of tables, high-resolution plots and 

web browser-based reports. I initially chose RnBeads for analysis because of its 

relatively simple start-to-finish design: options were defined as described in Section 

2.2.1 and the entire analysis was run as one customised function on a remote 

server using 20 cores. Input files were .iDAT files from the 450K array and a .csv file 

containing Sample_ID, Sentrix_ID, Sentix_Position, Sample_Pool, Sample_Well, 

Sample_Group, Gender, Age, Smoking history, MRC Scale Score and Codon129 

genotype. Analysis took 1 d 9 h 23 min 35 s and generated 9.00 Gb data. Due to 

the inflexibility and long runtime of the pipeline, use of RnBeads was eventually 

discontinued and replaced with ChAMP, a more modular analytical pipeline 

described in Section 3.4 Analysing 450K data using ChAMP 

RnBeads initially excluded 29928 array probes which are cross-reactive with 

multiple genomic loci (Y. A. Chen et al., 2013) and 10119 probes which overlap 

commonly occurring SNPs (Zhou, Laird and Shen, 2016). The inbuilt Greedycut 

algorithm iteratively removed unreliable probes and samples based on a probe 

detection p value threshold of 0.05: in other words, probe-wide and sample-wide 

detection significances were optimised. 4954 probes were discarded during this 

process over the course of 5000 iterations. Rnbeads automatically maps the array-

wide density of beta values (a metric between 0 (unmethylated) and 1 (methylated) 

per probe) after this process, as displayed in Figure 13i. 

Beta values were normalised using the SWAN method (Maksimovic, Gordon and 

Oshlack, 2012), the results of which are visualised in Figure 14. 65 technical probes 

and 1270 non-CpG probes were removed, as were 10160 probes on sex 

chromosomes. Array-wide beta density is once again automatically mapped after 

this process and is displayed in Figure 13ii. 

Principle Component Analysis identified 217 components, the first two of which 

explain 13.79% and 11.70% of variance respectively: these are compared in Figure 

15. Association of principle components with metadata was then performed using 

parametric (Pearson) tests where metadata is numeric and non-parametric 

(Wilcoxon or Kruskal-Wallis) tests where data is categorical and has two values, or 

more, respectively. This analysis showed significant associations of Sentrix ID 
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(beadchip number), Sample Group, Codon 129 Genotype and MRC Scale Score 

with Principle components 1 and 2, as shown in Figure 16. 

  

 

Figure 13: Density plots of beta values after RnBeads pre-processing. i) Density of beta values at 
probes removed and retained after excluding cross-reactive probes, probes that overlie commonly 
occurring SNPs, and probes identified as unreliable by Greedycut. ii) Density of beta values at probes 
removed and retained after excluding technical, non-CpG and sex chromosome probes. 
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Figure 14: Histograms of beta shifts as a result of SWAN normalisation. i) Array-wide shifts in beta, 
and ii) beta distribution before and after normalisation. 
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Figure 15: Principle component analysis of normalised RnBeads data. i) 2-dimensional scatterplot of 
sample distribution across principle components 1 & 2, and ii) cumulative explanatory variance of 
principle components 1 to 217. 
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Figure 16: Chessboard plot of associations between the top 8 principle components and technical, 
biological and predicted metadata. Purple cells represent statistically insignificant associations, while 
the number in each magenta cell is the p value of a significant association. 

 

Finally, normalised data was corrected for differences in cellular heterogeneity 

between samples. It is important to note that blood is a heterogeneous tissue and 

imbalances in cell proportions between individuals and sample groups are thought 

to be major sources of bias in studies of methylation data, for which correction is 

“critical” (Jaffe and Irizarry, 2014). While reference-based methods for correcting for 

differences in cell populations exist, RnBeads only permitted reference-free 

methods to be used alongside analyses featuring covariates such as age and sex. 

Therefore RefFreeEwas was used. 

3.3.2 Analysis results 
After processing and DMP calling with RefFreeEwas correction for cellular 

heterogeneity, RnBeads computed 3,842 differentially methylated positions which 

pass a genome-wide significance of p < 0.05 after Bonferroni correction for multiple 

testing. This is more than might be expected given the relatively modest sample 

size, particularly when compared to similar published studies. The genome-wide 

inflation factor value (λ) was calculated and found to be 3.37, indicative of 

appreciable p value inflation which can often be attributed to bias or the influence of 

unaccounted factors in a comparison. This inflation is also visually evident in the 

Manhattan plot of genome-wide significance shown in Figure 17. Without 

RefFreeEwas correction λ was almost doubled (5.97), as displayed in Figure 18.  
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Figure 17: Manhattan plot of DMPs as computed by RnBeads. 

 

Figure 18: Quantile-quantile plot of DMP significance before (upper trace) and after (lower trace) 
correction for cellular heterogeneity using RefFreeEWAS. 
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To better interpret the biological relevance of these results, I used a package called 

Goldmine which allows association of genomic location with genetic and epigenetic 

features in user-supplied ChIP-Seq data. I integrated publicly available Roadmap 

Consortium data (Roadmap Epigenomics Consortium et al., 2015) from Monocytes, 

CD4+ T Cells, CD8+ T Cells, B Cells, Natural Killer Cells and Granulocytes into 

Goldmine and found that 47.6% of DMPs were associated with CpG features 

(Island, Shore, Shelf)  while 52.6% were situated in identified Transcription Factor 

Binding Sites and 61.2% at DNaseI hypersensitive sites. 27.6% of DMPs were 

positioned at enhancers.  The majority of DMPs overlapped genomic features such 

as the promoter (34.1%), exons (3.5%), introns (33.7%) or the 3’ region (12.2%), 

while the remaining 16.6% of sites were intergenic. Feature and Genomic 

distributions are displayed in Figure 19. 

 

 

Figure 19: Feature and Genomic contexts of DMPs, computed using RnBeads results and ChIP-Seq 
data from the Roadmap Epigenomics Consortium. CpG Islands are regions of >200bp containing 
>50% GC composition and an observed to expected CpG ratio of >60%. Shores are regions 2kb from 
a CpG Island and Shelves are regions 2kb from a CpG Shore. 

 

Ultimately the inflexibility of RnBeads and the long run times proved an obstacle to 

performing subanalyses, as if the pipeline encountered an error the entire process 

had to be reinitiated. Due to its one-step design, data could not be removed at 

different steps of analysis and compared or modified using other packages. In 

addition, the high level of genome-wide inflation (λ = 3.37) was a concern. As a 

result an alternative, lighter and more modular pipeline (ChAMP) was chosen for 

subsequent analyses. 
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3.4 Analysing 450K data using ChAMP  

3.4.1 Pre-processing and Quality Control 
As an alternative to RnBeads, I also analysed array data using ChAMP, a highly 

modular and comparatively lightweight analytical pipeline. Like RnBeads, ChAMP’s 

champ.load() function imports .iDAT files and a .csv file containing sample metadata 

as described earlier, and  excludes unreliable probes and samples before analysis. 

First probes with a detection p < 0.01 (based on iDAT file data) are discarded. 

Similarly samples where 10% or more probes have a detection p < 0.01 are 

discarded. Then poorly hybridising probes are removed (i.e. probes with less than 

three bead hybridisations in at least 5% of samples). Probes overlapping SNPs with 

a mean allele frequency over 5% (as described by Zhou et al. 2016) are also 

removed from the dataset (Zhou, Laird and Shen, 2016). Next, probes which are 

crossreactive with multiple genomic loci as reported by Nordlund et al. are 

discarded (Nordlund et al., 2013). Finally probes on the X and Y chromosomes are 

discarded. The nature of these steps and numbers of probes discarded during 

loading sCJD and control data are shown in Figure 20.  
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Figure 20: Exclusion of 82158 probes and one control sample as a result of the champ.load() function. 

 

Once problematic probes and poorly-hybridised samples have been excluded red 

and green channel intensity are used to compute beta values per probe per sample. 

The champ.QC() function then generates several images for data visualisation 

including a display of array-wide beta density (Figure 21). 
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Figure 21: champ.QC()-generated plot of beta density across the loaded dataset. The majority of data 
trend towards a β of 0 (unmethylated) or 1 (methylated). 

 

Once data were loaded type I and II probe imbalance was corrected through Beta-

MIx Quantile dilation (BMIQ) normalisation (Teschendorff et al., 2013). Compared to 

RnBeads’ SWAN BMIQ performs similarly and is ChAMP’s default normalisation 

method (Liu and Siegmund, 2016). Once normalised, I used Singular Value 

Decomposition (SVD) to associate biological and technical metadata with principle 

components. This serves two purposes: to identify which biological data are 

associated with variability in the dataset, and to identify any confounding biological 

or technical factors which should be corrected.  

Despite the randomisation of samples within a 96 well plate as described in Section 

2.1.5, the 12-slide format of the 450K beadchip array resulted in sCJD and control 

samples being inequally distributed between different slides on the array, and 

across different arrays. In addition, recently published work by Jiao et al. identifies 

strong positional effects on 450K array data, which further explain positional batch 

effects in our data as revealed by SVD using ChAMP and PCA in the RnBeads 

analysis (Jiao et al., 2018). Principle components 1 and 2 were found to associate 

significantly with both slide coordinate and array barcode. I used an established 

statistical tool, ComBAT, to regress for positional effects. Reassuringly, remaining 

metadata associations with principle component 1 were (in decreasing order of 

significance) phenotype (Sample_Group), Codon129 Genotype, MRC Scale Score 
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and Gender, as shown in Figure 22. This shows that disease status and severity do 

indeed affect the methylome and suggests that sex as a covariate should be 

included in a final regression model. 

 

 

Figure 22: Chessboard plots of Singular Value Decomposition Analysis. These show association of 
principle components with sample metadata before and after ComBAT correction for positional batch 
effects at “Slide” and “Array” variables 

 

As mentioned earlier, blood is a heterogeneous tissue and imbalances in cell 

proportions between individuals and sample groups are thought to be major sources 

of bias in studies of methylation data (Jaffe and Irizarry, 2014). I used two 

algorithms, the established Houseman algorithm and Teschendorff’s more recent 

EpiDISH algorithm, to estimate cell proportions in batch-corrected data, after which 

differences in cell proportions were normalised through regression (Teschendorff et 

al., 2017). These algorithms make use of 450K data acquired from DNA derived 

from blood cell populations as separated using FACS. This reference-based 

approach differs from RnBeads’ RefFreeEWAS, which was also developed by 

Houseman who suggests that reference-based correction is more robust where a 

reference dataset exists, while RefFreeEWAS is suitable for DNA derived from 

tissue without a reference (Houseman, Molitor and Marsit, 2014; Houseman et al., 

2016). Both Houseman’s RefBase and Teschendorff’s EpiDISH algorithms 

estimated differences in cell proportions between case and control as well as 
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producing different estimations of cell fractions between each method when applied 

to case and control groups, as shown in Figure 23.  

  

Figure 23: Average estimated cell proportions in the sCJD and Control groups based on epiDISH and 
Houseman algorithms. 

 

Once data had been preprocessed, normalised and corrected for batch effects and 

cellular heterogeneity, I used limma to assess the effects of the pipeline by 

constructing linear regression models of case-control differences in beta after each 

processing step. Quantile-quantile analysis of p value inflation showed high levels of 

inflation after BMIQ normalisation (λ=4.07), which decreased after batch correction 

(λ=2.92) and reached minimum after “Refbase”: reference-based correction for cell 

heterogeneity using the Houseman algorithm (λ=1.40).  These plots are compared 

in Figure 24. EpiDish correction resulted in a comparatively inflated λ of 1.75, and 

so neither it nor RnBeads data (λ=3.37) were taken forward for use in downstream 

analysis. In making this decision, I made an assumption that the dataset exhibiting 

the lowest genome-wide inflation was more likely to reveal true biological effects. 
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Figure 24: Quantile-quantile plots of limma linear model results. Traces correspond to results using 
data after BMIQ normalisation, then ComBAT batch correction and finally Houseman reference-based 
(RefBase) correction for cell heterogeneity. 

 

3.4.2 Results: Differentially Methylated Positions in sporadic CJD 
I investigated specific sites which exhibited differential methylation by constructing a 

linear regression model of β ~ Sample_Group + Age + Sex using limma, an 

established software package for analysis of microarray data (Ritchie et al., 2015). 

This identified 38 DMPs (Table 7, Figure 25) which passed Bonferroni corrected 

significance threshold. Goldmine analysis using Roadmap Consortium data 

revealed that the majority of DMPs are within the promoter region of a gene and 

also overlap transcription factor binding sites or enhancers, as well as sites 

hypersensitive to DNAse1 (Figure 26). Two DMPs were situated upstream of the 

TSS of the same gene (AIM2), and sites in AIM2, UHRF1 and CANT1 were also 

found to be overlapped by binding sites for multiple transcription factors. The 

distributions of these features are displayed in Figure 27.  
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Figure 25: Manhattan plot of differential methylation between sCJD and control calculated using 
ChAMP. Genome-wide statistically significant DMPs lie over the red line (Bonferroni significance 
threshold of p < 1.24x10-7). 

 

 
Site 

Δβ 
(%) p Gene Region Position Feature 

cg10636246 -4.05 2.38E-10 AIM2 TSS1500 1:159046973 Open Sea 

cg02481950 1.98 3.03E-10 METTL9; 
IGSF6 

Body; 
TSS1500 16:21665002 Open Sea 

cg14427590 2.27 3.33E-10 Intergenic 17:60695089 Open Sea 

cg05740793 4.39 9.57E-10 MTRNR2L8 TSS1500 11:10531091 Open Sea 

cg13965201 2.91 4.80E-09 Intergenic 1:150210352 S.Shelf 

cg21540367 0.99 5.76E-09 LRCH4 Body 7:100175462 S.Shelf 

cg05001044 5.33 5.86E-09 MIR1977 TSS1500 1:567312 Open Sea 

cg09048334 3.48 6.76E-09 Intergenic 6:37012640 Island 

cg22519265 1.08 9.77E-09 ATP2A3 3'UTR 17:3828052 Island 

cg02448796 3.28 1.27E-08 KCNAB2 Body 1:6101339 Open Sea 

cg17641710 2.39 1.44E-08 GNAI2 Body 3:50279038 S.Shelf 

cg03819286 2.68 1.54E-08 MGRN1 TSS1500 16:4673974 N.Shore 

cg10855342 0.64 1.57E-08 ALPK1 5'UTR 4:113276902 Open Sea 

cg15197458 1.4 1.96E-08 Intergenic 19:3464765 Island 

cg00832928 2.88 2.08E-08 SELT Body 3:150329458 Island 

cg22688566 2.83 2.29E-08 MYO18A Body 17:27459835 Open Sea 

cg25966751 2.25 2.52E-08 Intergenic 14:74098320 N.Shelf 

cg20056593 1.65 4.27E-08 Intergenic 12:132993150 S.Shelf 

cg27229664 2.21 4.39E-08 KIAA0513 5'UTR 16:85096666 Open Sea 

cg22505006 2.9 5.29E-08 ZBTB7B 5'UTR 1:154981829 Open Sea 

cg05343106 2.03 5.69E-08 DNAJB13 TSS200 11:73661229 Open Sea 

cg17714703 3.31 5.73E-08 UHRF1 Body 19:4912221 S.Shore 

cg07081759 2.5 5.81E-08 FAM53B Body 10:126330905 Open Sea 
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cg13444131 0.92 5.88E-08 DYRK1B 5'UTR 19:40322546 N.Shore 

cg22434506 0.96 6.94E-08 IFFO1 Body 12:6657818 Island 

cg17515347 -4.74 6.97E-08 AIM2 TSS1500 1:159047163 Open Sea 

cg20003976 1.44 6.99E-08 ACADM TSS1500 1:76188832 N.Shore 

cg09007354 2.38 8.11E-08 GLIS1 5'UTR 1:54100163 Open Sea 

cg20285559 1.01 8.30E-08 THAP3 Body 1:6688542 S.Shelf 

cg19769147 1.95 8.61E-08 PACS2 Body 14:105860954 N.Shelf 

cg24843003 2.94 8.72E-08 DAZAP1 Body 19:1409547 S.Shore 

cg03393322 0.85 9.38E-08 SDK1 Body 7:4260883 Open Sea 

cg04757081 1.4 9.47E-08 Intergenic 10:65424432 Open Sea 

cg01084918 2.04 9.53E-08 FAM40A TSS1500 1:110576366 N.Shore 

cg01101459 2.89 1.00E-07 Intergenic 1:234871477 Open Sea 

cg03546163 -5.35 1.07E-07 FKBP5 5'UTR 6:35654363 N.Shore 

cg21393135 0.33 1.11E-07 VARS Body 6:31747255 Open Sea 

cg21155515 -0.75 1.24E-07 CANT1; 
CANT1 

1stExon; 
5'UTR 17:77005819 Island 

 

Table 7: DMPs between sCJD and control. p values were adjusted using the Bonferroni method with a 
threshold of p < 1.24x10-7. TSS200 and TSS1500 represent regions 200 nt and 1500 nt upstream of a 
gene’s Transcription Start Site, respectively. Body and 1stExon relate to sites in the gene body or the 
first exon of the gene. 5’UTR and 3’UTR are the 5’ and 3’ untranslated regions of the mRNA transcript. 
Intergenic regions are regions that do not fall into the previous categories. CpG Islands are regions 
greater than 200 bp in width which contain greater than 50% GC composition and an 
observed:expected CpG ratio exceeding 60%. Shores are regions 2kb from a CpG Island, shelves are 
regions 2kb from a CpG Shore, and Open Sea regions are >2kb from a CpG Shore (Bird, 1986). 

 

 

Figure 26: Feature and Genomic contexts of DMPs computed using ChAMP results and ChIP-Seq 
data from the Roadmap Epigenomics Consortium. CpG Islands are regions of >200bp containing 
>50% GC composition and an observed to expected CpG ratio of >60%. Shores are regions 2kb from 
a CpG Island and Shelves are regions 2kb from a CpG Shore. 
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Figure 27: Number of overlapping Transcription Factor Binding Sites (TFBS) per DMP probe. 

 

Having identified DMPs, I then associated beta values at these sites within the 

sCJD dataset with patient metadata from the Cohort Study, namely MRC Scale 

Score and MRC Scale Slope, and age of onset using bivariate Pearson’s 

correlation. Codon 129 genotype was associated with beta values using a one-way 

ANOVA with a Dunnett’s two-tailed post hoc test. 

3.4.3 Association between MRC Scale Score and Slope with Methylation in 

sCJD patients 
Association of DNA methylation with measures of disease severity and velocity 

could show promise as peripheral disease biomarkers and might potentially be 

useful in patient management and monitoring of any therapeutic interventions in 

clinical trials. Described briefly in Section 2.1.1, the MRC Scale was developed 

using a Rasch model to measure disease severity based on questionnaire data 

relating to cognitive, general, neurological and psychiatric function (Thompson et al., 

2013). By assessing patient status in relation to expected disease milestones (as 

displayed below in Figure 28), patients can be assigned a score between 20 (able to 

function independently) and 0 (moribund). The clinical milestones in a generalised 

order are displayed below in Figure 28. 
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Figure 28: Disease milestones and functional criteria used to assign an MRC Scale score, from a 
maximum of 20 (highly functioning) to a minimum of 0 (zero independent function). Figure adapted 
from Thompson et al., 2013. 

  

Moreover, by measuring the slope of decline in MRC Scale score, the rapidity of 

disease progression can be compared between patients. I therefore compared the 

MRC Scale scores and slopes of sCJD patients with methylation values at the 38 

identified DMPs. 

As shown in Figure 29 and Table 8, I found that demethylation at two probes within 

the AIM2 promoter (cg01636246 & cg17515347) were found to correlate 

significantly with decreased MRC Scale Score, however no significant associations 

between DMPs and MRC Scale Slope were observed.  
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Figure 29: Coefficients of decreased MRC Scale Score with hypomethylation at AIM2. Shown are two 
probes (cg17515347 and cg10636246) with Pearson coefficients of 0.242 (p = 0.031) and 0.423 (p = 
9.40x10-6) respectively. An MRC Scale score of 20 represents a patient who may have symptoms but 
is functionally independent for activities of daily life. An MRC Scale score below 3 indicates a 
comatose state near to death with a patient only able to take perhaps sips of fluid for nutrition and 
make incomprehensible sounds. Asterisks denote Bonferroni-adjusted significance, where an adjusted 
threshold of 0.05 has been exceeded (* = p< 0.05, ** = p< 0.01, *** = p<0.001). 
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Site Gene Scale Score 
coefficient 

Scale p Scale Slope 
coefficient 

Slope p 

cg10636246 AIM2 0.423 9.40E-06 -7.693 0.209 

cg02481950 METTL9;IGSF6 0.009 0.939 3.209 0.318 

cg14427590 Intergenic -0.095 0.404 1.201 0.804 

cg05740793 MTRNR2L8 0.142 0.21 0.524 0.927 

cg13965201 Intergenic 0.029 0.798 11.382 0.481 

cg21540367 LRCH4 0.4 0.725 4.521 0.308 

cg05001044 MIR1977 0.179 0.112 4.999 0.570 

cg09048334 Intergenic 0.067 0.555 18.431 0.285 

cg22519265 ATP2A3 -0.023 0.843 2.794 0.547 

cg02448796 KCNAB2 -0.2 0.075 -2.938 0.638 

cg17641710 GNAI2 -0.184 0.102 -9.012 0.075 

cg03819286 MGRN1 0.049 0.663 -3.230 0.576 

cg10855342 ALPK1 -0.007 0.951 1.230 0.558 

cg15197458 Intergenic 0.127 0.263 2.960 0.628 

cg00832928 SELT -0.084 0.456 16.096 0.403 

cg22688566 MYO18A 0.071 0.532 -7.928 0.153 

cg25966751 Intergenic 0.049 0.663 12.298 0.397 

cg20056593 Intergenic -0.007 0.951 1.959 0.680 

cg27229664 KIAA0513 0.127 0.263 -10.778 0.008 

cg22505006 ZBTB7B -0.084 0.456 -8.057 0.195 

cg05343106 DNAJB13 0.071 0.532 5.563 0.573 

cg17714703 UHRF1 -0.046 0.688 -13.876 0.063 

cg07081759 FAM53B -0.107 0.343 0.652 0.905 

cg13444131 DYRK1B -0.003 0.979 2.402 0.532 

cg22434506 IFFO1 -0.225 0.045 2.676 0.280 

cg17515347 AIM2 0.242 0.031 -1.889 0.852 

cg20003976 ACADM -0.058 0.612 2.774 0.611 
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cg09007354 GLIS1 -0.014 0.899 -11.347 0.022 

cg20285559 THAP3 0.067 0.556 1.434 0.820 

cg19769147 PACS2 -0.124 0.273 3.273 0.547 

cg24843003 DAZAP1 -0.161 0.154 -3.762 0.468 

cg03393322 SDK1 0.218 0.052 0.577 0.727 

cg04757081 Intergenic 0.055 0.627 6.759 0.303 

cg01084918 FAM40A 0.041 0.72 14.902 0.246 

cg01101459 Intergenic -0.274 0.014 6.498 0.313 

cg03546163 FKBP5 0.161 0.155 18.034 0.096 

cg21393135 VARS -0.054 0.633 1.220 0.277 

cg21155515 CANT1;CANT1 -0.057 0.616 -3.158 0.460 

 

Table 8: Coefficients of MRC Scale Score and MRC Scale with beta values at identified DMPs. p 
values are unadjusted, Bonferroni threshold is 0.0013. 

 

3.4.4 Association between PRNP codon 129 homozygosity with Methylation 

in sCJD patients 
Increased methylation at a probe within the promoter of DNAJB13 (cg05343106) 

showed a trend towards association with homozygosity (MM, VV) at PRNP codon 

129 via a one-way ANOVA with Dunnett’s post hoc test, as displayed in Table 9 and 

Table 10. However, this trend was modest and the association would not pass 

correction for multiple testing. This might be due to low numbers of samples in each 

group as a result of splitting the data, but the very low levels of change between 

MM/VV and MV genotypes do not support differential methylation at DNAJB13 

between codon 129 alleles being biologically relevant. 
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Location Sum of 
Squares df Mean 

Square F Sig. 

cg10636246 AIM2 0.005 2 0.003 1.378 0.258 
cg02481950 METTL9 0.000 2 0.000 0.043 0.958 
cg14427590 Intergenic 0.002 2 0.001 1.626 0.203 
cg05740793 MTRNR2L8 0.001 2 0.001 0.239 0.788 
cg13965201 Intergenic 0.005 2 0.003 2.502 0.088 
cg21540367 LRCH4 0.000 2 0.000 1.783 0.174 
cg05001044 MIR1977 0.002 2 0.001 0.309 0.735 
cg09048334 Intergenic 0.005 2 0.002 1.249 0.292 
cg22519265 ATP2A3 0.001 2 0.000 2.633 0.078 
cg02448796 KCNAB2 0.001 2 0.000 0.167 0.846 
cg17641710 GNAI2 0.000 2 0.000 0.024 0.977 
cg03819286 MGRN1 0.003 2 0.001 1.111 0.334 
cg10855342 ALPK1 0.000 2 0.000 1.909 0.155 
cg15197458 Intergenic 0.001 2 0.000 1.009 0.369 
cg00832928 SELT 0.005 2 0.002 1.848 0.164 
cg22688566 MYO18A 0.002 2 0.001 0.670 0.514 
cg25966751 Intergenic 0.003 2 0.001 1.780 0.175 
cg20056593 Intergenic 0.000 2 0.000 0.030 0.971 
cg27229664 KIAA0513 0.002 2 0.001 1.635 0.201 
cg22505006 ZBTB7B 0.000 2 0.000 0.036 0.965 
cg05343106 DNAJB13 0.007 2 0.003 5.145 0.008 
cg17714703 UHRF1 0.010 2 0.005 2.128 0.125 
cg07081759 FAM53B 0.001 2 0.000 0.262 0.770 
cg13444131 DYRK1B 0.000 2 0.000 1.598 0.208 
cg22434506 IFFO1 0.000 2 0.000 0.840 0.435 
cg17515347 AIM2 0.017 2 0.009 1.967 0.146 
cg20003976 ACADM 0.002 2 0.001 2.498 0.088 
cg09007354 GLIS1 0.000 2 0.000 0.019 0.981 
cg20285559 THAP3 0.000 2 0.000 1.214 0.302 
cg19769147 PACS2 0.001 2 0.000 0.621 0.540 
cg24843003 DAZAP1 0.003 2 0.001 1.053 0.353 
cg03393322 SDK1 0.000 2 0.000 0.601 0.550 
cg04757081 Intergenic 0.001 2 0.000 1.531 0.222 
cg01084918 FAM40A 0.002 2 0.001 1.727 0.184 
cg01101459 Intergenic 0.006 2 0.003 1.800 0.172 
cg03546163 FKBP5 0.009 2 0.004 0.793 0.456 
cg21393135 VARS 0.000 2 0.000 1.845 0.164 
cg21155515 CANT1 0.000 2 0.000 0.079 0.924 

 

Table 9: ANOVA of beta values at identified DMPs between codon 129 genotypes. p values are 
unadjusted, Bonferroni threshold is 0.0013. 
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Multiple Comparisons 
Dunnett t (2-sided) 

Dependent Variable 
Mean 

Difference 
(I-J) 

Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

cg05343106 DNAJB13 
MM MV -0.0228 0.0071 0.0036 -0.0387 -0.0069 
VV MV -0.0168 0.0076 0.0530 -0.0337 0.0002 

 

Table 10: Dunnett's post-hoc test results for association between codon 129 genotype and increased 
methylation at DNAJB13 (cg05343106). In Dunnett's tests one group is used as a control and the other 
two genotypes compared against it. 

 

3.4.5 Association between age of onset with Methylation in sCJD patients 
Age of onset in the array dataset varies between 49 and 85, with most patients 

surviving between 6-12 months after clinical presentation. Age of onset was 

determined by the National Prion Clinic in the National Prion Monitoring Cohort 

study as the age at which the first symptom started that subsequently developed 

into the disease syndrome. A linear regression of Beta ~ Age + Sex was 

constructed in limma and one site achieved genome-wide statistical significance, as 

shown in Table 11. 

Site Coefficient 
(β) p value Adjusted p 

value Gene 

cg16867657 0.419699 7.13E-08 0.03 ELOVL2 
 

Table 11: A significant association between DNA methylation at a CpG site overlapped by ELOVL2 
and age of onset in sCJD patients. Bonferroni threshold was p < 1.22x10-7. 

ELOVL2 encodes Fatty Acid Elongase 2, and is well documented as becoming 

increasingly hypermethylated with age (Florath et al., 2014; Bacalini, Boattini, et al., 

2015; Marttila et al., 2015). Given the prior associations with hypermethylation at 

this gene with age, it is unlikely that methylation of this site predisposes to an earlier 

age of onset rather than simply reflects the age of the patients. 

3.4.6 Differentially variable methylation in sCJD and Controls 
iEVORA is an algorithm which detects significantly different variability at CpG sites, 

even where the median of the distribution at those sites may not differ between 

sCJD and control (Teschendorff et al., 2016). Initially used to identify field defects – 

stochastic and heterogeneous alterations in DNA methylation amongst cells which 

are prone to become cancerous –  Differentially Variably Methylated Positions 

(DVMCs) have also been observed in type 1 diabetes patients at genetic elements 
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which regulate cell metabolism (Teschendorff et al., 2012; Paul et al., 2016). I 

applied the iEVORA algorithm to the array dataset and identified 252 DVMPs. As a 

striking example, all probes overlapped by MCCC1 showed increased variance in 

sCJD patients, as shown in Figure 30. DVMPs are displayed below in Table 12. 

 

 

 

Figure 30: Increased variability in MCCC1 methylation in sCJD compared to control. Differences in 
mean methylation were not significant between groups. 
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sCJD 
Variance 

(V0) 

Control 
Variance 

(V1) 
log[V1/V0] 

P 
(Bartlett 

Test) 

q 
(Bartlett 

Test) 
Gene 

cg19782061 0.120 0.095 1.781 8.80E-10 1.85E-06 Intergenic 

cg07989851 0.314 0.297 1.350 2.45E-06 8.49E-04 Intergenic 

cg16598420 0.888 0.872 -1.367 1.27E-06 5.18E-04 Intergenic 

cg16740640 0.963 0.959 -1.316 3.03E-06 9.87E-04 Intergenic 

cg25525687 0.015 0.017 -1.504 1.08E-07 7.74E-05 Intergenic 

cg02294420 0.955 0.947 -1.528 6.82E-08 5.56E-05 Intergenic 

cg06171329 0.942 0.935 -1.460 2.42E-07 1.52E-04 Intergenic 

cg13447295 0.897 0.869 -1.749 8.07E-10 1.76E-06 Intergenic 

cg21445918 0.973 0.968 -1.425 4.53E-07 2.40E-04 Intergenic 

cg00961415 0.931 0.937 1.451 4.41E-07 2.37E-04 Intergenic 

cg22681255 0.040 0.050 -1.764 5.90E-10 1.35E-06 Intergenic 

cg15155360 0.933 0.923 -1.341 2.00E-06 7.24E-04 Intergenic 

cg04825429 0.058 0.066 -1.719 1.52E-09 2.90E-06 Intergenic 

cg11946719 0.174 0.144 1.486 2.37E-07 1.50E-04 Intergenic 

cg06037631 0.033 0.029 1.433 5.97E-07 2.90E-04 Intergenic 

cg03760138 0.932 0.922 -2.040 1.18E-12 7.10E-09 Intergenic 

cg11467506 0.076 0.085 -1.580 2.48E-08 2.54E-05 Intergenic 

cg26338473 0.841 0.816 -1.388 8.76E-07 3.91E-04 Intergenic 

cg13910174 0.943 0.951 1.682 6.18E-09 8.98E-06 Intergenic 

cg16651900 0.964 0.968 1.386 1.33E-06 5.39E-04 Intergenic 

cg25448687 0.800 0.831 1.460 3.79E-07 2.15E-04 Intergenic 

cg07136920 0.865 0.852 -1.503 1.09E-07 7.80E-05 Intergenic 

cg05203206 0.964 0.958 -1.390 8.49E-07 3.83E-04 Intergenic 

cg03632120 0.914 0.900 -1.432 4.05E-07 2.24E-04 Intergenic 

cg19698348 0.025 0.028 -1.678 3.53E-09 5.69E-06 Intergenic 

cg23439966 0.073 0.054 1.438 5.52E-07 2.76E-04 Intergenic 

cg23721533 0.967 0.962 -1.338 2.08E-06 7.46E-04 Intergenic 

cg02531516 0.078 0.086 -1.320 2.83E-06 9.36E-04 Intergenic 

cg17117718 0.057 0.078 -1.727 1.29E-09 2.53E-06 Intergenic 

cg17401808 0.924 0.931 1.435 5.83E-07 2.86E-04 Intergenic 

cg24052284 0.972 0.969 -1.671 4.06E-09 6.38E-06 Intergenic 

cg27273227 0.918 0.878 -2.043 1.10E-12 6.78E-09 Intergenic 

cg03094193 0.020 0.025 -1.729 1.23E-09 2.44E-06 Intergenic 

cg04115185 0.969 0.965 -1.762 6.16E-10 1.39E-06 Intergenic 

cg12169233 0.051 0.056 -1.438 3.57E-07 2.05E-04 Intergenic 

cg19632836 0.950 0.944 -2.603 5.66E-19 1.37E-14 Intergenic 

cg23450377 0.918 0.892 -1.466 2.17E-07 1.40E-04 Intergenic 

cg26879339 0.973 0.969 -2.159 6.61E-14 5.46E-10 Intergenic 

cg24529615 0.912 0.905 -1.400 7.13E-07 3.36E-04 Intergenic 

cg23402824 0.937 0.930 -1.798 2.81E-10 7.21E-07 Intergenic 

cg26311454 0.936 0.940 1.661 9.31E-09 1.20E-05 Intergenic 

cg26179679 0.025 0.029 -1.358 1.49E-06 5.88E-04 Intergenic 
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cg17738169 0.056 0.063 -1.747 8.49E-10 1.82E-06 Intergenic 

cg09519326 0.957 0.942 -2.534 3.77E-18 7.08E-14 Intergenic 

cg10130155 0.964 0.957 -1.541 5.28E-08 4.58E-05 Intergenic 

cg27581660 0.907 0.927 1.375 1.61E-06 6.20E-04 Intergenic 

cg24711482 0.940 0.925 -1.535 5.92E-08 5.03E-05 Intergenic 

cg21173402 0.954 0.963 2.067 1.95E-12 1.10E-08 Intergenic 

cg13390004 0.052 0.057 -1.647 6.57E-09 9.34E-06 Intergenic 

cg08893692 0.054 0.057 -1.364 1.35E-06 5.43E-04 Intergenic 

cg15593426 0.960 0.964 1.836 2.85E-10 7.26E-07 Intergenic 

cg08063340 0.060 0.064 -1.321 2.77E-06 9.27E-04 Intergenic 

cg08962087 0.043 0.046 -1.585 2.24E-08 2.36E-05 Intergenic 

cg24684816 0.973 0.971 -1.441 3.42E-07 1.97E-04 Intergenic 

cg21005683 0.902 0.862 -1.432 4.03E-07 2.23E-04 Intergenic 

cg26576978 0.907 0.928 1.503 1.76E-07 1.18E-04 Intergenic 

cg27422407 0.935 0.940 1.897 7.87E-11 2.46E-07 Intergenic 

cg03268463 0.960 0.957 -1.467 2.14E-07 1.39E-04 Intergenic 

cg06224751 0.043 0.046 -2.074 5.22E-13 3.46E-09 Intergenic 

cg22230604 0.051 0.056 -1.321 2.80E-06 9.30E-04 Intergenic 

cg10760240 0.821 0.875 1.604 2.75E-08 2.77E-05 AATF 

cg06952291 0.025 0.028 -1.618 1.18E-08 1.44E-05 ABHD8 

cg03053358 0.917 0.889 -1.493 1.30E-07 9.02E-05 ABR 

cg04334422 0.963 0.960 -1.319 2.89E-06 9.50E-04 ACOX3 

cg07595943 0.977 0.973 -1.625 1.03E-08 1.30E-05 ADAD2 

cg02842496 0.133 0.143 -1.331 2.35E-06 8.22E-04 ADCY8 

cg15691252 0.055 0.038 1.536 9.69E-08 7.23E-05 ADK;AP3M1 

cg19245381 0.079 0.085 -1.648 6.53E-09 9.31E-06 ADORA2B 

cg10791966 0.903 0.895 -1.645 6.94E-09 9.68E-06 ALDH3A1 

cg07249488 0.944 0.938 -1.780 4.19E-10 1.00E-06 ANKLE2 

cg11035303 0.016 0.041 -2.155 7.35E-14 5.92E-10 ANO10 

cg19136183 0.022 0.024 -1.585 2.26E-08 2.37E-05 APAF1;IKBIP 

cg13289321 0.950 0.943 -1.327 2.53E-06 8.66E-04 ASB10 

cg00734483 0.020 0.023 -1.967 6.51E-12 2.97E-08 BACE2 

cg15639842 0.925 0.917 -1.639 7.82E-09 1.06E-05 BAHCC1 

cg26386740 0.016 0.017 -1.318 2.92E-06 9.59E-04 BCL11A 

cg02781618 0.043 0.048 -1.692 2.63E-09 4.54E-06 BEND4 

cg02699635 0.926 0.920 -1.524 7.34E-08 5.83E-05 C11orf94 

cg02922913 0.951 0.942 -1.721 1.45E-09 2.81E-06 C19orf6 

cg06651299 0.953 0.957 1.545 8.24E-08 6.39E-05 C19orf6 

cg24304712 0.029 0.032 -1.547 4.69E-08 4.21E-05 C1orf101 

cg19620452 0.027 0.029 -1.352 1.66E-06 6.32E-04 C1orf74 

cg02192528 0.948 0.942 -1.398 7.35E-07 3.44E-04 C4orf23 

cg12975295 0.035 0.040 -1.716 1.60E-09 3.02E-06 C9orf64 

cg25160190 0.931 0.922 -1.554 4.11E-08 3.82E-05 CACNG4 

cg07605269 0.896 0.877 -1.317 3.00E-06 9.77E-04 CAMTA1 

cg17143900 0.931 0.921 -1.369 1.22E-06 5.04E-04 CAMTA1 
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cg17096979 0.917 0.894 -1.533 6.14E-08 5.11E-05 CAPN9 

cg09444327 0.097 0.088 2.235 4.00E-14 3.47E-10 CCDC48 

cg11616380 0.040 0.043 -1.614 1.28E-08 1.50E-05 CCDC48 

cg17256192 0.952 0.947 -1.461 2.39E-07 1.51E-04 CDH6 

cg09159068 0.037 0.031 1.374 1.64E-06 6.26E-04 CFD 

cg27519392 0.806 0.795 -1.434 3.87E-07 2.18E-04 CHD7 

cg04071104 0.957 0.963 2.246 3.08E-14 2.82E-10 CHDH 

cg10418044 0.046 0.059 -1.521 7.78E-08 6.10E-05 CHRM2 

cg14997413 0.169 0.183 -1.365 1.32E-06 5.38E-04 COBL 

cg10364041 0.084 0.089 -1.487 1.47E-07 1.01E-04 COL12A1 

cg09111258 0.040 0.044 -1.378 1.05E-06 4.51E-04 COPZ2;MIR152 

cg26623575 0.853 0.831 -1.616 1.24E-08 1.48E-05 CST2 

cg26923863 0.237 0.223 -2.261 5.18E-15 5.48E-11 CTBP1 

cg23184518 0.934 0.924 -1.341 1.98E-06 7.19E-04 CTNNA1;LRRTM2 

cg13132577 0.048 0.041 1.531 1.06E-07 7.65E-05 CYP2J2 

cg07430760 0.077 0.063 1.591 3.54E-08 3.35E-05 CYP2J2 

cg20690488 0.074 0.063 1.601 2.92E-08 2.90E-05 CYP2J2 

cg18292664 0.066 0.073 -1.539 5.47E-08 4.72E-05 DBX1 

cg05327967 0.938 0.933 -1.589 2.10E-08 2.25E-05 DLGAP4 

cg17343385 0.927 0.894 -1.506 1.03E-07 7.50E-05 DNAJC5 

cg19256292 0.055 0.060 -1.464 2.24E-07 1.44E-04 DNMT3A 

cg19477942 0.967 0.962 -1.373 1.14E-06 4.82E-04 DSCAM 

cg22355889 0.083 0.124 -2.164 5.90E-14 4.99E-10 ELMOD1;LOC643923 

cg11058154 0.021 0.025 -1.585 2.25E-08 2.36E-05 FAM20A 

cg05761971 0.947 0.940 -1.433 3.98E-07 2.22E-04 FAM82A1 

cg19250315 0.954 0.958 1.395 1.15E-06 4.85E-04 FASN 

cg22753962 0.939 0.924 -1.515 8.75E-08 6.68E-05 FOXK1 

cg15277906 0.104 0.114 -1.454 2.71E-07 1.66E-04 GDF6 

cg12949975 0.045 0.049 -1.614 1.28E-08 1.50E-05 GDF7 

cg25308242 0.933 0.941 1.730 2.42E-09 4.24E-06 GLB1L 

cg02612335 0.967 0.959 -1.683 3.17E-09 5.26E-06 GLT1D1 

cg26234787 0.045 0.048 -1.448 3.02E-07 1.81E-04 GPR39 

cg04657588 0.048 0.053 -1.457 2.53E-07 1.58E-04 GPRC5C 

cg08230483 0.023 0.026 -1.361 1.41E-06 5.60E-04 GRID1 

cg19640303 0.953 0.948 -1.510 9.50E-08 7.13E-05 GRIK3 

cg19160878 0.979 0.976 -1.329 2.45E-06 8.49E-04 GTF3C3 

cg20503652 0.941 0.914 -2.440 4.79E-17 7.72E-13 H1FNT 

cg22101174 0.943 0.936 -1.451 2.83E-07 1.72E-04 HDAC4 

cg17755964 0.025 0.028 -1.516 8.58E-08 6.58E-05 HES5 

cg05428770 0.058 0.063 -1.370 1.20E-06 4.99E-04 HLA-L 

cg17512353 0.035 0.039 -1.795 3.04E-10 7.50E-07 HLA-L 

cg09463047 0.020 0.021 -1.475 1.83E-07 1.22E-04 HNF1B 

cg21337717 0.896 0.884 -1.329 2.45E-06 8.49E-04 HRK 

cg16595484 0.037 0.032 1.664 8.77E-09 1.16E-05 HSPBAP1 

cg23448729 0.173 0.161 1.446 4.84E-07 2.52E-04 HTR1A 
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cg23639308 0.909 0.898 -1.520 7.89E-08 6.18E-05 IGSF9 

cg06176987 0.937 0.951 1.781 8.66E-10 1.83E-06 INPP4B 

cg04570208 0.961 0.955 -1.842 1.08E-10 3.20E-07 INPP5A 

cg21528729 0.946 0.956 1.664 8.86E-09 1.17E-05 INSIG1 

cg14908255 0.025 0.029 -1.620 1.15E-08 1.41E-05 IQSEC3 

cg12984729 0.061 0.069 -1.418 5.21E-07 2.65E-04 ISL2 

cg25395559 0.044 0.046 -1.414 5.59E-07 2.77E-04 ITGB8 

cg23984080 0.921 0.915 -1.321 2.79E-06 9.30E-04 KIAA0495 

cg14922732 0.890 0.879 -1.607 1.47E-08 1.65E-05 KIAA0562 

cg13239126 0.810 0.864 1.434 5.90E-07 2.88E-04 KIAA1026 

cg17001430 0.898 0.891 -1.462 2.33E-07 1.48E-04 KIF25 

cg08287334 0.962 0.957 -1.354 1.59E-06 6.14E-04 KLF16 

cg26832639 0.930 0.942 1.931 3.86E-11 1.36E-07 KLK5 

cg25929399 0.146 0.079 1.608 2.54E-08 2.60E-05 KRT38 

cg24827600 0.370 0.357 -1.846 9.99E-11 3.04E-07 LASS6 

cg14492293 0.034 0.037 -1.663 4.81E-09 7.31E-06 LHX3 

cg00894289 0.033 0.037 -1.545 4.94E-08 4.35E-05 LMO2 

cg23497383 0.070 0.097 -1.801 2.63E-10 6.85E-07 LOC151174;LOC643387 

cg13530938 0.046 0.066 -1.935 1.35E-11 5.42E-08 LOC151174;LOC643387 

cg07323141 0.046 0.058 -1.426 4.47E-07 2.39E-04 LOC151174;LOC643387 

cg11904906 0.058 0.079 -1.669 4.24E-09 6.60E-06 LOC151174;LOC643387 

cg02249713 0.053 0.057 -1.705 2.01E-09 3.64E-06 LOC285780 

cg15911153 0.982 0.980 -1.343 1.92E-06 6.99E-04 LOC389333 

cg14379854 0.103 0.114 -1.419 5.07E-07 2.61E-04 LOC91149;RAPGEF4 

cg27155168 0.975 0.972 -1.609 1.41E-08 1.61E-05 LRP5 

cg15079934 0.853 0.840 -1.527 6.95E-08 5.63E-05 LSP1 

cg26011692 0.937 0.932 -1.477 1.78E-07 1.19E-04 LTBP2 

cg21944491 0.033 0.036 -1.392 8.24E-07 3.76E-04 LTBP4 

cg11098525 0.958 0.955 -1.596 1.82E-08 2.00E-05 MAEA 

cg02228913 0.842 0.781 -1.646 6.80E-09 9.58E-06 MAPT 

cg08395365 0.078 0.066 1.645 1.28E-08 1.50E-05 MCCC1 

cg23166970 0.031 0.023 1.639 1.42E-08 1.61E-05 MCCC1 

cg02616966 0.056 0.042 1.926 4.27E-11 1.49E-07 MCCC1 

cg25441771 0.034 0.023 1.915 5.44E-11 1.79E-07 MCCC1 

cg22211233 0.044 0.036 1.639 1.44E-08 1.63E-05 MCCC1 

cg04991337 0.056 0.042 1.714 3.31E-09 5.43E-06 MCCC1 

cg05496383 0.037 0.028 2.006 7.45E-12 3.27E-08 MCCC1 

cg03318940 0.041 0.033 1.974 1.50E-11 5.97E-08 MCCC1 

cg00890010 0.081 0.072 1.456 4.03E-07 2.23E-04 MCCC1 

cg07634101 0.046 0.039 2.004 7.80E-12 3.34E-08 MCCC1 

cg07464924 0.048 0.037 2.241 3.46E-14 3.08E-10 MCCC1 

cg00161968 0.047 0.035 1.773 1.02E-09 2.09E-06 MCCC1 

cg00693240 0.963 0.959 -1.631 9.15E-09 1.19E-05 MGRN1 

cg16208863 0.910 0.902 -1.571 2.98E-08 2.94E-05 MLLT1 

cg03146452 0.034 0.040 -1.369 1.22E-06 5.03E-04 MSL3L2 
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cg21013756 0.097 0.112 -1.426 4.48E-07 2.39E-04 MSL3L2 

cg01565659 0.948 0.955 1.403 1.01E-06 4.38E-04 MSRA 

cg15020726 0.038 0.045 -1.700 2.25E-09 4.01E-06 MTMR15 

cg17035899 0.074 0.093 -1.463 2.29E-07 1.45E-04 MYL5 

cg09010067 0.966 0.963 -1.534 6.08E-08 5.10E-05 MYO1D 

cg16904092 0.809 0.757 -1.717 1.58E-09 3.01E-06 MYPOP 

cg06804705 0.749 0.772 1.404 9.85E-07 4.29E-04 NCRNA00114 

cg16262215 0.934 0.941 2.156 2.53E-13 1.90E-09 NDUFA7;KANK3 

cg20153196 0.069 0.073 -1.461 2.39E-07 1.51E-04 NEUROD2 

cg04239375 0.068 0.074 -1.620 1.13E-08 1.40E-05 NIPSNAP3B 

cg16174680 0.015 0.017 -1.715 1.66E-09 3.08E-06 NKX6-3 

cg05421673 0.054 0.058 -1.391 8.33E-07 3.78E-04 NOG 

cg14654471 0.918 0.878 -1.389 8.64E-07 3.88E-04 NPHP4 

cg02739500 0.041 0.044 -1.625 1.03E-08 1.30E-05 NPW 

cg22367989 0.028 0.030 -1.429 4.23E-07 2.31E-04 NRP2 

cg01164094 0.934 0.946 1.367 1.84E-06 6.76E-04 NT5DC3 

cg20405174 0.022 0.025 -1.719 1.51E-09 2.90E-06 PACSIN1 

cg13670316 0.055 0.059 -1.556 4.00E-08 3.74E-05 PCSK5 

cg27543403 0.030 0.033 -1.457 2.56E-07 1.59E-04 PDE4D 

cg11153768 0.958 0.951 -1.846 9.86E-11 3.03E-07 PDE6B 

cg05266497 0.937 0.932 -1.568 3.18E-08 3.08E-05 PGBD5 

cg26268742 0.902 0.911 1.420 7.51E-07 3.49E-04 PLA2G4C 

cg04202736 0.957 0.949 -1.473 1.90E-07 1.26E-04 PLA2G4D 

cg01078276 0.036 0.039 -1.332 2.33E-06 8.18E-04 PLAU;C10orf55 

cg16393928 0.952 0.947 -1.880 4.72E-11 1.61E-07 PRDM16 

cg13583586 0.919 0.931 1.491 2.17E-07 1.40E-04 PTDSS2 

cg08274544 0.967 0.959 -1.578 2.60E-08 2.65E-05 PTPN21 

cg01878724 0.078 0.062 1.579 4.43E-08 4.02E-05 RAET1L 

cg23231670 0.048 0.037 1.831 3.13E-10 7.68E-07 RAET1L 

cg08119607 0.150 0.138 1.678 6.73E-09 9.53E-06 RAET1L 

cg03118417 0.915 0.899 -2.291 2.38E-15 2.69E-11 RANBP3 

cg03711182 0.017 0.020 -1.632 8.98E-09 1.18E-05 RASGRF1 

cg05944207 0.051 0.059 -1.687 2.96E-09 4.95E-06 RASL10A 

cg27395839 0.951 0.919 -1.349 1.73E-06 6.52E-04 RORA 

cg24132791 0.062 0.052 1.459 3.81E-07 2.15E-04 RPSAP58 

cg04490178 0.034 0.037 -1.519 8.02E-08 6.25E-05 S1PR4 

cg25619287 0.742 0.763 1.771 1.08E-09 2.19E-06 SDF4 

cg08129848 0.021 0.024 -1.695 2.51E-09 4.38E-06 SEPHS2 

cg08113562 0.038 0.047 -1.564 3.40E-08 3.24E-05 SH3D20 

cg03610867 0.088 0.097 -1.721 1.45E-09 2.81E-06 SHH 

cg09327378 0.935 0.927 -1.410 5.94E-07 2.89E-04 SLC5A1 

cg00007644 0.097 0.105 -1.450 2.90E-07 1.75E-04 SLC6A5 

cg13823936 0.907 0.888 -1.423 4.76E-07 2.49E-04 SPOPL 

cg25533220 0.041 0.044 -1.456 2.61E-07 1.61E-04 SPPL2B;LSM7 

cg06092244 0.874 0.889 1.400 1.05E-06 4.51E-04 STON1-GTF2A1L 
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cg05806180 0.054 0.065 -1.495 1.27E-07 8.86E-05 SULF1 

cg05845592 0.037 0.030 1.388 1.29E-06 5.26E-04 SULT1A1 

cg22436429 0.049 0.052 -1.364 1.34E-06 5.40E-04 TFAP2E 

cg14557510 0.037 0.040 -1.658 5.35E-09 7.93E-06 TFCP2L1 

cg02567119 0.029 0.032 -1.691 2.70E-09 4.63E-06 TLX1;TLX1NB 

cg03548490 0.955 0.949 -1.545 4.88E-08 4.31E-05 TMC7 

cg08466517 0.937 0.945 2.073 1.68E-12 9.63E-09 TNIP3 

cg07965986 0.949 0.955 2.328 4.29E-15 4.68E-11 TRAK1 

cg06900571 0.968 0.963 -1.775 4.66E-10 1.10E-06 TRAPPC9 

cg22309983 0.956 0.952 -1.776 4.58E-10 1.08E-06 TRPV1 

cg22490255 0.054 0.057 -1.413 5.70E-07 2.81E-04 TSPAN31 

cg18106434 0.069 0.057 1.453 4.29E-07 2.33E-04 TUBGCP5 

cg22670128 0.866 0.848 -1.509 9.80E-08 7.26E-05 UBE2J2 

cg19908577 0.042 0.046 -1.585 2.28E-08 2.38E-05 UGT8 

cg18646207 0.055 0.059 -1.365 1.32E-06 5.37E-04 VAX1 

cg08584627 0.060 0.064 -1.349 1.73E-06 6.51E-04 VWA3B 

cg22867714 0.903 0.916 1.371 1.73E-06 6.51E-04 VWF 

cg00405190 0.355 0.345 1.703 4.15E-09 6.49E-06 WIPF1 

cg18579862 0.043 0.048 -1.544 5.05E-08 4.41E-05 ZIK1 

cg19033875 0.027 0.029 -1.364 1.33E-06 5.39E-04 ZNF395 

cg03405173 0.033 0.037 -1.344 1.88E-06 6.90E-04 ZNF441 

cg25591573 0.061 0.069 -1.950 9.71E-12 4.00E-08 ZNF442 

cg08847636 0.057 0.065 -1.873 5.44E-11 1.79E-07 ZNF442 

cg00850039 0.038 0.041 -1.496 1.25E-07 8.70E-05 ZNF442 

cg21727178 0.031 0.036 -1.825 1.59E-10 4.53E-07 ZNF709 

cg02878907 0.028 0.033 -1.901 2.96E-11 1.11E-07 ZNF709 

cg02934221 0.026 0.030 -1.511 9.35E-08 7.08E-05 ZNF709 

cg17317439 0.043 0.047 -1.371 1.18E-06 4.94E-04 ZNF763 

cg18483269 0.026 0.028 -1.689 2.80E-09 4.76E-06 ZNF823 

cg04681963 0.057 0.064 -1.411 5.85E-07 2.87E-04 ZNF879 
 

Table 12: Differentially Variably Methylated Positions (DVMPs), as computed by iEVORA. Variance is 
assigned as ±1.96 standard deviations (95% of a normal distribution), difference in variance is 
displayed as log[V1/V0], and p and FDR-corrected q values are displayed with a significance threshold 
of 0.001. 

 

Goldmine analysis revealed that 53.6% of DVMPs were situated in gene promoters, 

48.0% in CpG Islands, and 66.7% in transcription factor binding sites. Only 12.3% 

were situated in enhancers. Genomic and Feature associations are displayed in 

Figure 31. 
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I used Enrichr to perform enrichment analysis of genes overlapping DVMPs. Based 

on the ChEA dataset I observed enrichment of factors which target the polycomb 

protein SUZ12 (p = 1.6x10-7, Q=1.5x10-5, Z-score=-1.54, Combined Score=24.12), 

and EZH2 (p = 1.3x10-6, Q=6. 1x10-5, Z-score=-1.75, Combined Score=23.76) 

which alongside SUZ12 forms part of Polycomb Repressive Complex 2.  

I also analysed genes overlapping DVMPs in terms of ontology using DAVID, 

though no ontologies were significantly associated after Benjamini-Hochberg 

correction for multiple testing.   

 

 

Figure 31: Genomic and Feature contexts of DVMPs computed using ChAMP results using iEVORA 
and ChIP-Seq data from the Roadmap Epigenomics Consortium. CpG Islands are regions of >200bp 
containing >50% GC composition and an observed to expected CpG ratio of >60%. Shores are regions 
2kb from a CpG Island and Shelves are regions 2kb from a CpG Shore. 

 

3.4.7 Inferring cellular origin of signal through overlap between DMPs and 

underlying cell-specific chromatin modifications 
eFORGE (Breeze et al., 2016) is a tool which associates CpG sites with chromatin 

modifications known to be present in a wide range of tissue types. I input the 

differentially methylated probes to eFORGE and found significant (Adjusted p > 

0.001) associations between DMPs and H3K36me3 marks in Primary Monocytes 

and Primary B Cells, as well as marginal association (0.05 > p > 0.001) with the 

same mark in Primary Natural Killer Cells. This suggests a population-specific origin 

of differential methylation in whole blood which informed work detailed in later 

chapters. 
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3.4.8 Results: Differentially Methylated Regions in sporadic CJD 
Regional differences in DNA methylation are thought to be particularly biologically 

relevant as they may reflect areas of epigenetic dysregulation which may overlap 

multiple DNA-protein interaction sites, or be indicative of a region of underlying 

chromatin modifications (Jones, 2012). I first used Bumphunter (Jaffe et al., 2012) to 

tile adjacent probes and test for regional differences in methylation with Bonferroni 

threshold reduced by virtue of a reduction in data dimensionality through tiling. I 

identified 41 differentially methylated regions (DMRs), detailed in Table 13. The top-

ranked DMR consisted of 48 probes (2379nt) overlapping the HOXA5 promoter 

region (FWER = 0.012, p = 3.3x10-5), while subsequent DMRs had higher Family-

Wise Error Rates and showed lower effect sizes between case and control. Genes 

overlapped by DMRs were input to  Enrichr (E. Y. Chen et al., 2013; Kuleshov et al., 

2016) for gene set enrichment analysis, which revealed a significant association 

with Leukotriene receptor partners (p = 8.5x10-5, q = 0.007, Z-score = -1.55, 

Combined Score = 14.57).  

To assess the biological context of these DMRs, sequences were input to Goldmine 

using the previously mentioned Roadmap Consortium data. I found that all DMRs 

overlapped with transcription factor binding sites, and around 40% of DMRs 

overlapped enhancers in Monocytes, CD4+T Cells, CD8+ T Cells, B Cells, 

Neutrophils or Natural Killer Cells (Figure 32).  Then I used MEME-Suite (Bailey et 

al., 2009) to identify two motifs which are enriched in the DMRs (Figure 33), which I 

then associated with Gene Ontology Terms using MEME-Suite’s GOMo function 

(Buske et al., 2010). These are detailed in Table 14. To examine whether these 

motifs were represented in lists of transcription factor binding sites, I performed 

TOMTOM analysis which yielded two lists of transcription factors (Table 15) which I 

also input to Enrichr. The gene set of transcription factors with a q-value<0.05 (all of 

which corresponded to the first motif) was found to be significantly enriched for 

factors which target the polycomb protein SUZ12 (p = 8.2x10-9, q = 6.0x10-7, Z-score 

= -1.54, Combined Score = 28),based on the ChEA dataset (Lachmann et al., 

2010). These findings are intriguing as SUZ12 is involved in HOXA5 silencing and 

suggest dysregulation of epigenetic control of HOXA5 in sCJD.  
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Figure 32: Feature and Genomic context of DMRs, computed using bumphunter results and ChIP-Seq 
data from the Roadmap Epigenome Consortium (Roadmap Epigenomics Consortium et al., 2015). 
CpG Islands are regions of >200bp containing >50% GC composition and an observed to expected 
CpG ratio of >60%. Shores are regions 2kb from a CpG Island and Shelves are regions 2kb from a 
CpG Shore. 

 

 

 

 

Figure 33: Motifs enriched in DMR sequences as called by MEME-Suite. 
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Motif 2 
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Motif 
Associated 

GO Terms 
5 most significant GO Terms 

GO 

Type 
p val q Val 

Specificity 

(%) 

1 11 

Olfactory receptor activity 

 
MF 

8.48e-

08 
1.24e-04 100 

Sensory perception of smell BP 
8.48e-

08 
1.24e-04 88 

Sensory perception of 

chemical stimulus 
BP 

8.48e-

08 
1.24e-04 25 

G-protein coupled receptor 

protein signaling pathway 
BP 

8.48e-

08 
1.24e-04 7 

Gene Expression BP 
2.19e-

05 
2.32e-02 1 

2 673 

Calcium ion binding MF 
8.48e-

08 
 

5.06e-
06 

 

100 

Protein heterodimerization 

activity 
MF 

8.48e-

08 
 

5.06e-
06 

 

100 

Positive regulation of 

transcription from RNA 

polymerase II promoter 

BP 
8.48e-

08 
 

5.06e-
06 

 

58 

Lung development BP 
8.48e-

08 
 

5.06e-
06 

 

16 

Signal transduction BP 
8.48e-

08 
 

5.06e-
06 

 

8 

 

Table 14: Gene Ontology Results from MEME-SUITE’s GOMo function. Term types are organised into 
Molecular Function (MF) or Biological Process (BP). 
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Motif Gene p value q value Overlap Target Overlap Strand 

1 CPEB1 8.53E-08 2.15E-04 17 AAAAAAAAAAATAAAAA - 

1 FUBP1 5.45E-06 3.92E-03 12 AAAAAAACACAA - 

1 ARI3A 8.22E-06 3.92E-03 22 AATTAATCGAAATCAAATTAAA + 

1 FOXL1 9.96E-06 3.92E-03 19 AAAAGTAAACAAACAAACA - 

1 ANDR 1.09E-05 3.92E-03 18 AGCAAACAAAAAAGAACA - 

1 FOXG1 1.40E-05 4.42E-03 17 AAAAAAATATAAACAAT - 

1 SRY 2.69E-05 6.79E-03 9 AAAACAAAA - 

1 LMX1A 5.94E-05 0.01 19 TTAATTAAATAATTAATTA - 

1 HXC10 6.38E-05 0.01 19 GTAATAAAAAAATTAAAAA - 

1 FOXJ3 9.01E-05 0.02 13 AAAAAATAAACAA - 

1 PRDM6 1.36E-04 0.02 13 AAAAAGAAAAAAA + 

1 AIRE 1.68E-04 0.02 18 TTAACCAATATAACCAAT - 

1 HMX1 2.79E-04 0.04 17 ATTAAAAAGCAATTAAC - 

1 FOXF1 3.24E-04 0.04 11 AAAATAAACAT - 

1 PO3F3 3.91E-04 0.05 17 AAATTTGCATAATTTAT - 

1 FOXJ3 4.20E-04 0.05 13 TAAACAAAAACAA - 

1 ZN713 5.25E-04 0.06 19 ATAGAAAAAAGACATGAAA + 

1 FOXJ2 6.19E-04 0.06 10 TAAATAAACA - 

1 FOXP1 8.24E-04 0.08 9 ATAAACAAA - 

1 ONEC3 8.38E-04 0.08 12 AAAAAATCAATA - 

1 Z354A 9.60E-04 0.08 24 ACATTAAATGTAAATGGACTAAAT - 

1 SOX5 1.07E-03 0.08 8 TAACAATA - 

1 ONEC2 1.11E-03 0.08 20 AAAAAAAATCAATAACAAGAC - 

1 LHX9 1.14E-03 0.08 18 TAATTAATAGCTAATTAG - 

1 STAT1 1.22E-03 0.08 17 AAGAAAATGAAACTGAAAG + 

1 BPTF 1.31E-03 0.09 12 GAAAACAACAAA - 

1 STAT2 1.53E-03 0.10 17 AGGAAAATGAAACTGAAAG + 

1 NFAC1 1.75E-03 0.11 15 ATGGAAAAAAAGAAA + 

1 SHOX 2.01E-03 0.12 17 AAAAATTAACTAATTAG - 

1 HXD11 2.22E-03 0.13 11 AGTAATAAAAA - 

1 DLX1 2.47E-03 0.14 16 TAATTAGCATAATTTA - 

1 HXC6 2.55E-03 0.14 15 AAAGTAATAAATCAT - 

1 HMX2 2.78E-03 0.15 11 AACCAATTAAA - 

1 FOXD1 2.89E-03 0.15 15 CTTAAGTAAACAAAG - 

1 FOXD2 3.00E-03 0.15 19 TTAAATAAATATTTACATA - 

1 MEF2D 3.81E-03 0.18 12 CTAAAAATAGCA - 

1 FOXD3 3.92E-03 0.18 15 TGCTAAGTAAACAAA - 

1 MEF2A 4.28E-03 0.19 13 GCTAAAAATAGAA - 

1 SHOX2 4.52E-03 0.20 17 TAAAATTAACTAATTAG - 

1 FOXQ1 4.67E-03 0.20 12 AAATAAACAATT - 

1 IRF1 5.22E-03 0.21 19 GAAAATGAAAGTGAAAGTAA + 

1 FOXP3 5.59E-03 0.22 9 AAACAAATT - 

1 GSX1 5.60E-03 0.22 15 ATTAAAAACTAATTA - 

1 HNF6 5.73E-03 0.22 11 AAATCAATAAA - 

1 MEF2C 5.90E-03 0.22 13 GCTAAAAATAGCA - 
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1 MNX1 6.33E-03 0.23 18 TTAAGGGTTATTAAAATAG - 

1 PO3F4 6.65E-03 0.24 17 TAATTTGCATAATTTAT + 

1 ZFP28 7.06E-03 0.25 20 TGACACAAGAAGAAATAGAA - 

1 EVX2 7.13E-03 0.25 13 AAGGCCATAAAAC - 

1 MYNN 7.40E-03 0.25 17 TTTCAAAATAAAAGTCC - 

1 LEF1 7.58E-03 0.25 14 AGCAAATCAAAGGA - 

2 NKX25 1.72E-04 0.08 8 CCTCTCCA - 

2 ETS2 1.96E-04 0.08 13 TCCTCTTCCTTCC - 

2 E2F7 2.66E-04 0.08 13 CCTTTCCCGCCCC - 

2 ZN467 2.86E-04 0.08 15 CCCCCCCCCCCCTCCCCTCCCC - 

2 PTF1A 3.76E-04 0.08 15 CCAGCTGCCCCCTTTCCC + 

2 VEZF1 3.83E-04 0.08 15 CCCCTCCCCCTCCCCCCTCCCC - 

2 E2F1 3.83E-04 0.08 14 CTTTCCCGCCCCCC - 

2 SP4 5.00E-04 0.08 15 CCCGGCCCCGCCCCCTTCCC - 

2 ZBTB6 5.07E-04 0.08 13 CGGCTCCAGCACC - 

2 PATZ1 5.08E-04 0.08 14 CCTCCCCCCCCGCCCCCTCCCC - 

2 WT1 6.29E-04 0.08 15 CCCCCCCTCCTCCCCCGCCC - 

2 TFDP1 8.79E-04 0.11 14 TTTTCCCGCCCCCC - 

2 E2F6 1.18E-03 0.13 13 CCCTTCCCGCCCC - 

2 KLF15 1.38E-03 0.13 15 CCCCCCCCTGCTCCTCCCC - 

2 ZFX 1.45E-03 0.13 15 CCCCGGCCTCCGCCCCC - 

2 MAZ 1.50E-03 0.13 15 CCCCCCCCCCCCCCCCTCCCCC - 

2 ZN148 1.86E-03 0.15 14 CCCCTCCCCCACCCC - 

2 ZBT17 1.94E-03 0.15 14 CTTCCCCTCCCCCACCCTC - 

2 EGR2 2.10E-03 0.15 14 CCCCCGCCCACGCCCC - 

2 CREB3 2.11E-03 0.15 13 TGCCACGTCACCA - 

2 ERG 2.41E-03 0.17 13 CCACTTCCTGCCC - 

2 ZN263 2.64E-03 0.18 15 CTCCTCCTCTCCCTCCTCCC - 

2 ZN341 3.22E-03 0.21 15 GCTCTTCCCTCCCCCCCCCCCC - 

2 FLI1 3.84E-03 0.23 13 CCACTTCCTGCCT - 

2 EGR1 3.85E-03 0.23 15 CCCCCGCCCACGCCCTC - 

2 MAZ 3.90E-03 0.23 11 CCCCCTCCCTC - 

2 EGR2 5.06E-03 0.28 15 CCCCTCCCACACCCCCCC - 

2 NFAC1 5.92E-03 0.31 14 TTTCTTTTTTTCCAT - 

2 SP2 6.10E-03 0.31 14 CCCCCGGCCCCGCCCCCCCCCC - 

2 ETV5 6.78E-03 0.31 14 CTCACTTCCTGCTC - 

2 ETS1 6.80E-03 0.31 13 CCACTTCCTGTCT - 

2 NR0B1 7.22E-03 0.31 10 TCTCCCACGC - 

2 NFAT5 7.30E-03 0.31 9 CCTTTTCCTCT - 

2 ZN740 7.32E-03 0.31 14 CCCACCCCCCCCCC - 

2 VEZF1 7.44E-03 0.31 11 CCCCCTCCCCCT - 
 

Table 15: Transcription Factors which recognise 2 motifs enriched in the DMR dataset as called by 
TOMTOM. p values are calculated through comparison of the query motif (1 or 2) with target overlap 
per transcription factor, while q value presents the significance after adjustment for False Discovery 
Rate. 

 



Page 114 
 

3.5 Summary 
During the early stage of the project I optimised a low-input high-yield protocol for 

extraction of genomic DNA from blood, as well as a bisulphite conversion protocol 

which produced bisulphite converted DNA of sufficient quality for 450K Beadchip 

array analysis. I went on to perform the first genome wide methylation association 

study conducted on human prion disease. I identified 38 Differentially Methylated 

Positions (DMPs), 41 Differentially Methylated Regions (DMRs) and 252 

Differentially Variably Methylated Positions (DVMPs). As DVMPs are of ambiguous 

biological relevance and the DMRs I identified have high Family-Wise Error Rates, 

the most reliable results from this study are the DMPs, which will be taken forward 

for further analysis. Pathway, enrichment and motif analyses produced some 

positive associations between results and pathways, ontologies, functions and 

common sequences, but these associations were slight and not particularly 

convincing. Loci associated with sCJD were associated with disease severity and 

rate of decline, as loci unchanged between disease and control were thought 

unlikely to correlate with either metric under the study’s statistical power. An 

association between demethylation at the AIM2 promoter and increased disease 

severity shows promise as a peripheral prognostic biomarker. Effects seen in blood-

derived DNA are relatively large compared to those seen in published studies of 

neurodegeneration. Yet genome-wide significance inflation was higher than optimal, 

and so to exclude false positives replicating these findings in a second study of DNA 

methylation in blood taken from a separate cohort of sCJD patients and controls 

was planned, as described in the next chapter.  
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4 Validating, replicating and exploring 450K Beadchip Array 
findings using CpG-sensitive pyrosequencing 
Having successfully identified 38 loci differentially methylated between sporadic 

CJD patients and control volunteers, the logical next step was to replicate findings 

using a second cohort of samples and a different technology. This serves several 

purposes, the first being to minimise the false positive risk by controlling for 

variability unique to the first cohort or technically inherent to the 450K Beadchip 

array. Secondly, by using a sequencing approach rather than a probe-based 

approach, locally proximal CpG sites can also be interrogated. As CpG methylation 

can be highly locally correlated this provides the opportunity to strengthen the 

impact of the discovery findings by identifying additional adjacent loci with similarly 

differential levels of methylation (L. Zhang et al., 2017; Song, Ren and Lei, 2017). 

Finally, as site-specific sequencing data cannot be adjusted for cellular 

heterogeneity or subjected to the preprocessing data from the 450K Beadchip array 

was, these results being an artifact of data manipulation can be ruled out. 

In this chapter I aim to design pyrosequencing assays for biologically interesting loci 

identified during the previous chapter, validate pyrosequencing’s complementarity to 

the 450K Beadchip array by assaying samples whose methylation levels at 

cg10636246 (AIM2) and cg03546163 (FKBP5) had been previously investigated, and 

replicate discovery study results in a second set of different sCJD patients and 

controls. Finally, I aim to test the specificity of any successfully replicated findings to 

sporadic CJD by performing the replication assays on blood-derived DNA from 

Alzheimer’s Disease, iatrogenic CJD and Inherited Prion Disease patients.  

4.1 Relevant Methods and Sample Demographics 
2.1.2 Extraction of genomic DNA from blood (page 56)  

2.1.3 DNA Quality Control (page 58)  

2.1.4 Bisulphite Conversion (page 58) 

2.3 Validation and Replication Using Pyrosequencing (page 65)  

2.3.1 Sample Selection (page 65)  

2.3.2 Bisulphite PCR for Pyrosequencing (page 65)  

2.3.3 Pyrosequencing (page 69)  

2.4 Testing Disease Specificity of Replicated Differentially Methylated Sites Using 

Pyrosequencing (page 69) 

2.7 Statistics and Graphics (page 72) 
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Group Number Average Age 
(range) Sex (% F) Codon 129 (%) 

MM:MV:VV 

Average 
MRC Scale 

Score 
(range) 

sCJD 72 59.9 (26-86) 58.3 54:23:23 4.5 (0-20) 
Control 114 78.2 (61-93) 64.9 Unknown 20 

AD 59 71.8 (58-87) 47.5 Unknown NA 
iCJD 18 46.4 (41-53) 11.1 27:73:0 11.7 (1-18) 
IPD 11 48.5 (38-68) 72.7 44:44:12 18.6 (13-20) 

 

Table 16: Demographics of patients and controls whose samples were used in the 
replication/specificity phase. 

 

4.2 Assay design 

4.2.1 Probe Selection 
Technologies for replication of observed effects at single loci are by definition less 

high-throughput than the 450K array. This places a limitation on the number of 

DMPs which could be brought forward to replication and necessitates selection of 

DMPs from the list of 38. I selected DMPs for replication based on statistical 

significance, effect size, genomic location and features, and biological function. Two 

probes in AIM2 (cg10636246 & cg17515347) were selected due to their presence in 

the gene’s promoter region and their association with MRC Scale score (Section 

3.3.4). A CpG bordering the promoter of FKBP5 (cg03546163) was selected as it 

exhibited the largest case-control difference (Δβ = - 0.055). Two additional probes 

overlapped by FKBP5 (cg00052684 & cg25114611) were identified as differentially 

methylated using the EpiDISH algorithm (Box 2) and were also chosen for 

replication. A CpG in the body of UHRF1 (cg04286737) and another in the body of 

METTL9 (cg02481950) were selected due to their biological function: UHRF1 

facilitates DNMT1 recruitment to hemi-methylated DNA whilst METTL9, while 

uncharacterised, bears homology to methyltransferases.  A probe in the body of 

KCNAB2 (cg02448796) was chosen for replication as bioinformatic analysis of 

sCJD GWAS data (currently unpublished, personal communication from Dr Holger 

Hummerich, MRC Prion Unit at UCL) indicated an enrichment in factors associated 

with potassium channels, and a CpG upstream of MTRNR2L8 – Humanin-like 

protein 8 – was also chosen due to previous association with humanin-like proteins 

with neuroprotection in prion disease and Alzheimer’s disease (Hashimoto et al., 

2001; Sponne et al., 2004; Bodzioch et al., 2009).  Because of their relevance to 

prion disease and epigenetics of neurodegeneration, and partly because no 
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statistically significant change was observed at these loci in the discovery stage, 

probes in ANK1 (cg11823178) and PRNP (cg00168514) were also selected (Lloyd, 

Mead and Collinge, 2011; De Jager et al., 2014; Lunnon et al., 2014). Distribution of 

beta values between groups at these probes are visualised in Figure 34 and a 

summary of selection rationale is displayed in Table 17. 

 

 

Figure 34: Array-derived methylation values at selected DMPs, as well as loci in ANK1 and PRNP 
which showed no significant change between control (red) and sCJD (turquoise) groups. Asterisks 
denote Bonferroni-adjusted significance, where an adjusted threshold of 0.05 has been surpassed  
(* = p < 0.05, ** = p < 0.01, *** = p < 0.001) 
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Probe Gene Bonferroni 
Significant? 

CpG 
within 
TSS? 

|Δβ|> 0.03? 
Functional connection to: 

Neurodegeneration? Epigenetics? 

cg10636246 AIM2 Yes Yes Yes Yes No 
cg02481950 METTL9 Yes No No No Yes 
cg05740793 MTRNR2L8 Yes Yes Yes Yes No 
cg05001044 MIR1977 Yes Yes Yes No Yes 
cg02448796 KCNAB2 Yes No Yes No No 
cg17714703 UHRF1 Yes No Yes No Yes 
cg17515347 AIM2 Yes Yes Yes Yes No 
cg03546163 FKBP5 Yes Yes Yes Yes No 
cg11823178 ANK1 No No No Yes No 
cg00168514 PRNP No No No Yes No 

 

Table 17: Criteria for replication as fulfilled per CpG site chosen for replication. 

 

4.2.2 Bisulphite-PCR primer design 
Producing an amplicon less than 200 bp in length at probe sites surrounded by 

particularly dense CpG clusters is technically challenging as forward and reverse 

PCR primers cannot overlap CpG sites. This would bias the reaction towards 

amplification of methylated or unmethylated fragments, depending on whether the 

complementary nucleotide at the CpG’s cytosine is A (unmethylated) or G 

(methylated) after bisulphite conversion. This was the case for many of the PRNP 

probes, including cg00168514 which had been chosen as a negative control. 

Instead an assay was designed for cg04286737, which is located upstream of 

PRNP’s TSS. Fortunately, an assay for the second negative control CpG in ANK1 

(cg11823178) was designed without difficulty.  

MTRNR2L8 presented a different challenge, as it is one of 15 nuclear-encoded 

descendants of a mitochondrial peptide (Bodzioch et al., 2009). As such the DNA 

sequence surrounding cg05740793 was highly conserved across the Humanin 

homologues and generating a specific amplicon shorter than 200 bp proved 

impossible. Moreover, the bordering sequences were enriched for cytosine and 

thymine, which after bisulphite conversion resulted in stretches of thymine homo-

polymers which are refractory to primer design. This is due in part to increased 

sequence redundancy and thus reduced hybridisation specificity, but also because 

interactions between A/T rich sequences are weaker than those between G/C rich 

sequences. Nested bisulphite PCR of a larger specific amplicon and then production 

of a shorter amplicon for sequencing was attempted but in all cases the second 
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reaction failed. Regrettably upstream differential methylation of MTRNRL2L8 was 

therefore not able to be replicated. The local genomic contexts of PRNP and 

MTRNRL2L8 probes as displayed in the PyroMark assay design software are 

shown in Figure 35. 

Despite the technical challenges of designing primers for bisulphite PCR followed by 

sequencing, assay design for the remaining selected probes was less problematic 

and in some instances allowed profiling of multiple adjacent CpG sites (up to a total 

of 5 CpGs in the ANK1 assay, also shown in Figure 35).  

 

 

 

 

Figure 35: Screenshots from PyroMark Assay Design 2.0 software. Numbers correspond to nucleotide 
position around the CpG of interest (CpG ± 500 nt), orange bars and red circles correspond to melting 
temperature and Gibbs free energy per location. Blue bars correspond to CpG cytosines, shaded blue 
sequence represents target sequences. Grey shadows and beige blocks correspond to potential 
primer positions and generated primer sequences. (i) PRNP probe cg00168514 (position 501) is 
situated in a CpG island and so surrounded by CpG sites (light blue shading), over which many of the 
generated primer sequences (grey shadows, beige blocks) overlap. (ii) MTRNRL2L8 probe 
cg05740793 (position 501), as well as being surrounded by sequences conserved elsewhere in the 
genome, is flanked by homo-thymine polymers after bisulphite conversion which are refractory to 
specific primer hybridisation. The downstream flank is shown; orange colour in the sequence indicates 
paired thymine/adenine produced by bisulphite conversion of paired cytosine/guanine. (iii) Multiple 
sites adjacent to ANK1 probe cg11823178 (position 501) are eligible for profiling during sequencing 
extension. As maximum pyrosequencing read length is approximately 40 nucleotides, of the targeted 
five adjacent CpGs only the first four generated sufficient quality data for analysis. 
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4.3 Validation of AIM2 and FKBP array-derived methylation values 

using pyrosequencing 
To lend confidence in the results of a genome-wide discovery study, it is important 

to firstly validate and then replicate the results in a second cohort of samples, ideally 

using a different technology. Not only does this reduce the influence of the basal 

false positive rate, but in the latter instance discounts the effects of technical biases 

particular to the technology used from contributing to this error rate. 

Pyrosequencing was originally used to validate raw 450K array data and found to 

have a Spearman’s R of 0.86 and p below 0.0001 (Roessler et al., 2012). However, 

it is possible that the corrective techniques which have emerged since the platform’s 

release may have an effect on complementarity between the two technologies. As a 

pilot study, 10 sCJD samples and 6 control samples which had been profiled on the 

array were assayed at cg10636246 (AIM2) and cg03546163 (FKBP5) using 

pyrosequencing. Pyrosequencing provides DNA methylation values in percentage 

rather than β, and data is not processed as with array values. Perhaps as a 

consequences of this, absolute methylation values were approximately 10-20% 

lower as measured by pyrosequencing, but differences between means remained 

consistent between array and pyrosequencing results for FKBP5 (Δβ = -0.069, Δ% 

= -6.1%) and AIM2  (Δβ = -0.095, Δ% = -8.2%), as shown in Figure 36. Spearman’s 

R between pyrosequenced and array values were 0.844 (p = 2.83x10-4) and 0.911 

(p = 1.87x10-7) respectively. This demonstrates that despite the differences between 

the two platforms, pyrosequencing remains an appropriate method of validating and 

replicating 450K array data, at least at these two DMPs. As such a second, 

separate cohort of sCJD and control blood-derived DNA was assembled for 

replication of DMPs. 
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Figure 36: Validation of 450K array results using pyrosequencing. Shown are control and sCJD 
methylation values (Beta) at FKBP5 and AIM2 DMPs as measured by 450K array (gold) and 
Pyrosequencing (red). 

 

4.4 Replication of DMPs using pyrosequencing  
 

4.4.1 Power calculations and cohort selection 
Now that estimates of effect sizes and beta distributions were known, it became 

possible to calculate sample numbers (N) needed to achieve 95% power per DMP 

assay. Using G*Power 3.1 (Faul et al., 2009) N per assay was calculated, which 

ranged from 7 to 50 as shown in Table 18. In the event of altered distribution of 

array methylation values and pyrosequencing values per assay or methylation 

distributions in the new sample group being different, an excess of samples (72 

sCJD, 114 controls) were selected and bisulphite DNA stocks generated as 

previously described. In addition, 59 Alzheimer’s disease (AD) patient-derived 

samples (see methods for sample sources and diagnosis of patients) were 

converted in order to test the specificity of observed changes to prion disease, 

rather being a general consequence of neurodegeneration. To test the specificity of 

these DMPs to sporadic prion disease, 18 iatrogenic CJD (iCJD) and 9 inherited 
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prion disease (IPD) patient samples (carrying the following PRNP mutations: 

A117V, 5-octapeptide repeat insertion, D178N, P102L (x 6)) were also selected for 

comparison, with the caveat that not all assays would be powered in these 

comparisons and that iCJD caused by inoculation with contaminated cadaveric 

pituitary gland-derived growth hormone disproportionately affected men, thus only 2 

of 18 patients were female. Iatrogenic CJD is a very rare disease which also limited 

sample size.  

Probe Gene Control 
β 

Control 
SD 

sCJD 
β 

sCJD 
SD 

SD 
used 

sCJD 
N 

Control 
N Power 

cg10636246 AIM2 0.25 0.02 0.21 0.02 0.02 7 7 0.969 

cg02481950 METTL9 0.82 0.03 0.8 0.02 0.03 50 50 0.95 

cg05740793 MTRNR2L8 0.16 0.02 0.21 0.025 0.025 7 7 0.969 

cg05001044 MIR1977 0.19 0.025 0.245 0.035 0.035 10 10 0.958 

cg02448796 KCNAB2 0.749 0.034 0.781 0.4 0.4 35 35 0.95 

cg17714703 UHRF1 0.21 0.016 0.242 0.02 0.02 10 10 0.96 

cg17515347 AIM2 0.6 0.04 0.55 0.045 0.045 19 19 0.956 

cg03546163 FKBP5 0.55 0.047 0.49 0.05 0.05 16 16 0.95 
 

Table 18: Power calculations for replication assays. Shown are sample numbers (N) required to 
replicate findings per site at 95% power calculated from Δβ between sCJD and control array values. To 
ensure stringency the largest of the two standard deviations (SD used) was used in the power 
calculation. 

 

4.4.2 Replication of DMPs in second control and sCJD cohort 
Raw methylation values in percent were output by the PyroMark Q96. Failed calls 

were discarded manually whilst calls highlighted for manual checking were 

discarded based on unrealistic values (e.g. 0%) or common discrepancies in the 

assay. For example, if pyrogram peak height was consistently different from 

expected height at a position up/downstream of the assay site, this was not 

considered to be disqualifying. sCJD and control samples were converted in a 

single batch on two 96-well plates and no assays which contained a non-CpG 

cytosine as a control for bisulphite conversion efficiency (cg01636246, cg11823178, 

cg00052684, cg25114611, cg05001044, cg02448796, cg02481950) showed errors 

related to incomplete bisulphite conversion. As eight genes in total were being 

assayed, albeit in some instances at several proximal sites, nominal significance 

threshold was adjusted to p < 0.00625 (0.05 ÷ 8) and analysis was performed using 

a linear regression model with age and sex as covariates.  

Of 9 DMPs, 6 were replicated, and the two negative controls remained unaffected 

by disease/control status. 
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In FKBP5, hypomethylation of cg03546163 was found to be increased from -5.55% 

in the first cohort to -11.00% in the second, with unadjusted statistical significance 

being of the order of p ~ 10-8 in both groups. In addition, a CpG 4 nucleotides 

downstream was also found to be significantly hypomethylated (-7.08%, p = 6.42 

x10-10). Of the two additional loci identified using EpiDISH, cg00052684 showed 

similar effect size between cohorts (-4.95% and -5.35% for the first and second 

cohorts respectively), but significance, although nominal, was reduced (unadjusted 

p = 4.86x10-8 (first cohort) to p = 0.002 (second cohort)). The second EpiDISH CpG 

(cg25114611) did not pass the threshold for statistical significance of p < 0.00625 (-

3.31%, p = 2.45x10-10 (first cohort), -3.29%, p = 0.029 (second cohort)). 

Both DMPs in AIM2 were replicated in the second cohort. Hypomethylation of 

cg17515347 was also found to be increased from -4.72% to -10.33% and 

significance was increased by two orders of magnitude (p = 7.56x10-8 (first cohort) 

to p = 2.02x10-10 (second cohort)). In addition, a CpG 14 nucleotides downstream 

was found to be similarly altered (-7.74%, p = 7.69x10-10). In contrast, cg10636246 

also replicated at increased significance and with a greater effect size (-4.05%, p = 

2.38x10-10 (first cohort), -5.99%, p = 5.51x10-13 (second cohort)), but a CpG 36 

nucleotides upstream was not found to be significantly altered between sCJD and 

control. 

The DMP at cg02481950 in METTL9 was also replicated in the second cohort with 

similar effect size and significance (+1.93%, p = 8.65x10-10 (first cohort), +2.41%, p 

= 8.00x10-6 (second cohort)), but cg02448796 in KCNAB2 (+3.15%, p = 4.36x10-8 

(first cohort), +1.96, p = 0.087 (second cohort)) and cg05001044 in MIR1977 

(+5.23%, p = 9.82x10-9 (first cohort), +0.70, p = 0.34 (second cohort)) did not show 

differential methylation on replication. All three CpGs in the UHRF1 assay showed 

hypermethylation (+2.06%, + 4.34%, +2.12%) which was nominally significant (p = 

0.002, 0.001, 0.003), but reduced compared to the array results corresponding to 

the second CpG (cg17714703) in the pyrosequencing assay (+3.44%, p = 2.15x10-
8). 

Although both cg04286737 and cg00168514 are located in the body of PRNP, the 

former is 2,107 bp downstream of the latter and so methylation values at these sites 

cannot be expected to correlate. However, cg04286737 was not found to be 

differentially methylated between sCJD and control (-0.47%, p = 0.037). In ANK1 

lack of differential methylation at cg11823178 was confirmed (-0.46%, p = 0.819). 

Thus, of seven DMPs calculated using Houseman correction five were replicated 
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and two did not replicate, while of two additional EpiDISH-calculated DMPs one 

replicated and one did not. Replication results including array data for comparison 

and values at novel probe-adjacent CpG sites are summarised in Table 19.  
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CpG site Coordinates 
(hg19) Gene Array Δβ 

(%) 
Array p 
(Unadj) 

Pyro ΔM 
(%) 

Pyro p 
(Unadj) 

 6:35,654,360 FKBP5   -7.08 6.42x10
-10

 

cg03546163 6:35,654,364 FKBP5 -5.55 3.71x10
-8

 -11.00 1.70x10
-8

 

cg00052684 6:35,694,246 FKBP5 -4.95 4.86x10
-8

 -5.35 0.002 

cg25114611 6:35,696,871 FKBP5 -3.31 2.45x10
-10

 -3.29 0.029 

 6:35,696,887 FKBP5   -0.68 0.764 

cg17515347 1:159,047,164 AIM2 -4.72 7.56x10
-8

 -10.33 2.02x10
-10

 

 1:159,047,178 AIM2   -7.74 7.69x10
-10

 

 1:159,046,937 AIM2   +1.66 0.349 

cg10636246 1:159,046,973 AIM2 -4.02 3.43x10
-10

 -5.99 5.51x10
-13

 

cg04286737 20:4,665,646 PRNP   -0.47 0.037 

 20:4,665,649 PRNP   -0.21 0.28 

 19:4,912,212 UHRF1   +2.06 0.002 

cg17714703 19:4,912,222 UHRF1 +3.44 2.15x10
-8

 +4.34 0.001 

 19:4,912,224 UHRF1   +2.12 0.003 

cg05001044 1:567,312 MIR1977 +5.23 9.82x10
-9

 +0.70 0.34 

 1:567,347 MIR1977   +0.92 0.004 

 1:567,357 MIR1977   +0.79 0.014 

 1:567,375 MIR1977   +0.12 0.93 

cg02481950 16:21,665,003 METTL9 +1.93 8.65x10
-10

 +2.41 8.0x10
-6

 

 1:6,101,332 KCNAB2   +2.00 0.91 

cg02448796 1:6,101,339 KCNAB2 +3.15 4.36x10
-8

 +1.96 0.087 

cg11823178 8:41,519,399 ANK1 -0.29 0.54 -0.46 0.819 

 8:41,519,411 ANK1   +1.04 0.290 

 8:41,519,417 ANK1   -4.05 0.023 

 8:41,519,420 ANK1   -1.75 0.113 

 8:41,519,440 ANK1   -0.80 0.286 

 

Table 19: Results from DMP replication study. Probes selected for replication are in the first column, 
where assay permitted measurement of DNA methylation at adjacent CpG sites their genomic 
coordinates are displayed in column two. For ease of comparison methylation values are given in 
percent for both array (Δβ x 100) and pyrosequencing data, and p values are unadjusted with the 
significance threshold being p < 1.24x10-7 for array results and p < 0.00625 for pyrosequencing results. 
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I then tested the association between MRC Scale score and hypomethylation at the 

AIM2 probe cg10636246 in data from sCJD-derived samples in the replication 

cohort. Although effect size and significance were diminished compared to the 

discovery cohort, this effect was replicated in the second cohort (Pearson = 0.281, p 

= 0.013, compared to Pearson = 0.423, p = 9.40x10-6 (first cohort)) as shown in 

Figure 37. 

 

 

Figure 37: Correlation of hypomethylation at cg10636246 (AIM2) with decrease in MRC Scale score is 
replicated in a second cohort of sCJD patient samples (r = 0.281, p = 0.013). An MRC Scale score of 
20 represents a patient who may have symptoms but is functionally independent for activities of daily 
life. An MRC Scale score below 3 indicates a comatose state near to death with a patient only able to 
take perhaps sips of fluid for nutrition and make incomprehensible sounds. Asterisks denote 
significance (* = p < 0.05) 

 

4.5 DNA methylation at replicated DMPs in iatrogenic CJD, inherited 

prion disease and Alzheimer’s disease 
Five replicated assays at AIM2 (cg17515347, cg10636246), FKBP5 (cg03546163), 

METTL9 (cg02481950) and UHRF1 (cg17714703) loci were applied to DNA derived 

from iCJD, IPD and AD patient blood. In summary, changes observed in sCJD were 

not observed in the other diseases profiled, although the METTL9 assay was not 

powered in the case of iCJD and IPD. In this instance, analysis of iCJD data 

excluded sex as a covariate from the regression model as there was a strong 

imbalance of sex between iCJD and control groups (as explained in Section 4.3.1). 

As no models using data from any of the assays showed any strong coefficients 

* 
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with sex, it is unlikely that this exclusion masked any biological effect. As five 

assays were used, Bonferroni threshold for disease group specificity assays was set 

at 0.01. Comparisons of raw pyrosequencing data between groups per assay are 

displayed in Figures 38-41, while summary statistics are tabulated in Table 20: 

Statistics for differences between AD, iCJD, IPD compared to control group per 

replicated DMP. p values are unadjusted, Bonferroni-adjusted significance threshold 

is p < 0.01 

. 

  

Figure 38: Pyrosequencing results at cg10636246 (AIM2). The assay shows no significant differential 
methylation at the first interrogated CpG, while at the probe-targeted CpG differential methylation is 
only observed between control and sCJD groups (ΔM = -5.99%, p = 5.5x10-13). Bonferroni threshold is 
0.00625 for sCJD-control comparisons and 0.01 for comparisons between control and non-sCJD 
diseases. Asterisks denote adjusted significance, where a threshold of 0.05 has been surpassed  
(* = p< 0.05, ** = p< 0.01, *** = p<0.001).  

  

*** 
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Figure 39: Pyrosequencing results at cg17515347 (AIM2). The assay shows significant 
hypomethylation at both targeted CpG sites in the sCJD group only (ΔM = -10.33%, p = 2.02x10-10; ΔM 
= -7.74%, p = 7.69x10-10). Bonferroni threshold is 0.00625 for sCJD-control comparisons and 0.01 for 
comparisons between control and non-sCJD diseases. Asterisks denote Bonferroni-adjusted 
significance, where an adjusted threshold of 0.05 has been surpassed  
(* = p< 0.05, ** = p< 0.01, *** = p<0.001). 

 

  

Figure 40: Pyrosequencing results at cg03546163 (FKBP5). The assay shows significant 
hypomethylation at both targeted CpG sites in the sCJD group only (ΔM = -7.08%, p = 6.42x10-10; -
11.00%, p = 1.70x10-8). Bonferroni threshold is 0.00625 for sCJD-control comparisons and 0.01 for 
comparisons between control and non-sCJD diseases. Asterisks denote Bonferroni-adjusted 
significance, where an adjusted threshold of 0.05 has been surpassed  
(* = p< 0.05, ** = p< 0.01, *** = p<0.001).  

 

*** *** 

*** 

*** 
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Figure 41: Pyrosequencing results at cg02481950 (METTL9) and cg17714703 (UHRF1). The assay for 
cg02481950 shows significant hypermethylation in the sCJD group only (ΔM = +2.41%, p = 8.0x10-6), 
while the assay targeting cg17714703 shows nominally significant but minor hypermethylation in the 
sCJD group only at all three loci (ΔM = +2.06%, p = 0.002; ΔM = +4.34%, p = 0.001; ΔM = +2.12%, p = 
0.003). Bonferroni threshold is 0.00625 for sCJD-control comparisons and 0.01 for comparisons 
between control and non-sCJD diseases. Asterisks denote Bonferroni-adjusted significance, where an 
adjusted threshold of 0.05 has been surpassed  
(* = p< 0.05, ** = p< 0.01, *** = p<0.001). 

 

*** 

* 

* 

** 
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4.6 Summary 
In summary, two thirds of DMPs taken forward for replication successfully 

replicated, and five novel CpG sites captured in the pyrosequencing assays were 

also found to be differentially methylated between sCJD patients and control 

volunteers. Excitingly, association of hypomethylation at the promoter of AIM2 

(cg10636246) with decreased MRC Scale score was also observed in the second 

cohort of sCJD patients, validating this site’s potential as a biomarker of disease 

severity. The differential methylation observed in both sCJD cohorts was not found 

to be a feature of Alzheimer’s disease, iatrogenic CJD or Inherited Prion Disease. 

This is significant not just because it suggests the signature observed in sCJD is 

specific to sporadic prion disease rather than prion disease or neurodegeneration in 

general, but also because drugs prescribed to treat symptoms of sCJD, IPD and 

iCJD are broadly similar (anti-epileptics, benzodiazepines), meaning the observed 

signature is unlikely to be a result of differences in therapeutic intervention between 

disease groups.  

Having confirmed several of the array findings, the logical next step was to consider 

the functional relevance of implicated genes. Based on FKBP5 promoter 

demethylation I decided to investigate serum cortisol levels, while also measuring 

methylation at replicated sites in brain-derived DNA and further dissecting the 

confirmed blood-derived methylation signature. 
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5 Further investigation: Blood-brain concordance, cortisol 
concentrations and cell-specific effects 
As explained in Section 1.8, blood was selected as the tissue of study during this 

project because of its comparative accessibility in a clinical setting, making it an 

ideal tissue for biomarker discovery. Moreover, all sCJD patients have blood taken 

for diagnostics and in many cases consent is given for research samples to be 

taken too, while postmortem brain tissue is available from fewer patients and is a 

much more difficult tissue to work with, on account of infectivity risk. Using blood-

derived DNA allowed sufficient sample numbers to power a genome-wide study of 

DNA methylation and now that candidate loci have been identified and replicated it 

is much easier to study brain-derived DNA in search of similar effects. The logical 

next step is to profile DNA samples taken from brain tissue (specifically frontal 

cortex, as this region of brain is known to contain high prion titre and exhibit 

spongiform degeneration (Hill et al., 2003)) using the pyrosequencing assays 

designed during the 450K replication stage. 

As mentioned in Section 3.3.8, eFORGE revealed that the array DMPs overlapped 

with functional elements known to be active in monocytes. As monocytes circulate 

in the periphery but are capable of infiltrating tissues, it would be interesting if the 

observed changes were amplified in this leukocyte population compared to other 

circulating cells: not only would this explain the relatively modest effect size seen in 

whole blood but could also provide more insight into why changes in DNA 

methylation in the periphery are observed. Frozen blood cannot be sorted into cell 

fractions as cells are lysed on freezing, so this experiment would require fresh blood 

samples to be prospectively collected from patients and relatives/spouses during 

clinic visits. While this presents an issue regarding collecting sufficient samples from 

patients of a rare disease to power pyrosequencing assays, if the effect size is 

magnified in a particular cell lineage differences may be detectable at lower sample 

numbers than calculated previously (Table 18). 

But firstly, the discovery of differential methylation of FKBP5 lead me to consider 

profiling serum cortisol in sCJD patients compared to controls. Hypomethylation of 

FKBP5’s promoter suggests upregulation, and a known stimulus for this is 

increased levels of circulating cortisol. 
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5.1 Relevant Methods and Sample Demographics 
2.5 Testing Tissue Specificity of Replicated Differentially Methylated Sites Using 

Pyrosequencing (page 67)  

2.6 Testing Leukocyte Specificity of Replicated Differentially Methylated Sites Using 

Magnet Assisted Cell Sorting and Pyrosequencing (page 68)  

2.6.1 Sample Selection (page 68)  

2.6.2 Magnet Assisted Cell Sorting (page 68) 

2.7 Statistics and Graphics (page 69) 

 

Group Number Average Age 
(range) Sex (% F) Codon 129 (%) 

MM:MV:VV 

Average 
MRC Scale 

Score 
(range) 

sCJD 39 68.9 (49-79) 64.1   
Control 52 55.3 (24-98) 53.8 Unknown 20 

FFI 6     
 

Table 21: Demographics of patients and controls whose samples were used in cortisol screening. 

 

 

Group Number Average Age 
(range) Sex (% F) Codon 129 (%) 

MM:MV:VV 

Average 
MRC Scale 

Score 
(range) 

sCJD 58 68.8 (40-87) 42.9 65:25:10 0 
Control 33 74.0 (41-89) 54.2 Unknown 0 

 

Table 22: Demographics of patients and controls whose samples were used to investigate brain-
derived DNA methylation. 

 

 

Group Number Average Age 
(range) Sex (% F) Codon 129 (%) 

MM:MV:VV 

Average 
MRC Scale 

Score 
(range) 

sCJD 7  42.9   
Control 11  36.4 Unknown  

 

Table 23: Demographics of patients and controls whose samples were used to investigate leukocyte-
enriched DNA methylation. 
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5.2 Comparing circulating cortisol concentrations between sCJD 

patients and healthy controls 
5’-UTR hypomethylation of FKBP5 is in sCJD is suggestive of gene upregulation, 

and indeed FKPB5 transcript levels are found to be increased in sCJD patient blood 

(currently unpublished, personal communication from Dr Emmanuelle Viré, MRC 

Prion Unit at UCL). FKBP5 has many functions, one of which is inhibition of the 

cellular response to cortisol through binding to the Glucocorticoid Receptor 

(Wochnik et al., 2005). Hypercortisolaemia is a reported feature of sheep scrapie 

(Gayrard et al., 2000), prompting us to investigate whether cortisol concentration in 

sCJD blood is elevated, as a potential causal mechanism for hypomethylation at 

FKBP5 as these two observations might suggest. One of the hypotheses 

underpinning my work concerns the relevance of blood methylation to a brain 

disease. The opportunity to identify a mechanism of FKBP5 involvement through the 

effect of CJD on the hypothalamic-pituitary axis, the endocrine system, and thus 

peripheral gene expression and methylation was important to explore. Increased 

FKBP5 expression and demethylation of its promoter may be a result of a negative 

feedback response to increased circulating cortisol levels. 

 

As well as 39 sCJD and 52 control sera, serum from 6 patients with Fatal Familial 

Insomnia (FFI) were profiled as the thalamus is dramatically affected in FFI, thus 

disruption of the hypothalamic-pituitary-adrenal axis might be expected. 20 of the 

sCJD patients were part of the cohort which had been profiled on the 450K array as 

reported in Chapter 3, allowing us to compare FKBP5 methylation and cortisol 

concentration in these individuals. Controls were healthy and without cognitive 

impairment. No sCJD patients had received steroid injections. Blood samples were 

taken between approximately 10am-4pm. Cortisol was measured by The Doctors’ 

Laboratory (Sonic Healthcare Ltd.) using an electrochemiluminescence 

immunoassay (Elecsys Cortisol II assay, Roche) and serum concentrations were 

delivered by email. Cortisol was found to be elevated in sCJD sera within and above 

the normal circadian range of 133-537 nM. In control sera the mean concentration 

was 239.8 nM, while in sCJD sera the mean concentration was 387.6 nM (p = 

6.6x10-5). FFI mean sera concentration was 271.3 nM (p = 0.434). Interestingly, 

methylation at cg03546163 (FKBP5) did not correlate with [Cortisol] (Pearson’s 

Correlation = -0.047, p = 0.845). Distributions of values per group and [Cortisol] 

compared with methylation at cg03546163 are shown below in 

Figure 42 and Figure 43.  
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Figure 42: [Cortisol] (nM) in sera extracted from Controls, FFI and sCJD patients. Cortisol was 
significantly elevated in sCJD patients compared to controls (+147.8 nM, p = 6.6x10-5). Significance 
threshold was set at p < 0.05. Asterisks denote significance  
(* = p< 0.05, ** = p< 0.01, *** = p<0.001). 

 
Figure 43: No correlation of methylation at cg03546163 (FKBP5) with [Cortisol] (nM) in 20 sCJD 
patients profiled on the 450K array, R2=0.0022. 

 

 

*** 
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5.3 Measuring DNA methylation at DMPs in post-mortem brain-derived 

DNA from sCJD and control donors 
In some instances DNA is extracted from post-mortem brain, typically if the patient 

is too ill to have blood taken or if neuropathology differs from what is typically seen 

in sporadic CJD. Having described epigenetic changes in blood, I decided to test for 

the same changes in brain-derived DNA. A concordant signature would suggest that 

peripheral DNA methylation mirrors cortical DNA methylation, with obvious 

implications for the suitability of sites other than AIM2 (at which DNA 

hypomethylation correlates with increased disease severity) as peripheral 

biomarkers of sCJD. It would also open the possibility that altered DNA methylation 

may emerge from risk factors present in the germline that not detected in the sCJD 

GWAS, rather than be a product of the disease. Conversely, if DMPs are not 

observed in the brain then perhaps the signature observed is unique to the 

periphery, which suggests a second, non-central aspect to the disease and would 

prompt further investigation into the interplay between brain and blood in sCJD. 

 

This experiment comes with a number of caveats: firstly although DNA was taken 

from the same brain region (frontal cortex, a region susceptible to prion aggregation 

and deposition (Hill et al., 2003)), and same subregion by the same pathology team 

(Professor S. Brandner and Dr Z. Jaunmuktane), the tissue remains heterogeneous 

in terms of neuronal layers, subtypes and gray/white matter. As these samples are 

to be pyrosequenced at single loci these effects cannot be regressed out as per the 

original array study of blood as it was not possible to also pyrosequence the 

Houseman reference probes. Similarly, post mortem examination in CJD can be 

delayed related to patient locations around the UK. If delay in hours is known it can 

be adjusted for by including it as a covariate in a linear regression model (Wockner 

et al., 2014), but research using mouse, pig and human brain tissue has shown that 

DNA methylation levels remain stable more than 72 hours post mortem (Jarmasz et 

al., 2019). Conversely, final illnesses that result in death (eg. respiratory failure, 

sepsis etc.) could have profound influences on methylation profiles, unrelated to 

prion disease. Nevertheless, as an exploratory study of DNA methylation in 32 

control and 54 sCJD brain samples were profiled at replicated DMP sites using 

pyrosequencing. As seven genes were being assayed I continued to use a strict 

Bonferroni threshold of p < 0.007, albeit with the consideration that this experiment 

is limited by sample availability and potentially confounded by cellular heterogeneity, 

and thus trends would also be of interest.  
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In FKBP5, significant hypomethylation of cg03546163 was not observed (-3.06%, p 

= 0.457), nor was hypomethylation of the downstream adjacent CpG (-1.84%, p = 

0.641). cg10636246 was not found to be differentially methylated in AIM2 (-3.72%, p 

= 0.439), similarly cg17515347 and a second downstream CpG showed no case-

control difference (-1.42%, p = 0.711; +0.11%, p = 0.976). 

None of the three sites at UHRF1 which showed nominally significant difference in 

sCJD blood were found to be similarly affected in the brain (-0.08%, p = 0.903; 

+0.54%, p = 0.747; 0.28, p = 0.699), nor was cg02481950 in METTL9 (+0.68%, p = 

0.426). Interestingly the second site in the PRNP assay for cg04286737 showed a 

nominally significant decrease in methylation (-9.38%, p = 0.054; -12.01%, p = 

0.021), although not after correction for multiple testing. These results are displayed 

below in Figure 44. 

ANK1 was also profiled as hypermethylation in the entorhinal and prefrontal cortex 

is associated with increase in Braak Staging in Alzheimer’s Disease (De Jager et 

al., 2014; Lunnon et al., 2014). The specific CpG, cg11823178, was not found to be 

differentially methylated (-0.14%, p = 0.929), but interestingly of the 4 adjacent 

CpGs one approached and one passed nominal significance but not after 

consideration of multiple testing (+1.96%, p = 0.056; +0.01%, p = 0.994; +3.42%, p 

= 0.04; +0.69%, p = 0.652). The effect sizes of these two sites are in the same 

direction of and of approximately similar magnitude to those observed in the cohorts 

studied by Lunnon et al. (London: +2.05%, Mt Sinai: +2.97%). Distribution of 

methylation values at these sites is shown in Figure 45. 
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Figure 44: Methylation of control and sCJD brain-derived DNA as profiled in assays for replicated 
DMPs and PRNP. Bonferroni significance threshold was set at p < 0.007 and no sites reached 
significance, although two sites at PRNP trended towards significance (ΔM = -9.38%, p = 0.054; ΔM = 
-12.01%, p = 0.021). 
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Figure 45: Methylation of control and sCJD brain-derived DNA at cg11823178 (ANK1) and 4 adjacent 
sites. Bonferroni significance threshold was set at p < 0.007 and no sites reached significance, 
although two sites at 8:41,519,411 and 8:41,519,420 trended towards significance (ΔM = +1.96%, p = 
0.056; ΔM = +3.42%, p = 0.04). 

 

5.4 Determining cell-specific origin of differential methylation in whole 

blood from sCJD patients 
In most contexts blood cells are sorted using Fluorescence Assisted Cell Sorting 

(FACS), but due to health and safety issues connected to using blood derived from 

prion disease patients, FACS was not a viable option. Instead I opted to sort cells 

using Magnet Assisted Cell Sorting (MACS), which uses disposable columns and 

permits relatively rapid fractionation of leukocytes from fresh whole blood. 

5.4.1 MACS protocol optimisation 
Blood donated from two individuals was used to optimise MACS separation of B 

Cells, T Cells, Monocytes and Granulocytes. The first individual’s blood was 

collected into an EDTA vacutainer tubes before being separated after venepuncture 

and then again after being stored for 1 week at 4oC, while the second blood sample 

was collected into two vacutainers, separated after venepuncture, after storage at 

4oC for 3 days, and finally after 1 week of storage. As well as the effects of storage 
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time on DNA yield, the effects of including the optional filtration and pellet/wash 

steps were tested for. During the first separation trial (Individual 1, Day 0) due to a 

procedural error the magnetic columns were not separated from the QuadroMACS 

separator before fraction elution of the no filter/no wash and filter/no wash samples, 

meaning cells were retained in the column matrix and were discarded along with the 

columns. This is reflected in Table 24 and Figure 46, which detail yields of DNA per 

ml of input blood. 

 

  DNA/1ml input (ng/µl) 
Individual Day NFNW FNW NFW FW 

1 0 0 0 650 610 

1 7 450 650 675 590 

1 0 325 242.5 635 840 

2 3 292.5 282.5 585 600 

2 7 248 482 570 510 

AVG 
 

328.875 414.25 623 630 

 

Table 24: Comparing the performance of MACS protocols. Shown are yields of DNA (ng/µl) from 1 ml 
of whole blood from two individuals across four separation methods (NFNW = No Filter & No Wash; 
FNW = Filter & No Wash; NFW = No Filter & Wash; FW = Filter & Wash). 

 

 
Figure 46: Comparison of MACS method efficiency per method and days between venepuncture and 
separation. NFNW = No Filter & No Wash; FNW = Filter & No Wash; NFW = No Filter & Wash; FW = 
Filter & Wash. 
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The wash steps appeared to have the greatest effect in terms of increased DNA 

yield, perhaps as resuspension of cells in separation buffer may improve retention 

of labelled cells in the column matrix. The effect of filtration may be negligible in the 

samples studied but was included in subsequent separations as filtration is 

recommended by the manufacturer as it reduces the presence of cell aggregates. 

As such all subsequent samples were pre-filtered and pelleted and resuspended in 

separation buffer after microbead annealing. 

5.4.2 Pyrosequencing of AIM2 and FKBP5 in sorted cell fractions 
The average of control sample methylation values per fraction were subtracted from 

each of six sCJD patient blood samples to produce % change in methylation 

compared to the control group. These were compared via one-way ANOVA with a 

post-hoc Dunnett t-test, where whole blood values were designated as controls and 

expected effect direction was negative, as both targets are hypomethylated in sCJD 

blood compared to control. The threshold for significance was p < 0.05. 

The assay targeting cg17515347 (AIM2) was applied to separated blood fractions 

and ANOVA significance was 0.017. The post hoc Dunnett test showed no 

significant effect in T cells (+5.76%, p = 0.977), monocytes (-1.73%, p = 0.68) or B 

cells (+0.97%, p = 0.845), but a nominally significant effect was seen in neutrophils 

(-14.6%, p = 0.029). The second downstream CpG captured by the assay also 

showed nominal ANOVA significance (p = 0.013) and, as before, no post-hoc effect 

in T cells (+6.99%, p = 0.987), monocytes (-1.86%, p = 0.673) or B cells (+2.84%, p 

= 0.916), while the effect compared to that in whole blood was nominally significant 

for neutrophils (-14.13%, p = 0.037). The differences between means per fraction 

are displayed in Figure 47. 
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Figure 47: DNA methylation in separated sCJD and control blood fractions at the AIM2 probe 
cg17515347 and a CpG 14 nucleotides downstream. Changes in Neutrophils compared to Whole 
Blood (WB) were statistically significant at both sites (ΔM = -14.6%, p = 0.029; ΔM = -14.13%, p = 
0.037). Asterisks denote significance (* = p< 0.05, ** = p< 0.01, *** = p<0.001). 

 
Conversely, ANOVA for both positions captured in the assay for FKBP5, 

cg03546163 and a CpG 4 nucleotides upstream, did not pass nominal significance 

(p = 0.400, p = 0.182). Nevertheless, post-hoc tests were conducted and as 

expected, effects significantly different to those observed in whole blood were not 

found at either position in T cells (+2.43%, p = 0.937; +4.72%, p = 0.956), 

monocytes (-0.94%, p = 0.721; -6.61%, p = 0.376), B cells (-5.52%, p = 0.260; -

10.36%, p = 0.173), or neutrophils (+1.08%, p = 0.871; -3.22%, p = 0.616). 

Differences between means are shown in Figure 48.  

* 
* 
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Figure 48: DNA methylation in separated sCJD and control blood fractions at a CpG 14 nucleotides 
upstream of cg03546163 and at the probe target itself. There was no statistically significant change in 
any enriched leukocyte fraction compared to Whole Blood (WB) 

 

While not nominally significant, B Cell fraction mean difference is markedly greater 

than the effect observed in whole blood in the FKBP5 assay. However, also of note 

is the potentially decreased separation between sCJD and control values observed 

in the T Cell fraction in both FKBP5 and AIM2 assays. Ultimately, this experiment is 

extremely limited in terms of N, and further recruitment of patient and control 

samples may be necessary to power the assays for changes specific to different cell 

fractions. 

5.5 Summary 
The observation of elevated serum cortisol (albeit partially within a normal 10am-

4pm circadian range) in sCJD lends further weight to the connection between 

FKBP5 dysregulation and sCJD. Cortisol is an anti-inflammatory agent and a 

chemical messenger connecting the brain with the periphery: dysregulation of 

cortisol metabolism has exciting implications in sCJD which will be discussed later 

in the thesis.  

While the MACS experiment outcome is extremely preliminary, it is surprising that 

the cell lines inferred to carry more sizable differential methylation by eFORGE were 

not observed to be markedly affected compared to other cell lines. Sadly limitations 
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in this experiment make it difficult to draw firm conclusions, but the roles of B cells 

and granulocytes may be worth considering when trying to frame other data in a 

physiological context. 

Finally, failing to detect differential methylation in sites affected in sCJD blood in 

brain-derived DNA raises several questions and potentially the exciting prospect of 

a new dimension to sCJD pathology. Taken in tandem with the suggestion of 

cortisol dysmetabolism and the connection between AIM2 hypomethylation and 

disease severity, connections can be drawn which will be discussed later in the 

thesis. 

Having further investigated the physiology of sCJD epigenetics based on the 

replication stage of the project, I decided to return once more to the 450K data to 

see if, as well as be useful in prognosis of sCJD in the case of cg10636246 (AIM2), 

array probes might be useful in diagnosis. 
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6 Classifying sporadic CJD status using 450K array data and 
machine learning  

6.1 Machine Learning classification 
While the linear regression models used in previous chapters are also examples of 

machine learning, classification is a commonly encountered form of supervised 

learning. Whether it be social media algorithms trained to recognise faces in 

photographs, targeted advertising or domestic appliances such as Amazon’s Alexa, 

much effort has been dedicated to developing ways of training models to make 

decisions based on complex and multifactorial input data. Clinically, this approach 

has been enormously successful in oncology, where machine learning has been 

demonstrated to estimate susceptibility, prognosis and recurrence likelihood with 

high accuracy using a variety of data types across a range of cancer types (Cruz 

and Wishart, 2006; Exarchos et al., 2014). Using 450K array data it is possible to 

train a model to classify disease/control status; although aspects of model design 

must be carefully considered in relation to data type and complexity between 

groups. 

6.1.1 Trees or neurons? 
Two popular classifier models are the Random Forest and Neural Network models. 

Random Forest models operate by building a “forest” of randomly generated 

decision trees which make classification decisions based on different combinations 

of input data (Ho, 1995; Breiman, 2001). Unlike a standard decision tree, by using 

the mode of the forest’s classification decisions to make a final classification 

Random Forests can make decisions in situations where some input data are 

missing or novel, unseen data is included.  

Gradient Boosted Machine learning (GBM) is similar to Random Forest (RF) 

classification, but where RF classification builds a model from a “forest” of 

independent decision trees which are considered in parallel, GBM generates its 

decision trees sequentially, with each tree’s design informed by the usefulness of 

predictor variables in previous trees. These training differences between models are 

displayed in Figure 49. 
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Figure 49: Random Forest (upper) and Gradient Boosted Machine (lower) models. Random Forest 
models pass data to randomly generated decision trees, their output in parallel is then used to classify 
phenotype based on a function such as modal averaging. Gradient Boosted Machine models generate 
decision trees sequentially based on the performance of previous trees, the best performing of which is 
used to classify phenotype. 

 

Neural Networks are loosely analogous to biological neuronal networks as they are 

composed of layers of “neurons”. Input data can trigger activation of different 

combinations of input neurons which connect to output neurons via a user-defined 

number of hidden layers, between all of which are connections weighted during 

model training. In this way activation thresholds of each neuron are adjusted so that 

complex, low variance datasets can be classified. A simplified schematic of a neural 

network is displayed below in Figure 50. 
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Figure 50: Simplified neural network. Input data (probes) can trigger activation of input neurons, which 
will then transmit a signal to hidden layers of neurons based on weighted connection thresholds, which 
are adjusted during model training. Signal from the hidden layers is passed to the output layer and 
phenotype is classified. 

 

Neural Networks typically require greater computational power and training and 

prediction runtimes than Random Forest models but are capable of superior 

classification accuracy when data variance between classes is subtle. However, 

Neural Networks are more sensitive to bias and prone to overfitting errors, for 

example when training datasets are limited. In this context, Random Forests are 

bias-resistant and tend towards superior accuracy (Han et al., 2018). 

Differences between sCJD and control in 450K array data are indeed relatively 

subtle as the greatest significant mean change with phenotype is -5.35%, 

suggesting a Neural Network approach may be suitable. However, the dataset is 

limited in terms of sample number and only 38 probes passed genome-wide 

significance, which in turn suggests it may be appropriate to train a Random Forest 

model. I therefore decided to test a combination of models and datasets to explore 

the effects changes in model design would have on accuracy of classification.    

6.1.2 Feature Selection 
423,742 probes are available in our 450K array dataset, but to train the model using 

all these data would be both computationally expensive and result in the inclusion of 

many redundant, insignificant and false positive variables. Random Forests require 

model features to be defined before model training, which can be achieved in 

several ways. The most obvious is to only include probes which exhibit genome-
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wide significant differences between phenotypes. However, there may be probes 

which are different between sCJD and control groups but fail to pass significance 

thresholds due to, for example, the heterogeneity of the disease or the limited 

number of samples studied. A second approach, therefore, is to include genome-

wide insignificant probes based on unadjusted p or magnitude of change. As p is a 

proxy indicator of interquartile range separation between groups, selection of probes 

for inclusion based on unadjusted p may be more likely to include probes with 

diagnostically useful yet sub-genome wide significant variance between sCJD and 

control. 

Good practice, particularly when working with extremely large datasets, is to remove 

data which correlate. For example, cg10636246 and cg17515347 are both located 

in AIM2 and methylation values at both probes are correlated (Pearson’s coefficient 

= 0.737, p = 8.78x10-39). Due to this high degree of correlation these probes may be 

redundant: methylation values at cg10636246 provide as much useful variance 

between phenotypes as both probes combined. While one additional probe might 

not cause much of a problem, many redundant probes would reduce the efficiency 

and increase the runtime of the model, so highly correlating probes should be 

excluded from the dataset.  

When classifying groups based on data with known associations (e.g. classifying 

sex using age and height data) manual feature selection may be justified. In the 

absence of prior associations or hypotheses, exactly which probes to include in the 

model to provide optimum accuracy can be determined by Recursive Feature 

Elimination (RFE). This process begins by training the model with all features – in 

this case probes – present, before iteratively removing a user-defined number of 

features at random and then retraining and testing the model’s performance. This 

continues until an optimum minimum number of probes is reached. To enable a 

training/testing cycle, the training data is typically split into a user-defined number of 

“folds”. For example, in 10-fold RFE the training data is split into deciles, and each 

decile is sequentially used to test models built from the remaining 9 folds. As RFE’s 

iterative feature removal process is random, each cycle is repeated several times 

(the number of which is again defined by the user), which serves to reduce bias. In 

summary, the number of probes to remove per iteration, the number of permutations 

of training/testing data to use, and the number of times RFE should be repeated per 

permutation can all be defined by the user, allowing for stringent yet computationally 

expensive feature selection or less granular and computationally faster feature 
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selection. The fold and repeat aspects of feature selection are displayed in Figure 

51. 

 

 

 

To test the effect of different feature selection approaches, features were selected 

from the following combinations of input data: 

1. 38 genome-wide significant DMPs 

2. Features selected from 500 probes ranked by P value after removal of 

correlated probes and 10-fold 10-repeat RFE removing 1 probe per iteration 

3. Features selected from 5000 probes ranked by P value without further 

feature selection  

An important note is that these processes rely on random number generators 

(RNGs) which, while themselves are random, can be “seeded” to provide the same 

series of random numbers in future experiments for the sake of repeatability and 

reproducibility. The RNG seed for all models was set as 4444. 

Figure 51: Model of 10-fold 10-repeat crossvalidation. Crossvalidation of model training and tuning 
involves the division of individuals in the training set into 10 groups, or “folds”. 9 folds (grey) are used 
to train a model which is tested on the remaining fold (green). This random training process is repeated 
10 times, before the second fold is used for testing models built on the remaining 9 folds, which is 
again repeated 10 times. This continues until all folds have been used for model testing. 
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6.2 Relevant Methods and Sample Demographics 
2.1.1 Sample Selection (page 54) 

2.2.2 Case-Control Study Using ChAMP (page 61) 

2.2.8 Machine Learning Classification of 450K Dataset (page 64) 

2.7 Statistics and Graphics (page 72) 

 

Group Number Average Age 
(range) Sex (% F) Codon 129 (%) 

MM:MV:VV 

Average 
MRC Scale 

Score 
(range) 

sCJD 114 68.0 (49-85) 50.9 46:23:32 6 (0-20) 
Control 105 69.0 (41-83) 55.7 Unknown 20 

 

Table 25: Demographics of patients and controls whose 450K Beadchip Array data were used to train 
disease classification models. 

 

6.3 Gradient Boosted Machine classification 

6.3.1 Gradient Boosted Machine classification using 38 genome-wide 

significant DMPs 
Beta values from the genome-wide significant DMPs per individual, age and sex 

were used as predictor variables. Individuals were partitioned into a training set 

(75%) of 165 and a testing set (25%) of 54, and the first set was used to train a 

GBM model with 10-fold 10-repeat cross-validation. 50,100 and 150 trees (boosting 

iterations) were constructed with between 1 and 3 decision nodes (tree depth). 

Model accuracy across the training process did not vary appreciably across training 

parameters, as graphically represented in Figure 52. 

A confusion matrix, principle component analysis (PCA) and model report were 

generated: model accuracy as measured by Receiver Operating Characteristic 

(ROC) was found to be 81.48% versus a No Information Rate of 51.85% (p = 

5.869x10-6). Sensitivity was 76.92% and specificity was 85.71%. PCA found that 28 

variables could explain 95% of total variance. The confusion matrix, which indicates 

true (reference) versus model (prediction) classification, is displayed below in Table 

26 where true positive and negative predictions are shown in lower right and upper 

left cells, while false positive and false negative predictions are shown in lower left 

and upper right cells, respectively. Positive Predictive Value (PPV) and Negative 

Predictive Value (NPV) was 85.7% and 83.3% respectively, calculated by dividing 
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true positive and true negative predictions by total positive and negative predictions 

respectively. 

 Reference 

Prediction Control sCJD 

Control 20 4 

sCJD 6 24 

 

Table 26: Confusion matrix of untuned gbm model classification of sCJD status using 38 DMPs, age 
and sex as predictor variables. 

 

 

 

 

Simple models such as this can be improved through tuning. This is achieved by 

adjusting model parameters to improve the fit and can be technically challenging 

and lead to model overfitting. In this instance the two major parameters as shown 

above in Figure 52 are number of boosting iterations and tree depth. A more 

complex model might perform better or worse, depending on the complexity of the 

data, so I decided to increase iterations to 250 in incrementations of 50 iterations, 

and increase tree depth to 5. Once again, the model was trained using 10-repeat 

Figure 52: Accuracy of gbm model trained using DMPs as measured by ROC. Shown are values across a number 
of boosting iterations (number of trees sequentially generated) and tree depth, where tree depth is the number 
of nodes between the root node and decision nodes. 
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10-fold cross-validation and a depth of 1 with 50 boosting iterations were selected. 

Interestingly the tuned model had decreased accuracy of 74.07% (p = 7.006x10-4), 

and although sensitivity was improved (80.77%), specificity had decreased 

(67.86%). The confusion matrix and model accuracy across tuning are displayed 

below in Table 27 and Figure 53 respectively. Positive Predictive Value (PPV) and 

Negative Predictive Value (NPV) was 79.6% and 80.7% respectively, calculated by 

dividing true positive and true negative predictions by total positive and negative 

predictions respectively. 

 

 Reference 

Prediction Control sCJD 

Control 21 9 

sCJD 5 19 

 

Table 27: Confusion matrix of tuned GBM model classification of sCJD status using 38 DMPs, age and 
sex as predictor variables. 

 

 

Figure 53: Accuracy of gbm model trained using DMPs after tuning as measured by ROC. Shown are values 
across a number of boosting iterations (number of trees sequentially generated) and tree depth, where tree 
depth is the number of nodes between the root node and decision nodes. 
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This model was trained using manual feature selection (38 DMPs). Next, I decided 

to select features from the top 500 most significantly ranked probes using RFE. 

6.3.2 Gradient Boosted Machine classification using 33 probes identified by 

Recursive Feature Elimination 
In the top 500 probes, 28 probes were found to have Pearson’s correlations 

exceeding 0.75 and were removed. The remaining 472 probes were processed 

using RFE with 10-repeat 10-fold cross-validation. As elimination iterations removed 

one probe per turn this was a computationally demanding process which took two 

days to complete, after which 33 probes were selected for training (displayed below 

in Table 28).  

Using the same training/testing partitions as before, a gbm model was trained using 

10-repeat 10-fold cross-validation. Again, model accuracy across the training 

process and final variable weights were extracted and are graphically represented in 

Figure 54. 

A confusion matrix, principle component analysis (PCA) and model report were 

generated: on classification of the testing set model accuracy was found to be 

79.63% versus a No Information Rate of 51.85% (p = 2.263x10-5). Sensitivity was 

84.62% and specificity was 75.00%. PCA found that 29 variables could explain 95% 

of total variance. The confusion matrix, which indicates true/false positive/negative 

classification, is displayed below in Table 29. Positive Predictive Value (PPV) and 

Negative Predictive Value (NPV) was 75% and 84.6% respectively, calculated by 

dividing true positive and true negative predictions by total positive and negative 

predictions respectively. 
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Probe Gene Location Feature 
cg05948372 ABHD3 Body N_Shore 
cg20003976 ACADM TSS1500 N_Shore 
cg15691252 ADK;AP3M1 TSS1500;5'UTR N_Shore 
cg10636246 AIM2 TSS1500   
cg17515347 AIM2 TSS1500   
cg02243276 AZIN1 5'UTR N_Shelf 
cg04057956 CD9 Body   
cg13599258 CUX2 Body   
cg04137490 DOCK5 Body   
cg00052684 FKBP5 5'UTR N_Shore 
cg03546163 FKBP5 5'UTR N_Shore 
cg25114611 FKBP5;LOC285847 TSS1500;Body S_Shore 
cg18023065 FUT4 1stExon Island 
cg19382697 GNG7 5'UTR S_Shore 
cg14195992 KIAA0146 Body   
cg05336268 KIAA0556 Body   
cg13696490 LOC201651 TSS1500   
cg05218245 LY6G6D Body   
cg02481950 METTL9;IGSF6 Body;TSS1500   
cg20290360 NFASC Body   
cg03891318 NMNAT3 5'UTR   
cg17163138 PIN1 Body S_Shelf 
cg03071209 THADA TSS200 Island 
cg17714703 UHRF1 Body S_Shore 
cg21643513 ZNF547;TRAPPC2P1 TSS1500;TSS1500 N_Shore 
cg05740793 MTRNR2L8  TSS1500   
cg04590451     S_Shore 
cg11227822     Island 
cg12992827       
cg09964921       
cg10972973     N_Shore 
cg25771026       
cg14427590       

 

Table 28: Probes identified as useful predictors of sCJD status through Recursive Feature Elimination. 
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 Reference 

Prediction Control sCJD 

Control 22 7 

sCJD 4 21 

 

Table 29: Confusion matrix of untuned gbm model classification of sCJD status using 33 probes 
selected from the 500 most significantly altered between sCJD and control, age and sex as predictor 
variables. 

 

 

Interestingly this model performs slightly worse overall than one trained using the 

DMPs. To test whether the performance could be improved by training a more 

complex model, I performed the same tuning process as before of increasing 

boosting iterations to 250 in incrementations of 50 iterations and increasing tree 

depth to 5. Once again, the model was trained using 10-repeat 10-fold cross-

validation and a depth of 5 with 150 boosting iterations were selected. After tuning 

model accuracy was found to be 87.04% versus a No Information Rate of 51.85% (p 

= 4.922x10-8), while sensitivity was 88.46% and specificity was 85.71%. The 

confusion matrix is displayed below in Table 30, and model accuracy over the 

tuning process are displayed in Figure 55. Positive Predictive Value (PPV) and 

Figure 54: Accuracy of gbm model trained using 33 RFE-identified probes as measured by ROC. Shown are values 
across a number of boosting iterations (number of trees sequentially generated) and tree depth, where tree 
depth is the number of nodes between the root node and decision nodes. 
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Negative Predictive Value (NPV) was 85.7% and 88.5% respectively, calculated by 

dividing true positive and true negative predictions by total positive and negative 

predictions respectively. 

 Reference 

Prediction Control sCJD 

Control 23 4 

sCJD 3 24 

 

Table 30: Confusion matrix of tuned gbm model classification of sCJD status using 33 probes selected 
from the 500 most significantly altered between sCJD and control, age and sex as predictor variables. 

 

 

Encouragingly accuracy after tuning was superior to any of the previous three 

models. However, 33 and 38 probes are very small fractions of the total number of 

array probes, and it is possible that large numbers of small effects at less 

significantly ranked probes may still prove useful predictors. Thus, the final dataset - 

the top 5,000 probes ranked by significance - was run through the same pipeline. 

 

Figure 55: Accuracy of tuned gbm model trained using 33 RFE-identified probes as measured by ROC. Shown are 
values across a number of boosting iterations (number of trees sequentially generated) and tree depth, where 
tree depth is the number of nodes between the root node and decision nodes. 
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6.3.3 Gradient Boosted Machine classification using 5,000 probes as ranked 

by genome-wide significance 
The top 5000 most differentially methylated probes, ranked by significance, were 

used to train a third model. This model performed poorly with an accuracy of 

65.38% (p = 0.018), a sensitivity of 80.77% and a specificity of 50.00%. PCA 

required only 127 variables to explain 95% of the variance. The confusion matrix of 

classification efficacy is presented below in Table 31 and model accuracies over the 

training process are displayed in Figure 56. Positive Predictive Value (PPV) and 

Negative Predictive Value (NPV) was 50% and 80.8% respectively, calculated by 

dividing true positive and true negative predictions by total positive and negative 

predictions respectively. 

 

 

 

 

 Reference 

Prediction Control sCJD 

Control 21 13 

sCJD 5 13 

 

Table 31: Confusion matrix of GBM model classification of sCJD status using 5000 probes most 
significantly altered between sCJD and control, age and sex as predictor variables. 
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Figure 56: Accuracy of model trained using the 5000 most differentially methylated probes (as ranked 
by significance) as measured by ROC. Values are shown across a number of boosting iterations 
(number of trees sequentially generated) and tree depth, where tree depth is the number of nodes 
between the root node and decision nodes. 

 

I attempted to tune the model in the same manner as the previous two, but after 48 

hours the process was still running so, given the model’s poor performance at the 

outset, tuning was abandoned. 

 

6.4 Averaged Neural Network classification 

6.4.1 Averaged Neural Network classification using 38 genome-wide 

significant DMPs 
An averaged neural network was trained using this dataset with tuning parameters 

set as the number of hidden neuronal layers and weight decay value. Weight decay 

is a number approaching 1 serving as a function by which weights are adjusted after 

each training iteration to prevent them from growing too large. Tuning results set 

optimum parameters as 8 layers and a weight decay value of 0; accuracy across 

tuning and training is displayed in Figure 57. 
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Figure 57: Accuracy of tuned avNNet model trained using 38 DMPs as measured by ROC. Values are 
shown across a number of hidden neuronal layers and weight decay. At 10 hidden units the model 
fails, as this number of hidden neuronal layers cannot be supported by only 38 variables. 

  

The model was then used to classify the testing set and a confusion matrix was 

generated, displayed below in Table 32. The model’s accuracy was 77.78% versus 

a No Information Rate of 51.85% (p = 7.839x10-5), with sensitivity of 76.92% and 

specificity of 78.57%. Positive Predictive Value (PPV) and Negative Predictive 

Value (NPV) was 78.5% and 76.9% respectively, calculated by dividing true positive 

and true negative predictions by total positive and negative predictions respectively. 

 

 Reference 

Prediction Control sCJD 

Control 20 6 

sCJD 6 22 

 

Table 32: Confusion matrix of tuned averaged Neural Network model classification of sCJD status 
using 38 DMPs 
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6.4.2 Averaged Neural Network classification using 33 probes identified by 

Recursive Feature Elimination 
Using the dataset of 33 probes selected by RFE, a model was tuned in an identical 

way. Here parameters were again optimised to 8 layers and a weight decay value of 

0, but the model’s accuracy was increased to 81.48% (p = 5.869x10-6), sensitivity 

increased to 84.62% while specificity remained the same as before at 75.87%. The 

confusion matrix and model accuracies over the training process are displayed 

below in Figure 58 and Table 33 respectively. Positive Predictive Value (PPV) and 

Negative Predictive Value (NPV) were 78.6 and 84.6% respectively, calculated by 

dividing true positive and true negative predictions by total positive and negative 

predictions respectively. 

 

 

Figure 58: Accuracy of tuned avNNet model trained using 33 RFE-identified probes as measured by 
ROC. Values are shown across a number of hidden neuronal layers and weight decay. At 10 hidden 
units the model fails, as this number of hidden neuronal layers cannot be supported by only 33 
variables. 
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 Reference 

Prediction Control sCJD 

Control 22 6 

sCJD 4 22 

 

Table 33: Confusion matrix of tuned avNNet model classification of sCJD status trained using 33 
probes identified using RFE from the top 500 probes ranked by significance. 

 

6.4.3 Averaged Neural Network classification using top 5000 probes as 

ranked by significance 
I attempted to tune a neural network model using the third dataset, but as with the 

GBM model tuning runtime exceeded 48 hours, and so this attempt was 

abandoned. 

 

6.5 Putting it all together: Stacking models using generalised linear 

regression 

6.5.1 General Linear Model using 33 probes identified by Recursive Feature 

Elimination 
As the previous sections illustrate, model performance (and thus utility) depend not 

only on the data used to train them, but also the type of model used, and the 

parameters used to tune it. In this final section the performance of five different 

models will be compared and then unified using a generalised linear model (GLM) 

to provide a meta-model, which in principle should perform at least as well as any of 

the models produced so far. 

The RFE-identified dataset of 33 probes, having produced the best model so far, 

was used to train models using five models: a random forest model (ranger), a 

gradient boosted model (gbm), a multivariate adaptive regression splines model 

(earth), a support vector machine model (svmRadial), and a neural network model 

(avNNet). Once again, model training was executed using 10-fold 10-repeat cross-

validation, and performance metrics were exported. In terms of mean accuracy 
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ranger performed the best (94.75%). Gbm was the most sensitive (83.61%) while 

the most specific model was ranger (89.64%). Accuracy, sensitivity and specificity of 

these models are displayed in Figure 59. 

 

 

Figure 59: Accuracy (ROC), sensitivity and specificity of models trained using 33 RFE-selected probes. 

 

A generalised linear model was then constructed using these models and used to 

classify the test dataset, again using 10-fold 10-repeat cross-validation. Accuracy 

was 87.04% (p = 7.839x10-5), sensitivity was 82.14% and specificity was 92.31%. 

The confusion matrix is presented below as Table 34. Positive Predictive Value 

(PPV) and Negative Predictive Value (NPV) was 82.1% and 92.3% respectively, 

calculated by dividing true positive and true negative predictions by total positive 

and negative predictions respectively. 
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 Reference 

Prediction Control sCJD 

Control 24 5 

sCJD 2 23 

 

Table 34: Confusion matrix of generalised linear model classification of sCJD status using five models 
trained with 33 probes selected using RFE from the top 500 probes ranked by significance 

 

6.5.2 General Linear Model using 38 DMPs  
For the sake of comparison, I trained a second series of models in the same way 

using the 38 DMPs dataset. Once again, ranger provided best mean accuracy 

(86.00%), gbm was the most sensitive (74.30%) and ranger was most specific 

(81.00%). Model accuracies during the training process are displayed in Figure 60. 

 

Figure 60: Accuracy (ROC), sensitivity and specificity of models trained using 38 DMPs. 

 

 Noting that these models overall seemed to perform less well than those trained 

with the RFE-selected probes, I once again constructed a GLM from the models 

which could classify with an accuracy of 77.78%, a sensitivity of 73.08%, and a 

specificity of 82.14%. The confusion matrix is displayed below in Table 35. Positive 

Predictive Value (PPV) and Negative Predictive Value (NPV) was 82.1% and 73.1% 
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respectively, calculated by dividing true positive and true negative predictions by 

total positive and negative predictions respectively. 

 

 Reference 

Prediction Control sCJD 

Control 19 5 

sCJD 7 23 

 

Table 35: Confusion matrix of generalised linear model classification of sCJD status using five models 
trained with 38 DMPs. 

 

6.6 Summarising suitability of different datasets and different modelling 

approaches to machine learning classification of sCJD status 
Overall, I found that the top 5000 probes were least suitable for classification, 

possibly due to insufficiently significant differences between sCJD and control 

groups. The list of 38 DMPs performed well in models that did not require tuning, 

but the 33 probes selected by RFE outperformed any dataset when model tuning 

was part of the pipeline. Had RFE been been performed earlier in the course of the 

project, it would have been interesting to see whether using unsupervised variable 

selection to choose candidates for replication yields a higher successful replication 

rate than manual selection based on p-values, effect sizes and potential biological 

relevance. Interestingly the generalised linear model combination of five different 

models produced the joint greatest accuracy, providing increased specificity but 

decreased sensitivity compared to a tuned GBM model alone. The summary 

statistics per model and dataset are compared in Table 36 and ROC area under the 

curve values per predictor for the tuned 33-RFE identified variable-trained GBM 

model are displayed below in Figure 61. It should be noted that while ROC AUC 

values seem extremely high (in one instance 100%) in this plot, these values relate 

to the classification efficiency during cross-validation of the training set rather than 

the model’s classification efficacy of the unseen test data. 
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  Trained Tuned 

Model Dataset 
Accuracy 

(%) 
Specificity 

(%) 
Sensitivity 

(%) 
Accuracy 

(%) 
Specificity 

(%) 
Sensitivity 

(%) 

gbm 38 DMPs 81.48 76.92 85.71 74.07 67.86 80.77 
gbm 33 probes 79.63 84.62 75.00 87.04 88.46 85.71 

gbm 
5000 
probes 65.38 80.77 50.00       

avNNet 38 DMPs       77.78 76.92 78.57 
avNNet 33 probes       81.48 84.62 78.57 

avNNet 
5000 
probes             

GLM 33 probes 87.04 92.31 82.14       
GLM 38 DMPs 77.78 73.08 82.14    

 

Table 36: Comparison of summary statistics of models trained using different datasets. Shown are 
performance metrics of gradient boosted machine (gbm), averaged neural network (avNNet) and 
generalised linear models (GLMs) after training and tuning. The 5000 probe dataset and GLMs could 
not be tuned, and avNNet model parameters were tuned as part of training. 

 

 

Figure 61: Density plot of area under the curve of receiver-operator characteristic per variable identified using 
recursive feature elimination used to train the most sensitive and accurate machine learning classifer of sCJD 
status. 
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7 Discussion 

7.1 Summary 
In this project I initially profiled genome-wide DNA methylation in 114 sCJD patients 

and 105 non-cognitively impaired controls. A case-control comparison using a linear 

regression model, with age and sex included as covariates, identified 38 loci that 

were significantly differentially methylated between the two groups. Interestingly, 

loss of DNA methylation at one of these loci (AIM2, cg10636246) correlated with 

disease severity in sCJD patients only, as measured by the MRC Scale score. 

Using a tiling approach, I also identified 42 regions across which DNA methylation 

was significantly altered.  

Of these 38 differentially methylated positions (DMPs), I chose 8 to take forward for 

replication based on the size of mean difference between sCJD and control groups, 

and the biological role of underlying genes. Although assays could only be designed 

for 7 loci, 5 were found to replicate in a second cohort of 72 sCJD patients and 114 

controls. In addition, using pyrosequencing for the replication stage allowed 

interrogation of adjacent CpG sites, revealing 5 additional sites which were 

significantly altered in sCJD. The association of hypomethylation of cg10636246 (in 

AIM2) with disease severity was also observed in this second cohort of sCJD 

patients 

Having confirmed 5 out of seven array-profiled differentially methylated CpG loci 

and discovered 5 additional loci, I then tested the specificity of these changes to 

sCJD by repeating the DMP assays using samples derived from Alzheimer’s 

disease, inherited prion disease and iatrogenic prion disease. Although some 

assays were underpowered (cg02481950 (METTL9) for iCJD and IPD, cg17515347 

(AIM2) for iCJD and IPD, cg03546163 (FKBP5) for IPD), none of the changes 

observed in sCJD were found in other disease groups suggesting that the observed 

changes are either specific to sCJD rather than to prion disease or 

neurodegeneration in general. 

One of the most interesting findings was a decrease in DNA methylation upstream 

of the transcription start site of FKBP5. This gene plays a role in supressing cellular 

response to cortisol, leading me to wonder whether circulating cortisol levels are 

affected in sCJD patients. I curated a group of serum samples from sCJD patients 

and controls and sent them to The Doctor’s Laboratory for cortisol profiling. Cortisol 

was indeed elevated in sCJD patients within and above the 10am-4pm range (which 
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is when most samples would have been taken) compared to controls, although 

cortisol concentration did not correlate with FKBP5 methylation levels in patients 

profiled on the array where serum was also available. Because cortisol levels vary 

according to a circadian pattern, it is perhaps not surprising that blood-derived DNA 

methylation at FKBP5 does not correlate with cortisol concentration in sCJD 

patients: if blood for DNA extraction and blood for serum fractionation were taken at 

the same time for each patient a correlation might be revealed. Similarly, taking 

blood for serum fractionation from patients and controls at a fixed time of day would 

reduce the effects of the circadian pattern and may result in a larger separation of 

mean concentrations between the groups. 

I then addressed the question of where the difference in DNA methylation was 

coming from. First, to test whether the signature observed in the blood was 

reflective of a signal in the central nervous system, I repeated the pyrosequencing 

assays on DNA samples derived from frontal cortex of sCJD patients and non-

demented individuals. Strikingly, while none of the effects observed in the blood 

were found in the brain, sites both in ANK1 and PRNP were found to be significantly 

differentially methylated in sCJD. While in blood ANK1 methylation does not differ 

between sCJD and control, ANK1 hypermethylation has been repeatedly observed 

in Alzheimer’s disease cortex (De Jager et al., 2014; Lunnon et al., 2014) and 

observing it in sCJD suggests it is involved in neurodegeneration, in line with recent 

findings in Huntington’s disease and Parkinson’s disease (Smith et al., 2019). PRNP 

has an obvious role in sCJD and so observed hypomethylation upstream of PRNP 

in sCJD cortex is an intriguing discovery. However, PRNP mRNA has been reported 

to be decreased in sCJD cortex (Llorens et al., 2013), which, if both findings are 

correct, runs counter to the convention of demethylation of the 5’-UTR leading to 

upregulation. Wider profiling of PRNP methylation in brain-derived DNA may 

provide an explanation.  

Having found no evidence of the peripheral signal being reflective of changes in the 

brain, I then decided to investigate the cellular origin of the signal by assaying blood 

fractions enriched for certain lineages of leukocytes. Sample numbers were 

extremely limited, so only assays targeting FKBP5 and AIM2 were performed. While 

all fractions showed hypomethylation in sCJD compared to control, these changes 

were significantly magnified at AIM2 in granulocytes.  
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Finally, I trained several machine learning models to classify sCJD/control status 

using 450K array data, testing the accuracy of each model using different 

configurations of input data and then tuning parameters to increase accuracy. Using 

recursive feature elimination, I identified a set of 33 array probes which could be 

used to predict phenotype with greater accuracy than the 38 significant findings. 

Using an optimised random forest model, I could classify patient/control status with 

an accuracy of 87.04%. 

7.2 Genome-wide investigation revealed site-specific differences in 

methylation of blood-derived DNA from sCJD patients  
38 DMPs were identified using a linear regression model with age and sex as 

covariates, and with Bonferroni correction for multiple testing. While statistically 

stringent, to have confidence that the genome-wide loci identified as differentially 

methylated were not false positive results it was important to replicate the 

experiment using a second set of patient/control samples and a second technology. 

Regrettably there was only scope to reassess a fraction of the 38 DMPs, which 

were selected based on whether the CpG was in the promoter of a gene, the 

biological role of that gene’s product, the effect size between sCJD and control at 

that CpG, and association with clinical metrics of disease severity. The expanded 

rationale for selecting each of the CpGs is detailed below. 

7.3 Possible relevance of differentially-methylated genes to sCJD 

7.3.1 AIM2: cg10636246 and cg17515347 
AIM2 is an acronym for Absent in Melanoma 2, despite this gene being highly 

expressed in primary melanoma (De Koning et al., 2014). AIM2 is one of several 

pattern recognition receptors (PRRs) which identify molecular signatures of infection 

or cell damage and form cytokine-mobilising inflammasomes. In particular, AIM2 

nucleates and encourages inflammasome assembly on binding to cytosolic double-

stranded DNA (Hornung et al., 2009), or spontaneously when upregulated, by 

interferons for example (Veeranki et al., 2011). PRRs are complexes composed of a 

PRR, procaspase-1 and ASC, although some PRRs such as NLRC4 and NLRP1 

can form inflammasomes without ASC (Latz, Ts and Stutz, 2013). ASC is a prion-

like protein (Cai et al., 2014) which forms complexes of dimers referred to as ASC 

specks, through which it brings procaspase-1 monomers together allowing trans-

hydrolysis and release of caspase-1 (Dick et al., 2016). Caspase-1 is responsible 

for interleukin-1β production and its sustained activation can lead to apoptosis 
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(Pablo et al., 2009). A model of AIM2 inflammasome activation is shown below in 

Figure 62.  

Aim2 is the most highly expressed PRR in murine neuronal culture (Wu et al., 

2016), and its ablation has been found to reduce brain injury in response to 

ischemia (Denes et al., 2015). In culture Aim2 promotes axonal but inhibits dendritic 

growth, and deletion in mice promotes anxious behaviour such as hugging corners 

of boxes and increased passing of urine and stools (Wu et al., 2016). This gene 

therefore appears to have a neurotrophic role with regards to its capacity for 

inflammation, but also functions as a mediator of psychological stress. Indeed, in 

humans a study of post-traumatic stress disorder (PTSD) found that serum C-

reactive protein, a biomarker of peripheral inflammation, was elevated in US 

veterans suffering from PTSD and that this increase and PTSD diagnosis both 

significantly associated with demethylation of blood-derived DNA at cg10636246 in 

AIM2 (Miller et al., 2018). 
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Figure 62: A model of AIM2 inflammasome formation. Shown is AIM2 oligomerisation leading to ASC 
filament nucleation, recruitment of procaspase-1 dimers and release of caspase-1. Although in this 
figure AIM2 hexamers form around cytosolic double-stranded DNA, with increased expression an 
increased expression an increased basal oligomerisation rate becomes sufficient for inflammasome 
activation. This figure is adapted from Figure 1a from Morrone et al., 2015. 
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Prion disease has a strong inflammatory component associated with microgliosis 

and apoptosis of neurons (Aguzzi, Barres and Bennett, 2013). Implication of AIM2 in 

sCJD is therefore interesting, particularly as two probes in the transcription start site 

of the gene are affected, one of which (cg1036246) has been associated with 

peripheral inflammation in the literature. Association of hypomethylation at these 

probes with decrease in MRC Scale score, a measure of disease severity, supports 

a genuine connection between demethylation at this gene’s promoter region and 

sCJD phenotype. It is, however, surprising to not observe differential methylation of 

AIM2 in the sCJD brain, which suggests peripheral inflammation in sCJD patients is 

distinct from neuroinflammation, or occurs in a cell type more abundant in the 

periphery than the brain. 

The role of cytokines in prion disease is unclear, partially due to studies reporting 

cytokine profiles from different transgenic mice of different backgrounds, infected 

with different prion strains at different stages of the disease. An early study found 

that levels of IL-1α, IL-1β, and TNF-α mRNA in the brain were elevated at clinical 

onset in swiss (SWR/j) mice infected with the mouse-adapted Chandler strain of 

scrapie (Campbell et al., 1994). PrPSc deposition was later linked spatially and 

temporally with increased production of IL-1β and TNF-α by perivascular 

macrophages in a VM/DK scrapie mouse model of infected with the 301V strain of 

scrapie (Williams et al., 1997). A study of IM mice describes elevated levels of NF-

κβ and IL-6 brains 300 days after infection with the mouse-adapted 87V strain of 

scrapie (Kim et al., 1999). Conversely, no increase in IL-1β, IL-6 or IFN-γ was 

observed in a study of black-6 (C57BL/6J) mice sacrificed between 56 and 168 days 

after inoculation with mouse-adapted ME7 prions (Walsh, Betmouni and Perry, 

2001). A study which followed CV/DK mice from inoculation with mouse-adapted 

ME7 prions all the way until terminal disease found steady elevation of IL-1β mRNA 

levels from 180 days post inoculation (preclinical stage) to a maximum at end-stage, 

with some mice showing slight elevations in TNF-α and IL-6 mRNA at end-stage 

(Brown et al., 2003). The authors comment that only IL-1β is markedly elevated and 

not to such an extent what could explain extensive microgliosis. Functional insight is 

provided by observation that knocking IL-10 out of the 129/Sv agouti mouse halved 

the disease duration upon inoculation with RML 5.0 prions compared to 129/Sv 

controls (Klein et al., 2004). Taking into account the periods of disease studied, it 

would seem that cytokine production is likely a feature of the toxic stage of prion 

pathogenesis, rather than the infectious stage, as per the model proposed by 

Sandberg et al. (Sandberg et al., 2014). This fits neatly with the association of AIM2 
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demethylation with disease severity in humans, suggesting activation of this 

inflammatory pathway may be a feature of clinically presenting prion disease. Of 

course, other features of sCJD (incontinence, reduced coughing, predisposition to 

bedsores) may also cause susceptibility to infections and therefore peripheral 

inflammation. This is an important point and will be addressed in Section 7.6. 

7.3.2 FKBP5: cg03546163 (and cg00052684 and cg25114611) 
Demethylation of 5.35% in the 5’ region of FKBP5 is the largest significant change 

seen in this dataset. FKBP5 was originally identified as a component of 

progesterone receptor complexes and named immunophilin p54 (Smith, Faber and 

Toft, 1990). Now mostly referred to as FKBP5 or FKBP51 (FK506-Binding Protein 

5), this gene has been extensively studied, particularly in its original context as a 

receptor chaperone. FKBP5 was found to decrease the affinity of the Glucocorticoid 

Receptor (GR) to ligand agonists and delay translocation of activated GR to the 

nucleus (Wochnik et al., 2005), in dynamic opposition to the similarly named 

homologue FKBP52 (Smith et al., 1993), now more frequently named FKBP4. 

FKBP5 also serves as a chaperone for AKT and PHLPP, a protein phosphatase 

which inactivates AKT and thus negatively regulates multiple biological survival and 

growth pathways (Wang, 2011). FKBP5 thus serves as a major regulator of the 

glucocorticoid response pathway: a simplified model of this is presented below in 

Figure 63.  
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Figure 63: Model of FKBP5’s role in inhibition of the glucocorticoid response. Glucocorticoids enter the 
cytoplasm (a) and activate the glucocorticoid receptor (GR) complex. FKBP5 can associate with the 
complex and reduce binding affinity of glucocorticoids to the GR, thus delaying translocation of the GR 
to the nucleus. Exchange of FKBP5 for FKBP4 (b) permits GR translocation to the nucleus (c). The GR 
can either interact as a monomer with other transcription factors (d) or form a homodimer that binds to 
DNA at glucocorticoid response elements, allowing transactivation or transrepression of a large 
number of genes. The FKBP5 gene is highly responsive to GR, but responsiveness depends on 
FKBP5 polymorphisms and methylation status (e). FKBP5 mRNA translocates to the cytoplasm (f) 
where it is translated into FKBP5 protein. FKBP5 then inhibits GR activity by not only forming an ultra-
short, intracellular negative feedback loop of GR signaling but also modulating several other biological 
pathways (g). This figure and legend are adapted from an excellent review of FKBP5’s function and 
regulation by Zannas, Wiechmann, Gassen and Binder 2016. 

 

As well as functioning as a scaffold for protein assembly, FKBP5 has a cis/trans-

peptidyl-prolyl-isomerase (PPIase) function, common to the FKBP family which are 

named according to the inhibition of the PPIase domain by FK506. PPIase function 

also contributes to FKBP5’s role as a chaperone, for example in its inactivation of 

cyclin-dependent kinase 4 by isomerisation of the T172-P173 peptide bond, by 

which phosphorylation of T172 is inhibited, thus promoting myogenesis (Ruiz-

Estevez et al., 2018).  
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There is a connection between FKBP family members and prion disease in the 

literature. FK506 (also known by its pharmaceutical name, tacrolimus) was identified 

in a drug screen in murine N2a cell culture as preventing prion propagation 

(Karapetyan et al., 2013). Further work revealed that FK506 decreases levels of 

PrPC through blocking import into the endoplasmic reticulum, leading to increased 

degradation in the cytoplasm, identifying endoplasmic reticulum-associated Fkbp10 

as the target of FK506 (Stocki et al., 2016). The same work revealed that FK506 

could also decrease levels of PrPC and PrPSc in chronically infected ScN2a cells. 

Knockdown of Fkbp9 in a prion-propagating derivative of N2a cells (PK1) was later 

found to significantly reduce prion propagation while not altering base levels of PrPC 

(Brown et al., 2014). Worth noting is that mutations at P102 or P105 of PrP can 

cause Gerstmann-Straussler-Scheinker disease, an inherited form of prion disease 

(Kraus et al., 2015). Of the canonical amino acids, proline exerts the greatest 

constraint on conformational potential at the level of secondary structure, 

suggesting that these disease-causing polymorphisms may act through increasing 

the conformational freedom of PrP. If this is the case, the effects of FKBP family 

PPIase activity on PrP conformation may be worth considering. 

FKBP5 has also been associated with other neurodegenerative and psychiatric 

diseases. Upregulation of Fkbp5 in mice expressing humanised P301L tau resulted 

in accumulation of toxic tau oligomers and progressive neurodegeneration (Blair et 

al., 2013). Conversely, Fkbp5-/- mice have lower levels of total brain tau and 

phospho-tau and show resilience to experimental stress conditions compared to 

wildtype mice in terms of reduced depressive behaviour and anxiety, improved 

quality of sleep and lower levels of circulating corticosterone, the rodent equivalent 

of cortisol (O’Leary et al., 2011; Touma et al., 2011; Albu et al., 2014). 

Overexpression of Fkbp5 was observed in the hippocampus and prefrontal cortex of 

rats subjected to chronic stress (Guidotti et al., 2013). Strikingly, significant and 

correlated decreases in DNA methylation of Fkbp5 were observed in the blood and 

hippocampi of mice supplied with corticosterone-laced water (Ewald et al., 2014). In 

humans dysregulation of FKBP5 is also observed in the context of stress, notably in 

survivors of the holocaust and their offspring, where a CpG overlapped by one of 

FKBP5’s glucocorticoid response elements (GRE) is hypermethylated and 

hypomethylated in parents and children respectively (Yehuda et al., 2015). Dawn 

cortisol levels in children are also elevated compared to age-matched non-exposed 

Jewish controls, in inverse correlation with demethylation of the GRE. In Cushing’s 
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Syndrome, a psychiatric disorder caused by hypercortisolaemia, FKBP5 is also 

found to be hypomethylated. (Resmini et al., 2016).  

Because of its diverse functions, its existing connection with prion research, and the 

magnitude of hypomethylation observed in the array results, FKBP5 is an exciting 

candidate gene for further study. It is also interesting to note that cortisol is an anti-

inflammatory agent, and hypercortisolaemia has been observed in scrapie-infected 

sheep (Gayrard et al., 2000). There may therefore be an inflammatory component 

connecting dysregulation of AIM2 and FKBP5. 

One CpG (cg03546163) was identified in the sCJD-control comparison using 

Houseman-corrected data. However, EpiDISH correction for cellular heterogeneity 

identified this probe and two others (cg00052684 and cg25114611). While it was 

encouraging to observe additionally affected loci in the same gene, this also 

presented an opportunity to assess the ability of EpiDISH to identify significantly 

affected loci which the Houseman algorithm could not, therefore all three probes 

were taken forward as candidates for replication. 

7.3.3 MTRNR2L8: cg05740793 
MTRNR2L8, or humanin-like Protein 8, is a paralogue of 15 nuclear-encoded 

descendants of a putative ancestral mitochondrial gene (Bodzioch et al., 2009). A 

mere 24 amino acids in length, the original humanin was identified through 

expression screening of a cDNA library generated from the occipital cortex of an 

Alzheimer’s disease patient, and allegedly named after its discoverer’s hope that 

this peptide was the key to restoring the humanity of AD patients (Hashimoto et al., 

2001; Lee, Yen and Cohen, 2013). Hashimoto et al. found that treatment with 

purified humanin was sufficient to protect cells transfected with amyloidogenic 

mutant amyloid-precursor protein or treated with amyloid-beta oligomers. Later work 

found that similar treatments of humanin could protect cortical neurons from 

apoptosis induced by a codon 118-135 fragment of PrP (Sponne et al., 2004). In 

vivo, interperitoneal injection of a synthetic humanin mimic peptide was found to 

reduce memory deficits, amyloid plaque counts and neuroinflammation in an AD 

mouse model (Zhang et al., 2012). 

Its neuroprotective functions make Humanin a fascinating candidate gene, but 

investigation was stymied by the high degree of conservation of the sequence 

around the CpG of interest. I was unable to design a pyrosequencing assay specific 

for humanin-like protein 8. This is particularly unfortunate as, despite differential 
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expression of 10 of the humanin proteins across different tissues (five are thought to 

be pseudogenes), which humanin paralogue encodes the “original” humanin peptide 

isolated from the brain remains a matter of contention.  

7.3.4 UHRF1 and METTL9: cg17714703 and cg02481950 
UHRF1 was introduced at the introduction of this thesis: it recruits DNMT1 to 

hemimethylated DNA to establish symmetrical DNA methylation at CpG sites. 

Methyltransferase-like 9 is so called because it contains an SAM-dependent 

methyltransferase domain, however which biological substrate it methylates has not 

been confirmed. METTL9 is also named DORA Reverse Strand Protein (DREV1) as 

it is encoded by the opposite strand of a region overlapping IGSF6, or DORA, an 

immunoglobulin associated with inflammatory bowel disease which is specifically 

expressed in haemoatopoetic cells (Bates et al., 2000). While UHRF1 has been 

subject to much research, METTL9 remains uncharacterised. However, its potential 

role in DNA methylation, alongside UHRF1’s established role, made them 

interesting candidates for replication. Dysregulation of UHRF1 in particular might 

explain the increased genome-wide inflation seen in the array results: if 

spontaneous DNA methylation is being differentially converted to symmetrical DNA 

methylation at CpG sites by dysregulated UHRF1, I would expect to see greater 

background differences in DNA methylation between sCJD and control groups. 

7.3.5 KCNAB2 and MIR1977: cg02448796 and cg05001044 
KCNAB2 encodes Kvβ2, a subunit of potassium voltage-gated channels, and was 

selected primarily as bioinformatic analyses of other data gathered from sCJD 

samples indicated enrichment of potassium voltage-gated channel family members. 

While potassium channels manage a wealth of biological functions, Kcnab2 deletion 

was found to impair memory and learning in mice (Perkowski and Murphy, 2011), 

while both polycomb-targeted repression and knockdown of Kcnab2 was found to 

improve resistance to ischaemia in murine culture (Stapels et al., 2010).  

Conversely, MIR1977 is a mitochondrially-encoded microRNA which is thought to 

target and silence the mitochondrial transfer RNA gene TRNN (Bandiera et al., 

2011), although this has not been confirmed. While this miRNA’s function remains 

unknown, the Δβ between sCJD and control is the second largest in the dataset and 

so this site is a suitable candidate for further investigation. 
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7.4 Genome-wide significance inflation in 450K datasets is common 

and is unlikely to detract from this study 
As shown in Section 3.3.1, pre-processing suppressed genome-wide significance 

inflation (λ) to a final value of 1.4, which is higher than reported in most Genome-

Wide Association Studies (GWAS). While this may reflect the clinical heterogeneity 

of the disease or “noisy” epigenetic dysregulation across the genome, p value 

inflation in Epigenome-Wide Association Studies (EWAS) is a recognised 

phenomenon (Iterson, Zwet and Heijmans, 2017). While GWAS are studies of 

genotypes (ordinal data), EWAS of DNA methylation study continuous numerical 

data which is more vulnerable to the biases described in Chapter 2. Alternatively, 

sCJD could have extremely heterogeneous effects on genome-wide DNA 

methylation. In terms of whether this inflation is greater than expected, λ of 1.3-1.4 

have been reported in other studies using the 450K array and blood-derived DNA 

(Ahsan et al., 2016; Joehanes et al., 2016). It is therefore unclear whether further 

correction of λ would reflect a legitimate decrease in technical bias or over-fitting of 

the data to conform to standards established in GWAS, although such correction 

could be achieved using statistical techniques such as surrogate variable analysis.  

The greatest decrease in λ is observed before and after correction for leukocyte 

population heterogeneity. Briefly, this uses reference methylome datasets from 

FACS purified leukocyte-derived DNA to weight 450K array data in terms of 

estimated leukocyte proportions, and then normalises the data based on those 

estimates. In doing so, differential methylation based on differences in cell 

populations, rather than epigenetic dysregulation, is discounted (Jaffe and Irizarry, 

2014). In our dataset both Houseman and EpiDISH algorithms estimate significant 

differences between leukocyte proportions in sCJD and control groups, albeit within 

normal physiological ranges. This raises two questions:  are there legitimate 

differences in cell populations in sCJD compared to control, and what is driving the 

discrepancy between the Houseman and EpiDISH algorithms? Regrettably blood 

counts of sCJD patients were not accessible at the time of the study, and 

prospectively counting blood cell populations to statistically power a difference 

between sCJD and controls, assuming both are within normal physiological ranges, 

would take months to years. To answer the second question, a large battery of 

blood samples from more than one phenotypic group should be subjected to 

leukocyte population counting and 450K or 850K profiling, so as to rate the 

comparative accuracy of the two algorithms. This has been done on a small scale 
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by the authors of the EpiDISH algorithm, but bears repeating (Teschendorff et al., 

2017). 

7.5 Genome-wide investigation revealed regional differences in 

methylation of blood-derived DNA from sCJD patients 
41 differentially methylated regions (DMRs) were identified using the Bumphunter 

package. The reduction of data dimensionality through tiling regions of adjacent 

CpG probes allowed sites that did not exhibit genome-wide significance after 

Bonferroni correction for multiple testing to pass a false-discovery rate corrected 

significance threshold of 0.05. p values are generated by creating a 250 series of 

“null” regions and calculating the percentage of null regions that are greater in width 

and have a higher value than the observed DMR. The package’s authors advise 

that such p values “should be interpreted with care as the theoretical properties are 

not well understood” (Aryee et al., 2019). A second metric of error, the Family Wise 

Error Rate (FWER) is the proportion of series of null regions that contain at least 

one region as wide and with an equal or greater value than the observed DMR. 

FWER is a more stringent measure of error and the one by which I decided to 

interpret DMR results. 

The most significant DMR by both metrics (p = 3.3x10-5, FWER = 0.012) overlaps 

three genes: HOXA-AS3, HOXA5 and HOXA6. Less significant DMRs tend to have 

sequentially higher p values, while FWER increases linearly. The second most 

significant DMR as ranked by Bumphunter has an FWER of 0.056, meaning that 

5.6% of null series contain an equivalently “significant” DMR in terms of difference 

between mean methylation and total width.  The FWER reaches 90.4% at DMR 

number 21 and so, whilst nominally significant in terms of p value, it seems probable 

that many of the identified DMRs are unreliable. 

Nevertheless, I went on to study the genomic distributions of these regions. Perhaps 

unsurprisingly most DMRs overlapped CpG-dense islands rather than CpG-

depleted open sea regions, and as a result also overlapped gene promoters. Using 

publicly available ChIP-Seq data from purified blood cell types in the Goldmine 

package (Bhasin and Ting, 2016), I also found that all DMRs contained transcription 

factor binding sites (TFBSs). I decided to see whether these DMRs shared any 

common motifs or binding partners and identified two motifs as being enriched 

across the sequence, namely TATTTTTTTATTAACAAAATATAACATTA and 

TTTTCTTCCTCTCCA (Motifs 1 and 2 from Figure 33 respectively). 86 transcription 

factors were significantly associated with the motifs, although after adjustment for 
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false discovery rate only 14 remained significantly associated with the first motif 

only.      

7.5.1 HOXA5  
The DMR least likely to be a false positive (1.2% of null regions show equivalent or 

greater effects) overlaps HOXA5. HOX genes are developmental transcription 

factors (Krumlauf and Hill, 1994) which are expressed in different combinations 

across distinct anatomical segments, thus directing local development of anatomical 

structure. HOXA5 in particular contributes to the development of the respiratory and 

digestive systems, thyroid and mammary glands, and regulates the balance 

between myelopoiesis and erythropoiesis in the bone marrow (Jeannotte, Gotti and 

Landry-Truchon, 2016). Besides their normal physiological role in development, 

dysregulation of HOX genes, including HOXA5, have been implicated in 

neurodegeneration. In blood-derived DNA from patients with Down Syndrome, 

which confers a high risk of developing Alzheimer’s Disease with age, 

hypomethylation (as opposed to hypermethylation as observed in sCJD) has been 

described across HOXA2, HOXA4, HOXA5 and HOXA6 (Bacalini, Gentilini, et al., 

2015). In Huntington’s disease HOX genes have been found to be upregulated in 

prefrontal cortex, alongside upregulation of five HOX-targeting miRNAs, some of 

which were not expressed at all in non-Huntington’s control cortex (Hoss et al., 

2014). Perhaps most striking is the recent publication of a 48 kilobase DMR 

spanning the HOXA cluster in prefrontal cortex and superior temporal gyrus-derived 

DNA across Braak stage in Alzheimer’s Disease patients (Smith et al., 2018). The 

seventh DMR (as ranked by significance) identified in this report overlaps HOXA5 

and HOXA-AS3 (Chr7:27,183,133-27,184,853), a region of DNA overlapped by the 

DMR identified in this study (Chr7:27,183,133-27,185,512). Both DMRs are regions 

of hypermethylation. 

7.5.2 Further work 
It is clear from the studies cited above that HOXA5 plays a neurotrophic role. It may 

be that hypermethylation at binding sites within DMRs is reflective of 

hypermethylation at other binding sites which could connect to differential 

expression of genes not identified in this study. However, this would only be the 

case if the substrate binding of these transcription factors is methyl-sensitive. This 

assumption is driven solely by in silico observations but could be tested through a 

number of follow-up experiments: 
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1. Replication of the HOXA5 DMR using targeted bisulphite sequencing: 

Because bisulphite treatment fragments DNA, a 2,379 bp region may 

require shotgun sequencing or primer walking, where small sections of this 

region are sequenced and fragments combined to create a profile of the 

whole region. 

2. qPCR of HOXA5: If HOXA5 is indeed dysregulated, this should be 

confirmed by measuring its expression levels in sCJD and control blood. 

3. Chromatin Immunoprecipitation of DNA sequences bound to identified 

transcription factors, e.g. CPEB1: if hypermethylation of motifs within DMRs 

is altering binding of transcription factors to these sequences, precipitation 

of CPEB1-bound chromatin and subsequent sequencing (or qPCR targeted 

around these motifs) should give an indication of magnitude and direction of 

effect. 

Even given these hypotheses, the disease relevance of blood-based changes in 

methylation, expression and activity of these genes is not easy to connect to prion 

pathology in the brain. It may be possible the observed changes are present in the 

brain too, or that they are symptomatic of PCR2 dysfunction related to altered 

haematopoiesis in response to neuronal or peripheral inflammation, which will be 

discussed in the next section. 

7.6 Five out of seven candidate DMPs were found to be replicable in a 

second cohort of patients and controls 
As mentioned in Section 4.1.2, assays for all loci were designed and optimised with 

the exception of the assay for MTRNR2L8, due to CpG density in the surrounding 

region. A MTRNR2L8-specific 300bp amplicon was generated but failed to 

sequence, while nested PCR of a smaller amplicon from a larger, specific amplicon 

failed to provide a product. 

Five out of seven assays based on the Houseman-corrected data showed 

significant differences between sCJD and control, while two (MIR1977, KCNAB2) 

failed to replicate. One of the two EpiDISH identified assays (cg00052684) 

replicated but at dramatically reduced significance (p = 0.002). The second assay 

(cg25114611) did not reach significance after correction for multiple testing (p = 

0.029). It is possible that, based on a lower replication rate and a higher λ in the 

EpiDISH dataset, that EpiDISH is subject to a higher false positive rate, although 

more EpiDISH DMPs would need to be replicated to confirm this. 
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Because of the extensive correction measures employed during array data analysis, 

overfitting of the data was a concern. Apart from inclusion of age and sex as 

components in the linear model, pyrosequencing data is not corrected. Therefore, 

the replicated DMPs are not artefacts of data as they are present in both corrected 

and uncorrected data. 

It is possible that the replicated DMPs are consequences of prion disease, dementia 

or illness in general. To exclude these possibilities the replicated assays were 

performed on groups of iatrogenic CJD and inherited prion disease patients, as well 

as Alzheimer’s disease patients. There are two caveats to this experiment: firstly 

only the AD group was powered in the assay for METTL9, this requiring 50 samples 

for both disease and control groups. Secondly, because the majority of iCJD 

patients are male, in these analyses sex was not included as a covariate in the 

linear model to prevent bias. As sex did not correlate significantly with differences in 

methylation between disease/control replication groups, this is unlikely to have 

adversely affected results. 

Strikingly, no DMPs identified in sCJD patients were observed in other disease 

groups. Not only does this support the specificity of the DMPs to sCJD, but also 

rules out the effects being induced by disease treatment as drugs prescribed to treat 

symptoms of sCJD, IPD and iCJD are broadly similar (anti-epileptics, 

benzodiazepines). Consultation with clinical fellows who treat prion disease patients 

suggests no form of the disease carries a disproportionate risk of infection as a 

comorbidity, which could also be responsible for altered DNA methylation 

(particularly of AIM2 and FKBP5). These results and observations support the 

specificity of these DMPs to sporadic human prion disease.  

7.7 Differential DNA methylation in sCJD patient blood is not observed in 

frontal cortex-derived DNA  
Differential DNA methylation in blood is a useful biomarker and can give insight into 

downstream consequences of the disease or germline susceptibility factors, while 

altered DNA methylation in the disease tissue may identify mechanistically relevant 

candidate genes and pathways. Having identified DMPs in peripheral blood of sCJD 

patients, investigating these loci in brain tissue was a natural next step. 

Fortunately frontal-cortex derived sCJD and non-sCJD control DNA was available, 

and in sufficient sample numbers to power assays for FKBP5, AIM2, and UHRF1. 

Assays for ANK1 and PRNP were included, but this time not as negative controls. 
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cg11823178 in ANK1 is hypermethylated in Braak stage IV-VI Alzheimer’s disease 

frontal cortex compared to Braak stage I-III (De Jager et al., 2014; Lunnon et al., 

2014), and DNA methylation of PRNP has yet to be investigated in human brain. 

In an ideal, prospective study of brain-derived DNA, tissue would be sampled from 

the same region of the frontal cortex, specifically the grey matter which contains the 

neuronal soma rather than the white matter which contains neuronal axons. In this 

case the DNA is derived from bulk frontal cortex which would not have been 

systematically sampled in this way. Despite this limitation, it is interesting to observe 

no changes in DNA methylation levels at AIM2, UHRF1 or FKBP5 loci between 

sCJD and non-sCJD control brain-derived DNA. While the METTL9 assay was not 

powered, the distribution of the data when plotted does not suggest that increasing 

sample numbers would reveal an effect. 

Interestingly, I found that a CpG located 21 bp downstream of cg11823178 (ANK1) 

was found to be hypermethylated in sCJD brain. This CpG (8:41,519,420) has 

recently been identified as hypomethylated in entorhinal cortex in Huntington’s 

disease (HD) and Parkinson’s disease (PD) (Smith et al., 2019), though notably the 

three upstream CpGs in this assay, while hypermethylated in HD, PD and AD, are 

not in sCJD. Laser capture of cells from AD hippocampi revealed a four-fold 

upregulation of ANK1 mRNA compared to controls in microglia, but not neurons or 

astrocytes (Mastroeni et al., 2017). As extensive microgliosis is a feature of sCJD, it 

is possible that ANK1 may also be worthy of study in different regions of the brain 

and at different omic levels in prion disease. 

PRNP showed significant hypomethylation at position 20:4,665,649, 3 base pairs 

downstream of cg04286737. While methylation at a CpG 576 bp upstream of Prnp’s 

transcription start sight has been found to affect expression in mice (Dalai et al., 

2017), this assay probes a site even further upstream of PRNP. Yet studies of 

cortical expression of PRNP show decreased mRNA levels in the cortex, which in 

turn correlates with decreased PrPC in cerebrospinal fluid, which in turn correlates 

with sCJD severity (Llorens et al., 2013). This discrepancy between observations in 

mice and humans warrants further study of PRNP methylation and expression in 

vivo and in vitro, as Llorens’ observations may reflect normal or increased 

transcription of PRNP but subsequent mRNA dysmetabolism, as observed in other 

neurodegenerative diseases (Liu, Cali and Lee, 2017). 
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7.8 Differences in DNA methylation may be associated with specific 

leukocyte classes 
eFORGE analysis suggests that the DMPs are enriched in loci overlapped by the 

histone moiety H3K36me3 in monocytes, B cells and natural killer cells. Methylation 

of lysine 36 in Histone protein 3 is associated with active transcription, as SET2, a 

H3K36 methyltransferase, binds to phosphorylated RNA Polymerase II during 

transcript elongation (Krogan et al., 2003; Li et al., 2003). Resultantly H3K36me3 

abundance correlates with expression levels and, mirroring RNAP II association, 

this mark is more frequently found in exons rather than introns (Schwartz, Meshorer 

and Ast, 2009). H3K36me3 is also recognised by MRG15 which recruits PTP, a 

negative regulator of alternative splicing (Luco et al., 2010). Altered DNA 

methylation at these sites may indicate changes in chromatin organisation from 

condensed to unpacked, which in turn may allow methylation or demethylation of 

H3K34me3.  

The presence of functional chromatin modifications at these DMPs in particular 

lineages of leukocytes allows inference of a cell-specific origin for the observed 

changes in DNA methylation. This would also explain the comparatively modest 

effect sizes observed: monocytes comprise ~5% of total leukocytes in adults, so a 

change in DNA methylation of 10% in FKBP5 specifically in monocytes would 

actually be a change of 50% between sCJD and control, diluted out by no change in 

DNA from other cell fractions. I set out to test this by prospectively enriching 

leukocyte populations using Magnet Assisted Cell Sorting (MACS). 

7.8.1 Strengths and limitations of MACS methodology and results 
The greatest strength of MACS is that it allows fractionation of leukocytes rapidly, 

with minimal preparation and under less mechanically stressful conditions than 

FACS. However, validation of MACS efficiency is rarely performed in the literature 

and the manufacturer’s validation uses FACS. One of the practical reasons for 

choosing MACS to fractionate cells is that FACS was not a viable method due to 

health and safety issues connected with handling of prion patient samples, ruling 

this out as a validation technique. Instead, qPCR of cell surface markers was 

decided upon as a means of measuring enrichment of the cell type of interest in 

each fraction. This required the eluted fraction to be effectively halved in volume to 

allow for both DNA and RNA extraction. While DNA yields were sufficient for 

bisulphite conversion and pyrosequencing, RNA yields were low. Eventually, time 
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did not permit for the qPCR assays to be performed, meaning the MACS results 

have not been validated and should be considered with caution. 

Another limitation is that blood samples had to be recruited prospectively as 

leukocytes lyse on freezing, meaning frozen samples could not be used. While clinic 

visits to patients are relatively frequent given the rarity of the disease (1-2 per 

week), on several occasions patients were too unwell to have blood taken. Because 

of this only 11 controls and 9 sCJD patient bloods were collected. Moreover, in 

some instances the volume of blood taken was insufficient to purify all chosen 

fractions, in which case monocyte and B cell fractions were prioritised. A final 

limitation was delay before sample processing, as some samples were processed 

within hours of venepuncture whereas others were processed a few days after 

venepuncture.  

Surprisingly all cell fractions tested showed a trend towards demethylation in the 

AIM2 loci, but a statistically significant difference was only observed in granulocytes, 

a cell lineage not identified by eFORGE. Conversely, while all cell lineages showed 

a trend towards demethylation at FKBP5, the ANOVA was not significant. However, 

the post hoc test, and the data when visualised, point towards an enrichment of 

demethylation in B cells. This assay is underpowered and recruiting more samples 

may lead to a significant difference in this lineage being revealed. 

The granulocyte lineage is made up of neutrophils, eosinophils and basophils, all 

characterised by their ability to secrete granules containing cytotoxic or signalling 

molecules (Geering et al., 2013). In blood neutrophils are the most abundant 

granulocyte and persist for up to 5 days in circulation. However, spontaneous 

apoptosis of neutrophils is inhibited by both glucocorticoids and Interleukin-1β (Cox 

et al., 1995; William et al., 1998), signalling molecules whose effects are regulated 

by FKBP5 and AIM2 respectively.  Both EpiDISH and Houseman algorithms 

estimated greater proportions of granulocytes in sCJD (+8% and +11% 

respectively), suggesting that increased granulocyte (and specifically neutrophil) 

survival and thus prevalence may be a peripheral feature of sCJD.  

7.8.2 The value of further work as a function of cost 
This experiment is underpowered and has yet to be validated, but preliminary 

results are encouraging. As granulocytes seem to be affected and (based on in 

silico estimates) elevated in sCJD, it may be worth prospectively comparing 

proportions of leukocyte populations between sCJD patients and controls. This will 
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both give a clearer picture as to what peripheral immunological processes are 

occurring in sCJD and may also prove useful in supporting diagnosis.  

However, such work is time-consuming, requires prospective blood sampling from 

patients of a rare disease, and although the leukocyte lineage is estimated to be 

increased in sCJD, populations in both sCJD and control bloods are within 

physiological ranges. It is also surprising that eFORGE indicated that observed 

changes would be most amplified in monocytes rather than granulocytes. These 

preliminary results are perhaps insufficient to justify expanding this work without 

validation of the efficiency of MACS enrichment, which could be done using control 

blood and validated by FACS rather than qPCR of cell surface markers. 

7.9 FKBP5 and AIM2: Peripheral inflammation in neurodegenerative 

disease 
Hypomethylation of FKBP5 and AIM2, and an enrichment of the latter in 

granulocytes, point towards inflammation in the periphery. Cortisol, a hormone with 

anti-inflammatory properties, was also found to be elevated in sCJD sera compared 

to control sera. The relationship between inflammation and neurodegeneration is 

well established, with chronic neuroinflammation observed in most 

neurodegenerative diseases (Frank-Cannon et al., 2009). Recently, peripheral 

inflammation in neurodegenerative disease has become a topic of interest. In 

Alzheimer’s Disease and Lewy Body Dementia (LBD) inflammatory cytokines such 

as IL-1β were found to be elevated in plasma from prodromal patients but not in 

those who were cognitively impaired, compared to controls (King et al., 2018). 

However, a meta-analysis of 175 AD studies found that cytokines were in fact 

elevated in clinically presenting patients, with IL-6 levels correlating inversely with 

Mini Mental State Examination scores (Lai et al., 2017). In Huntington’s Disease 

patients chemokine levels in plasma were found to increase linearly across disease 

progression and correlate with clinical scores (Wild et al., 2011). A meta-analysis of 

25 studies found elevated levels of cytokines were also elevated in ALS (Hu et al., 

2017), and treatment of peripheral blood mononuclear cells with α-synuclein 

significantly increased IL-6 and IL-1β production. 

It is therefore perhaps unsurprising that demethylation of AIM2 correlates with MRC 

Scale score, given the prior reports of similar associations between clinical scores 

and inflammatory markers in AD, HD and LBD. But how is peripheral inflammation 

connected to neuroinflammation? During this project I considered several 

hypotheses. 
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7.9.1 Potential causes and roles of peripheral inflammation in sCJD 
The first is that immune cells infiltrate the brain, are affected by the disease 

microenvironment, and return to circulation. This hypothesis was strengthened by 

the eFORGE prediction of an enriched differential methylation signature in 

monocytes, a leukocyte class which are known to infiltrate tissues and in particular 

to be recruited into the brain early on in prion pathogenesis (Williams, Ryder and 

Blakemore, 1995). This hypothesis explains the relatively small effect sizes 

observed, as only a small fraction of cells would infiltrate the brain and a smaller 

fraction of them would return to the periphery. However, preliminary MACS results 

do not support this hypothesis. The lack of concordant blood/brain changes in 

methylation are also problematic, although it could be that leukocytes respond 

differently to the disease microenvironment than native neuronal, astrocyte or glial 

cells. 

The second is that neuroinflammatory factors leak into the periphery, perhaps due 

to impairment of the blood brain barrier (BBB), triggering epigenetic changes. As IL-

1β regulates BBB permeability, neuroinflammation should result in cytokines 

passing into the periphery, triggering systemic inflammation. Again, these molecules 

would be diluted across the total volume of the circulatory system which may also 

explain the relatively modest effect sizes observed. IL-1β is known to increase 

survival of neutrophils, so this hypothesis does explain both the estimated increase 

in granulocyte proportions in sCJD and the preliminary MACS results. 

Thirdly, it is possible that prions are present in the circulatory system. Prions have 

been detected in the blood of vCJD patients (Concha-Marambio et al., 2016; Nicot 

et al., 2016), but whether they are present in the blood of sCJD patients remains 

unclear. A bioassay where plasma from sCJD patients was injected intracerebrally 

into transgenic mice expressing human PRNP showed prion infectivity in 2 out of 4 

patient samples (Douet et al., 2014). Varying circulating prion titre between patients 

may also explain the relatively modest degree of separation between sCJD and 

control groups, and as cited above Aβ and α-synuclein (both prion-like proteins) are 

sufficient to trigger PRRs and thus activate inflammasomes.  This hypothesis is also 

supported by the estimated increase in granulocyte proportions in sCJD and the 

preliminary MACS results. Whether or not prions are present in the circulatory 

system of sporadic prion disease patients is an important question both in terms of 

pathophysiology and research biosafety. 
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At this stage, hypotheses two and three seem to be the most plausible and rely on 

fewer assumptions than hypothesis one. Profiling cytokine concentrations and 

leukocyte proportions in sCJD blood across the disease course would clarify 

whether there is indeed IL-1β driven inflammation and increased neutrophil survival, 

and whether these correlate with AIM2 demethylation. Comparison of IL-1β levels in 

human sCJD brain compared to control brains with no expected BBB impairment 

using immunohistochemistry would not only reveal whether cytokines and 

chemokines could leak from the brain into the periphery, but correlation of IL-1β 

presence in the brain with levels in blood could reveal a linear connection.   

Continuing and validating the MACS experiment is important to clarify which cells 

may be functionally affected by differential methylation. Enriched fractions of 

leukocytes can also be used, alongside plasma, in RT-QuIC or PMCA reactions – 

sensitive in vitro assays for PrPSc seeding – to establish whether prions are present 

in the periphery, and whether particular types of leukocyte are vulnerable to 

infection. 

7.10 Elevated cortisol in sCJD suggests dysregulation of the 

Hypothalamic-Pituitary-Adrenal Axis 
Hypomethylation of the promoter of FKBP5 and elevated levels of cortisol in sCJD 

patient sera both point towards potential dysregulation of the Hypothalamic-

Pituitary-Adrenal (HPA) axis. Briefly, this system coordinates signals generated by 

environmental or molecular stress stimuli – such as IL-1β – from various neural 

circuits to the hypothalamus, which releases corticotrophin-releasing hormone and 

arginine vasopressin. These stimulate the release of adrenocorticotrophic hormone 

(ACTH) by the pituitary gland, which travels through the circulatory system to the 

adrenal glands, which respond by producing and releasing glucocorticoids, such as 

cortisol (Bellavance and Rivest, 2014). It is highly likely that damage to the brain, 

such as occurs during sCJD, would through inflammation and IL-1β affect the 

function of the HPA axis. Because the HPA axis operates according to circadian 

and ultradian rhythms, many models of its function exist: a simplified model is 

displayed below in Figure 64. 
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Figure 64: Simplified model of the Hypothalamic-Pituitary-Adrenal axis. Here the hypothalamus 
receives stressor input (in this case inflammatory cytokines) and produces corticotrophin-releasing 
hormone (CRH). This stimulates the pituitary gland to secrete adrenocorticotrophic hormone (ACTH), 
which travels through the blood to the adrenal glands and promotes the secretion of glucocorticoids, 
such as cortisol. This has inhibitory effects (dashed lines) on CRH production, ACTH production, and 
leukocyte cytokine production. Figure is adapted from Malek et al., 2015. 

 

Glucocorticoids are potent anti-inflammatories, acting by silencing expression of 

chemokines and other factors required for infiltration of tissues by circulating 

leukocytes (Cronstein et al., 1992; Jahnsen et al., 1999), and by downregulating 

inflammatory and upregulating anti-inflammatory cytokines (Franchimont, 2004). 

This suppression of inflammation, provoked by inflammation, is in turn negatively 

regulated by FKBP5. It is therefore likely that sustained activation of the HPA axis 

leads to increased cortisol production in sCJD patients, which in turn results in 

demethylation of the FKBP5 promoter, upregulation of FKBP5 and a suppression of 

glucocorticoid receptor activity.  

 

Investigating this pathway in the context of sCJD is complicated by the breadth of 

inputs to the HPA axis and the levels at which it, and notably FKBP5 (Zannas et al., 

2016), is regulated. However, that the sizable change in methylation at FKBP5 does 

not associate with disease severity implies that dysregulation occurs in tandem with 
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pathogenesis. As such study of the axis’s effects on pathogenesis would best be 

done in mouse models, where the effects of corticosterone or adrenaline-enriched 

diets or Fkbp5 ablation on prion propagation and toxicity could reveal whether HPA 

axis activation is a protective response to, a downstream effect of or a contributing 

factor to prion pathology. Further investigation of HPA activity in patients, for 

example profiling of circulating ACTH or adrenaline levels, may clarify which 

elements of the pathway are being affected: do sCJD patients have decreased or 

increased levels of adrenaline? Systematic sampling of sCJD and control blood 

would also improve resolution, as while it is likely that blood from controls and 

patients was taken during “visiting hours” (10am-4pm), HPA axis activity and 

subsequent release of hormones fluctuate. Moreover, the circadian pattern of HPA 

axis activity is sensitive to disruption, with stress-induced HPA axis activation 

prompting dramatically greater elevations (602%) of circulating glucocorticoid levels 

during secretory phases of the ultradian cycle compared to nonsecretory phases in 

rats (Windle et al., 1998). The PPIase function of FKBP5 further complicates the 

picture. Does upregulation of this gene as a response to neuroinflammation 

increase the rate of PrP misfolding? Intriguingly, dysregulation of the HPA axis has 

also been consistently observed in Alzheimer’s Disease, suggesting that further 

research in the context of both diseases may provide new insight into pathogenesis 

and identify therapeutic targets, biomarkers or risk factors (De Leon et al., 1988; 

Breitner et al., 1994; Green et al., 2006). 

7.11 Machine learning classification of sCJD status has utility and sets 

precedence for future work 
Being able to train a classification model with an accuracy of 87.04% reinforces the 

validity of results from the 450K array analysis. However, the recursive feature 

elimination (RFE) identified probes overlap imperfectly with the Bonferroni-adjusted 

DMPs. This raises the question: as more useful predictive variables in sCJD/control 

classification, is DNA methylation at these probes rather than the DMPs a better 

molecular signature of sCJD status? Use of RFE to select targets for replication 

rather than manually selecting them as I did in the replication stage of the project 

may be a less biased approach and potentially result in the identification of 

biologically relevant candidates despite no prior association with 

neurodegeneration. It is also striking that the replicated DMPs in the promoter of 

AIM2 (cg10636246, cg17515347), the body of UHRF1 (cg17714703) and METTL9 

(cg02481950), and the three sites identified between the Houseman and EpiDISH 

algorithm in the promoter of FKBP5 (cg03546163, and cg00052684 and 
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cg25114611 respectively) were all included in the list of 33 RFE-identified probes, 

as was promising candidate MTRNR2L8 (cg05740793). It would be interesting to 

test RFE’s ability to identify replicable candidate probes in future work. 

The utility of this model in sCJD diagnosis is debatable. In clinical practice, it is not 

difficult to place an individual into the categories of “healthy” or “sCJD”. A better 

model would be one capable of classifying sCJD/non-prion dementia. That said, this 

model’s performance is a solid proof of concept and sets precedent for future work 

with the 850K EPIC array, perhaps considering classification discrimination between 

sCJD patient subgroups, sCJD and AD patients, or between sporadic, iatrogenic, 

inherited and variant prion diseases. An interesting phenomenon is the prevalence 

of PrPSc immunoreactivity in UK appendixes removed during routine 

appendectomies after exposure to the BSE epidemic (16 positive of 32441 studied), 

which can be extrapolated to estimate that 1 in 10,000 UK residents carries PrPSc in 

their gut (Noel Gill et al., 2013). Yet intriguingly, appendixes removed before 

exposure to the BSE epidemic (1970-1979) show immunoreactivity at roughly the 

same levels, i.e. 1 in 7000 (Advisory Committee on Dangerous Pathogens TSE 

Subgroup, 2016). Because of the rarity of these specimens and the rarity of vCJD 

samples, machine learning based on methylation of appendix-derived DNA between 

non-immunoreactive individuals, immunoreactive individuals and individuals who 

developed vCJD could potentially shed light on differences by which subclinical 

carriers of prions resist infection from the periphery compared to vCJD patients. 

Indeed, while sporadic CJD is near impossible to anticipate, identification of 

susceptibility factors using machine learning in combination with other risk factors 

such as exposure to prion epidemics, contaminated medical products, or inheritance 

of a disease-causing mutation could greatly aid in diagnosis, prognosis, and 

ultimately improved quality of life. 
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7.12 Conclusions 
Over the course of this work I identified differential methylation at several genes in 

blood-derived DNA from sCJD patients. These differences are replicable and 

specific to the sporadic form of human prion disease. Three genes in particular 

(HOXA5, FKBP5, AIM2) have neurotrophic properties and/or play roles in mediating 

inflammation and the immune response, functions known to mediate 

neurodegeneration. They thus serve as biomarkers of sporadic CJD. 

Hypomethylation at cg10636246 in AIM2 correlates with MRC Scale score and can 

be considered a biomarker of disease severity. A preliminary attempt to use 450K 

array data for sCJD/control classification shows diagnostic potential, and further 

profiling of other patients from prion subgroups or other dementias may result in 

clinically useful models. While these experiments suggest that DNA methylation in 

sCJD may have translational potential, the most actionable outputs from this work 

are the hypotheses that emerge from the results discussed above. At a molecular 

level, the roles of AIM2 and FKBP5 in sporadic CJD and in the latter case prion 

pathogenesis specifically merit further explanation. At a physiological level, the 

melting of central pathology into the periphery shows promise not just for the 

discovery of biomarkers (be they cellular or molecular) but also suggests that 

dysregulation of the HPA axis, long suspected to predispose towards Alzheimer’s 

Disease, may be a component or consequence of prion disease pathogenesis. 

Prion disease bioassays, both in vitro and in vivo, are sufficiently established to 

allow measurement of the effects of manipulation of the HPA axis in terms of prion 

infectivity and toxicity. While this has been predominantly a study of blood, it is 

exciting to think that some of the changes observed may not simply be useful as 

biomarkers but may also point towards therapeutic targets. 
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