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HIGHLIGHTS

• Two‑dimensional transition metal carbides/nitrides (MXenes) as co‑catalysts were summarized and classified according to the different 
synthesis methods used: mechanical mixing, self‑assembly, in situ decoration, and oxidation.

• The working mechanism for MXenes application in photocatalysis was discussed. The improved photocatalytic performance was 
attributed to enhancement of charge separation and suppression of charge recombination.

ABSTRACT Since their seminal discovery in 2011, two‑dimensional 
(2D) transition metal carbides/nitrides known as MXenes, that consti‑
tute a large family of 2D materials, have been targeted toward various 
applications due to their outstanding electronic properties. MXenes 
functioning as co‑catalyst in combination with certain photocatalysts 
have been applied in photocatalytic systems to enhance photogenerated 
charge separation, suppress rapid charge recombination, and convert 
solar energy into chemical energy or use it in the degradation of organic 
compounds. The photocatalytic performance greatly depends on the 
composition and morphology of the photocatalyst, which, in turn, are 
determined by the method of preparation used. Here, we review the 
four different synthesis methods (mechanical mixing, self‑assembly, 
in situ decoration, and oxidation) reported for MXenes in view of their 
application as co‑catalyst in photocatalysis. In addition, the working mechanism for MXenes application in photocatalysis is discussed 
and an outlook for future research is also provided.
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1 Introduction

Energy shortage and environmental pollution have become 
the two major issues faced by humanity due to limited fos‑
sil fuel resources and increasing consumption. Developing 
sustainable and clean energy is the key to addressing these 
two problems [1–15]. In being clean and inexhaustible, solar 
energy shows great potential to be one of the most promis‑
ing future energy sources. Solar energy can be exploited in 
photovoltaic technologies [16],  CO2 photoreduction [17, 18], 
 N2 photo‑fixation [19], degradation of organic compounds 
[20–26], and photocatalytic water splitting [27]. In renew‑
able hydrogen fuel‑based photocatalytic water‑splitting sys‑
tems [28–30], photocatalysts play a critical role [31, 32]. 
Photo‑catalyzed solar energy conversion can be divided into 
three steps: (1) light absorption, (2) charge separation and 
transfer, and (3) surface reaction. Any improvement on each 
of these steps will contribute to enhancing the total conver‑
sion efficiency. Conventional photocatalysts such as  TiO2, 
g‑C3N4, and CdS demonstrate low photocatalytic efficiency 
due to rapid charge recombination in these materials. Using 
noble metals such as Pt, Ru, and Pd as co‑catalysts will 
increase cost, although such materials can enhance charge 
separation ability and suppress recombination of charges. A 
co‑catalyst that is both efficient and cheap is thus urgently 
needed to promote the development of photocatalysis.

MXenes, comprising transition metal carbides, nitrides, 
and carbonitrides, are a new family of two‑dimensional (2D) 
materials that have attracted much attention in recent years 
[2]. The general formula of MXene is  Mn+1Xn (n = 1, 2, 3), 
where M represents a transition metal, such as Sc, Ti, Zr, Hf, 

V, Nb, Ta, and Mo, while X represents C and/or N. Owing to 
their unique structure and superior photoelectronic proper‑
ties, layered structure MXenes show various potential appli‑
cations in different areas, such as energy storage [3, 33–38], 
electromagnetic interference shielding [39, 40], gas sensors 
[41], wireless communication [42], water treatment [43, 44], 
solar cells [45–47], and catalysis [41, 48–51]. 2D MXenes 
are being increasingly studied in the past few years, as evi‑
denced by the rapidly increasing number of scientific articles 
published per year (Fig. 1a). MXenes are usually synthesized 
by selectively etching the A layer from MAX phases, which 
constitute a family of tertiary ductile ceramics, where the A 
layer is made of an element such as Al, Ga [52], or Si [53]. 
After selective etching of the A layer, 2D MX layers with 
surface functional groups (–O, –OH, –F, or a mixture of 
several groups denoted as  Tx) are left. The most widely used 
methods for selective etching are wet chemical HF etching 
and in situ HF etching (using a mixture of acids and fluoride 
salts), although other routes using tetramethylammonium 
hydroxide (TMAOH) [54, 55], electrochemical [56, 57], or 
etching with NaOH [58], and  ZnCl2 [49]) have also been 
explored. Generally, multilayered MXenes are produced by 
HF etching, whereas single or few‑layered MXene flakes are 
obtained by in situ HF etching or through delamination of a 
multilayered MXene by intercalation of large organic mol‑
ecules (Fig. 1b). The etching methods of  Ti3C2Tx MXene, 
which is the first discovered and the most studied MXene, 
have been reviewed elsewhere [59, 60].

In view of the rapid development in the application of 
2D MXenes, several reviews on their synthesis [59–61], 
and application in energy storage [33, 48, 62] and catalysis 
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[51] have been reported. MXenes are promising for appli‑
cation in photocatalysis [63] because of their large surface 
area, good conductivity, presence of a sufficient number of 
active sites, and containing suitable elements for effective 
photocatalysis, but they cannot be directly used as photo‑
catalysts since MXenes are generally not semiconductors 
[51, 62]. Although there are some MXene semiconductors 
that have been predicted theoretically [64–68], these have 
not yet been experimentally synthesized. In this review, 
we give a detailed discussion on MXene as a co‑catalyst 
in photocatalysis and describe the different methods used 
for the synthesis of MXene‑derived photocatalysts, along 
with problems encountered in this system and a prospective 
outlook on future research in this field.

2  Synthetic Methods for MXenes 
as Co‑catalysts in Photocatalysis

In view of their good conductivity and large surface area, 
MXenes have been applied in photocatalysis both to replace 
noble metal co‑catalysts and to enhance the charge separa‑
tion ability of the photocatalyst (Fig. 2). The most common 

methods used for the preparation of photocatalyst compos‑
ites include mechanical mixing, self‑assembly, in situ deco‑
ration and oxidation, or a combination of the three methods.

2.1  Mechanical Mixing and Self‑assembly

Mechanical mixing is the easiest method to form photocata‑
lyst composites. Stirring the two components in the liquid 
phase or grinding of powders can be used for sample prepa‑
ration. Interestingly, due to electrostatic attraction, pho‑
tocatalysts with positive charge are easily combined with 
MXenes whose surfaces are enriched with negative charges, 
leading to self‑assembled photocatalyst composites. In addi‑
tion, the self‑assembling property could be further improved 
by using other induced techniques simultaneously, where the 
photocatalysts and co‑catalysts are prepared in advance [44].

An et  al. [72] demonstrated that synergetic effects 
of  Ti3C2 MXene and Pt when used as dual co‑catalysts 
enhanced the photoactivity of g‑C3N4 for hydrogen evolu‑
tion (Fig. 3a), where HF‑etched exfoliated  Ti3C2 and g‑C3N4 
were mixed in liquid by stirring followed by photodeposi‑
tion of Pt on the composites. The photoactivity of the dual 
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co‑catalysts‑modified photocatalysts (g‑C3N4/Ti3C2/Pt) was 
much better than that of Pt‑ or  Ti3C2‑only systems, reaching 
5.1 mmol h−1 g−1 in hydrogen production (Fig. 4a). This 
enhanced performance was due to the presence of  Ti3C2 
MXene that facilitated interfacial charge separation and 
carrier transport from the conduction band (CB) of g‑C3N4 
to Pt. Our group prepared g‑C3N4/Ti3C2Tx composites by 
grinding g‑C3N4 and  Ti3C2Tx powders together followed by 
annealing in different gas atmospheres, to tune the surface 
termination groups (Fig. 4b) [74]. X‑ray photoelectron spec‑
troscopy data showed an increase in –O termination groups 
accompanied by a decrease in –F termination groups on the 
surface of  Ti3C2.  Ti3C2 with –O termination groups had bet‑
ter photoactivity, revealing that the presence of such groups 
in  Ti3C2 had a positive effect on hydrogen production by 
increasing the number of active sites. Moreover, this finding 
was consistent with density functional theory (DFT) simula‑
tion results. The |ΔGH| of  Ti3C2 with –O terminations was 
found to be as low as 0.01 eV, which is lower than that of 

Pt (111). In a similar study, Ye et al. [69] treated HF‑etched 
 Ti3C2 with KOH to convert –F groups into –OH groups, and 
then combined the KOH‑treated  Ti3C2 with  TiO2 (P25) pow‑
der by stirring in water (Fig. 3c). DFT calculations demon‑
strated that –OH groups played the role of active sites for the 
adsorption and activation of  CO2 reduction [69]. Experimen‑
tally, the photoactivities for  CO2 reduction were increased 3 
times and 277 times after KOH treatment, for CO and  CH4, 
respectively (Fig. 4d). Interestingly, increasing the number 
of –OH groups not only improved the photo‑conversion effi‑
ciency but also changed the nature of the products. The –OH 
groups resulting from KOH treatment provided more active 
sites for  CO2 adsorption and enabled greater electron trans‑
fer to  CO2 and facilitated its reduction to  CH4. Though the 
surface termination groups can be changed through anneal‑
ing and KOH treatments, –F groups could not be completely 
exchanged. More studies to precisely tailor the termination 
groups need to be carried out in the future.
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Ye et al. Reprinted with permission from Ref. [69]. Copyright 2018 John Wiley & Sons. d Liu et al. Reprinted with permission from Ref. [44]. 
Copyright 2018 Elsevier
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Xie et al. [73] used an electrostatic self‑assembly process 
to combine positively charged CdS nanosheets and  Ti3C2 
nanosheets (possessing negative charge) (Fig. 3b) for  CO2 
reduction (Fig. 4c). Cai et al. [75] synthesized  Ag3PO4/Ti3C2 
by electrostatically driven self‑assembly method, which had 
the advantage of being a mild method that prevented  Ti3C2 

from oxidation. The composites showed better performance 
than reduced graphene oxide (rGO), and this preparation 
procedure provided a new direction to the preparation of 
semiconductor‑MXene composites. Liu et al. [44] fabri‑
cated a 2D layered and stacked g‑C3N4/Ti3C2 composite by 
evaporation‑induced self‑assembly and used it to degrade 
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organic pollutants (ciprofloxacin) (Fig. 3d). Both photogen‑
erated holes and superoxide radicals (·O2

−) resulting from 
photogenerated electrons played important roles in cipro‑
floxacin decomposition (Fig. 4f); in this process, self‑assem‑
bly was an efficient method that allowed intimate mixing 
of the components in the composite. The sample was also 
more homogeneous than mechanically mixed ones because 
of the electrostatic attraction between the charged entities. 
However, opposite charges on each surface were required 
for self‑assembly, which limited wider application of this 
process. Therefore, other techniques to induce self‑assembly 
such as evaporation‑induced self‑assembly were developed 
to widen the range of application of products [44].

The above‑mentioned MXene‑based composites prepared 
by mechanical mixing and self‑assembly methods for pho‑
tocatalysis application are summarized in Table 1. Results 
from all these works prove that 2D MXene is an efficient 
additive material to enhance charge separation and charge 
transfer during photocatalysis. In these two methods, the 
properties of MXenes are retained by avoiding high tem‑
perature and use of other solvents or surfactant. No change 
in oxidation or surface termination groups occurs in these 
synthesis methods. Therefore, these two are the easiest and 
allow synthesis under the mildest conditions.

2.2  In Situ Decoration of Semiconductors 
onto the Surface of MXenes

In contrast to composites prepared by mechanical mixing of 
materials, in situ decoration methods consist in synthesiz‑
ing a different material directly onto the MXene surface. 
As a result, in situ synthetized materials and MXenes are 
chemically bonded, which could be an important advantage 
in some designs. However, the range of viable synthetic con‑
ditions for in situ decoration is limited, because MXenes are 
easily oxidized in solution, especially at high temperatures 
[107]. It is therefore necessary to use mild conditions to 
protect MXenes from oxidation, especially when mono‑ 
and few‑layered MXenes are used. So far, g‑C3N4,  TiO2, 
CdS, and bismuth compounds have been bonded to various 
MXenes using this strategy.

g‑C3N4 is one 2D semiconductor material that is com‑
bined with MXenes used as a co‑catalyst in the photocataly‑
sis process (Fig. 5). MXene can be added during the calcina‑
tion of a precursor, such as melamine and thiourea, but the 

high calcination temperature (around 550 °C) may cause the 
oxidation of MXene into  TiO2. The high photoactivity of 
g‑C3N4/MXene is attributed to the efficient charge separa‑
tion; moreover, the heterojunction formed by  TiO2/g‑C3N4 
also plays an important role in charge separation [108]. Shao 
et al. [81] synthesized  Ti2C/g‑C3N4 by melamine calcina‑
tion and used it in hydrogen production (Fig. 5a, d). Though 
the ratio of  Ti2C in the composite was as low as 0.4 wt%, 
a peak due to  TiO2 resulting from the oxidation of  Ti2C 
could be seen in the XRD pattern. Liu et al. [19] synthesized 
 TiO2@C/g‑C3N4 heterojunction by melamine calcination 
(Fig. 5b), where  Ti3C2 was oxidized to  TiO2@C during the 
calcination process. This composite was highly effective in 
the reaction of nitrogen reduction to ammonia, with the best 
performance reaching as high as 250.6 μmol h−1 g−1, which 
was better than that of  TiO2@C and g‑C3N4 (Fig. 5e). Xu 
et al. [82] synthesized  Ti3+‑rich  Ti3C2/g‑C3N4 by calcination 
of thiourea and employed it as an electrode for  CO2 reduc‑
tion in a photoelectrocatalytic (PEC) system (Fig. 5c, f), 
achieving a total  CO2 reduction rate of 25.1 mmol h−1 g−1. 
The  Ti3+ species suppressed charge recombination at the 
 Ti3C2/g‑C3N4 heterojunctions, leading to a corresponding 
increase in  CO2 conversion efficiency.

Apart from the above‑mentioned synthesis methods, 
composite photocatalysts can also be synthesized by com‑
bining  TiO2, a metal sulfide, or a bismuthide with MXene 
under hydrothermal conditions (Fig. 6). Gao et al. [83] syn‑
thesized  TiO2/Ti3C2 nanocomposites by a hydrothermal 
method using  TiSO4 as a precursor for methyl orange (MO) 
degradation (Fig. 6a), where small  TiO2 particles could be 
observed on the surface of multilayered  Ti3C2. Wang et al. 
[84] employed  TiCl4 as the precursor in the hydrothermal 
synthesis of rutile  TiO2/Ti3C2Tx for hydrogen production 
by water splitting (Fig. 6d). The photocatalytic activity 
of  TiO2 when combined with other MXenes  (Ti2CTx and 
 Nb2CTx flakes) as co‑catalysts was also explored; results 
proved that in general, MXenes could be used as effective 
co‑catalysts for solar hydrogen production. Ran et al. [70] 
combined CdS and  Ti3C2 particles by a one‑step hydro‑
thermal reaction (Fig. 6b). A hydrogen production rate of 
14,342 μmol h−1 g−1 was achieved when using  Ti3C2 as the 
co‑catalyst; this performance is 136.6 times higher than that 
of the pure CdS photocatalyst. The effectivity and versatility 
of  Ti3C2 MXene as a co‑catalyst for photocatalytic hydrogen 
production was demonstrated by other metal sulfides (ZnS) 
[91] photocatalysts as well. Xie et al. [73] showed that  Ti3C2 



Nano‑Micro Lett.           (2019) 11:79  Page 7 of 22    79 

1 3

Ta
bl

e 
1 

 M
X

en
e‑

ba
se

d 
co

m
po

si
te

s p
re

pa
re

d 
by

 d
iff

er
en

t s
yn

th
et

ic
 m

et
ho

ds
 fo

r p
ho

to
ca

ta
ly

si
s a

pp
lic

at
io

ns

Sa
m

pl
e

M
X

en
e 

(s
yn

th
et

ic
 

m
et

ho
d)

Sa
m

pl
e 

sy
nt

he
si

s
Re

ac
ta

nt
Sa

cr
ifi

ci
al

 a
ge

nt
R

at
e

Pr
ec

ur
so

r
Re

fs
.

g‑
C

3N
4/3

%
Ti

3C
2/2

%
Pt

Ti
3C

2 fl
ak

es
 (H

F 
48

%
, 2

0 
h,

 6
0 

°C
 

an
d 

 H
2O

 d
el

am
in

a‑
tio

n,
 1

2 
h,

 u
ltr

a‑
so

ni
ca

tio
n)

(1
)  T

i 3C
2 s

tir
rin

g 
di

sp
er

si
on

s
(2

) P
t U

V
 d

ep
os

iti
on

H
2O

10
 v

ol
%

 tr
ie

th
an

ol
a‑

m
in

e 
(T

EO
A

)
51

00
 μ

m
ol

/h
/g

ca
t.

–
A

n 
et

 a
l. 

[7
2]

g‑
C

3N
4/T

i 3C
2T

x (
1:

 
0.

3)
M

ul
til

ay
er

  T
i 3C

2 (
H

F 
49

%
, 2

4 
h)

G
rin

di
ng

 in
 a

 m
or

ta
r

H
2O

10
 v

ol
%

 T
EO

A
88

 μ
m

ol
/h

/g
ca

t.
–

Su
n 

et
 a

l. 
[7

4]

C
dS

/0
.5

%
Ti

3C
2T

x
Ti

3C
2 fl

ak
es

 (L
iF

 
1 

g/
H

C
l 9

 M
, 2

4 
h,

 
35

 °C
)

(1
) U

ltr
as

on
ic

at
io

n
(2

) S
tir

rin
g 

in
 w

at
er

4‑
N

A
40

 m
g 

am
m

on
iu

m
 

fo
rm

at
e 

in
 3

0 
m

L 
so

lu
tio

n

18
0 

m
g/

L/
h

–
X

ie
 e

t a
l. 

[7
3]

P2
5/

5%
Ti

3C
2‑

O
H

M
ul

til
ay

er
  T

i 3C
2 

(H
F 

49
%

, 2
4 

h 
an

d 
K

O
H

 2
 M

, 4
 h

)

St
irr

in
g 

in
 w

at
er

CO
2

–
28

.3
5 

μm
ol

/h
/g

ca
t.

–
Ye

 e
t a

l. 
[6

9]

a‑
Fe

2O
3/T

i 3C
2 (

1:
 2

)
M

ul
til

ay
er

  T
i 3C

2
(1

) S
tir

rin
g 

in
 

et
ha

no
l

(2
) U

ltr
as

on
ic

at
io

n

R
ho

da
m

in
e 

B
 (R

hB
)

–
5 

m
g/

L/
h

–
Zh

an
g 

et
 a

l. 
[7

6]

g‑
C

3N
4/T

i 3C
2 (

10
0:

 3
)

Ti
3C

2 fl
ak

es
 (H

F 
40

%
, 2

4 
h 

an
d 

 H
2O

 
in

te
rc

al
at

io
n,

 5
 h

, 
ul

tra
so

ni
ca

tio
n)

(1
) U

ltr
as

on
ic

at
io

n
(2

) S
tir

rin
g 

in
 w

at
er

 
at

 6
0 

°C

C
ip

ro
flo

xa
ci

n
–

18
 m

g/
L/

h
–

Li
u 

et
 a

l. 
[4

4]

Ti
O

2/5
%

Ti
3C

2
Ti

3C
2 fl

ak
es

 (L
iF

 
1 

g/
H

C
l 6

 M
, 2

4 
h,

 
35

 °C
)

So
ni

ca
tio

n
H

2O
25

%
 M

et
ha

no
l

26
50

 μ
m

ol
/h

/g
ca

t.
–

Su
 e

t a
l. 

[7
7]

H
2O

–
A

g 3
PO

4/2
%

Ti
3C

2
Ti

3C
2 fl

ak
es

 (N
aF

 
3.

35
 g

/H
C

l 
36

–3
8 

w
t%

, 1
2 

h,
 

60
 °C

)

(1
) S

tir
rin

g 
in

 w
at

er
 

w
ith

  A
gN

O
3

(2
) A

dd
in

g 
 N

a 2
H

PO
4

Te
tra

cy
cl

in
e 

hy
dr

o‑
ch

lo
rid

e 
(T

C
‑H

) 
et

c.

–
19

2 
m

g/
L/

h
–

C
ai

 e
t a

l. 
[7

5]

3%
Ti

3C
2/g

‑C
3N

4
Ti

3C
2 fl

ak
es

 (L
iF

 
1.

5 
g/

H
C

l 6
 M

, 
24

 h
, 3

5 
°C

)

(1
) S

on
ic

at
io

n 
in

 
H

C
l

(2
) S

tir
rin

g

H
2O

10
 v

ol
%

 T
EO

A
73

.3
 μ

m
ol

/h
/g

ca
t

–
Su

 e
t a

l. 
[7

8]

Ti
O

2/0
.5

%
Ti

3C
2/1

%
C

oS
x

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

49
%

, 4
 h

)
(1

) S
tir

rin
g 

in
 

2‑
m

et
hy

lim
id

az
ol

e
(2

) H
yd

ro
th

er
m

al
 

14
0 

°C
 fo

r 1
2 

h 
w

ith
 th

io
ac

et
am

id
e

H
2O

20
 v

ol
%

 m
et

ha
no

l
95

0 
μm

ol
/h

/g
ca

t.
C

o(
N

O
3)

2, 
2‑

m
et

h‑
yl

im
id

az
ol

e 
an

d 
th

io
ac

et
am

id
e

Zh
ao

 e
t a

l. 
[7

9]



 Nano‑Micro Lett.           (2019) 11:79    79  Page 8 of 22

https://doi.org/10.1007/s40820‑019‑0309‑6© The authors

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Sa
m

pl
e

M
X

en
e 

(s
yn

th
et

ic
 

m
et

ho
d)

Sa
m

pl
e 

sy
nt

he
si

s
Re

ac
ta

nt
Sa

cr
ifi

ci
al

 a
ge

nt
R

at
e

Pr
ec

ur
so

r
Re

fs
.

C
dS

/M
oS

2/2
%

Ti
3C

2T
x

Ti
3C

2 fl
ak

es
 (H

F 
49

%
, 7

2 
h,

 u
ltr

a‑
so

ni
ca

tio
n 

in
  H

2O
, 

2 
h)

(1
)  M

oS
2 s

yn
th

es
is

(2
) S

tir
rin

g 
w

ith
 

 Ti
3C

2
(3

) A
dd

  C
H

4N
2S

 a
nd

 
C

d(
C

H
3C

O
O

) 2
(4

) H
yd

ro
th

er
m

al
 

16
0 

°C
 fo

r 2
4 

h

H
2O

0.
25

 M
  N

a 2
S 

an
d 

0.
35

 M
  N

a 2
SO

3

96
79

 μ
m

ol
/h

/g
ca

t.
C

d(
C

H
3C

O
O

) 2
, 

 C
H

4N
2S

,  M
oS

2

C
he

n 
et

 a
l. 

[8
0]

0.
4%

Ti
2C

/g
‑C

3N
4

Ti
2C

 fl
ak

es
  (N

H
4F

 
16

 g
/H

C
l 9

 M
, 

24
 h

)

(1
) S

tir
rin

g 
et

ha
no

l
(2

) 5
50

 °C
, 4

 h
 in

 
m

uffl
e

H
2O

10
 v

ol
%

 T
EO

A
95

0 
μm

ol
/h

/g
ca

t.
M

el
am

in
e

Sh
ao

 e
t a

l. 
[8

1]

10
%

Ti
O

2@
C

/g
‑C

3N
4

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

49
%

, 4
 h

)
(1

) S
tir

rin
g 

in
 w

at
er

(2
) 5

50
 °C

, 2
 h

 in
 

m
uffl

e

N
2

20
 v

ol
%

 m
et

ha
no

l
25

0 
μm

ol
/h

/g
ca

t.
M

el
am

in
e

Li
u 

et
 a

l. 
[1

9]

Pd
‑T

i 3C
2/g

‑C
3N

4(
1:

 
10

)
M

ul
til

ay
er

  T
i 3C

2 (
H

F 
40

%
, 2

4 
h)

(1
) G

rin
di

ng
(2

) 5
00

 °C
, 2

 h
 in

 
m

uffl
e

(3
) P

d 
el

ec
tro

de
po

si
‑

tio
n

CO
2

0.
1 

M
  K

H
CO

3
25

,1
00

 μ
m

ol
/h

/g
ca

t.
Th

io
ur

ea
X

u 
et

 a
l. 

[8
2]

0.
00

1 
m

ol
Ti

O
2/T

i 3C
2

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

49
%

, 2
4 

h,
 6

0 
°C

)
(1

) S
tir

rin
g

(2
) H

yd
ro

th
er

m
al

 
18

0 
°C

, 1
8 

h

M
et

hy
l o

ra
ng

e 
(M

O
)

–
40

 m
g/

L/
h

Ti
SO

4
G

ao
 e

t a
l. 

[8
3]

Ti
O

2/5
%

Ti
3C

2
Ti

3C
2 fl

ak
es

 (H
F 

48
%

, 1
5 

h 
an

d 
D

M
SO

 d
el

am
in

a‑
tio

n,
 1

5 
h)

(1
) S

tir
rin

g 
in

 ic
e‑

w
at

er
 b

at
h

(2
) H

ea
te

d 
95

 °C
, 4

 h

H
2O

25
%

 m
et

ha
no

l
43

 μ
m

ol
/h

/g
ca

t.
Ti

C
l 4

W
an

g 
et

 a
l. 

[8
4]

Ti
O

2/5
%

Ti
2C

Ti
2C

 fl
ak

es
 (H

F 
10

%
, 

10
 h

 a
nd

 D
M

SO
 

de
la

m
in

at
io

n)
Ti

O
2/5

%
N

b 2
C

N
b 2

C
 fl

ak
es

 (H
F 

48
%

, 9
0 

h 
an

d 
20

%
 

is
op

ro
py

l a
lc

oh
ol

 
de

la
m

in
at

io
n)

C
dS

/2
.5

%
Ti

3C
2

Ti
3C

2 n
an

op
ar

tic
le

s 
(H

F 
49

%
, 2

0 
h,

 
60

 °C
 a

nd
  H

2O
 

de
la

m
in

at
io

n,
 u

ltr
a‑

so
ni

ca
tio

n,
 5

 h
)

(1
) S

tir
rin

g 
in

 w
at

er
(2

) H
yd

ro
th

er
m

al
 

18
0 

°C
, 1

2 
h

H
2O

La
ct

ic
 a

ci
d 

(8
8 

vo
l%

)
14

,3
42

 μ
m

ol
/h

/g
C

d(
A

c)
2

R
an

 e
t a

l. 
[7

0]

Th
io

ur
ea



Nano‑Micro Lett.           (2019) 11:79  Page 9 of 22    79 

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Sa
m

pl
e

M
X

en
e 

(s
yn

th
et

ic
 

m
et

ho
d)

Sa
m

pl
e 

sy
nt

he
si

s
Re

ac
ta

nt
Sa

cr
ifi

ci
al

 a
ge

nt
R

at
e

Pr
ec

ur
so

r
Re

fs
.

Ti
O

2/C
/B

iV
O

4 (
1:

 
10

79
)

Ti
3C

2 fl
ak

es
 (L

iF
 

1.
5 

g/
H

C
l 6

 M
, 

48
 h

, 5
0 

°C
)

(1
) S

tir
rin

g 
in

 w
at

er
(2

) H
yd

ro
th

er
m

al
 

10
0 

°C
, 6

 h

R
hB

–
3.

1 
m

g/
L/

h
B

i(N
O

3)
3

Sh
i e

t a
l. 

[8
5]

N
H

4V
O

3

Ti
O

2/T
i 3C

2 (
1:

 1
)

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

40
%

, 2
6 

h,
 6

0 
°C

)
(1

) S
tir

rin
g 

in
 1

0 
M

 
N

aO
H

(2
) H

yd
ro

th
er

m
al

 
18

0 
°C

, 1
0 

h

M
et

hy
le

ne
 b

lu
e 

(M
B

)
–

8.
5 

m
g/

L/
h

P2
5

Lu
o 

et
 a

l. 
[8

6]

B
iO

B
r/T

i 3C
2 (

25
0:

 1
)

Ti
3C

2 fl
ak

es
 (L

iF
 

3 
g/

H
C

l 9
 M

, 2
4 

h,
 

35
 °C

)

(1
) S

tir
rin

g
(2

) R
efl

ux
ed

 8
0 

°C
, 

2 
h

R
hB

–
24

 m
g/

L/
h

B
i(N

O
3)

3 a
nd

 K
B

r
Li

u 
et

 a
l. 

[8
7]

2%
Ti

3C
2/B

i 2W
O

6
Ti

3C
2 fl

ak
es

 (H
F 

40
%

, 7
2 

h 
an

d 
D

M
SO

 d
el

am
in

a‑
tio

n,
 u

ltr
as

on
ic

a‑
tio

n,
 1

 h
)

(1
) S

tir
rin

g
(2

) H
yd

ro
th

er
m

al
 

12
0 

°C
, 2

4 
h

CO
2

–
2.

22
 μ

m
ol

/h
/g

ca
t.

B
i(N

O
3)

3
C

ao
 e

t a
l. 

[8
8]

N
a 2

W
O

4

B
i 0.

9G
d 0

.1
Fe

0.
8S

n 0
.2

O
3/

Ti
3C

2

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

39
%

, 3
6 

h)
(1

) S
tir

rin
g 

in
 

0.
01

 M
 a

ce
tic

 a
ci

d 
an

d 
et

hy
le

ne
 g

ly
co

l
(2

) S
on

ic
at

ed
, 2

 h
, 

60
 °C

(3
) s

tir
rin

g 
1 

h,
 

80
 °C

C
on

go
 re

d
–

–
B

i 1−
xG

d x
Fe

1−
yS

n y
Ta

riq
 e

t a
l. 

[8
9]

In
2S

3/T
iO

2@
  T

i 3C
2T

x 
(1

: 0
.1

23
)

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

50
%

, 2
0 

h)
(1

) S
tir

rin
g

(2
) H

yd
ro

th
er

m
al

 
18

0 
°C

, 2
4 

h

M
O

–
18

 m
g/

L/
h

In
(N

O
3)

3
W

an
g 

et
 a

l. 
[9

0]

C
H

3C
SN

H
2

Zn
S/

0.
75

 w
t%

Ti
3C

2
Ti

3C
2 fl

ak
es

 (H
F,

 
24

 h
, 2

5 
°C

)
(1

) S
tir

rin
g 

in
 e

th
a‑

no
l–

gl
yc

er
ol

(2
) H

yd
ro

th
er

m
al

 
18

0 
°C

, 1
0 

h

H
2O

20
 v

ol
%

 la
ct

ic
 a

ci
d

50
2.

6 
μm

ol
/h

/g
ca

t.
Zn

C
l 2

Ti
e 

et
 a

l. 
[9

1]

Ti
2C

/3
%

Ti
O

2/1
%

A
g

M
ul

til
ay

er
  T

i 2C
 (H

F 
48

%
)

(1
) S

tir
rin

g 
fo

r v
ol

a‑
til

es
 e

va
po

ra
tio

n
(2

) A
nn

ea
lin

g 
in

  H
2 

at
 4

00
 °C

Sa
lic

yl
ic

 a
ci

d
–

32
.4

 μ
m

ol
/h

Ti
ta

ni
um

 is
op

ro
‑

py
la

te
W

oj
ci

ec
ho

w
sk

i e
t a

l. 
[9

2]



 Nano‑Micro Lett.           (2019) 11:79    79  Page 10 of 22

https://doi.org/10.1007/s40820‑019‑0309‑6© The authors

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Sa
m

pl
e

M
X

en
e 

(s
yn

th
et

ic
 

m
et

ho
d)

Sa
m

pl
e 

sy
nt

he
si

s
Re

ac
ta

nt
Sa

cr
ifi

ci
al

 a
ge

nt
R

at
e

Pr
ec

ur
so

r
Re

fs
.

Ti
O

2/T
i 3C

2 (
12

 h
)

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

49
%

, 1
2 

h,
 6

0 
°C

)
H

yd
ro

th
er

m
al

 
16

0 
°C

 fo
r d

iff
er

en
t 

tim
e,

  N
aB

F 4
 a

nd
 

H
C

l

M
O

–
24

 m
g/

L/
h

–
Pe

ng
 e

t a
l. 

[7
1]

Ti
O

2/T
i 3C

2 (
20

 h
)

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

49
%

, 1
2 

h,
 6

0 
°C

)
H

yd
ro

th
er

m
al

 
20

0 
°C

 fo
r d

iff
er

en
t 

tim
e,

  N
H

4F

M
B

–
6 

m
g/

L/
h

–
Pe

ng
 e

t a
l. 

[9
3]

H
C

‑T
iO

2
Ti

3C
2 fl

ak
es

 (t
et

ra
‑

m
et

hy
la

m
m

on
iu

m
 

hy
dr

ox
id

e 
25

%
, 

24
 h

)

H
yd

ro
th

er
m

al
 

16
0 

°C
, 9

 h
H

2O
10

 v
ol

%
 T

EO
A

33
.0

4 
μm

ol
/h

/g
ca

t.
–

Jia
 e

t a
l. 

[9
4]

4%
C

u 4
/T

iO
2@

Ti
3C

2T
x‑1

2 
h

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

49
%

, 1
2 

h,
 6

0 
°C

)
(1

) H
yd

ro
th

er
m

al
 

16
0 

°C
 fo

r d
iff

er
en

t 
tim

e,
  N

aB
F 4

 a
nd

 
H

C
l

(2
) P

ho
to

de
po

si
tin

g 
co

pp
er

 n
an

od
ot

s

H
2O

6.
7 

vo
l%

 m
et

ha
no

l
76

4 
μm

ol
/h

/g
ca

t.
–

Pe
ng

 e
t a

l. 
[9

5]

Ti
3C

2/T
iO

2/C
uO

 
(1

00
:1

)
M

ul
til

ay
er

  T
i 3C

2 (
H

F 
49

%
, 2

4 
h,

 6
0 

°C
)

(1
) D

is
so

lv
ed

 in
 

w
at

er
(2

) A
nn

ea
lin

g 
in

 
ar

go
n,

 5
00

 °C
, 

30
 m

in

M
O

–
15

 m
g/

L/
h

–
Lu

 e
t a

l. 
[9

6]

C
/T

iO
2‑

70
0 

°C
‑1

50
 

sc
cm

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

40
%

, 9
0 

h,
 5

5 
°C

)
H

ea
te

d 
in

  C
O

2 a
t 

di
ffe

re
nt

 te
m

pe
ra

‑
tu

re
 a

nd
 d

iff
er

en
t 

ra
te

, 1
 h

H
2O

10
 v

ol
%

 T
EO

A
48

0 
μm

ol
/h

/g
ca

t.
–

Y
ua

n 
et

 a
l. 

[9
7]

Ti
O

2/T
i 3C

2 
(T

T5
50

 °C
)

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

50
%

, 4
8 

h)
C

al
ci

na
tio

n 
at

 d
iff

er
‑

en
t t

em
pe

ra
tu

re
CO

2
–

4.
4 

μm
ol

/h
/g

ca
t.

–
Lo

w
 e

t a
l. 

[9
8]

N
b 2

O
5/C

/N
b 2

C
‑1

 h
M

ul
til

ay
er

  N
b 2

C
 (H

F 
50

%
, 9

0 
h)

A
nn

ea
lin

g 
in

  C
O

2, 
85

0 
°C

 fo
r d

iff
er

en
t 

tim
e

H
2O

25
%

 m
et

ha
no

l
7.

81
 μ

m
ol

/h
/g

ca
t.

–
Su

 e
t a

l. 
[9

9]

M
ic

ro
po

ro
us

‑M
X

en
e/

Ti
O

2−
x n

an
od

ot
s

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

50
%

, 9
0 

h)
30

%
  H

2O
2, 

10
 m

in
R

hB
.e

tc
.

–
–

–
C

he
ng

 e
t a

l. 
[1

00
]

C
/T

iO
2

M
ul

til
ay

er
  T

i 2C
 (H

F 
40

%
, 2

.5
 h

)
H

ig
h‑

en
er

gy
 b

al
l 

m
ill

in
g 

in
 a

ir,
 

1.
5 

h,
 2

00
 rp

m

M
B

–
2.

13
 m

g/
L/

h
–

Li
 e

t a
l. 

[1
01

]



Nano‑Micro Lett.           (2019) 11:79  Page 11 of 22    79 

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Sa
m

pl
e

M
X

en
e 

(s
yn

th
et

ic
 

m
et

ho
d)

Sa
m

pl
e 

sy
nt

he
si

s
Re

ac
ta

nt
Sa

cr
ifi

ci
al

 a
ge

nt
R

at
e

Pr
ec

ur
so

r
Re

fs
.

Ti
O

2/T
i 3C

2@
A

C
‑4

8 
h

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

49
%

, 2
4 

h)
H

ea
te

d 
in

  H
2O

 fo
r 

di
ffe

re
nt

 ti
m

e 
at

 
60

 °C

H
2O

29
 g

/L
 a

sc
or

bi
c 

ac
id

 
(A

A
)

33
.4

 μ
m

ol
/h

/g
ca

t.
–

Su
n 

et
 a

l. 
[1

02
]

Ti
3C

2/T
iO

2‑
50

0/
Pt

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

40
%

, 7
2 

h)
(1

) H
yd

ro
th

er
m

al
 

in
 1

 M
 N

aO
H

 a
nd

 
30

%
  H

2O
2, 

14
0 

°C
, 

12
 h

(2
) I

m
m

er
se

d 
in

 
0.

1 
M

 H
C

l, 
24

 h
(3

) A
nn

ea
lin

g 
in

 
m

uffl
e 

fo
r d

iff
er

en
t 

tim
e

H
2O

20
 v

ol
%

 m
et

ha
no

l
H

2 1
59

6.
35

 μ
m

ol
/h

/
g c

at
.

–
Li

 e
t a

l. 
[1

03
]

0.
01

 M
  A

gN
O

3
O

2 5
00

 μ
m

ol
/h

/g
ca

t.

–
H

2 5
26

 μ
m

ol
/h

/
g c

at
. a

nd
  O

2 
31

5 
μm

ol
/h

/g
ca

t.

LD
C

‑S
‑T

iO
2/C

M
ul

til
ay

er
  T

i 3C
2 (

H
F 

40
%

, 4
8 

h,
 4

5 
°C

)
(1

) B
al

l m
ix

in
g 

w
ith

 
su

lfu
r

(2
) H

yd
ro

th
er

m
al

 
15

5 
°C

,1
2 

h
(3

) A
nn

ea
lin

g 
in

  C
O

2 
at

 7
00

 °C
 fo

r 2
 h

(4
) A

nn
ea

lin
g 

in
 a

ir 
at

 4
50

 °C
, 2

 h

H
2O

10
%

 m
et

ha
no

l
33

3 
μm

ol
/h

/g
ca

t.
–

Y
ua

n 
et

 a
l. 

[1
04

]

Ti
O

2/T
i 3C

2
M

ul
til

ay
er

  T
i 3C

2 (
H

F 
30

%
, 1

0 
h,

 4
0 

°C
)

H
yd

ro
th

er
m

al
 

16
0 

°C
 fo

r 1
2 

h,
 

 N
aB

F 4
 a

nd
 H

C
l

C
ar

ba
m

az
ep

in
e

–
1.

48
 m

g/
L/

h
–

Sh
ah

za
d 

et
 a

l. 
[1

05
]

Ti
3C

2/T
iO

2/1
5%

M
oS

2
M

ul
til

ay
er

  T
i 3C

2 (
H

F 
40

%
, 7

2 
h)

(1
) H

yd
ro

th
er

m
al

 
16

0 
°C

 fo
r 1

2 
h 

w
ith

  N
aB

F 4
 a

nd
 

H
C

l
(2

) H
yd

ro
th

er
m

al
 

20
0 

°C
 fo

r 2
4 

h 
w

ith
  N

a 2
M

oO
4 a

nd
 

 C
N

2H
4S

H
2O

TE
O

A
64

25
 μ

m
ol

/h
/g

ca
t.

N
aB

F 4
, H

C
l, 

 N
a 2

M
oO

4 a
nd

 
 C

N
2H

4S

Li
 e

t a
l. 

[1
06

]



 Nano‑Micro Lett.           (2019) 11:79    79  Page 12 of 22

https://doi.org/10.1007/s40820‑019‑0309‑6© The authors

flakes enabled the local confinement of  Cd2+ released during 
photo‑corrosion and thus enhanced the stability of the metal 
sulfide. Besides CdS,  In2S3/Ti3C2Tx hybrids synthesized by 
hydrothermal method have been used for methyl orange 
degradation as reported by Wang et al. [90]. Among the 
hybrids based on other additives (carbon nanotubes (CNT), 
rGO,  MoS2, and  TiO2),  Ti3C2‑based composites showed the 
best photocatalytic activity, which is attributed to their high 
electrical conductivity. Shi et al. [85] synthesized  TiO2/C/
BiVO4 composites by hydrothermal method for the degra‑
dation of Rhodamine B, where  Ti3C2 was employed both as 
a support for the growth of  BiVO4 nanoparticles and as a 
precursor for the generation of 2D‑carbon upon oxidation. 
The electron transfer process was accelerated by the pres‑
ence of  Ti3C2‑derived 2D‑carbon layers, thus improving the 
photocatalytic performance for Rhodamine B degradation. 
Ultrathin 2D/2D heterojunction of MXene/Bi2WO6 prepared 
by the in situ growth of ultrathin  Bi2WO6 nanosheets on the 
surface of ultrathin  Ti3C2 nanosheets for photocatalytic  CO2 
reduction was reported by Cao et al. [88] (Fig. 6c). The  CH4 

and  CH3OH yield were 4.6 times higher than those obtained 
with pristine  Bi2WO6, which was ascribed to the enhanced 
 CO2 adsorption arising from the increased specific surface 
area and improved pore structure of the layered heterojunc‑
tion. The different composites/hybrids containing MXene or 
MXene‑derived products prepared by hydrothermal methods 
and used in photocatalysis are listed in Table 1.

The synthetic process for MXenes‑based composites 
includes doping into the photocatalysts or using MXene as 
a support for in situ decoration of the semiconductor pho‑
tocatalyst. The chemical reactions taking place during pho‑
tocatalyst formation led to increased interfacial area, thus 
providing greater possibilities for the transfer of photogen‑
erated electrons. However, one disadvantage of this method 
is the oxidation of MXenes during photocatalyst synthesis. 
Although difficult to precisely characterize, conditions of 
formation of the photocatalysts may be too harsh and cause 
structural degradation of MXenes, especially in the case of 
single‑layered MXenes, due to their lower stability toward 
oxidation.
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2.3  MXene‑Derived Photocatalysts

Different from mechanical mixing, self‑assembly, and deco‑
ration methods, the in situ oxidation method using MXene 
 (Ti3C2 is the most studied example) as a precursor for the 
synthesis of photocatalysts has also been explored (Fig. 7). 
Peng’s group tuned the facet of  TiO2/Ti3C2 using a hydro‑
thermal method without using an additional  TiO2 precursor 
(Fig. 7a, b) [71, 93].  NaBF4 and  NH4F were used as rea‑
gents to, respectively, control morphology in the synthesis 
of (001)  TiO2/Ti3C2 and (111)  TiO2/Ti3C2, which were then 
applied in methyl orange degradation. Both the facet type 
of  TiO2 and the ratio of  TiO2 to  Ti3C2 could be controlled 
by changing the duration of the hydrothermal reaction. Jia 
et al. [94] obtained closely aggregated  TiO2 nanorods with 
high carbon doping starting from  Ti3C2 flakes and demon‑
strated a better photoactivity than commercially available 
P25 for hydrogen production (Fig. 7c). The carbon doping 

also changed the electron structure of  TiO2 and enhanced its 
light absorption ability. Peng et al. [95] also used  Ti3C2 as a 
hole trap and Cu as an electron trap to separate the charges 
through a dual‑carrier‑separation mechanism, showing the 
potential of MXene as an efficient functional material for 
photocatalysis (Fig. 7d).

Calcination under atmosphere containing gases such as 
 CO2 and  O2 is another method used for the controlled oxi‑
dation of MXenes (Fig. 8). Lu et al. [96] obtained  Ti3C2/
TiO2/CuO by annealing Cu(NO3)2 and  Ti3C2 together under 
argon atmosphere (Fig. 8a). Because of its good electronic 
conductivity, the incorporation of  Ti3C2 improved electron/
hole separation and led to better methyl orange degradation. 
Yuan et al. [97] annealed  Ti3C2 in  CO2 to prepare 2D‑lay‑
ered C/TiO2 hybrids used in hydrogen production, in which 
the presence of 2D carbon layers increased electron trans‑
port channels and enhanced charge separation efficiency 
(Fig. 8b). In addition, the effects of oxidation temperature 
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and  CO2 on the grain size and crystal structure of  TiO2 
were also investigated, revealing that increasing oxidation 
temperature and  CO2 gas flux led to larger grain sizes and 
more rutile  TiO2 formation. Low et al. [98] calcined  Ti3C2 
at different temperatures, enabling the in situ growth of  TiO2 
nanoparticles on  Ti3C2 nanosheets, thus forming  TiO2/Ti3C2 
composites with different loading amounts of  TiO2 with 
the aim to improve performance in  CO2 reduction reaction 
(Fig. 8c). Interestingly, three main products were obtained 
during the photocatalytic  CO2 reduction process due to 
the sufficiently high intrinsic reduction potential of  TiO2. 
Results of the study also pointed out that excess of  Ti3C2 in 
the composite could have an adverse effect on photocatalytic 
performance. Su et al. [99] used  CO2 to partially oxidize 
 Nb2C to form  Nb2O5/Nb2C composites for hydrogen produc‑
tion, where  Nb2O5 and metallic  Nb2C served, respectively, 
as the semiconductor photocatalyst and co‑catalyst (Fig. 8d). 

The easily formed junction at the interface served as an elec‑
tron sink to efficiently capture photogenerated electrons and 
suppress recombination of photogenerated electron–hole 
pairs, thus enhancing the efficiency of charge separation 
and contributing to improved photocatalytic activity [71, 
93, 99, 102].

Besides the hydrothermal method and calcination, other 
routes such as chemical oxidization and high‑energy ball 
milling were also used to oxidize MXenes (Fig. 9). Cheng 
et al. [100] oxidized  Ti3C2 flakes with 30%  H2O2 to form 
microporous‑MXene/TiO2−x nanodots (Fig. 9a). This com‑
posite worked as a photo‑Fenton bifunctional catalyst for 
Rhodamine B degradation under both dark and illumination 
conditions. Li et al. [101] synthesized  TiO2@C nanosheets 
from  Ti2C by high‑energy ball milling and used it for meth‑
ylene blue degradation (Fig. 9b). Shortly thereafter, our 
group used water to oxidize  Ti3C2 to be applied in hydrogen 
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production using Eosin Y as a sensitizer [102]. Similar to 
other oxidized MXenes, amorphous carbon and  TiO2 were 
formed after oxidation (Fig. 9c, d). The various MXene‑
derived composites obtained by in situ oxidation to be used 
as photocatalysts are listed in Table 1.

The MXenes oxidation is different from other methods 
because of the residual presence of carbon (mostly amor‑
phous carbon) after oxidation, and the M element is oxi‑
dized into metal oxide on the carbon layer. Thus, the com‑
posite obtained is of the form metal oxide/MXenes/C. Both 
MXenes and C can be used as co‑catalysts in the photoca‑
talysis process. However, in this method, the ratio of the 
photocatalyst to MXenes varies within a certain range since 
no precursor is introduced. The limitation of this method is 
that only a few semiconductors (depending on M element) 
can be used as the photocatalyst.

3  Mechanism of MXenes as Co‑catalysts

Since MXenes are conductors and serve as co‑catalysts, the 
mechanism of action of a MXenes‑based photocatalytic sys‑
tem is through accelerated charge separation and suppres‑
sion of carrier recombination [69–71]. The photocatalysts 
absorb visible light and photogenerated electrons are excited 
to the CB, while holes are left in the valence band (VB). 
The excited charge carriers are transferred to MXenes at the 
interface mainly because of the higher potential of MXenes. 
Electrons transfer to MXenes without recombination and 
react on the MXene surface to generate  H2 by reducing  H+ 
[74, 78, 81, 91, 94, 102, 103],  CH4 and CO by reducing  CO2 
[88, 98], or  NH3 by reducing  N2 [19], as shown in Fig. 10 
process (a). In process (b), holes transfer to MXenes and 
react to produce OH· that can be utilized for degradation of 
organics [71, 93, 95]; electrons can also produce OH· for 
organic degradation [71, 93]. The charge transfer process 
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from the photocatalyst to MXenes improves electron–hole 
pair separation and suppresses charge recombination in pho‑
tocatalysts, thus enhancing the photoactivity.

Another advantage of using MXenes in photocatalysis 
is due to their termination groups. For example, –O ter‑
mination groups show the best potential for hydrogen pro‑
duction because of their low |ΔGH| and the availability of 
active sites for the adsorption of hydrogen atoms [70, 74]. 

Though termination groups are important in photocatalysis, 
currently, it has not been possible to precisely control the 
relative concentrations of the different termination groups. 
Using presently available synthetic methods, changing the 
different reaction conditions can partially modify the termi‑
nation groups on MXenes surface and thereby affect their 
performance in photocatalysis.

4  Conclusion and Outlook

In summary, the application of MXenes in photocatalysis has 
shown rapid development since 2015. Among the MXenes 
family,  Ti3C2 has been the most studied MXene. Mechani‑
cal mixing and self‑assembly are mild and easy methods of 
synthesis, where the ratio of MXenes to the photocatalyst 
can be controlled. In addition, MXenes can also be doped 
into the photocatalysts by in situ decoration of a semicon‑
ductor photocatalyst. The large interfacial area afforded by 
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the doping process improves electron transfer. However, the 
MXenes oxidation method has the advantage of obtaining 
both carbon and MXenes as co‑catalysts by forming a metal 
oxide/MXenes/C structure. Though the above‑mentioned 
four synthetic methods are generally used for photocatalysts, 
with further development in the field of MXenes, new pro‑
cesses may be discovered.

Besides developing improved synthetic methods, the 
other aspects that need to be focused on in the future are 
as follows:

1. Controlling the morphologies of MXenes. MXene flakes 
show larger surface area than multilayered MXenes, 
since mono‑ or few‑layered MXenes provide a greater 
number of active sites for photocatalytic reactions. The 
flakes are also convenient for building structures, such 
as quantum dots, spheres, and nanorods. However, the 
instability of MXenes should be taken into account dur‑
ing heat treatment [107].

2. MXenes combine with efficient photocatalysts. MXenes 
can be used as co‑catalysts to combine with many semi‑
conductor photocatalysts due to their excellent electronic 
conductivity and the presence of numerous hydrophilic 
groups on the surface. Hundreds of semiconductor pho‑
tocatalysts have been reported for photocatalysis so far. 
Attention should be paid to combining the efficient and 
cheap photocatalysts with MXenes to achieve better 
photocatalytic performance. So far, only g‑C3N4, CdS, 
ZnS,  TiO2, CuO,  Nb2O5,  BiVO4,  Ag3PO4, α‑Fe2O3, 
 In2S3,  Bi2WO6,  Bi0.90Gd0.10Fe0.80Sn0.20O3, and BiOBr 
have been explored, with  TiO2 and g‑C3N4 attracting 
the most attention.

3. Surface modification of MXenes. Surface termination 
groups significantly affect the properties of MXenes, and 
thus, tuning the surface termination groups and modify‑
ing the MXenes surface are expected to greatly influence 
its potential as co‑catalyst.

4. Synthesis of new MXenes. To date, only a small fraction 
of the different possible MXenes has been synthesized 
in laboratories. Some MXenes showing semiconducting 
properties have been reported based on theoretical cal‑
culations. Theoretical predictions help in the synthesis 
of semiconductor MXenes and applied in photocatalysis. 
Once obtained experimentally, potential MXenes can be 
applied as photocatalysts, thus widening the application 
range of MXenes. Moreover, new types of transition 
metal borides (MBenes) have also been predicted [34, 
109] and have shown potential for photocatalysis appli‑
cations. More work needs to be done in this direction.

5. Developing new synthesis methods for MXenes. HF 
and in situ HF wet chemical treatment are by far the 
most used methods in MXenes synthesis. Other HF‑free 
methods are emerging and leading to MXenes with dif‑
ferent properties. Yet, these have not been investigated 
in photocatalytic applications, and thus, the effect of the 
type of synthesis process used on the final performance 
of the MXene is currently not understood.

In short, due to tremendous effort of scientists worldwide, 
the great potential of MXenes in photocatalysis has been 
revealed. With the fast‑growing development in this area, 
it is expected that more and more studies will focus on the 
applications of MXenes photocatalysis and pave the way to 
the commercialization of photocatalytic technologies based 
on these materials.
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