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Impact of predictive medicine on therapeutic decision making:
a randomized controlled trial in congenital heart disease
Huseyin Naci1, Maximilian Salcher-Konrad1, Alistair Mcguire1, Felix Berger2,3,4, Titus Kuehne2,4,5, Leonid Goubergrits5,
Vivek Muthurangu6, Ben Wilson7,8 and Marcus Kelm2,3,5

Computational modelling has made significant progress towards clinical application in recent years. In addition to providing
detailed diagnostic data, these methods have the potential to simulate patient-specific interventions and to predict their outcome.
Our objective was to evaluate to which extent patient-specific modelling influences treatment decisions in coarctation of the aorta
(CoA), a common congenital heart disease. We selected three cases with CoA, two of which had borderline indications for
intervention according to current clinical guidelines. The third case was not indicated for intervention according to guidelines. For
each case, we generated two separate datasets. First dataset included conventional diagnostic parameters (echocardiography and
magnetic resonance imaging). In the second, we added modelled parameters (pressure fields). For the two cases with borderline
indications for intervention, the second dataset also included pressure fields after virtual stenting simulations. All parameters were
computed by modelling methods that were previously validated. In an online-administered, invitation-only survey, we randomized
178 paediatric cardiologists to view either conventional (control) or add-on modelling (experimental) datasets. Primary endpoint
was the proportion of participants recommending different therapeutic options: (1) surgery or catheter lab (collectively,
“intervention”) or (2) no intervention (follow-up with or without medication). Availability of data from computational predictive
modelling influenced therapeutic decision making in two of three cases. There was a statistically significant association between
group assignment and the recommendation of an intervention for one borderline case and one non-borderline case: 94.3% vs.
72.2% (RR: 1.31, 95% CI: 1.14–1.50, p= 0.00) and 18.8% vs. 5.1% (RR: 3.09, 95% CI: 1.17–8.18, p= 0.01) of participants in the
experimental and control groups respectively recommended an intervention. For the remaining case, there was no difference
between the experimental and control group and the majority of participants recommended intervention. In sub-group analyses,
findings were not affected by the experience level of participating cardiologists. Despite existing clinical guidelines, the therapy
recommendations of the participating physicians were heterogeneous. Validated patient-specific computational modelling has the
potential to influence treatment decisions. Future studies in broader areas are needed to evaluate whether differences in decisions
result in improved outcomes (Trial Registration: NCT02700737).
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INTRODUCTION
Health systems are increasingly aiming to adopt precision
medicine to better account for the well-characterized hetero-
geneity among patient populations.1 In line with these goals,
diagnostic methods, such as imaging, have improved substantially
over the past years and are able to characterize patients at an ever
increasing granularity. At the same time, recommendations in
clinical practice guidelines led to major advances in evidence-
based medicine.2 However, such guidelines are often inadequate
to facilitate patient-centred care as they primarily aim to
standardize treatment and therefore account only partially for
inter-individual variability.3 This often leaves clinicians with
significant uncertainty when choosing the optimal treatment
strategy.
In coarctation of the aorta (CoA), a relatively common

congenital heart disease, decisions on the timing and type of

treatment (wait vs. pharmacological treatment vs. intervention)
are crucial to prevent long-term sequalae such as persistent
arterial hypertension and end-organ damage.4 However, recom-
mendations do not always agree across different guidelines and
thus leave room for debate, especially in clinically borderline
cases. For example, the American College of Cardiology and the
American Heart Association recommend intervention for primary
CoA or restenosis if invasive peak-to-peak pressure gradients
across the CoA exceed 20mmHg with or without significant
narrowing.5 On the other hand, the European Society of
Cardiology recommends interventional treatment if pressure
gradients are higher than 20mmHg based on cuff pressures
between upper and lower limbs in the presence of arterial
hypertension.6

Patient-specific modelling has the potential to support indivi-
dual therapy decisions and improve the success rate of
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interventions. For the evaluation of CoA, computational fluid
dynamic (CFD) methods are of particular interest as they provide
valuable information about hemodynamics such as pressure fields
and flow profiles.7,8 In addition, they can be coupled with virtual
intervention tools such as stenting of the CoA or aortic valve
replacement which allow to predict the immediate hemodynamic
effects of a given intervention.9,10 Therefore, such models can
provide diagnostic as well as prognostic information concerning
the hemodynamics before or after the simulated intervention. In
turn, availability of patient-specific modelling data can reduce two
key sources of uncertainty for clinical decision-making—diagnosis
and prognosis—potentially influencing treatment
recommendations.11

Despite recent advances of such patient-specific computational
modelling concepts, the potential for clinical translation has not
been subject to extensive evaluation. In recent years, there have
been repeated calls to evaluate the effectiveness and cost-
effectiveness of these approaches in larger populations.12,13

However, an important first step is to evaluate their potential
impact on clinician behaviour and decision making. Without
demonstrable changes in clinicians’ treatment decisions as a result
of improved information garnered through computational model-
ling, subsequent changes in patient outcomes are unlikely.
Our objective was to design and implement a randomized

controlled trial to evaluate whether and to what extent patient-
specific computational modelling influences clinical treatment
decisions in a common congenital heart condition (CoA). To do so,
we designed an experiment with different levels of data presented
to cardiologists to assess whether viewing image-based, patient-
specific modelling altered the recommended course of action in
hypothetical treatment scenarios.

RESULTS
Participant characteristics
Figure 1 shows the flow of participants in the study. Of 2235
eligible clinicians invited to participate, 2039 did not respond; 15
did not meet the inclusion criteria (either participated in
CARDIOPROOF or had no experience treating patients with
coarctation of the aorta over the past 6 months); and three did
not give consent. A total of 178 cardiologists participated; 90 were
randomly allocated to receive patient-specific computational
modelling data for the first case (experimental) and 88 received
conventional imaging parameters (control). After completing the
questionnaire for the first case, 6 participants left the study,
leaving 172 participants for the second case. Another participant
left the survey after completing the questionnaire for the second
case. A total of 171 participants were randomized to the third case:

92 and 79 participants were randomized to experimental and
control groups, respectively.
Participants in experimental and control arms of the trial had

similar baseline characteristics. For the first two cases, there were
no detectable differences between the groups (Table 1). There
were only a few statistically significant between-group differences
for the third case. For example, 87.3% of participants in the control
group had over five years of experience with decision making in
congenital heart disease as compared to 71.4% of those in the
experimental group (p= 0.01). Similarly, 88.8% of the participants
in the control group had treatment experience on more than five
coarctation of the aorta cases in the past year as compared to
76.7% of those in the experimental group (p= 0.04).

Outcomes
Figure 2 shows the recommended course of action for each case.
For the first case, overall, there was a statistically significant
association between group assignment and recommended course
of action (p= 0.00). For example, 70.5% of participants who were
presented with patient-specific modelling data in addition to
conventional parameters recommended referring the patient to
the catheter lab as compared to 36.7% of participants who were
given conventional parameters alone. Fewer participants in the
experimental group recommended surgery compared to those in
the control group (23.9% vs. 35.6%, respectively). In addition,
fewer participants in the experimental group recommended no
intervention (leave untreated and follow-up, 2.3%; follow-up with
medication, 2.4%) compared to those in the control group (leave
untreated and follow-up, 15.6%; follow-up with medication,
12.2%). For the second case, there was no discernible difference
between the groups in terms of their recommended course of
action (p= 0.92). A similar proportion of participants recom-
mended referring the patient to the catheter lab (77.1% in
treatment vs. 73.0% in control). A marginally statistically significant
difference was observed between the two groups for the third
case (p= 0.05).
Findings of the primary analysis are shown in Table 2. A higher

proportion of participants recommended an intervention (either
surgery or catheter lab) when presented with patient-specific
modelling data in addition to conventional parameters for the first
case (borderline) and third case (non-borderline). For the first case,
94.3% of participants in the experimental group recommended an
intervention as opposed to 72.2% of those in the control group
(relative risk, RR: 1.31, 95% CI: 1.14, 1.50, p= 0.00); for the third
case, 18.5% of participants in the experimental group and 5.1% of
participants in the control group recommended an intervention
(RR: 3.09, 95% CI: 1.17, 8.18, p= 0.01). There was no statistically
significant difference between the participants who were and
were not presented with patient-specific computational modelling
data for the second case; 95.2% vs. 94.4% of those in the
experimental group recommended an intervention (RR: 1.00, 95%
CI: 0.94, 1.07, p= 0.82).
Differences in the proportions of participants recommending

either surgical intervention or catheter lab as opposed to no
intervention (follow-up with or without medication) in experi-
mental vs. control groups did not differ according to experience
level (Table 3). For example, more participants recommended an
intervention for the first case when they were presented with
patient-specific modelling data in addition to conventional
parameters compared to participants presented with only
conventional imaging data, regardless of whether they had more
than 5 years of experience in congenital heart disease (RR: 1.27,
95% CI: 1.09, 1.49) or less than 5 years of experience (RR: 1.47, 95%
CI: 1.10, 1.95).

Eligible decision makers invited to 
participate (n=2,235) Excluded

Did not respond to invitation (n=2,039)
Did not meet inclusion criteria (n=15)
Did not give consent (n=3)

Randomized to Case 1 (n=178)
Allocation to treatment: 90 (analyzed)
Allocation to control: 88 (analyzed)

Excluded
Left the survey (n=6)

Randomized to Case 2 (n=172)
Allocation to treatment: 83 (analyzed)
Allocation to control: 91 (analyzed)

Randomized to Case 3 (n=171)
Allocation to treatment: 92 (analyzed)
Allocation to control: 79 (analyzed)

Excluded
Left the survey (n=1)

Fig. 1 Flow of participants in the trial
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DISCUSSION
In this randomized controlled trial, we evaluated the treatment
recommendations of physicians that were either based on current
state-of-the-art diagnostic information or additional information
from patient-specific computational models. We observed that
despite existing clinical guidelines, the therapy recommendations
of the participating physicians were quite heterogeneous for the
individual patients when based on “conventional” diagnostic
information. Patient-specific models appear to influence the

recommended course of action. Cardiologists who were presented
with computational modelling data in addition to conventional
echocardiography and MRI data were more likely to recommend
surgery or catheter intervention for two cases (one borderline and
non-borderline). These findings were not affected by the
experience level of the participating cardiologists.
Research on the development of integrated computer models

of the mechanical, physical and biochemical functions of a living
human body has drawn significant attention and has driven

Table 1. Baseline characteristics of trial participants

Experimental group: Conventional &
modelling data

Control group: Conventional
data

p-value for
difference

Case 1 n= 90 n= 88

Gender 34.5 35.8 0.86

Proportion female (95% CI) (24.3–44.7) (25.1–46.5)

Region 69.0 69.1 0.98

Proportion practicing in Western Europe (95% CI) (59.0–78.9) (58.9–79.4)

CHD experience 81.8 75.3 0.29

Proportion with >5 years of experience with decision
making in CHD (95% CI)

(73.6–90.0) (66.1–84.4)

CoA experience 85.2 80.7 0.43

Proportion with treatment experience on >5 CoA cases
in the past year (95% CI)

(77.7–92.8) (72.3–89.1)

Catheter intervention experience 38.6 29.5 0.21

Proportion with experience in performing catheter
interventions on >5 cases per year (95% CI)

(28.3–49.0) (19.8–39.3)

Case 2 n= 83 n= 89

Gender 36.3 34.1 0.77

Proportion female (95% CI) (25.5–47.0) (23.9–44.2)

Region 65.0 72.7 0.28

Proportion practicing in Western Europe (95% CI) (54.3–75.7) (63.2–82.2)

CHD experience 80.7 77.3 0.58

Proportion with >5 years of experience with decision
making in CHD (95% CI)

(72.1–89.4) (68.3–86.2)

CoA experience 78.3 86.2 0.18

Proportion with treatment experience on >5 CoA cases
in past year (95% CI)

(69.3–87.4) (78.8–93.6)

Catheter intervention experience 34.9 34.5 0.95

Proportion with experience in performing catheter
interventions on >5 cases per year (95% CI)

(24.5–45.4) (24.3–44.7)

Case 3 n= 92 n= 79

Gender 35.6 34.6 0.89

Proportion female (95% CI) (25.5–45.6) (23.8–45.4)

Region 71.1 66.7 0.54

Proportion practicing in Western Europe (95% CI) (61.6–80.7) (56.0–77.4)

CHD experience 71.4 87.3 0.01*

Proportion with >5 years of experience with decision
making in CHD (95% CI)

(62.0–80.9) (79.8–94.8)

CoA experience 76.7 88.8 0.04*

Proportion with treatment experience on >5 CoA cases
in the past year (95% CI)

(67.8–85.6) (81.4–95.8)

Catheter intervention experience 36.7 32.9 0.62

Proportion with experience in performing catheter
interventions on >5 cases per year (95% CI)

(26.5–46.8) (22.3–43.5)

CHD congenital heart disease, CoA coarctation of the aorta, CI confidence interval
*Statistically significant at 0.05 level
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investment for the past decade.14–16 This investment has been
warranted on the premise that individualized risk prediction and
virtual treatment planning have the potential to improve patient
outcomes in many diseases.17 Indeed, previous models raised
significant expectations to make decision support tools available
for early diagnosis, disease prediction and outcome optimization.
Recent studies increasingly provide supporting evidence on the
clinical reliability and validity of models emanating from these
research efforts.18–21

The applied models in our study were validated in previous
work.7,8,10 Uncertainties were addressed and it was shown that
they can provide diagnostic information about pressure maps that
are equivalent to invasive cardiac catheterization.22,23 In addition,
it was shown that haemodynamic models after virtual treatment
procedures can predict the hemodynamic effects of interven-
tion.10 In the present study, for both cases that received stent
placement there was good agreement between predicted
pressure drop and pressure drop measured by catheter post-
intervention. However, investigated modelling methods are not
meant to replace evidence-based guidelines that are based upon
mid- or long-term outcome data. Instead, the modelling methods
allow simulating the immediate hemodynamic effects of an
intervention and thus may help answering whether a given

intervention will provide hemodynamically meaningful results.
This a-priori knowledge can be of clinical value, but such novel
methods must be introduced into the clinical setting cautiously. It
not only requires methods to be validated, but also to obtain
knowledge about the impact of computational models on clinical
decision-making process. This is what our trial starts to address.
Currently, little is known about how clinicians comprehend and

utilize new patient-specific data, and whether this influences their
treatment decisions.24–26 In this trial, we show that physicians who
have access to patient-specific modeling data make different
treatment recommendations. These findings are important to
establish the decision impact of modelling data before investing
in sizeable outcome trials in large patient populations. Future
large trials should evaluate the appropriateness of making
different treatment recommendations by mapping treatment
decisions to mid-term and to long-term clinical outcomes. The
design and findings of our scenario-based randomized experi-
ment can offer insights for future evaluations of computational
modelling approaches.
In accordance with what is widely known in clinical practice, we

noted significant heterogeneity in decision making within each of
the clinical cases. This result highlights the limitations of clinical
guidelines in this area, despite their indisputable role in evidence-
based medicine. In contrast, the use of the patient-specific models
can result in distinctive shifts in decisions. This underscores the
promises as well as the risks of computational models for
personalized medicine. One can assume that it will be difficult
for a user to deviate from the recommendation of a model-based
decision support system if it predicts a given effect of an
intervention. Advocates of patient-specific computational model-
ling often argue that individualizing treatment strategies would
optimize the type and timing of interventions, which in turn
reduce unnecessary or inappropriate invasive procedures, and
help realize substantial cost savings.27,28

How did patient-specific modelling data influence treatment
recommendations? We had anticipated that patient-specific
modelling data would reduce uncertainty around diagnosis
and prognosis, thereby resulting in different treatment
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Fig. 2 Recommended course of action for each case. Experimental group includes participants randomized to see patient-specific modelling
results in addition to conventional imaging data. Control group includes participants randomized to see only conventional imaging data.
Fisher’s exact test was used to statistically test for an association between group assignment and recommended course of action. p-value for
case 1: 0.00; case 2: 0.92; and case 3: 0.05. p-value < 0.05 indicates a statistically significant difference between the groups

Table 2. Proportion of participants recommending an intervention

No. recommending intervention/total (%)

Experimental group
(Conventional &
modelling data)

Control group
(Conventional
data)

Relative risk
(95% CI)

Case 1 83/88 (94.3) 65/90 (72.2) 1.31 (1.14, 1.50)

Case 2 79/83 (95.2) 84/89 (94.4) 1.00 (0.94, 1.07)

Case 3 17/92 (18.5) 4/79 (5.1) 3.09 (1.17, 8.18)

CI confidence interval
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recommendations. In our trial, we presented computational
modelling data on both the diagnosis and prognosis for two
cases (Cases 1 and 2), and only on the diagnosis for one case (Case
3). Statistically significantly different recommendations were
observed for Cases 1 and 3, indicating that it was reduced
uncertainty—irrespective of its source—that was responsible for
influencing treatment recommendations. In addition to the effect
of reduced uncertainty, clinical decision making processes could
be influenced by several other factors. These factors include
participants’ experience, hospital-specific practice, framing, search
satisficing or even very subtle factors such as the scaling of the
axes of graphs that have been extensively studied previously.29–31

In our study we have presented the participants primarily CFD-
based models since hemodynamic parameters such as the
distribution of pressure gradients are particularly important for
CoA. The CFD models have also the advantage that the results are
relatively easy to visualize for the user which is important for the
straightforward implementation of the trial. In addition, the CFD
models can also be used together with tools that allow performing
virtual interventions.9 In the current study, we focused on virtual
stent implantation to keep the experimental setup simple. The
representation of surgical interventions is technically also
possible,10 but would have increased the complexity of the trial
set-up. In contrast, models that allow to assess the patient-specific
response to pharmacological treatment are still under develop-
ment and thus were also not used in our trial.

Providing the participants of our study with simulations
obtained after virtual stenting for the first two cases may have
primed them to consider the potential effects of stenting as
opposed to other treatment alternatives. However, the proportion
of participants who recommended referring patients to the
catheter lab was not higher for Case 2 despite the availability of
virtual stenting information. In addition, more participants
recommended intervention for Case 3 despite no virtual stenting
data presented for this case. These suggest that the priming effect
of presenting virtual stenting data may be modest. Moreover, we
cannot exclude that the presentation style of the pre-
interventional hemodynamic results could have influenced the
participants. For Case 3, the graph of the pre-interventional
hemodynamics shows a sharp pressure drop across the stenosis.
In addition, the x-axes had a limited range which could have
implied a relatively large pressure drop. These could be reasons
why participants with model-based information (compared to
participants provided only with conventional information) recom-
mended an intervention in this case, despite the fact that the
patient had no formal indication for intervention according to
existing clinical guidelines. However, these explanations remain
speculative. Therefore, future studies should be conducted that
assess systematically how specific factors of modelling (including
the presentation of modelling results) can shift decision in a given
direction.

Table 3. Proportion of participants recommending an intervention according to experience level

No. recommending intervention/Total (%)

Experimental group (Conventional
& modelling data)

Control group (Conventional data) Relative risk (95% CI)

Case 1

More CHD experience 67/72 (93.1) 49/67 (73.1) 1.27 (1.09, 1.49)

Less CHD experience 16/16 (100.0) 15/22 (68.2) 1.47 (1.10, 1.95)

More CoA experience 72/75 (96.0) 52/71 (73.2) 1.31 (1.13, 1.52)

Less CoA experience 11/13 (84.6) 11/17 (64.7) 1.31 (0.86, 1.99)

More catheter intervention
experience

32/34 (94.1) 21/26 (80.8) 1.16 (0.96, 1.43)

Less catheter intervention experience 51/54 (94.4) 42/62 (67.7) 1.39 (1.16, 1.68)

Case 2

More CHD experience 63/67 (94.0) 64/68 (94.1) 0.99 (0.92, 1.09)

Less CHD experience 16/16 (100.0) 19/20 (95.0) 1.05 (0.95, 1.16)

More CoA experience 62/65 (95.4) 71/75 (94.7) 1.01 (0.93, 1.09)

Less CoA experience 17/18 (94.4) 11/12 (91.7) 1.03 (0.84, 1.26)

More catheter intervention
experience

28/29 (96.6) 29/30 (96.7) 0.99 (0.91, 1.09)

Less catheter intervention experience 51/54 (94.4) 53/57 (93.0) 1.02 (0.92, 1.12)

Case 3

More CHD experience 9/65 (13.8) 2/69 (2.9) 4.75 (1.07, 21.29)

Less CHD experience 8/26 (30.8) 2/10 (20.0) 1.54 (0.39, 6.04)

More CoA experience 13/69 (18.8) 4/70 (5.7) 3.29 (1.13, 9.61)

Less CoA experience 4/21 (19.0) 0/9 (0.0) Not estimable

More catheter intervention
experience

6/33 (18.2) 1/26 (3.8) 4.79 (0.60, 36.86)

Less catheter intervention experience 11/57 (19.3) 3/53 (5.7) 3.39 (1.01, 11.56)

More experience refers to (1) >5 years of experience with decision making in congenital heart disease; (2) >5 coarctation of the aorta cases in past year; and (3)
>5 catheter interventions per year
CHD congenital heart disease, CoA coarctation of the aorta, CI confidence interval
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The findings of our study should be interpreted in light of its
limitations. We used data from three cases. Although a small
number, these cases were carefully selected by experienced
clinicians to demonstrate heterogeneity in clinical presentation
and indication for intervention. Second, clearly this is an
experimental study and we only considered hypothetical treat-
ment decisions. It is conceivable that our study participants
deviated from the types of decisions that they would have made
in actual clinical settings. However, the extent to which their
responses were affected by the hypothetical nature of our
experiment should be similar in both the treatment and control
groups, and therefore should not influence our findings. In
addition, generalizability of our findings should be investigated
further. Of 2235 cardiologists invited to take part in this study,
2039 did not respond. Another key limitation of our study is its
sample. Cardiologists who agreed to participate represent a
selected sample of potential users of patient-specific modelling
approaches and may have a higher degree of knowledge and
curiosity about modeling approaches. It is possible, therefore,
participants of this trial had different attitudes towards innovative
technologies (and hence treatment recommendations) than those
who declined to take part.
In conclusion, our randomized experiment provides insights

into the potential feasibility and clinical utility of novel modelling
approaches aimed at individualizing treatment decisions for
congenital heart conditions. This evaluation, despite focusing on
a small number of cases, is nonetheless supportive of the use of
individual patient computational modeling in arriving at a clinical
decision. Whether observed differences in treatment decisions
would ultimately improve patient outcomes must be investigated
in future studies. Larger randomized controlled trials are therefore
needed to test the impact of using novel modelling approaches in
real-world clinical settings.

METHODS
Experimental and control groups
We designed a randomized trial focused on CoA to examine the treatment
decision impact on practicing cardiologists with experience in treating this
condition when they were presented with additional data generated by
patient-specific computational modelling.
We generated two separate datasets for three actual clinical cases. The

cases were selected by the clinical project partners in order to reflect
clinical heterogeneity, amongst others with respect to age, vessel stenosis
(location, degree and length) or presence of associated bicuspid aortic
valve. In addition, the selected cases represented differing levels of
borderline indication for intervention. Clinical details of the cases are
shown in Fig. 3.
We created two datasets for each case. In the first dataset (control), we

included conventional parameters (echocardiography and magnetic
resonance imaging, MRI) currently recommended as standard diagnostic
work-up in clinical practice guidelines (see Table 4). In the second dataset
(experimental), in addition to the parameters in the first dataset, we
included parameters obtained from clinically validated7,8 CFD-based
patient-specific modelling. The additional parameters included information
about anatomy (geometry, vessel diameter and radius along the centre
line) and function (aortic flow field and pressure drop along the centre
line). The anatomy of the aorta was segmented using ZIB-Amira (Zuse
Institute Berlin, Germany). CFD simulations were based on four-
dimensional phase contrast MRI data using Fluent (Version 14.5, ANSYS
Inc., Canonsburg, PA, USA). A non-Newtonian blood model was used based
on an adapted power law, while turbulence was accounted for by a k-ω
SST turbulence model. For spatial discretization, high quality unstructured
volume meshes were generated producing approximately one million cells
for each patient. Results from flow simulations were validated against
catheter measured pressure drop and flow fields measured by four-
dimensional phase contrast MRI.
We also presented virtual stenting data for the cases that had borderline

indication for intervention. Virtual stenting was performed using a
previously introduced interactive tool.9 Modelling parameters were
presented for the pre-interventional state and a virtual post-

interventional state (stenting of the aorta). In addition, applied models
were verified to correctly predict pressure drop post-intervention.
There was good agreement between modelled and invasive catheter-

ization after stent placement for the two cases for which intervention was

Fig. 3 Detailed presentation of cases
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indicated according to guidelines (10 vs 12mmHg and 12 vs. 11 mmHg).
The implanted stents did not vary in location, length or diameter
compared to the virtual stents used within the simulations shown to the
participants (Fig. 4). The remaining case did not receive any intervention,
as formal guideline-based treatment indication was not fulfilled. Only
modelling information, but no clinical post-treatment images, were
presented to the participants for this case.
Clinicians who agreed to participate in the study received information

about patient demographic characteristics (age, weight, height), history,
symptoms, and clinical status (arterial blood pressure for all four
extremities, signs of heart failure, and exercise capacity) for each of the
three cases (see Supplementary Information for details). Whether study
participants received the first or second dataset was dependent on their
group allocation, as described below, as is the recruitment of participants.

Trial design
The randomized controlled trial design was used to minimise the potential
threats to the internal validity of the study. We used a web-based survey

platform (Qualtrics) to generate the random allocation sequence (qualtrics.
com). Randomized allocation was therefore completed centrally and
investigators could not foresee assignment.32,33 Given the nature of the
intervention, participants were aware of experimental vs. control assign-
ment. However, investigators remained unaware of group allocation until
after trial completion.
Randomization was at the case-level and was therefore repeated three

times for each participant (i.e., each participant completed three
randomized trials by the end of the study). Thus, it was possible for a
trial participant to be randomized to the experimental group for one case
and the control group for another. It was also possible for a participant to
be repeatedly randomized to the experimental or control group three
times. This design ensured that most participants had an opportunity to
view CFD simulations at least for some cases. Trial design is shown in Fig. 5.
The target sample size was 118 (59 in each group) on the basis of an

anticipated (hypothesized) effect size of 25% difference between the two
groups in terms of the primary endpoint. Given the lack of similar
evaluations in the literature, our hypothesized effect size was not based on
previous empirical studies. We anticipated that an estimated 40% of
clinicians presented with the conventional set of parameters (control) as
compared to an estimated 65% of clinicians presented with patient-
specific modelling parameters (experimental) would decide to recommend
either surgery or catheter lab as opposed to follow-up with or without
medication, giving an estimated effect size of 25%.

Table 4. List of data parameters

Panel A: Information provided to all participants:

• Clinical history

• Current problems

•Medication

• Patient characteristics/physical exam:

○ Age

○ Weight

○ Height

• Arterial blood pressure

• Any signs of heart failure

• Exercise capacity

Panel B: Control group Panel C: Experimental group

Conventional parameters Conventional+ patient-specific
modeling parameters

Echocardiography: • All information provided to control
group, plus:

• Peak velocity across CoA (m/s) • Computational fluid dynamics (CFD)
modelling information:

• Pressure gradient at CoA (mmHg) ○ Geometry and vessel diameter,
including radius along centre line

• Left Ventricle (LV): ○ Screen shots of pre and post
interventional virtual stenting
modelling outcome

○ End-diastolic diameter (LVEDD
in mm)

■ Flow field

• Aortic valve: regurgitation
(degree), peak velocity (m/s)

■ Pressure drop along centre line of
the ves

MRI:

• LV:

○ End-diastolic volume (EDVin
mL/m2)

○ End-systolic volume enlarged
(ESV in mL/m2)

○ Ejection fraction (EF in %)

○ Dimensions:

■ Ascending aorta (mm)

■ Aortic arch (mm)

■ Aortic isthmus (mm)

■ Descending aorta (mm)

Panel A shows the information provided to all participants. Panel B shows
the list of conventional parameters provided to participants in the control
group. Panel C shows the list of conventional+patient-specific computa-
tional modelling parameters provided to participants in the experimental
group

Trial participants

Random allocation 
(repeated 3 times)

Control group:
Participants presented with 
conventional imaging data

Experimental group:
Participants presented with 
conventional data + patient-

specific modelling data

Fig. 5 Randomized controlled trial design

Fig. 4 Stent implantation in Cases 1 (a) and 2 (b)
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Practicing congenital, pediatric or interventional cardiologists were
eligible for inclusion in the study if they had treated patients with
coarctation of the aorta during the past 6 months. Clinicians were not
eligible to take part in the trial if they were affiliated with the project team
running the experiment, (the CARDIOPROOF consortium), or if they had
pilot-tested the questionnaire in its previous iterations. Pilot-testing was
conducted by cardiologist members of the CARDIOPROOF consortium
project and non-consortium members from partner institutions to ensure
readability and interpretability of the case summaries and accompanying
questions.
We considered participants to have more experience if they had >5

years of experience with decision making in congenital heart disease; >5
coarctation of the aorta cases in the past year; and >5 catheter
interventions per year.
Our recruitment strategy had two key elements. First, we manually

searched and identified a list of practicing congenital, paediatric and
interventional cardiologists in centres with experience in congenital heart
disease in Europe and North America. When then contacted them via e-
mail. We also obtained access to the member lists of prominent
organizations including the Association for European Paediatric and
Congenital Cardiology (AEPC). Second, we attended the AEPC Conference
and invited eligible clinicians to participate in the experiment using
laptops provided by the study team. To incentivize recruitment on site,
participants were eligible to voluntarily enter a lottery to win a tablet
device, and the CARDIOPROOF consortium made a donation of 10 Euros
per participant to a charity organisation (Save the Children). We did not
provide any other remuneration to study participants.

Survey implementation
For the survey, the platform Qualtrics was used to administer the web-
based questionnaire.34 The first part of the questionnaire presented the
clinicians with the study information sheet and asked for their informed
consent to take part in the experiment. The second part included a series
of questions about participants’ experience level with decision making in
congenital heart disease in general, and CoA in particular. Participants
indicating that they had no experience with treating patients with CoA
were excluded at this stage. Remaining participants were then presented
with the three cases, and depending on their group allocation, had access
to either the conventional parameters or patient-specific computational
modelling parameters. Questions pertaining to study endpoints then
followed (see below). At the end of the questionnaire, all participants were
asked about their demographic characteristics and geographic region of
practice. In total, participants were able to complete the study in
approximately 20min.
Study questions were devised to explore participants’ willingness to

recommend intervention in the presented cases depending on the type
of information presented to them (experimental vs. control). Partici-
pants were first asked for their recommended course of action.
Available options were treating the patient with medication and
follow-up, leaving the patient untreated and following up, referring
the patient to the catheter lab, and referring the patient to surgery.
The primary endpoint was “decision to intervene”, referring to a
clinician decision to recommend either surgery or catheter lab
(collectively, “intervention”) as opposed to follow-up with or without
medication (“no intervention”).

Statistical analysis
We first used descriptive statistics to compare the experimental and
control groups at baseline. Differences between study groups in terms of
outcomes were then evaluated using Fisher’s exact test for proportions,
and chi square analysis with categories adjusted to avoid cells with <5
expected values. Statistical significance was defined as a P value of <0.05
assuming a two-tailed hypothesis. All analyzes were repeated for sub-
groups according to experience level of participants. Statistical analyzes
were performed in STATA (version 14.2; STATA Corp LLC, College Station,
TX, USA).
The study was conducted in compliance with the London School of

Economics and Political Science Research Ethics Policy and Code of
Research Conduct. Due to the hypothetical nature of treatment decisions
made as part of this experiment, the study was exempt from ethics
review from the London School of Economics and Political Science
Research Ethics Committee through the self-certification pathway, and

approved by LSE Health. Informed consent was obtained from all
participants.

DATA AVAILABILITY
The datasets generated during the current study are available from the correspond-
ing author on reasonable request.

ACKNOWLEDGEMENTS
Financial support for this study was provided by the European Commission’s 7th

Research Framework Programme (FP7). The funding agreement ensured the authors’
independence in designing the study, interpreting the data, writing, and publishing
the report. This study was performed as part of Cardioproof, a proof-of-concept study
funded by the European Commission under FP7.

AUTHOR CONTRIBUTIONS
H.N., A.M., V.M., M.K., M.S.K., and T.K. conceived the study. H.N. and M.S.K. designed
the trial and implemented it with input from M.K., T.K., V.M., L.G. H.N. and M.S.K.
analyzed the data with input from B.W. and A.M. H.N. wrote the first draft of the
paper. All authors critically revised and contributed to subsequent drafts.

ADDITIONAL INFORMATION
Supplementary information accompanies the paper on the npj Digital Medicine
website (https://doi.org/10.1038/s41746-019-0085-1).

Competing interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES
1. Jameson, J. L. & Longo, D. L. Precision medicine— personalized, problematic, and

promising. New Engl. J. Med. 372, 2229–2234 (2015).
2. Grimshaw, J. M. & Russell, I. T. Effect of clinical guidelines on medical practice: a

systematic review of rigorous evaluations. Lancet 342, 1317–1322 (1993).
3. Goldberger, J. J. & Buxton, A. E. Personalized medicine vs guideline-based

medicine. JAMA 309, 2559–2560 (2013).
4. Tanous, D., Benson, L. & Horlick, E. Coarctation of the aorta: evaluation and

management. Curr. Opin. Cardiol. 24, 509–515 (2009).
5. Warnes, C. A. et al. ACC/AHA 2008 guidelines for the management of adults with

congenital heart disease: a report of the American College of Cardiology/Amer-
ican Heart Association Task Force on Practice Guidelines (Writing Committee to
Develop Guidelines on the Management of Adults With Congenital Heart Dis-
ease). Developed in Collaboration With the American Society of Echocardio-
graphy, Heart Rhythm Society, International Society for Adult Congenital Heart
Disease, Society for Cardiovascular Angiography and Interventions, and Society
of Thoracic Surgeons. J. Am. Coll. Cardiol. 52, e143–e263 (2008).

6. Baumgartner, H. et al. ESC Guidelines for the management of grown-up con-
genital heart disease (new version 2010). Eur. Heart J. 31, 2915–2957 (2010).

7. Goubergrits, L. et al. MRI-based computational fluid dynamics for diagnosis and
treatment prediction: clinical validation study in patients with coarctation of
aorta. J. Magn. Reson. Imaging 41, 909–916 (2015).

8. Goubergrits, L. et al. Is MRI-based CFD able to improve clinical treatment of
coarctations of aorta? Ann. Biomed. Eng. 43, 168–176 (2015).

9. Neugebauer, M. et al. Interactive virtual stent planning for the treatment of
coarctation of the aorta. Int. J. Comput. Assist. Radiol. Surg. 11, 133–144 (2016).

10. Kelm, M. et al. Model-based therapy planning allows prediction of haemody-
namic outcome after aortic valve replacement. Sci. Rep. 7, 9897 (2017).

11. Han, P., Klein, W. & Arora, N. Varieties of uncertainty in health care: a conceptual
taxonomy. Med. Decis. Mak. 31, 828–838 (2011).

12. Biglino, G. et al. Computational modelling for congenital heart disease: how far
are we from clinical translation?. Heart 103, 98–103 (2017).

13. Marsden, A. L. & Feinstein, J. A. Computational modeling and engineering in
pediatric and congenital heart disease. Curr. Opin. Pediatr. 27, 587 (2015).

14. Hunter, P. et al. A vision and strategy for the virtual physiological human in 2010
and beyond. Philos. Trans. R. Soc. Lond. A: Math., Phys. Eng. Sci. 368, 2595–2614
(2010).

15. Hunter, P. et al. A vision and strategy for the virtual physiological human: 2012
update. Interface Focus 3, 20130004 (2013).

H. Naci et al.

8

npj Digital Medicine (2019)    17 Scripps Research Translational Institute

https://doi.org/10.1038/s41746-019-0085-1


16. Smith, N. et al. euHeart: personalized and integrated cardiac care using patient-
specific cardiovascular modelling. Interface Focus 1, 349–364 (2011).

17. Kohl, P. & Noble, D. Systems biology and the virtual physiological human. Mol.
Syst. Biol. 5, 292 (2009).

18. Kim, H. et al. Patient-specific modeling of blood flow and pressure in human
coronary arteries. Ann. Biomed. Eng. 38, 3195–3209 (2010).

19. Yang, W., Chan, F. P., Reddy, V. M., Marsden, A. L. & Feinstein, J. A. Flow simu-
lations and validation for the first cohort of patients undergoing the Y-graft
Fontan procedure. J. Thorac. Cardiovasc. Surg. 149, 247–255 (2015).

20. Mirzaee, H. et al. MRI‐based computational hemodynamics in patients with aortic
coarctation using the lattice Boltzmann methods: clinical validation study. J.
Magn. Reson. Imaging 45, 139–146 (2017).

21. Goubergrits, L. et al. MRI‐based computational fluid dynamics for diagnosis and
treatment prediction: Clinical validation study in patients with coarctation of
aorta. J. Magn. Reson. Imaging 41, 909–916 (2015).

22. Goubergrits, L. et al. Patient-specific requirements and clinical validation of MRI-
based pressure mapping: A two-center study in patients with aortic coarctation. J.
Magn. Reson. Imaging 49, 81–89 (2018).

23. Fernandes, J. F. et al. CMR-based and time-shift corrected pressure gradients
provide good agreement to invasive measurements in aortic coarctation. JACC
Cardiovasc. Imaging 11, 1725–1727 (2018).

24. Cebral, J. R. & Meng, H. Counterpoint: Realizing the clinical utility of computa-
tional fluid dynamics—Closing the gap. Am. J. Neuroradiol. 33, 396–398 (2012).

25. Kallmes, D. F. Point: CFD—computational fluid dynamics or confounding factor
dissemination. Am. J.Neuroradiol. 33, (395–396 (2012).

26. Vignon-Clementel, I. E., Marsden, A. L. & Feinstein, J. A. A primer on compu-
tational simulation in congenital heart disease for the clinician. Prog. Pediatr.
Cardiol. 30, 3–13 (2010).

27. Kim, H. J. et al. Patient-specific modeling of blood flow and pressure in human
coronary arteries. Ann. Biomed. Eng. 38, 3195–3209 (2010).

28. Taylor, C. A. & Steinman, D. A. Image-based modeling of blood flow and vessel
wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38,
1188–1203 (2010).

29. Gill, T. M. The central role of prognosis in clinical decision making. JAMA 307,
199–200 (2012).

30. Croskerry, P. From mindless to mindful practice–cognitive bias and clinical
decision making. N. Engl. J. Med. 368, 2445–2448 (2013).

31. Cardoso, R. L., Leite, R. O. & de Aquino, A. C. A graph is worth a thousand words:
how overconfidence and graphical disclosure of numerical information
influence financial analysts accuracy on decision making. PLoS ONE 11, e0160443
(2016).

32. Clark, L., Fairhurst, C. & Torgerson, D. J. Allocation concealment in randomised
controlled trials: are we getting better?. BMJ 355, i5663, https://doi.org/10.1136/
bmj.i5663 (2016).

33. Schulz, K. F. & Grimes, D. A. Generation of allocation sequences in randomised
trials: chance, not choice. Lancet 359, 515–519 (2002).

34. Snow, J. & Mann, M. Qualtrics survey software: handbook for research profes-
sionals. Qualtrics Labs, Inc. 2013.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2019

H. Naci et al.

9

Scripps Research Translational Institute npj Digital Medicine (2019)    17 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Impact of predictive medicine on therapeutic decision making: a randomized controlled trial in congenital heart disease
	Introduction
	Results
	Participant characteristics
	Outcomes

	Discussion
	Methods
	Experimental and control groups
	Trial design
	Survey implementation
	Statistical analysis

	Supplementary information
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




