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ABSTRACT 

Microbial infections present a major global healthcare challenge, in large part because of 
the development of microbial resistance to the currently approved antimicrobial agents. 
This demands the development of new antimicrobial agents. Metal oxide nanoparticles 
(MONPs) are a class of materials that have been widely explored for diagnostic and 
therapeutic purposes. They are reported to have wide-ranging antimicrobial activities and to 
be potent against bacteria, viruses, and protozoans. The use of MONPs reduces the 
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possibility of resistance developing because they have multiple mechanisms of action 
(including via reactive oxygen species generation), simultaneously attacking many sites in 
the micro-organism. However, despite this there are to date no clinically approved MONPs 
for antimicrobial therapy. This review explores the recent literature in this area, discusses 
the mechansims of MONP action against micro-organisms, and considers the barriers faced 
to the use of MONPs in humans. These include biological challenges, of which the potential 
for an immune response and off-target toxicity are key. We explore the possible 
benefits/disbenefits of an immune response being initiated in detail, and consider the effect 
of production method (chemical versus green synthesis) on cytotoxicity. There are also a 
number of techical and manufacturing challenges, which are also discussed in depth. In the 
short term, there are potentially some “quick wins” from the repurposing of already-
approved nanoparticle-based medicines for anti-infective applications, but a number of 
hurdles, both technical and biological, lie in the path to long-term clinical translation of new 
MNOP-based formulations.  
 
GRAPHICAL/VISUAL ABSTRACT AND CAPTION 

 

 

Metal oxide nanoparticles have efficient antimicrobial activity but there are many biological 

challenges restricting their application in man, as well as hurdles to scaled-up clinical manufacture. 

 

1- INTRODUCTION  

Nanomedicine is the branch of medicine that use particles sized from 1 to 1000 nm for 
either therapeutic or diagnostic purposes (Garnett & Kallinteri, 2006). Nanomedicine has 
the potential to overcome several drawbacks of conventional therapies, mainly due to the 
fact that the use of nanoscale particles leads to changes in physicochemical properties 
compared to those of the bulk. Properties such as surface charge, shape, and surface area to 
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volume ratio can all be varied. Nanoparticles (NPs) can be modulated to accumulate in 
target tissues via surface functionalization or by controlling particle size, and thus drug-
loaded NPs can be used to deliver an active ingredient selectively to a particular part of the 
body. This permits administration of a lower dose. Targeting is also associated with reduced 
side effects due to the lower possibility of drug accumulation in off-target organs. 
 
Initially, nanomedicine was developed to improve the treatment of cancer (Barenholz, 
2012). More recently, researchers have developed a range of nanomedicine products for 
the diagnosis and treatment of myriad other diseases. However, the number of 
nanomedicines currently approved by the Food and Drug Administration (FDA) or in clinical 
trials is very small compared to the massive volume of research work published. A total of 
1567 articles were identified in PubMed by searching for “nanomedicines” on 13th June 
2019 (Figure 1), while only 51 nanomedicine products have been approved by the FDA and 
another 77 are at different stages of clinical trials  (Bobo, Robinson, Islam, Thurecht, & 
Corrie, 2016; Ventola, 2017a). Nanomedicines approved by the FDA mainly consist of 
liposomes, polymers, micelles, polymer conjugated proteins, and nanocrystals. Only 12 
products are metal-containing nanoparticles, such as hydroxyapatite, calcium phosphate 
and iron oxide (Bobo et al., 2016; Ventola, 2017b). Six iron oxide NP (IONP) products were 
approved for the treatment of iron deficiency, but four have been withdrawn from the 
market due to safety issues (this will be discussed in detail later) and only two (Ferumoxytol 
and Resovist) are still used (Yi-Xiang, 2015). 
 
Despite the small number of marketed products, metal oxide NPs (MONPs) have been 
prepared on a very large number of occasions and found to have applications in a wide 
range of fields ranging from semiconductors to biomedicine (for both therapeutic or 
diagnostic purposes) (Bobo et al., 2016; Seabra & Durán, 2015; Ventola, 2017a). One 
example of biomedical applications is for antimicrobial purposes. Microbial infections 
comprise one of the most serious dangers to human health. They include diseases caused by 
bacteria, viruses, protazoans and fungi (Aderibigbe, 2017). Although there are many FDA 
approved antimicrobial agents, there is a need to develop new active ingredients in this field 
owing to the target microbes developing resistance to currently used therapeutics. There 
are many studies which have investigated the antimicrobial activity of MONPs: a total of 
2266 articles were recognized in PubMed by searching for “metal oxide nanoparticles as 
antimicrobial agents” on 13th June 2019 (Figure 1). However, no MONPs have to date been 
FDA approved for use against infectious disease.  
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Figure 1: The number of publications (A) on nanomedicines and (B) investigating the potential applications of 
MONPs as antimicrobial agents published per year from 2004 to 2018 (data extracted from PubMed using the 
search term “nanomedicines” and “metal oxides nanoparticles as antimicrobial agents” on 13th June 2019). 

 
 
2- THE NEED FOR NEW TREATMENTS 

A number of factors lie behind the failure of current antimicrobial agents, and the situation 
is currently critical. In the case of bacterial infections, an antibiotic crisis was announced in 
2013 (Fair & Tor, 2014) due to the emergence of resistant bacterial strains that cannot be 
treated with standard antibiotics (Fair & Tor, 2014). Several reasons lie behind the 
emergence of such resistance: (1) approved antibiotics only attack a single target in the 
bacteria (Etebu & Arikekpar, 2016) (see Figure 2); (2) over-prescription and improper use of 
antibiotics by the healthcare sector (Fair & Tor, 2014); and (3) the misuse of antibiotics in 
agriculture (e.g. in feed stock to promote animal growth (Wegener, Aarestrup, Jensen, 
Hammerum, & Bager, 1999) or sprayed over plants to protect them from disease and 
increase production (Fair & Tor, 2014)). 

 

In the case of viral infections, again the approved antiviral therapeutics (e.g. direct acting 
antiviral agents) are designed to attack a specific target on the virus (Figure 2). Viruses are 
characterized by a high rate of genetic mutation, and therefore can be expected to rapidly 
develop resistance and cross resistance (Melikian et al., 2014; Wyles, 2013).  
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Figure 2: The mechanisms of action of current anti-infective agents, including potential resistance mechanisms 
against (A) antibiotics and (B) antivirals. 

 
 

Additionally, the selectivity of antiviral agents makes them specific to a given virus, and they 
cannot generally be used for the eradication of multiple types of viruses (Martinez, Sasse, 
Brönstrup, Diez, & Meyerhans, 2013). This necessitates, the development of broad-
spectrum antiviral agents. Given that the host cellular machinery is commonly required for 
viral replication and propagation, this might represent a good target for developing broad 
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spectrum agents, and some clinical trials of such active ingredients are underway (De 
Chassey, Meyniel-Schicklin, Aublin-Gex, André, & Lotteau, 2012). 
 
Protozoan parasitic diseases mainly occur in developing countries, which has unfortunately 
led to their being neglected: there has been very low investment in the production of 
antiparasitic agents, and this has contributed to the development of resistance. Of 1300 
medicinal agents developed between 1975 to 1999, only 13 were for the treatment of 
parasitic infections (Fairlamb, Ridley, & Vial, 2003). Unfortunately, market forces have been 
insufficient to drive the discovery and development of new drugs for these diseases (Pink, 
Hudson, Mouriès, & Bendig, 2005). This has led to new public sector and public-private 
partnerships, including investment by the Bill and Melinda Gates Foundation to develop 
new antiparasitic agents (Pink et al., 2005). One exciting development was the release of 
Ambisomes (amphotericin B-loaded liposomes), an antiparasitic nanomedicine with high 
efficacy and minimal side effects. However, its high cost ($267 per vial) is problematic, and 
thus it does not reach all patients (Fairlamb et al., 2003). Even in clinical trials where the 
medicine was supplied with a much lower price ($18 per vial) through the WHO/Gilead 
donation program, the estimated per-patient cost of treatment with liposomal amphotericin 
B was $660 (Assis et al., 2017; Bhattacharya & Ali, 2016). Therefore, the cost of 
antimicrobial agents is another important issue that must be restrained to allow more 
effective management of microbial diseases worldwide. 
 
From the above, it can be concluded that the development of microbial resistance is the 
major reason for the failure of currently used anti-infective agents. Currently used active 
anti-infective agents target only a single aspect of microbial reproduction or survival (the 
selective blockage of enzymes, ribosomes, cell membrane synthesis, DNA replication, DNA 
gyrase, folic acid metabolism or protein synthesis (Etebu & Arikekpar, 2016). Therefore, 
there is ample scope for the micro-organisms to develop target-orientated resistance. For 
example, the antibiotic vancomycin functions by binding to the ends of glycol peptides and 
interfering with their cross linking to the bacterial cell wall. Bacteria such as Enteroccoci 
resist vancomycin by interfering with its binding with glycol peptides (Miller, Munita, & 
Arias, 2015). Pseudomonas biofilms can upregulate the production of efflux pumps to expel 
antibiotics from the bacterial cell cytosol and drive them to the extracellular milieu, leading 
to the biofilms becoming resistant to β-lactam antibiotics (Zhang & Mah, 2008). Degradation 
or hydrolysis of antibiotics by special enzymes produced by bacteria is another a self-
defence mechanism which can lead to resistance (e.g. β-lactamase enzymes produced by 
Klebsiella for the degradation of ampicillin (Fu et al., 2007). In another example, genetic 
mutation of Helicobacter pylori causing a change in the binding site for clarithromycin is 
responsible for its development of resistance (Ontsira Ngoyi et al., 2015). Antiviral 
resistance arises for similar reasons; for instance, a mutation in the active site of thymidine 
kinase (the enzyme responsible for the activation of acyclovir) is largely responsible for 
herpes simplex virus becoming resistant to this drug (Morfin & Thou, 2003).  
 
It is believed that ideally an efficient antimicrobial agent should simultaneously interact with 
multiple sites both on the micro-organisms and the host cell to reduce the likelihood of the 
micro-organism developing resistance. For example, ribavirin is a guanosine analogue that 
has a broad-spectrum activity against many RNA and DNA viruses. Ribavirin has several 

https://en.wikipedia.org/wiki/Public-private_partnership
https://en.wikipedia.org/wiki/Public-private_partnership
https://en.wikipedia.org/wiki/Bill_and_Melinda_Gates_Foundation
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mechanisms of action (Beaucourt & Vignuzzi, 2014) including: (1) inhibition of inosine 
monophosphate dehydrogenase, resulting in depletion of guanosine triphosphate; (2) 
interfering with mRNA-capping; (3) stimulating the host immune system to act against the 
invaded virus; (4) inhibiting viral RNA polymerase, and (5) enhancing virus mutagenesis due 
to incorporation of ribavirin triphosphate in place of guanosine triphosphate into viral RNA, 
resulting in viral death.  
 
MONPs could comprise a very promising route for the development of new antimicrobial 
therapeutics. They have been reported to have a broad antimicrobial activity against 
bacteria (both Gram positive and negative), viruses, fungi, and protazoa (Aderibigbe, 2017, 
Raghunath & Perumal, 2017). Their efficiency stems from their mechanism of action: several 
are reported, but the principle mechanism involves the production of reactive oxygen 
species (ROS) which are potent in killing micro-organisms. Micro-organisms are not able to 
develop resistance to such ROS production (Raghunath & Perumal, 2017), because ROS 
attack multiple different sites and biomolecules in the micro-organism, resulting in their 
oxidation and subsequent cell death. Micro-organisms attempt to protect themselves 
against oxidation through the use of enzymes such as dismutase and catalase to convert 
ROS into water and oxygen, non-toxic by-products. However, these can be overwhelmed by 
the presence of very high amounts of ROS, which results in the oxidation of a range of 
essential molecules such as proteins, lipids, carbohydrates and DNA: this will be discussed 
later in more detail (Fatma Vatansever et al., 2014, Chen, Brugarolas, & He, 2011). The 
production of ROS by MONPs is similar to the approach employed by macrophages to 
eradicate microbes. Macrophages endocytose micro-organisms, trap them inside 
endosomes, and destroy them through the secretion of very large amounts of ROS sufficient 
to overcome the superoxide dismutase enzymes of the micro-organism (Slauch, 2012).  
 
Although MONPs have been proven to have potent antimicrobial properties, they have a 
number of limitations that hinder their clinical application. In vivo, there are several 
challenges which they must overcome to reach their intended target. These include 
requirements to cross biological barriers and maintain stability in biological fluids, in 
addition to considerations of how the MONPs will interact with the immune system and any 
safety and risks associated with their long-term administration. There are also complications 
associated with the technical design of NPs which can selectively attack and eradicate a 
target micro-organism without having any hazardous effects on the patient. All of these 
issues will be discussed in detail below. 
  
3- MECHANISMS OF ACTION OF METAL OXIDE NANOPARTICLES  

This review will focus on the antimicrobial activity of MONPs against bacteria, viruses and 
parasites. A summary of the findings in the literature are given in Table 1. For instance, 
MONPs have been explored for their antimicrobial activities against a range of micro-
organisms that are known to cause common hospital acquired infections (Khan Hassan, 
Baig, & Mehboob, 2017). Potent activity has been reported against a wide range of such 
bacteria, including Escherichia coli, vancomycin resistant Enterococci, and methicillin-
resistant Staphylococcus aureus (Table 1). Viruses such as hepatitis B and C, influenza, 
human immunodeficiency viruses (HIV), rotavirus, and herpes-simplex virus that cause 
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around 5% of nosocomial infections (Khan Hassan et al., 2017). MONPs have demonstrated 
significant potential in vitro against hepatitis C and herpes simplex type 1 and 2 (Table 1). 
Parasitic infections cause a relatively small number (< 0.5%) of total nosocomial infections 
(Góralska & Kurnatowski, 2013), but MONPs have been shown to be effective against 
Plasmodium falciparum (malaria), helminth infections and leishmania species (Table 1). 
 
Table 1: Reported antimicrobial activity of metal oxide nanoparticles 

Material 
Particle 

 Size  
(nm) 

Zeta 
Potential 

(mV)* 

Test  
Method 

Antimicrobial 

effects 
Reference 

Antibacterial activity 

Aluminium oxide 
[α-Al2O3] 

20 - 30 NA 
Agar well 
diffusion  

Staphylococcus 
aureus (S. Aureus), 

Klebsiella 
aerogenes, 

Escherichia coli (E. 
Coli), 

Pseudomonas 
desmolyticum 

(Prashanth et 
al., 2015) 

Antimony trioxide 
(Sb2O3) 

90 - 210 NA 

Agar plate and 
counting of 

colony forming 
units (CFU) 

E. coli, Bacillius 
subtilis 

Streptococcus 
aureus 

(Baek & An, 
2011) 

Calcium oxide 
(CaO) 

15 - 180 NA 
Agar plate and 

counting of CFU 
Lactobacillus 

plantarum 
(Tang et al., 

2013) 

Calcium oxide 
(CaO) 

16 NA 
Agar well 
diffusion  

Staphylococcus 
epidermidis > 
Pseudomonas 

aeruginosa 

(Roy Arup, 
Gauri, 

Bhattacharya, & 
Bhattacharya, 

2013) 

Cadmium oxide 
(CdO) 

60 NA 

Determination 
of optical 

density; agar 
plate and 

counting of CFU 

E. coli 
(Rezaei-Zarchi 
et al., 2010) 

Cerium oxide 
(CeO2) 

6 – 40 NA 
Disc diffusion 

method 

E. coli and B. 
subtilis 

 

(Pelletier et al., 
2010) 

Chitosan based 
Zinc oxide NPs 

(ZnO) 
99 - 603 

-12.9 to – 
35.5 

Agar diffusion 
and micro titre 

methods 

Antibacterial 
activity and 

biofilm inhibition 
activity against 

Micrococcus 
luteus and 
S. aureus 

(Dhillon, Kaur, 
& Brar, 2014) 

Chromium oxide 
(Cr2O3) 

41, 65 and 79 NA Disc diffusion 
E. coli, P. 

aeruginosa 
(Ananda & 

Gowda, 2013) 

Cinnamomum 
verum 

functionalized 
Fe3O4 

9.4 NA 
Agar plate and 

counting of CFU 
S. aureus and E. 

coli 
(Anghel et al., 

2014) 
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Cobalt oxide 
(Co3O4) 

100 -150 NA Broth dilution  
S. aureus and E. 

coli 
(Ghosh et al., 

2014) 

Copper oxide 
(CuO) 

23 NA Well diffusion  

E. coli, 
Enterococcus 
faecalis, and 

Klebsiella 
pneumenia 

(Ahamed, 
Alhadlaq, Khan, 
Karuppiah, & Al-

dhabi, 2014) 

Copper oxide 
nanorods 

(CuO) 

Width: 60 
nm, length: 

8.3 µm 
NA 

Agar plate and 
counting of CFU 

E. coli 

(Pandey et al., 
2014), 

(Khashan, 
Sulaiman, & 
Abdulameer, 

2016), 
(Gilbertson et 

al., 2016), 
(Bondarenko, 

Ivask, Käkinen, 
& Kahru, 2012) 

Copper oxide 
(CuO) 

5 - 8 NA Well diffusion  

K. penumeniae,  
Salmonella 

typhimurium, 
and Enterobacter . 

aerogenes 

(Kumar, Salar, & 
Purewal, 2014) 

Copper oxide 
(CuO) 

10 - 40 NA 
Agar plate and 

counting of CFU 
Different stains of 

S. aureus 
(Hsueh, Tsai, & 

Lin, 2017) 

Copper oxide 
(CuO) 

20 - 27 NA Well diffusion 
B. subtilis, S. 

aureus, E. coli and 
P. aeruginosa 

(Azam, Ahmed, 
Oves, Khan, & 
Memic, 2012) 

Copper oxide 
(CuO) 

15 – 30 NA 
Determination 

of optical 
density 

E. coli and P. 
aeruginosa 

(Das, Nath, 
Phukon, & 

Dolui, 2013) 

Copper oxide 
(CuO) 

9.6 NA Broth dilution 
E.coli and S. 

aureus 

(Jadhav, 
Gaikwad, 
Nimse, & 

Rajbhoj, 2011) 
 

Copper oxide 
(CuO) 

Nanosize: 20 
– 200 nm 
Microsize: 
200 – 2000 

nm 

-16.5 
 
 

-28.5 

Determination 
of optical 
density 

E. coli and 
Lactobacillus  

brevis 

(Kaweeteerawa
t et al., 2015) 

Copper oxide 
(CuO) 

< 50 NA 
Determination 

of optical 
density 

P. aeruginosa 
(Guo et al., 

2017) 

Copper oxide 
(CuO and Cu2O) 

CuO = 30 
Cu2O= 40 

NA 
Agar plate and 

counting of CFU 
E. coli 

(Meghana, 
Kabra, 

Chakraborty, & 
Padmavathy, 

2013) 

Copper oxide 
(CuO) 

20 - 95 NA 
Agar plate and 

counting of CFU 

Various 
nosocomial 
bacteria inc. 
methicillin-

resistant 
Staphylococcus 

(Ren et al., 
2009) 
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aureus (MSRA), S. 
epidermis, P. 

aeruginosa, and E. 
coli 

Copper oxide 
(CuO) 

20 – 30 NA 
Agar plate and 

counting of CFU 
E. coli, B. subtilis 

and S. aureus 
(Baek & An, 

2011) 

Copper oxide 
(CuO) 

25 - 30 NA Well diffusion 

Strongly 
diminishes the 
biofilm forming 

uro-pathogens of 
MRSA and E. coli 

(Agarwala, 
Choudhury, & 
Yadav, 2014) 

Graphene oxide 
modified zinc 
oxide (ZnO) 

nanoparticles 

170 NA Microdilution 

E. Coli, S. 
typhimurium, B. 

subtilis, 
E. faecalis 

(Linlin Zhong & 
Yun, 2015) 

Iron oxide NP 
(Fe3O4) 

functionalized 
with carvone 

12 NA Biofilm assay 

Inhibited 
colonisation and 

bio-film formation 
of S. aureus and E. 

coli 

 
(Holban et al., 

2015) 

Iron oxide (Fe3O4) 
NP impregnated 
polyacrylonitrile 

matrix 

2 - 24 
-34 to 

-20 at pH 4 
to 10 

Membrane agar 
test 

E. coli 
(Mukherjee & 

De, 2015) 

Iron oxide 
(Fe3O4) 

 
33 – 40 NA Well diffusion 

E.coli, S. aureus, 
and Proteus 

vulgaris 

(Prabhu, Rao, 
Kumari, Kumar, 
& Pavani, 2015) 

Iron oxide 
(Fe3O4) 

 
10 – 120 NA Well diffusion 

S. aureus, B. 
subtilis and E. coli, 

S. epidermidis, 
Bacillus  

Licheniformis,  
Brevibacillusbrevis

, and Vibrio 
cholerae  , 

(Behera, Patra, 
Pramanik, 
Panda, & 

Thatoi, 2012); 

Iron oxide 
(α-Fe2O3) 

50 - 110 NA Well diffusion 

S. aureus, E. coli, 
P. aeruginosa and 

Serratia  
marcescens 

(Ismail, 
Sulaiman, 

Abdulrahman, 
& Marzoog, 

2015) 

Iron oxide 
(Fe3O4) 

10.4 – 11.4 
-32.2 to + 

36.3 

Determination 
of optical 

density; agar 
plate and 

counting CFU 

B. subtilis and E. 
coli 

(Arakha et al., 
2015) 

 

Iron oxide 
(mixture of Fe3O4 

and 
γ-Fe2O3) 

9 -19 
Determination 

of optical 
density 

Concentration 
dependant 

antibacterial 
activity against S. 

aureus 

(Tran et al., 
2010) 

Layered graphene 
sheets decorated 

with zinc oxide 
nanoparticles 

30 – 40 NA Well diffusion 
Salmonella typhi > 

E. coli 
(Bykkam et al., 

2015) 
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(ZnO) 

Magnetite (Fe3O4) 8 NA 
Determination 

of optical 
density 

Concentration 
dependant 

bacteriostatic 
effect against E. 

coli 

(Chatterjee et 
al., 2011) 

Maghemite (Fe2O3) 25 – 30 NA Well diffusion 

Active against the 
following uro-

pathogens; MRSA, 
methicillin 
resistant 

Staphylococcus 
epidermidis 

(MRSE), 
vancomycin 

resistant 
Enterococci (VRE), 
Proteus mirabilis 

E. coli, K. 
penumnoiae, and 

P. aeruginosa 

(Agarwala et al., 
2014) 

Magnesium oxide, 
nanowire 

(MgO) 

Width: 6 nm, 
length: 10 

µm 
NA 

Well diffusion; 
determination of 

optical density 

Showed a 
concentration 

dependant 
bacteriostatic 

activity against E. 
coli and Bacillus 

species 

(Al-Hazmi et al., 
2012) 

Metatitinic acid 
(H2TiO3) and 

silicon dioxide 
(SiO2) NPs 

incorporated into 
dressings 

NA NA Disc diffusion 
Inhibited growth 

of E. coli, S. aureus 
and E. faecalis. 

(Krokowicz et 
al., 2015) 

Nickel oxide 
(NiO) 

10 – 20 NA 
Agar plate and 

counting of CFU 

Active against 
E.coli, B. subtilis 

and S. aureus 

(Baek & An, 
2011) 

Nickel oxide 
(NiO) 

20 – 30 36.8 Well diffusion 

Broad spectrum 
antibacterial 

activity against 
gram-positive and 

gram-negative 
pathogens 

 
 

(Rakshit et al., 
2013) 

 
 
 

 

Polyethyleneimine 
capped zinc oxide 
NPs (ZnO–PEI NP) 

3 – 7 (core) 
20 (capped) 

NA 
Determination 

of optical 
density 

E. coli bearing high 
pathogenicity 
island genes 

 
 
 

(Chakraborti et 
al., 2014) 

 
 
 

 
Titanium dioxide 

< 50 NA Well diffusion 
Active against 

biofilm producing 
(Jesline, John, 

Narayanan, 
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(TiO2) MRSA Vani, & 
Murugan, 2015) 

Titanium dioxide 
(TiO2) 

NA NA 
Agar test and 

counting of CFU 

Promising 
treatment for 
dental plaque 

(Thomas, Raj, & 
Venkataramana

, 2014) 

Titanium dioxide 
(TiO2) 

23 to 134 NA  
Streptococcus  

mutans 

(Besinis, De 
Peralta, & 

Handy, 2014) 

Titanium dioxide 
(TiO2) 

60 NA 

Determination 
of optical 

density; agar 
plate method 
and counting 

CFU 

E. coli 

(Rezaei-Zarchi 
et al., 2010), 

(Alhadrami, Al, 
& Hazmi, 2017), 

(Tong, Binh, 
Kelly, Gaillard, 
& Gray, 2013) 

 
 

Titanium dioxide 
(TiO2) 

10, 25, and 
50 

-33.8  to -
5.48 at pH 

range 3.6 to 
6.2 

Agar plate test 
and counting of 

CFU 

Size dependant 
activity against E. 

coli 

 
(Lin et al., 2014) 

 
 
 

Titanium dioxide 
(TiO2) 

7 - 12 NA 

Quantitative 
assessment 

method as per 
AATCC test 

method 100-
2004. 

Size dependant 
antibacterial 

activity against S. 
aureus and K. 

pneumonia 

(Sundaresan, 
Sivakumar, 

Vigneswaran, & 
Ramachandran, 

2012) 

Zinc oxide 
(ZnO) 

89 - 159 NA 
Determination 

of optical 
density 

K. pneumonia 
(Reddy, Nisha, 
Joice, & Shilpa, 

2014) 

Zinc oxide 
(ZnO) 

12, 25, 30, 
88, 142, 212, 

307 
NA 

Determination 
of optical 
density 

Size dependant 
growth inhibition 

of S. aureus, E. 
coli, and B. 

subtilis. 

(Raghupathi, 
Koodali, & 

Manna, 2011) 

Zinc oxide 
(ZnO) 

50 NA 
Agar plate and 

counting of CFU 

Concentration 
dependant activity 
against B. subtilis 

(Hsueh et al., 
2017) 

Zinc oxide 
(ZnO) 

10 – 25 NA Well diffusion  
Active against 

clinical isolate of S. 
aureus 

(Narasimha, 
Sridevi, Prasad, 
& Kumar, 2014) 

Zinc oxide 
(ZnO) 

30 NA 
Agar plate and 

counting of CFU 
Campylobacter 

jejuni 
(Xie, He, Irwin, 

Jin, & Shi, 2011) 

Zinc oxide 
(ZnO) 

20 - 25 NA 

Determination 
of optical 

density; agar 
plate and 

determination of 
zone of 

inhibition 

E. coli and S. 
aureus 

(Mirhosseini & 
Firouzabadi, 

2013) 

Zinc oxide 
(ZnO) 

70 NA 
Determination 

of optical 
density 

Concentration 
dependant 

inhibitory effect of 
E. coli O157:H7 

(Liu et al., 2009) 
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Zinc oxide 
(ZnO) 

20 
 

60 

-21.9 
 

-17 

Agar plate and 
counting of CFU 

Size dependant 
inhibitory activity 

against 
S. aureus 

(Seil & Webster, 
2012) 

Zinc oxide 
(ZnO nano and 

microwires) 

Microwire: 
Width: 200 – 

500 nm, 
length: 2 to 4 

µm 
 

Nanowire: 
Width: 20 – 

40 nm, 
length: 4µm 

NA 
Agar plate and 

counting of CFU 

Size and dose 
dependant 

inhibitory effect 
against B. subtilis 

> S. aureus 

(Rago et al., 
2014) 

Zinc oxide 
(ZnO) 

100 – 150 NA 
Agar plate and 

counting of CFU 

Active against 
Streptococcus 

agalactiae and S. 
aureus 

(Huang et al., 
2008) 

Zinc oxide 
(ZnO) 

50 – 70 NA 
Agar plate and 

counting of CFU 

Selective 
antimicrobial 

activity against 
E. coli and B. 

subtilis 

(Baek & An, 
2011) 

Zinc oxide 
(ZnO) 

19.8 NA Well diffusion 

Inhibited bacterial 
growth of 

methicillin-
sensitive S. aureus 
(MSSA), and MRSA 

(Ansari, Khan, 
Khan, Sultan, & 

Azam, 2012) 

Zinc oxide 
(ZnO) 

15, 25, and 
38 

NA 

Agar plate and 
determination of 

zone of 
inhibition 

Size dependant 
inhibitory effect 

against 
Salmonella, 

Paratyphi, B. 
subtilis, K, 

pneumoniiae, 
S. epidermidis, E. 
aerogenes and 

MRSA 

 
(Palanikumar, 
Ramasamy, & 
Balachandran, 

2014) 
 

Zinc oxide 
(ZnO) 

17 – 21 NA Disc diffusion 

Concentration 
dependant activity 
against S. aureus, 

E. coli, K. 
pneumoniae, E. 
faecalis and P. 

aeruginosa 

(Narayanan, 
Wilson, 

Abraham, & 
Sevanan, 2012) 

Zinc oxide 
(ZnO) 

Nanorods: 
Diameter:  

30 – 60 nm, 
length: 80 

nm and  
widt: 

 50 – 200 nm, 
Length: 5 

µm. 

NA 

Broth dilution 
and colony 

counting; agar 
plate; disc 
diffusion; 

microtiter plate; 
conductivity 

assay 
 

E. coli, Salmonella 
choleraesuis, P. 
aeruginosa, L. 
plantarum and 

Listeria 
monocytogenes 

(Espitia et al., 
2012) 
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Spherical:  
37 – 47 nm. 

Circular:  
30 – 60 nm. 

Acicular: 
20 – 30 nm 

Zinc oxide adhered 
to a surface of 

fabric 
(ZnO) 

I) Width, 200 
– 800 nm, 
length: 2- 
4µm. II) 

Width 50 – 
300 nm, 

length 1 - 
2µm 

NA 

Agar diffusion; 
modified colony 

counting 
method 

Bacteriostatic 
effect against K. 
pneumoniae and 

S. aureus 

(Shateri-
Khalilabad & 

Yazdanshenas, 
2013) 

Zinc oxide 
(ZnO) 

20 – 217 19.7 In vivo rat model 
Bactericidal 

activity against P. 
aeruginosa 

(Watson et al., 
2015) 

Zinc oxide 
(ZnO) 

< 100 NA Well diffusion  MRSA 
(Jesline et al., 

2015) 
 

Zinc oxide NPs 
(ZnO) and 
ultrasound 
application 

20 and 60 
-21.9 and - 

17 
Agar plate and 

counting of CFU 

Ultrasound 
stimulation led to 

stronger 
antibacterial 

activity against S. 
aureus than NPs 

alone 

 
(Seil & Webster, 

2012) 

Zinc oxide 
nanoparticles 
coating a glass 

slide 

15 NA 
Agar plate and 

counting of CFU 

Excellent 
antibiofilm activity 
against E. coli and 

S. aureus 

 
 
 

(Applerot et al., 
2010) 

 
 
 

Zinc oxide, 
nanoparticle and 

nanorods 
(ZnO) 

Nanoparticle: 
20 nm 

 
Nanorods: 
width from 

60 – 350 nm 
and length 
from 0.5 to 

4.2µm 

NA Agar diffusion  

Inhibited growth 
of S. aureus, E. coli 

and Aspergillus 
niger 

 
(Jaisai, Baruah, 
& Dutta, 2012) 

Super 
paramagnetic iron 

oxide 
nanoparticles 

(unconjugated and 
conjugated to zinc 
and iron metals) 

Unconjugate
d: 18 nm 

 
Zinc 

conjugated: 
20 nm 

 
Iron 

conjugated: 
28 nm 

Unconjugat
ed: -35.5 

 
Zinc 

conjugated: 
-40.1 

 
Iron 

conjugated: 
-34 

Bacterial biofilm 
and counting of 

CFU 

Biofilm of MRSA, 
E. coli, P. 

aeruginosa 

 
(Durmus, 

Taylor, 
Kummer, & 

Webster, 2013) 

Silver and Zinc ZnO: 50 NA Agar plate and S. mutans  (Kasraei, 2014) 
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oxide composite Ag2O: 20 counting of CFU 

Antibacterial activity of biogenically synthesized metal oxide NPs 
 

Aluminium oxide 
(Al2O3) 

synthesized by 
using leaf extracts 

of lemongrass 

254 + 52.2 Disc diffusion E. coli 
(Ansari et al., 

2012) 

Cobalt oxide 
(Co3O4) 

synthesized using 
leaf extracts of 
Sageretia thea 

20 NA Disc diffusion 

Concentration 
dependant activity 

against 
S. aureus and E. 

coli 
Antibacterial 

activity increased 
after exposure to 

UV 

(Khalil et al., 
2017) 

Copper oxide 
(CuO) synthesized 
through microbial 

method using 
Streptomyces 

species 
(forming CuO 

coated textile) 

100 – 150 NA 

Agar plate and 
determination of 

zone of 
inhibition 

E. coli, S. aureus, 
and A. niger 

CuO nanoparticles 
applied to textile 

showed maximum 
zone of 

mycostaisis -  a 
promising future 
for a textile that 
might decrease 
transmission of 

infectious 
diseases. 

(Usha, Prabu, 
Palaniswamy, 

Venil, & 
Rajendran, 

2010) 

Copper oxide 
(CuO) synthesized 
using gum karya 

4.8, 5.5, and 
7.8 

NA Well diffusion  
E. coli and S. 

aureus 

 
(Padil & Černík, 

2013) 
 

Copper oxide 
(CuO) synthesized 

using extract of 
brown algae 

5 – 45 NA Disc diffusion  
Enterobacter 

aerogenes and S. 
aureus 

(Abboud et al., 
2014). 

Copper oxide 
(CuO) synthesized 
using Phyllanthus 

amarus leaf 
extract 

20 NA Well diffusion  

B. subtilis, S. 
aureus, E. coli 

and P. aeruginosa 
 

(Acharyulu et 
al., 2014) 

Copper oxide 
(CuO) prepared 

using tea leaf and 
coffee 

powder extracts 

50 – 100 NA Disc diffusion  
Shigella 

dysenteriae and V. 
cholera 

(Sutradhar, 
Saha, & Maiti, 

2014) 

Iron oxide (Fe3O4) 
Produced using  

seaweed 
(Sargassum 

muticum aqueous 
extract) 

10 – 30 NA Disc diffusion  

E. coli, Proteus 
mirablis, 

Proteus vulgaris 
and S. aureus 

 
 
 

(Arokiyaraj et 
al., 2013) 
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Titanium dioxide 
(TiO2) synthesized 
using the fungus 
Aspergillus flavus 

33 NA Well diffusion  E. coli 
 

(Santhoshkuma
r et al., 2014) 

Titanium dioxide 
(TiO2) synthesized 
using Aeromonas 

hydrophila 

40.5 NA Well diffusion  
S. aureus and 
streptococcus 

pyogenes 

(Jayaseelan et 
al., 2013) 

Zinc oxide (ZnO) 
produced using 

the leaf extract of 
Solanum nigrum 

20 – 30 NA Disc diffusion  

Salmonella 
paratyphi, E. coli, 
V. cholerae and S. 

aureus 

(Ramesh, 
Anbuvannan, & 

Viruthagiri, 
2015). 

Antiviral activity 
 

Cuprous oxide 
Cu2O) 

45.5 (by 
TEM) 

 
92.4 (by Zeta 

sizer) 

NA 

In vitro, Huh 
7.5.1 cells 

infected with 
HCV 

Inhibited Hepatitis 
C virus entry 

(Genotype 1a, 1b 
and 2a) at a 

concentration of 2 
µg/ml 

 
(Hang et al., 

2015) 

Iron oxide 
(Fe3O4) 

75 – 80 
+ 7.25 – 

7.48 

In vitro, Huh7 
cells infected 

with HCV 

Induced 
knockdown of 

Hepatitis C virus 
genes encoding 

helicase and 
protease, essential 

for cirus 
replication 

 
(SooRyoon Ryoo 

et al., 2012) 
 

Zinc oxide, 
Tetrapod shape 

(ZnO) 

Arm 
diameter: 
200 nm to 

1µm, length 
5 - 30 µm 

NA 
In vivo using 
BALB/c mice 

Interacts with 
Herpes simplex 

virus 2 inhibiting 
its entry into cells 

(Antoine et al., 
2016) 

(Mishra et al., 
2011) 

Antiparasitic activity 
 

Al2O3, 
CeO2, 

Fe3O4, 
ZrO2 

and MgO 

<50 
<25 

9 – 11 
<100 
<30 

NA 

In vitro, human 
blood cells 

infected with 
the parasite 
were treated 

with NPs 

Plasmodium 
falciparum 
(malaria) 

(Jacob 
Inbaneson & 
Ravikumar, 

2013) 

Zinc oxide 
(ZnO) 

10 - 15 NA 

In vivo, mice 
infected with 
parasite were 
treated orally 
with the NPs 

Showed protective 
effect against 

Eimeria Papillate 
induced 

coccidiosis 

(Dkhil, Al-
Quraishy, & 

Wahab, 2015) 

Zinc oxide (ZnO) 17 NA 
In vitro, parasite 
in medium were 
treated with NPs 

Helminth infection 
(Khan et al., 

2015b) 

Zinc oxide (ZnO) 
and 

iron oxide (FeO) 

20 – 30 
 

20 – 40 
NA 

In vitro, 
parasites in 

medium were 
Helminth infection 

(Dorostkar, 
Ghalavand, 

Nazarizadeh, 
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treated with NPs Tat, & 
Hashemzadeh, 

2017) 

Titanium dioxide 
(TiO2), 

 
Zinc oxide (ZnO), 

 
Magnesium oxide 

(MgO) 

10 – 25 
 
 

10 – 30 
 

30 – 40 

NA 

In vitro, 
promastigotes in 

medium were 
treated with NPs 

Promastigotes of 
leishmaniasis 

major 
 
 

(Jebali & 
Kazemi, 2013) 

(Delavari, 
Dalimi, 

Ghaffarifar, & 
Sadraei, 2014) 

Antiparasitic Activity of biogenically synthesized metal oxide NPs 
 

Cobalt oxide 
(Co3O4) 

synthesized using 
leaf extracts of 
Sageretia thea 

20 NA 

In vitro, 
parasites in 

culture media 
were treated 

with NPs 

Active against 
leshimaniasis, 

both the axenic 
promastigote and 

amastigote 
cultures. 

(Khalil et al., 
2017) 

*NA = Not available  

 
 
 

3.1. Antibacterial activity  

The antibacterial effects of MONPs arise from damage to cell membranes, the generation of 
ROS, photokilling, disturbance of metal/metal ion homeostasis, genotoxicity, and protein or 
enzyme damage (Figure 3) (Raghunath & Perumal, 2017). A brief description of the major 
mechanisms is presented below. For further detail about the mechanisms of action, readers 
are directed to a recent review (Raghunath & Perumal, 2017). 

3.1.1. Cell wall damage 

The surface charge, size of the MONPs and the nature of the bacterial cell wall (Gram 
negative versus Gram positive) profoundly affect the antimicrobial activity of NPs 
(Raghunath & Perumal, 2017). The cell walls of both Gram negative and positive bacteria 
have a peptidoglycan (sugar/amino acid polymer) layer, but this is thicker with Gram 
positive bacteria. The membrane of Gram negative bacteria is more negatively charged than 
Gram positive bacteria (Figure 3) (Beveridge, 1999).  
 
Many binding forces are involved in the adhesion of NPs to the bacterial cell wall, including 
electrostatic, van der Waals and hydrogen bonding interactions (Parikh & Chorover, 2006). 
Binding is further influenced by steric effects (Neu & Marshall, 1990). The relative 
importance of these will depend on the net surface charge of a NP (neutral, negative or 
positive). It has been reported that amphiphilic molecules embedded in the walls of Gram 
negative (e.g. lipopolysaccharides, phospholipids) and Gram positive (e.g. teichoic acid and 
lipoteichoic acid) bacteria are the first molecules involved in binding with NPs (Makin & 
Beveridge, 1996). These amphiphilic molecules have a hydrophobic and a hydrophilic region 
that are able to interact with NPs approaching the bacterial cell wall. Lipopolysaccharides 
are reported to bind to GeO2, α-Fe2O3 and α-Al2O3 surfaces (Parikh & Chorover, 2008).  
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Lipoteichoic acid is found to interact with the surface of TiO2 NPs (Rice & Wickham, 2005; 
Wickham & Rice, 2008). These interaction forces facilitate the adhesion of a NP onto the cell 
wall of bacteria, and this is followed either by the endocytic uptake of the NP or the 
formation of nanoscale pores in the cell wall (Figure 3). The latter in particular permits the 
passage of more MONPs into the interior of the bacterium where they can interact with a 
range of intracellular components such as lipids, enzymes, proteins, DNA and other 
intracellular organelles (Raghunath & Perumal, 2017). Pores also allow leakage of 
intracellular components to the extracellular milieu. All these effects together result in the 
death of the bacterium (Raghunath & Perumal, 2017). MONPs with a positive surface charge 
are taken up to a greater extent than other NPs due to the prevalence of negative charges 
at the cell wall. This might be responsible for the selective action of some MONPs (Chung et 
al., 2004). 
 
 
3.1.2. Production of reactive oxygen species  

As noted above, ROS production is thought to be the principal mechanism underlying the 
antimicrobial activity of MONPs (Raghunath & Perumal, 2017). ROS comprise superoxide 
anions (O2

-), hydroxyl radicals (OH.), hydrogen peroxide (H2O2) and organic hydroperoxides. 
ROS are normally neutralized or deactivated by the protective mechanisms present in 
bacterial cells, either enzymatically (catalase or superoxide dismutase) or by reducing 
substances such as thiol or sulphur containing compounds (e.g. glutathione) (Fatma 
Vatansever et al., 2014; Slavin, Asnis, Häfeli, & Bach, 2017a). However, these are limited in 
their effects and can be overwhelmed by very high ROS concentrations as discussed earlier.   
 
MONPs dissolve and release metal ions (e.g. Fe3+, Co2+, Mn2+ and Cu2+) both in the medium 
surrounding the bacteria and in the cytoplasm. Thus, after endocytic uptake of a NP into the 
bacteria, a certain quantity of metal ions is released into the cytoplasm. Metal ions can also 
easily diffuse through the cell wall of the bacterium. These two processes result in the 
generation of ROS inside the cell (Pereira & Oliveira, 2012). When ROS production 
overwhelms the cellular antioxidant defence system, oxidative stress results (Imlay, 2003; 
Imlay & Linn, 1988; Paravicini & Touyz, 2006; Storz & Imlay, 1999). This is associated with 
damage of many key biomolecules inside a micro-organism, including carbohydrates, 
proteins, lipids, and genetic materials (Figure 3). Oxidative stress can also lead to depletion 
of reduced glutathione (Jahnke et al., 2016; Madl, Plummer, Carosino, & Pinkerton, 2015), a 
compound which has an important role in scavenging and detoxifying ROS molecules 
(Ramalingam, Parandhaman, & Das, 2016). For instance, exposure of E. coli to ZnO and TiO2 
resulted in depletion of reduced glutathione (Ashutosh, Pandey, Singh, Shanker, & Dhawan, 
2011). 
 
The amount of ROS produced is controlled by the physicochemical properties of NPs, 
including their surface area, diffusibility and electrophilic nature (Raghunath & Perumal, 
2017). For example, Cu2O NPs have higher antibacterial activity than CuO NPs, indicating 
that the oxidation state of the metal plays a role in toxicity (Meghana et al., 2013). In this 
case, O2 can oxidise Cu+

 in Cu2O to Cu2+, which can in turn react with superoxide (O2
−), 

leading to sustained oxidative stress (Meghana et al., 2013). Superoxide molecules may 
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reduce Cu2+ to Cu+, thereby generating H2O2. The latter can react with Cu+ to generate OH− 

(Nieto-Juarez, Sienkiewicz, & Kohn, 2010; Slavin, Asnis, Häfeli, & Bach, 2017b). Higher 
concentrations of OH− have been detected in cells treated with CuO NPs than those treated 
with Cu2O NPs (Slavin et al., 2017b). 
 
In addition to the production of ROS via the metal ions released from their surfaces, MONPs 
frequently have electron donating surfaces (Sawai et al., 1996). This endows them with the 
ability to generate ROS upon exposure to UV light and/or oxygen. This can lead to bacterial 
death via a process termed photokilling. Photokilling is a mechanism particularly 
characteristic of MONPs containing transition metals (Hongjun & Lianzhou, 2014), but ROS 
can be also generated from non-transition metal based materials upon exposure to light 
(Fatma Vatansever et al., 2014; Sawai et al., 1996). After exposure to light, the ROS 
produced lead to the disruption of the cell membrane, loss of permeability, damage to 
proteins and DNA, and damage to enzymes. Complete killing of bacteria was reported after 
exposure to titanium oxide (TiO2) NP under UV light for 50 min (Tsuang et al., 2008).  
 
3.1.3. Disturbance in metal/metal ion homeostasis 

Metal ions are essential to regulate the metabolic activity of micro-organisms (Gaballa & 
Helmann, 1998). Excess metal ions disrupt homeostatic processes and therefore metabolic 
activity (Raghunath & Perumal, 2017). Excess metal ions can further bind with and cross-link 
genetic material either between or within DNA strands, and hence disrupt the helical nature 
of DNA (Raghunath & Perumal, 2017). Inside bacteria, NPs are constantly undergoing 
dissolution because of the electrochemical potential in solution, leading to a uniform 
distribution in the cell. In contrast, NPs that interact with the cell wall produce a high local 
concentration of ions, causing more toxicity (Hood & Skaar, 2013; Skaar & Raffatellu, 2015).  
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Figure 3: Mechanisms of action involved when metal oxide nanoparticles act as antibacterial agents.  
 

3.1.4. Genotoxicity 

MONPs are reported to damage both chromosomal DNA (single circular strands carrying the 
genetic material essential for daily metabolic activity) and plasmid (not essential for daily 
survival, but important at times of stress) DNA in bacteria. Such damage results in DNA 
oxidation and fragmentation (Giannousi, Lafazanis, Arvanitidis, Pantazaki, & Dendrinou-
Samara, 2014), and has been noted with E. coli and Bacillus subtillis exposed to Cu2O NPs 
(Giannousi et al., 2014).   

 
3.2. Antiviral activity 

MONPs are reported to act as antiviral agents through the attachment of the particles to the 
surface of the virus (Aderibigbe, 2017). This interferes with the interactions between 
binding sites at the exterior of the virus and specific receptors on the surface of the host 
cell, and therefore inhibits virus entry into the cell (Figure 4). For example, an in vitro study 
showed that Cu2O NPs interacted with the surface of hepatitis C, inhibiting its entry into 
Huh7.5.1 cells and consequently inhibit viral replication (Hang et al., 2015). In addition, 
MONPs can be used for the delivery of a therapeutic agent (either chemically or physically 
attached onto the NP surface). This has been exemplified for IONPs, which were employed 
as targeted delivery systems carrying a DNAzyme for the treatment of hepatitis C  (Ryoo, 
Jang, Kim, Lee, Bo, et al., 2012). In vivo studies on mice showed that the IONPs accumulated 
in the hepatocytes and macrophages in the liver, suggesting they have potential for the 
treatment of hepatitis C (Ryoo, Jang, Kim, Lee, Bo, et al., 2012).  
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Figure 4: Mechanisms of action of metal oxide nanoparticles as antiviral agents.  

 
3.3. Antiparasitic activity 

The antiparasitic activity of MONPs involves the production of sufficiently large amounts of 
ROS to overcome the defence systems of the parasite. The production of ROS is initiated by 
metal ions released from the NPs (Aderibigbe, 2017) as previously discussed in Section 3.1.2. 
For instance, in vitro treatment of Gigantocotyle explanatum with different concentrations 
of ZnO NPs was found to kill the parasite via this route (Khan et al., 2015a). An increase in 
ROS has been associated with an increase of the activity of protective enzymes such as 
superoxide dismutase (Sawai et al., 1996), but at high concentrations of ZnO NPs (240 μg 
/ml), this protective system appeared to be disrupted, possibly due to the saturation of 
enzymes as a result of over production of hydroxyl ions and other ROS rendering the 
detoxification mechanism ineffective (Khan et al., 2015a).   
 
4- TRANSLATION OF MONPS TO THE CLINIC 

There are currently no MONPs formulations for antimicrobial applications in the list of FDA-
approved nanomedicines (Bobo et al., 2016), despite the very significant amount of research 
work that has been undertaken (Table 1). To date, IONPs are the only MONPs approved by 
the FDA, with applications for both imaging and the treatment of iron deficiency (Anselmo & 
Mitragotri, 2015, 2016; Bobo et al., 2016). However, most of these IONP formulations were 
withdrawn and discontinued for use in the clinic (Anselmo & Mitragotri, 2015). This might 
be a result of several associated side-effects (e.g. severe lower back pain and life 
threatening hypersensitivity reactions) or lower imaging efficacy compared to other MRI 
agents (Yi-Xiang, 2015). FDA approval of these IONP formulations involved many 
physicochemical and biological tests at the preclinical and clinical stages. However, these did 
not fully guarantee biological safety and efficacy, and consequently additional tests might 
be required in the future. This could place obstacles to the development of MONPs for 
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antimicrobial activity. However, there are potentially low-hanging fruit: Ferumoxytol, which 
contains IONP coated with polyglucose sorbitol carboxymethylether, is an extremely safe 
material currently used in the clinic (Anselmo & Mitragotri, 2015; Spinowitz et al., 2008; 
Spinowitz et al., 2005). Given that IONPs have been shown to have antibacterial, antiviral 
and anti-parasite activity, the antimicrobial activity of Ferumoxytol would appear to be 
worthy of investigation. 
 
The limited number of MONPs being processed into FDA approval might be a result of a lack 
of attention being paid to the biological and technical perspectives essential for translation 
to the pre-clinical and clinical stages. Key questions to be considered comprise biological 
challenges such as: 

(1) Are the MONPs stable in the blood plasma? 
(2) Can they cross key biological barriers such as the epithelium layer, and 

survive the gastrointestinal pH and high ionic strength of physiological fluids?  
(3) Can they be selectively targeted to and taken up by an infected organ/cell? 
(4) Do they initiate an immune response? If so, is this beneficial or detrimental? 
(5) Can they be eliminated safely from humans after treatment? 
(6) What are the potential biotoxicities associated with long-term 

administration?   
 

A number of technical questions also need to be taken into account:  
(1) What issues might be faced in large scale production? 
(2) What physicochemical properties tests (in-process and final product) are 

required to allow reproducible production of MONPs? 
 
These issues will be discussed in turn below. 
 
4.1. Biological challenges 

4.1.1. Biological barriers 

There are several barriers which must be overcome by MONPs in vivo in order for them to 
have a pharmacological effect. These barriers differ according to the route of 
administration. This review will consider the key biological barriers encountered by NPs 
after application by intravenous, oral, and topical routes of administration (Figure 5). 
 
Intravenous administration of NPs has the advantage of delivering the NP directly into the 
blood stream. However, many barriers must still be overcome to reach a particular desired 
organ. For example, plasma proteins are quickly adsorbed onto NP surfaces in the blood, 
forming a protein corona in a process known as opsonization (Garnett & Kallinteri, 2006). 
Adsorption is associated with conformational changes of the proteins, and this enhances NP 
recognition and elimination by macrophages of the reticuloendothelial system (RES), a part 
of the immune system localized in the lymph nodes, liver and spleen (Garnett & Kallinteri, 
2006). Removal of NPs by the RES is very sensitive to their size. Particles greater than 200 
nm are rapidly cleared by the RES of the liver and spleen (Faraji & Wipf, 2009; Kulkarni & 
Feng, 2013; Luís, Barros, Tsourkas, Saboury, & Cardoso, 2012). However, smaller particles 
are able to avoid RES uptake, and the literature reports that there is an inverse relationship 
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between particle size and uptake by the RES: particles of smaller sizes persist for a longer 
time in the systemic circulation than larger particles (Hoshyar, Gray, Han, & Bao, 2016). This 
has been noted for example with Au NPs (Hoshyar et al., 2016). Uptake by the RES can 
further be ameliorated by NP surface modification prior to administration: for instance, the 
attachment of polyethylene glycol (PEG) is reported to reduce protein adsorption and 
increase the circulation time (Stolnik, Illum, & Davis, 1995). IONPs coated with PEG 
accumulate to a lesser extent in the liver and spleen than their naked analogues, making 
them more available in the systemic circulation to be taken up by other organs (Fong-yu, Su, 
Yang, & Yeh, 2005).  
 

 
 
 Figure 5: Challenges potentially facing NPs after oral, topical, and IV administration 

 
The next obstacle faced by the NP will be the need to transit across the endothelium layer of 
the blood vessels into the extracellular fluid (Figure 5). The endothelial cells of the blood 
vessel membrane are tightly adhered to each other, with a gap of less than 2 nm between 
them (Garnett & Kallinteri, 2006). Additionally, they are supported on a basement 
membrane which only allows the passage of particles smaller than 15 nm. This further 
reduces the possibility of extravasation of NPs across the vascular endothelium (Garnett & 
Kallinteri, 2006). In some organs, such as the liver, the endothelium layer is more permeable 
and particles up to 100 nm in size can pass through (Braet et al., 2007). The spleen is also 
more accessible to larger particles (200 to 250 nm) (Cataldi, Vigliotti, Mosca, & Cammarota, 
2017; Moghimi et al., 2017; Moghimi, Hunter, & Andresen, 2012). This means that if NPs are 
able to enter the systemic circulation, they are likely to accumulate in the liver and spleen. 
In contrast, other organs such as the brain are highly inaccessible to NPs, with very tight 
junctions between their endothelial cells, and thus are extremely difficult to target (Greene, 
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Campbell, Greene, & Campbell, 2016). However, metal-containing NPs which are able to 
cross the blood brain barrier (BBB) in animal models have been designed. One example of 
such a formulation comprises PEGylated gold NPs with particle size of 5 nm (Cheng et al., 
2014). More examples of inorganic NP that are able to cross BBB can be found in a recent 
review by Zhou et al. (Zhou, Peng, Seven, & Leblanc, 2018).  
 

If NPs manage to overcome the previous barriers to reach their target organ or tissue, they 
now have to cross the extracellular fluid, a jelly-like fluid filled with polysaccharides, 
proteins and collagen (Garnett & Kallinteri, 2006). This contains some water channels that 
could possibly be used for NP transportation (Garnett & Kallinteri, 2006). However, the 
nature of the extracellular matrix imparts a potential problem due to the possibility of 
protein adsorption onto the surface of the NP, leading to particle aggregation (Yue-Jian et 
al., 2010). Again, this might be obviated by the grafting of PEG to the particle surfaces. 
 
After crossing the extracellular fluids, NPs are typically taken up by cells through the 
endocytic pathways (Porter, Moghimi, Illum, & Davis, 1992). MONPs must be able to 
withstand the acidic pH of the endosomes/lysosome, and/or escape into the cytoplasm of 
cells to exert their antimicrobial activity. However, IONPs comprise the only metal oxide 
system that has been extensively explored in terms of its biological fate. They were found to 
be significantly dissolved within the endosomes of stem cells in less than a month 
(Desboeufs, Michel, Pellegrino, Lalatonne, & Wilhelm, 2016). Given that a key part of the 
antibacterial activity of MONPs arises from metal ions being released into solution upon 
dissolution this may not be an issue in terms of their antimicrobial efficacy, but further 
investigations are required.   
 
Oral administration of NP is likely to be favourable compared to IV administration as it is 
patient friendly and does not require trained medical staff or close medical observation 
after administration. However, orally administrated NP face additional challenges to those 
discussed for the intravenous route (Figure 5). These include the pH variation, potential for 
enzymatic degradation and high salt concentrations in the gastrointestinal tract 
(encouraging particle aggregation), and the need to cross its endothelium to enter the 
systemic circulation. Given that inorganic compounds such as MONPs are generally not 
endogenous, there are no mammalian enzymes which can digest them. Therefore, the 
digestive impact on inorganic NPs is generally not studied as an independent variable 
(Mccracken, Zane, Knight, Dutta, & Waldman, 2013).   
 
The gastrointestinal fluids have a range of pH values ranging from acidic (in the stomach) to 
neutral and mildly alkaline pH (in the small intestine). This will affect both the surface 
charge and solubility of MONPs. For example, at acidic pH, cations neutralize the negative 
surface charge of TiO2 NPs, resulting in particle aggregation; upon moving the NP into 
alkaline pH, the negative surface charge is returned and the particles disaggregate 
(Finnegan, 2006; Godinez & Darnault, 2010; Guiot & Spalla, 2012; Romanello & Cortalezzi, 
2013).  These effects can be mitigated though coating the NP; for instance, coating TiO2 NPs 
with natural organic matter (phenolic and carboxylic compounds) was found to be efficient 
in stabilizing them against aggregation (Romanello & Cortalezzi, 2013). A number of other 
MONPs have also been relevealed to aggregate when suspended in simulated biological 
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fluids (Laijin Zhong, Yu, & Lian, 2017), with the colloidal stability found to lie in the order 
Fe3O4 < CuO < TiO2 < CeO2 < ZnO in all fluids tested (Laijin Zhong et al., 2017). The 
aggregation was found to occur because of changes in surface charges and the high salt 
concentrations of simulated biological fluids (Laijin Zhong et al., 2017). NP dissolution can 
also be a problem:  γ-Fe2O3 NPs were reported to dissolve at the acidic pH of the stomach, 
relasing their metal ions into the systemic circulation (Chamorro et al., 2015).  
 
The next expected barrier for NPs applied orally is the requirement for them to penetrate 
the mucus layer and the gastrointestinal epithelium layer to be available for the systemic 
circulation. The mucus layer is a jelly-like layer composed of water and proteins (mucin) 
which acts as a semipermeable barrier between the lumen and epithelium layer (Jeong et 
al., 2010), hindering the penetration of MONPs into the latter (Fröhlich & Roblegg, 2012). 
The passage of NPs through a mucus layer depends on their size and surface charge (Avdeef 
& Testa, 2002). Generally, neutral and positively charged NPs are able to penetrate more 
easily through the mucus layer (Avdeef & Testa, 2002). However, the situation is 
complicated and the NPs may have an influence on the composition of mucus layer: silver 
NPs have been reported to induce secretion of mucus of abnormal mucin composition 
(Jeong et al., 2010). The abnormality of mucin might be indicative of pathologic regions and 
requires further investigation to explore the potential toxicity of MONPs administrated 
orally (Jeong et al., 2010). 
 
If NPs pass through the mucus layer, they next have to cross the epithelium of the 
gastrointestinal tract. The epithelial layer in the gastrointestinal tract is composed of cells 
linked together by intercellular junctions, restricting passage between them.  All epithelia 
reside on a basal membrane, which separates them from the underlying connective tissue 
containing capillaries, lymph vessels, and lymph follicles. Therefore,  MONPs have also to 
cross the basal membrane and the connective tissue to reach the systemic circulation 
(Fröhlich & Roblegg, 2012). This can be a problem: after oral administration of silver NPs 
into rats, a large number of NPs were detected in the connective tissue under the epithelial 
layer of both the small and large intestine. This was found to induce abnormal mucin 
composition in the intestinal mucosa (Jeong et al., 2010). Therefore, further investigation 
should be carried out into the pathophysiology of the gastrointestinal tract after oral 
administration of MONPs.  
 
Topical application of MONPs is another route to be considered for antimicrobial therapy 
(Figure 5). After topical application, NPs either penetrate to deep skin layers for local 
effects, or permeate to the bloodstream for systemic activity (Labouta & Schneider, 2013). 
The biological barriers to the former, for local antimicrobial activity, are likely to be less 
challenging than getting the NPs into the systemic circulation. Healthy skin is divided into 
the epidermis and the dermis. In addition, there are two physical barriers in the epidermis: 
the stratum corneum (the outmost layer of the epidermis), and tight junctions (intercellular 
junctions that seal adjacent cells forming the stratum corneum layer) (Brandner et al., 2015; 
Jatana & DeLouise, 2015). Intact healthy skin does not allow permeation of NPs, but this is 
not the case for inflamed, injured, or infected skin (Yoshioka, Kuroda, Hirai, Tsutsumi, & 
Ishii, 2017). A significant amount of research has been performed to explore the penetration 
of NPs through healthy skin, but there is still doubt regarding the therapeutic benefit of 
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their topical application in humans as most studies use animal rather than human skin 
(Yoshioka et al., 2017), and different authors have reported strikingly different observations.  
 
The penetration of ZnO and TiO2 NPs through skin has been explored, but the results are 
contradictory. Some studies reported permeation, while others did not. For example, Tan 
and his colleagues observed that TiO2 NPs of 10 to 50 nm could permeate human skin in vivo 
(Tan, Commens, Burnett, & Snitch, 1996), but in another study 20 nm TiO2 NPs failed to 
penetrate human skin both in vivo and ex vivo (Pandey et al., 2014). ZnO particles < 200 nm 
in size (Durand, Habran, Henschel, & Amighi, 2009) and of 30 nm (Xinyu, Ishida, & Kiwada, 
2007) were both found to be unable to penetrate human skin in vitro, and ZnO of 80 nm was 
unable to penetrate porcine skin ex vivo (Gamer, Leibold, & Ravenzwaay, 2006). In contrast, 
Fe2O3 NPs ranging from 4.6 to 10 nm could pass through incised mouse skin in vitro (Lee et 
al., 2010). The different results reported are likely due to the use of varied experimental 
protocols, since there is no universally agreed approach for such studies: while some 
authors used intact skin, others employed incised or inflamed skin; some researchers add 
additives to their NP formulations (e.g. surfactants) but others do not; and different 
equipment was employed for qualitative and quantitative studies. Therefore, a robust 
correlation between the physicochemical properties of NP (size, material, surface charge, 
shape) and uptake is still lacking. Further, the precise role of formulation additives (e.g. 
permeation enhancers) and the condition of the skin (healthy skin versus inflamed or 
infected skin) on NP penetration needs further investigation (Labouta & Schneider, 2013; 
Yoshioka et al., 2017).  
 
There are a range of factors which can affect the penetration of MONPs: (1) skin factors (e.g. 
type of skin, animal or human skin, intact vs. incised skin, hairy skin vs. non-hairy skin); (2) 
experimental factors (e.g. concentration of NPs, application time, skin area, in vivo or in 
vitro model); (3) formulation factors (e.g. particle size, surface charge, material type, 
additives, particle stability (aggregate vs. individual particles) and the vehicle used to 
disperse the NP). All of these need to be controlled to obtain detailed insight into NP 
uptake. For more information, readers are directed to reviews written by Yoshioka et al. 
(Yoshioka et al., 2017) and Labouta and Schneider (Labouta & Schneider, 2013).  
 
Finally, it could be expected that the use of MONPs to treat topical and local antimicrobial 
activity might be more applicable than trying to target the systemic circulation via the skin, 
because microbial infections are associated with skin inflammation and increase of the 
leakiness of the vascular endothelium (Bray & Geisbert, 2005). This means there is a high 
likelihood of NP accumulation at the site of infection. However, further studies on the 
pathophysiological anatomical changes accompanying the application of MONPs is still 
required to determine their safety.   
 
4.1.2. Immune response 

The immune system can both inhibit or potentiate the antimicrobial activity of MONPs. 
Hinderance of their antimicrobial activity can arise due to opsonization as previously 
discussed in Section 4.1.1, followed by activation of the complement pathway of innate 
immunity (a set of proteins which help in the recognition of foreign particles by 
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macrophages) (Szeto & Lavik, 2017). This in turn enhances the clearance of NPs by the RES 
of the liver and spleen, as has been noted for IONPs (Jain, Reddy, Morales, Leslie-Pelecky, & 
Labhasetwar, 2008). The activation of the complement pathway can also cause or 
exacerbate life-threatening hypersensitivity reactions. For example, the administration of 
dextran coated IONPs (e.g. Sinerem, Combidex, Feridex) has been associated with 
hypersensitivity reactions as a result of complement pathway activation. This led to their 
withdrawal from the market after being approved by the FDA for MRI imaging or treatment 
of anaemia (Banda et al., 2014; Chao et al., 2013)  
 
On the other hand, both the innate and adaptive arms of the immune system have been 
reported to be activated by MONPs, which can be used as adjuvants (materials added to 
vaccines to boost the immune response) (Maughan, Preston, & Williams, 2014; Moreira, 
Neto, Kipnis, & Junqueira-kipnis, 2017). This effect of MONPs increases the possibility of 
invading pathogen removal. The activation of innate immunity involves immune cell 
recruitment and activation of antigen-presenting cells (APCs) such as monocytes, 
macrophages and dendritic cells. Activation of adaptive immunity involves activation of 
different types of T helper (Th) cells and B cells producing specific antibodies against the 
invaded pathogen (Mccomb, Thiriot, Krishnan, & Stark, 2013). This is summarized in Figure 
6.  
  
MONPs have been reported to modulate the immune system in a significant number of 
studies (Table 2) (Maughan et al., 2014). For instance, C57BL/6 mice were vaccinated with 
the model antigen ovalbumin (OVA) and Co3O4 NPs (CNP) and their efficacy compared with 
the Imject alum adjuvant. CNPs stimulated T helper cells with a more balanced Th1 (cellular 
immunity, potent against intracellular infections) to Th2 (antibody immunity, effective 
against extracellular pathogens) ratio than alum. Anti-OVA antibody production was less 
pronounced with CNP than alum, which is indicative of lower risks of allergic responses  
(Cho et al., 2012).  
 
IONPs are reported to have time and dose dependent immunomodulatory effects both in 
vitro (M2 macrophage cell line) (Rojas et al., 2016) and in vivo (BALB/c mice) (Shen, Wang, 
Liao, & Jan, 2011). In vivo immunization of mice with IONPs coated with a surface protein 
from the merozoite parasite via intramuscular, subcutaneous or intraperitoneal routes 
(Pusic et al., 2013), all resulted in activation of adaptive immunity against the pathogen (e.g. 
B cell activation, with production of a significant level of anti-parasite antibodies and 
production of splenocyte cytokines (IL-4 and IFN-γ)). In other work (Pusic et al., 2013), bone 
marrow-derived dendritic cells treated with IONPs were reported to be activated. All these 
effects indicate that the immune response could be used to ameliorate microbial infections 
via the application of metal oxide NPs. 
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Figure 6: Immune response both innate and adaptive immunity against the invaded pathogens  
 
Immunostimulatory effects have also been observed with TiO2 NPs, which activated innate 
immunity when applied to the lungs of rats in vivo (Duffin, Tran, Brown, Stone, & 
Donaldson, 2007). TiO2 NP are also reported to stimulate human macrophages (Lucarelli et 
al., 2004), and liver cells in mice after intraperitoneal injection (Cui et al., 2011). TiO2 NPs 
with different physical properties (polymorphs, particle size/shape) applied to dendritic cells 
resulted in the activation of both innate and adaptive immunity (Schanen, Karakoti, Seal, Iii, 
& Warren, 2009), (Winter et al., 2011). Zirconium dioxide (ZrO2) has also been reported to 
induce adaptive immunity (e.g. activation of T helper cells) (Hanley et al., 2009). In vivo, zinc 
oxide NPs administered with OVA generated an inflammatory response and activation of 
adaptive immunity in mice (Roy et al., 2014; Matsumura et al., 2010).  
 
Such activation of the immune system by MONPs could offer an alternative route to 
microbial eradication. However, further studies should be performed to develop a 
formulation that could activate the immune system without causing hypersensitivity 
reactions. Further investigations are also required to explore how chemical and physical 
properties such as material composition, size, shape, surface charge and hydrophobicity 
impact the immune system, as there is limited literature regarding this. This is particularly 
important because it is difficult to change one parameter without affecting others: for 
example, it is hard to change particle size without affecting the surface charge (Labouta & 
Schneider, 2013; Pasquale, Preiss, Silva, & Garçon, 2015). 
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Table 2: Immunomodulatory effects of metal oxide nanoparticles 

Name Study details 
Immunomodulatory 

effect 
Reference 

Co3O4 combined with an 
antigen model, OVA 

In vivo immunization 
with C57Bl/6 Mice 

Induces adaptive 
immunity e.g. induction 
of different types of T 
helper (Th) cells (Th1, 

Th2 and Th17 cells) 
Low level of antigen 

antibodies e.g. IgE and 
IgG1 

(Cho et al., 2012) 

IONPs 
(Fe3O4) 

In vitro test on M2 
macrophages 

Time dependant 
immunomodulatory 

effects with increased 
production of interleukin 

(IL) 10 

(Rojas et al., 2016) 

IONPs 
(Fe3O4) 

In vivo test on BALB/c 
mice 

Decrease of the 
production of splenocyte 
cytokines (IL-4 and IFN-

γ) 

(Shen et al., 2011) 

IONPs (Fe3O4) coated 
with Merozoite surface 

protein 1 

In-vivo immunization of 
mice 

Higher production of IL-4 
compared to IFN-γ; 

increase production of 
anti-parasite antibodies 

(Pusic et al., 2013) 

IONPs 
(Fe3O4) 

In vitro tests on bone 
marrow-derived 

dendritic cells (BMDCs) 

Activate APCs 
increased IL-6, TNF-α, 

IFN-γ, and IL-12 
production, 

upregulation of dendritic 
cells 

(Pusic et al., 2013) 

TiO2 In vivo test on mice 
Increases influx of 

neutrophil into lung of 
mice 

(Duffin et al., 2007) 

TiO2 

In vitro test on human 
macrophages, PMA-

differentiated 
myelomonocytic U-937 

cells 

Induction of Toll-like 
receptors (TLRs), 

proteins with a major 
role in the immune 

system 

(Junqueira-Kipnis, 
Marques Neto, & Kipnis, 

2014) 

TiO2 

In vitro tests on 
denderitic cells derived 
from human umbilical 
vein endothelial cells 

Induces proliferation of  
naïve CD4+ T cells, 

enhance Th1 response 
increase IFN-γ and TNF-α 

production 

(Schanen et al., 2009) 

TiO2 
In vitro tests with bone 

marrow derived 
dendritic cells 

Induction of surface 
proteins important in 
immunity (MHCII and 

CD80) 

(Winter et al., 2011) 

ZrO2 

In vitro test with human 
macrophages, PMA-

differentiated 
myelomonocytic U-937 

cells 

Induction of TLRs (Lucarelli et al., 2004) 

ZnO 
In vitro tests with 
peripheral blood 

mononuclear cells 

Induced IFN-γ, TNF-α, 
and IL-12 

(Hanley et al., 2009) 
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ZnO 
In vivo test with BALB/c 

mice 
Induction of TLRs (Roy et al., 2014) 

ZnO 
In vivo imuunization test 

on BDA/1J mice 

Increased levels of IL-4, 
IL-5 and IL-13 

Activation of Th2 cells 
(Matsumura et al., 2010) 

ZnO 
In vivo immunization 
with mice (BALB/c) 

High levels of IgG1 and 
IgE 

Induction of IL-2, IL-4, IL-
6 and IL-17 

Lower levels of while IL-
10 and tumour necrosis 

factor-α. Increased 
number of eosinophils 

and mast cells. High 
level of Th2 cells 

(Roy et al., 2013) 

  
4.1.3. Targeting of MONPs into infected organs 

Selective delivery of NP into the site of microbial infection can be passive, depending on the 
properties of the blood vessels at the site of infection as previously discussed in section 
4.1.1, or active (via coating the NP with specific ligands targeting receptors at the cell 
surface). Although active targeting strategies have been widely explored in the literature 
there are to date no nanomedicine products with active targeting abilities that have been 
approved by the FDA for the treatment of any type of disease (Bobo et al., 2016; Kamalya, 
Xiaoa, Pedro M. Valenciab, & Farokhzad, 2009; Ventola, 2017a). This reveals the challenges 
faced in targeting MONPs to infected organs while avoiding harmful effects due to 
accumulation in off-target organs. One example of a targeted nanoscale formulation that is 
being investigated is SGT-53 (SynerGene Therapeutics), which contains an anti-transferrin 
antibody fragment that binds with a transferring glycoprotein receptor on cancer cells (Bobo 
et al., 2016). This agent is in Phase 1 and 2 clinical trials for the treatment of solid tumours, 
glioblastoma, and metastatic pancreatic cancer (Ventola, 2017a).  
 
4.1.4. Elimination 

It is generally a prerequisite for any formulation to be eliminated from the human body 
after administration to avoid the hazards of long term toxicity due to accumulation in the 
tissues (Ionescu & Caira, 2005). MONPs are not a target for enzymatic degradation (as 
discussed in Section 4.1.1). This means that controlling particle size is essentially the only 
strategy that can be employed to enhance their elimination through the kidneys (this 
requires particle size < 10 nm), especially in long term administration. NPs containing 
essential metals such as IONPs are reported to be reused as a nutritional source by the 
body; this is accompanied by an increase in iron ion levels, but these return to normal levels 
within three weeks after intravenous administration (Jain et al., 2008). This results in lower 
cytotoxicity at the therapeutic dose (Bassett, Halliday, & Powell, 1986) than might be the 
case where non-endogenous metals are used. The biological fate of MONPs needs further 
study however (Desai, 2012), particularly in terms of their potential toxicological effects 
during short and long term administration.   
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4.1.5. Toxicology  

MONPs can be synthesized either through traditional chemical methods or green/biogenic 
methods (using plant extracts or micro-organisms). The toxicological properties of some 
chemically synthesized MONPs were studied, and these were reported to be toxic both in 
vitro and in vivo due to the release of ROS and damage of intracellular components such as 
proteins, enzymes and DNA, and interference with the respiratory chain of the mitochondria 
in human cells (Seabra & Durán, 2015). It was speculated that the green synthesis of MONPs 
might be associated with lower toxicity to human cells due to (1) the absence of residues 
from toxic organic solvents and additives (e.g. surfactants) required for traditional chemical 
synthesis and (2) the possibility of the particles produced being coated with proteins or 
other components from the biogenic synthesis, forming a corona that might be more bio-
compatible than toxic materials adsorbed in the chemical synthesis (Seabra & Durán, 2015). 
Table 3 summarizes the cytotoxicity of some MONPs synthesized by both chemical and 
biogenic methods.   
 
The biogenic synthesis route was found to decrease the cytotoxicity of Co3O4 in terms of 
biocompatibility with human red blood cells and macrophages (Khalil et al., 2017). However, 
biogenically synthesized Fe3O4 NPs produced in Magnetospirillum gryphiswaldense were 
compared with Fe3O4 synthesized by a standard co-precipitation method for their 
cytotoxicity to L929 mouse fibroblast cells, and both showed comparable cytotoxicity (Han 
et al., 2007). This is contrary to another study (Yaaghoobi, Emtiazi, & Roghanian, 2012) 
where cell lysis of human peripheral blood cells after exposure to commercially produced 
Fe3O4  was noted, while there was no cytotoxicity or morphological changes observed with 
Fe3O4 NPs synthesized with a green method (Yaaghoobi et al., 2012).   
 
In vivo, TiO2 synthesized by a green method was reported to show no cytotoxic effect on 
Wistar rats (Wang & Fan, 2014), while chemically synthesized TiO2 NPs were highly toxic in 
mice, resulting in spleen damage, immune dysfunction, alteration of gene expression, and 
apoptosis (Babitha & Korrapati, 2013). Other studies revealed that biogenically synthesized 
NPs were also associated with cytotoxicity: for example, Co3O4 NPs synthesized by green 
(Cho et al., 2012) and chemical (Papis et al., 2007; Ponti et al., 2009) methods have both 
been found to be cytotoxic. Therefore, the safety profile of MONPs generated biogenically is 
still controversial, and further investigation is necessary to understand their toxicological 
properties. For more information on the toxicology of MONPs, readers are directed to a 
recent book chapter (Saquib, Faisal, & Abdulrahman, 2018).  
 

Table 3: Cytotoxicity studies on metal oxide nanoparticles 

Nanoparticle 
composition 

Chemical methods Biogenic methods 

In vitro/ 
In vivo test 

Toxicity 
Reference 

In vitro/ 
In vivo test 

Toxicity Reference 

Aluminium 
oxide (Al2O3) 

L929 and 
BJ* cells  

 

No cytotoxic 
effects 

(Radziun 
et al., 
2011) 

No available cytotoxicity studies 

Antimony 
trioxides 
(Sb2O3) 

Seven types 
of human 
cell lines  

No cytotoxic 
effects 

(Cooper & 
Harrison, 

2009) 

 
No available cytotoxic studies 
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Calcium oxide 
(CaO) 

 Rats 

Areas of 
necrosis,  and 
haemorrhages 
in liver, kidney 

and brain 

(Butt, 
Ejaz, 

Baron, 
Ikram, & 
Ali, 2015) 

No available cytotoxicity studies 

Cobalt oxide 
(Co3O4) 

Human 
lymphocytes 

 

Morphological 
transformation 

and 
genotoxicity 

 

(Papis et 
al., 2007); 
(Ponti et 
al., 2009) 

 

Instilled 
into lung 
of Wistar 

rats 
 

Immuno-
inflammatory 

response 
associated with 

lung damage 

(Cho et al., 
2012) 

 

Cobalt oxide 
(Co3O4) 

Balb 3T3* 
cells 

 

DNA damage, 
inflammatory 

responses 
 

(Chattopa
dhyay et 
al., 2015) 

Human 
RBCs and 

macrophag
es 

Biocompatible 
with no marked 

toxicity 
 

 
(Khalil et 
al., 2017) 

Cobalt oxide 
(Co3O4) 

BEAS-2B* 
cells 

Production of 
ROS 

(Ortega et 
al., 2014) 

Further cytotoxicity studies are required 

Copper oxide 
(CuO) 

A549, lung 
epithelial 
cell line 

 

DNA damage 
 

(Karlsson, 
Cronholm, 
Gustafsso

n, & 
Möller, 
2008) 

 

AMJ-13 
and SKOV-
3 cancer 
cell line 

Cell growth arrest 
 

(Sulaiman, 
Tawfeeq, 
& Jaaffer, 

2018) 
 

Copper oxide 
(CuO) 

MCF-7 cells, 
human 
breast 

cancer cells 
line 

 

Dose and time 
dependant  
autophagy 

(Laha et 
al., 2014) 

 

Dermal 
fibroblast 
cell line 

Cell apoptosis 

(Sulaiman 
et al., 
2018) 

 

Copper oxide 
(CuO) 

Mice 
 

Dose dependent 
apoptosis, 

damage to the 
immune system  

(Siddiqui 
et al., 
2013) 

 

Further cytotoxicity studies are required 

Copper oxide 
(CuO) 

Human 
blood 

lymphocytes 
 

Decreased cell 
viability in a  

conc dependant 
pattern 

(Assadian 
et al., 
2017) 

 

Further cytotoxicity studies are required 

Iron oxide 
(Fe3O4) 

Human 
peripheral 
blood cells 

 

Lysis of cells 
(Yaaghoo
bi et al., 

2012) 

Human 
peripheral 
blood cells 

No morphological 
changes 

(Yaaghoobi 
et al., 
2012) 

Iron oxide 
(Fe3O4) 

L929 mouse 
fibroblast 
cell line 

Viability of cells 
was around 85% 

(Han et 
al., 2007) 

L929 
Viability of cells 
was around 90% 

(Han et al., 
2007) 

Titanium 
dioxide 
(TiO2) 

mice 

Spleen damage, 
immune 

dysfunction, 
alteration of 

gene 
expression, 
apoptosis 

(Wang & 
Fan, 2014) 

Wistar rats 
No cytotoxic 

effects recorded 

 
 
 
 

(Babitha & 
Korrapati, 

2013) 
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Zinc oxide 
(ZnO) 

A549 cells 
 

Decreased cell 
viability 

 

(Cho et 
al., 2012) 

*neuro2A 
cells 

Decreased cell 
viability 

 

(Darroudi 
et al., 
2014). 

*Balb 3T3 cells, immortalized cells developed from primary mouse embryonic fibroblasts; BEAS-2B cells, human 
airway epithelium cells; neuro2A cells, a fast-growing mouse neuroblastoma cell line; BJ cells, normal human 
cells, skin fibroblasts 

 
 
4.2. Technical challenges 

In the pharmaceutical industry, reproducible production of a dosage form is crucial. For the 
nanomedicine field, this requires additional tests to those needed for conventional dosage 
forms and involves determination of NP size, size distribution, surface charge, release of 
active ingredients, purity and surface functionalization (ligands for active targeting) (Desai, 
2012). The stability of the nanomedicine at both the pre-clinical and clinical stages will also 
be vital (Desai, 2012). These properties of NPs are crucial in determining their 
pharmacological effects, which has led the FDA to propose a series of key tests which must 
be undertaken on any new nanomedicine (Table 4).  
 
These tests are essential as they quantify the physicochemical properties of NPs, which in 
turn control their interactions with cells and other biological components and therefore the 
ultimate therapeutic outcome (Lina, Wanga, & Sridharb, 2014). For example, size regulates 
the circulation and navigation of nanomaterials in the bloodstream, penetration across 
physiological membranes, site- and cell-specific localization, and even the induction of 
cellular responses (Feng, 2004; Ferrari, 2008): smaller silver NPs cause greater apoptotic 
effects with certain cell lines (Kim et al., 2012; Sosenkova & Egorova, 2011).  
 
The surface composition determines the surface charge and energy. The latter is relevant to 
the dissolution, aggregation and accumulation of nanomaterials. Surface charge affects 
receptor binding and physiological barrier penetration, governs NP dispersion stability or 
aggregation and is generally estimated in terms of the zeta potential (Lina et al., 2014). For 
example, the high ionic strength of physiological fluids enhances aggregate formation and 
therefore affects the interactions of NPs with cells. Zebrafish embryos were reported 
(Truong, Zaikova, Richman, Hutchison, & Tanguay, 2012) to be  extremely sensitive to gold 
NPs under conditions of low ionic strength, in which the NPs disperse, but not at high ionic 
strength. The surface charge and composition of NPs further affects the composition of the 
protein corona formed after the introduction of NPs into a biological system, which in turn 
influences their interactions with cells (Huinan & Webster, 2007; Lina et al., 2014). The 
chemical composition of a NP has a number of effects in terms of dissolution and cellular 
interactions, all of which alter the viability and functionality of cells. For example, a sub-
lethal pro-inflammatory response was reported with Al2O3 NPs in a murine macrophage cell 
line, while ZnO NPs induced a lethal genotoxic effect (Ralloa et al., 2015).  
 
The shape of a nanomaterial affects cellular uptake, biocompatibility and retention in 
tissues and organs (George et al., 2014; Pal, Tak, & Song, 2007). It was also reported that 
modulation of the shape of NPs can alter their flow in the systemic circulation, adhesion 
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properties with cells, and circulation time (Doshi, Prabhakarpandian, Rea-Ramsey, Pant, & 
Shivshankar Sundaram, 2014; Geng et al., 2009). 
 
In addition to the technical challenges encountered during the manufacture of NPs, other 
obstacles are faced during the evaluation of the pharmacological activity of the 
administrated material, since the simple pharmaco-equilibrium theory used for 
conventional dosage forms (measuring the drug concentration in the blood to reflect 
therapeutic efficacy) cannot be applied (Desai, 2012). The pharmacological activity of 
nanomedicines depends on (1) NP accumulation at the target site, and (2) achieving a high 
efficacy/risk ratio compared to conventional dosage forms (Havel et al., 2016). The 
measured plasma concentrations after nanomedicine application reflect the nature/number 
of circulating NPs and this cannot be directly correlated to pharmacological or toxicological 
effects. 
 
Scaling up NP production is another technical challenge. There are four major methods used 
for the manufacture of MONPs: dry or wet milling, vapour, liquid and solid phase synthesis 
(Tsuzuki, 2009). The milling and vapour phase methods have the disadvantages of producing 
NPs of broad size distribution and in aggregated form, while the liquid method produces 
particles of narrow size distribution but with a high degree of agglomeration. The solid 
phase method gives a product with a uniform size, shape and low level of agglomeration 
(Tsuzuki, 2009). To date the vapour and liquid phase syntheses have been most widely used 
for the synthesis of MONPs. Suitable gas-based techniques include physical vapour 
deposition, chemical vapour deposition, flame pyrolysis, spray pyrolysis, laser ablation, gas 
condensation, and electro-explosion. Liquid approaches found to be effective are, inter alia, 
sol-gel, hydrothermal, solvothermal, sono-chemical, reverse micelle, colloidal and  
microwave syntheses (Tsuzuki, 2009).  
 
Large scale production of MONPs could be performed using batch or continuous flow 
reactors. The latter are likely to be more applicable industrially, owing to batch-to-batch 
variation arising in batch processes. Continuous flow reactors can produce nanoparticles on 
an industrial scale with a high degree of reproducibility (Kwon et al., 2018). Two types of 
continuous flow systems, tubular and spinning disc reactors, have both been found to be 
effective for the synthesis of MONPs (Kwon et al., 2018). However, continuous flow reactors 
tend to result in the production of MONPs with a broader size distribution than those 
synthesized in batch reactors and hence require further optimization. Nevertheless, the 
continuous flow reactor has very high productivity (Kwon et al., 2018), and thus is expected 
to be the industry choice for large scale MNOP synthesis. For more detail, the readers are 
directed to two detailed review papers (Kwon et al., 2018; Tsuzuki, 2009). 
 
Additionally, MONPs are known to aggregate in simulated biological fluids (Laijin Zhong et 
al., 2017) and further investigations are still required to stabilize them in vivo. Often, the 
integration of different components (e.g. polymer, drug, organic solvent, non-solvent, 
surfactant, etc) in the nanomedicine is necessary to achieve the desired performance. In 
some cases, decoration of MONPs using a ligand for targeting purposes might be required, 
and this imparts additional challenges such as determining a reproducible pattern of spatial 
orientation and distribution of the ligand molecules on the surface of the NP (Desai, 2012).   
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Sterilization imparts another challenge for nanomedicines production. The sterilization 
methods applied for conventional pharmaceutical dosage forms (autoclaving, gas 
sterilisation, γ-radiation etc) cannot be applied to nanomedicines because they cause 
particle aggregation and consequently affect pharmacological activity (Bozdag, Dillen, 
Vandervoort, & Ludwig, 2005; Kempner, 2001; Özcan, Bouchemal, Segura-Nchez, Özer, 
2009; Qindeel, 2017). Instead, filtration might be a good choice for nanomedicine 
sterilization (Desai, 2012; Qindeel, 2017). All these technical challenges must be carefully 
considered by scientists developing MONPs for antimicrobial therapy. This requires 
additional experimental work to control the size, size distribution and surface characteristics 
of MONPs at both the pre-clinical and clinical stages. 
 
Table 4: Suitable analytical techniques for determining the physicochemical properties of metal oxide NPs 
(Ali et al., 2016; Lina et al., 2014) 

Physicochemical 
properties 

Technique 
used 

Advantages Restrictions 

Size (hydrodynamic 
size) 

DLS 

Non-destructive analysis 
method  
Rapid and reproducible 
measurement 
Measures in any liquid media, 
solvent of interest 
Hydrodynamic sizes accurately 
determined for monodisperse 
samples 
Modest cost of apparatus 

Insensitive correlation of size fractions 
with a specific composition 
Influence of small numbers of large 
particles 
Limit in polydisperse sample measures 
Limited size resolution 
Assumption of spherical shape samples 

Hydrodynamic 
dimension, 
binding kinetics 

FCS 

High spatial and temporal 
resolution 
Low sample consumption 
Specificity for fluorescent 
probes 
Method for studying chemical 
kinetics, molecular diffusion, 
concentration effect, and 
conformation dynamics 

Limit in fluorophore species 
Limited applications and inaccuracy 
due to lack of appropriate models 

Hydrodynamic size and 
size distribution 
(indirect analysis), 
conformation change 
of protein–NP 
conjugate, structural, 
chemical and 
electronic properties 

SERS 
RS 

TERS 

Enhanced spatial resolution. 
No need for sample 
preparation. 
Complementary data to IR 
No requirement for sample 
preparation 
Potential of detecting tissue 
abnormality 
Increased spatial resolution 
(SERS) 
Topological information of 
nanomaterials (SERS, TERS) 

Limited spatial resolution (only to 
micrometers) 
Extremely small cross section 
Interference of fluorescence 
Irreproducible measurement (SERS) 

Size and shape of 
nanomaterials 

NSOM 

Simultaneous fluorescence and 
Spectroscopy measurement 
Nano-scaled surface analysis at 
ambient conditions 
Assessment of chemical 
information and interactions at 
nano-scale resolution 

Long scanning time 
Small specimen area analyzed 
Incident light intensity insufficient to 
excite weak fluorescent molecules 
Difficulty in imaging soft materials 
Analysis limited to the nanomaterial 
surface 

Molecular weight, 
composition/structure, 
and surface properties 

MS 
High accuracy and precision in 
measurement. 
High sensitivity to detection (a 

Expensive equipment. 
Lack of complete databases for the 
identification of molecular species. 
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very small amount of sample 
required). 

Limited application to date in studying 
nanomaterial bioconjugates. 

Structure and 
conformation of 
bioconjugate, 
surface properties  

IR 
ATR-FTIR 

Fast and inexpensive 
measurement 
Minimal or no sample 
preparation 
requirement (ATR– 
FTIR) 
Improving reproducibility 
(ATR–FTIR) 
Independence of sample 
thickness 
(ATR–FTIR) 

Complicated sample preparation (IR) 
Interference and strong absorbance of 
H2O (IR) 
Relatively low sensitivity in nanoscale 
analysis 

Size and size 
distribution, 
shape, 
aggregation, and 
dispersion 

SEM 
ESEM 

Direct measurement of the 
size/size distribution and 
shape of nanomaterials 
High resolution images of 
biomolecules in natural state  
provided using ESEM  

Conducting sample or coating 
conductive materials required 
Dry samples required 
Sample analysis in non-physiological 
conditions (except ESEM) 
Biased statistics of size distribution in 
heterogeneous samples 
Expensive equipment 
Cryogenic method required for most 
NP-bioconjugates 
Reduced resolution in ESEM 

Shape heterogeneity, 
size and size, and 
dispersion 
 

TEM 

Direct measurement of the 
size/size distribution and 
shape of nanomaterials with 
higher spatial resolution than 
SEM 
Several analytical methods 
coupled 
with TEM for investigation of 
electronic structure and 
chemical 
composition of nanomaterials 

Ultra-thin samples in required 
Samples in non-physiological 
conditions 
Sample damage/alternation 
Poor sampling 
Expensive equipment. 

Size and size 
distribution, 
shape, structure, 
dispersion, and 
aggregation 

STM 

Direct measurement 
High spatial resolution at 
atomic 
scale 

Conductive surface required 
Surface electronic structure and 
surface  
topography 
 

Size and size 
distribution, 
shape, structure, 
sorption, dispersion, 
aggregation 
Surface properties 

AFM 

3D sample surface mapping 
Sub-nanoscaled topographic 
resolution 
Direct measurement of 
samples in dry, 
aqueous or ambient 
environment. 

Overestimation of lateral dimensions 
Poor sampling and time consuming 
Analysis in general limited to the 
exterior of nanomaterials 

Size (indirect analysis), 
structure 
Composition 
Purity 
Conformational 
change 

NMR 

Non-destructive/ non-invasive 
method 
Little sample preparation 

Low sensitivity 
Time consuming 
Relatively large amount of sample 
required 
Only certain nuclei NMR active 

Size, shape and 
structure for 
crystalline materials  XRD 

Well-established 
technique 
High spatial resolution at 
atomic 
scale 

Limited applications in crystalline 
materials 
Only single conformation/ binding 
state of sample 
 

Size/size distribution, 
shape 
structure 

SAXS 
Non-destructive method 
Simplification of sample 
preparation 

Low resolution. 
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Amorphous materials and 
sample in solution  
accessible 

Surface charge and 
particle stability  Zeta -sizer 

Simultaneous measurement of 
many particles (using ELS) 

Electro-osmotic effect 
Lack of precise and repeatable 
measurement 

Abbreviations: AFM, atomic force microscopy; ATR, attenuated total reflection; DLS, dynamic light scattering; ESEM, 
environmental SEM; FCS, fluorescence correlation spectroscopy; FTIR, Fourier transform infrared; IR, infrared; MS, 
mass spectroscopy; NM, nanomaterial; NMR, nuclear magnetic resonance; NPs, nanoparticles; NSOM, near-field 
scanning optical microscopy; RS, Raman scattering; SAXS, small-angle X-ray scattering; SEM, scanning electron 
microscopy; SERS, surface-enhanced Raman scattering; TEM, transmission electron microscopy; TERS, tip-enhanced 
Raman spectroscopy; XRD, X-ray diffraction. 

 

CONCLUSION 

This review explores the potential application of metal oxide nanoparticles (MONPs) for 
antimicrobial applications. We first consider the burden caused by microbial infections 
globally, and then survey the literature investigating the potential of MONPs to ameliorate 
these. There is extensive evidence to show that MONPs are effective in the treatment of 
bacterial infections, although the majority of this comes from in vitro studies. There is also 
promising evidence that MONPs will also be effective against viral and parasite-caused 
diseases. In large part, this efficacy is attributable to MONPs’ mechanism of action involving 
the production of reactive oxygen species, which can circumvent the issue of antimicrobial 
resistance by simultaneously attacking multiple targets on a target organism.  
 
We next consider the potential obstacles which MONP-based medicine will face in vivo, and 
how these might be overcome. Such challenges include delivering the NPs to the 
appropriate part of the body, the cellular response to them in vivo, and difficulties in large 
scale production and ensuring reproducibility in synthesis. The potential toxicity of the NPs 
to healthy cells is considered, as is the ability of MONPs to trigger an immune response in 
vivo. The latter could have both benefits and disbenefits in antimicrobial therapy, and there 
exists the possibility of using MONPs to stimulate the immune system to attack invading 
pathogens. In terms of synthesis, we evaulate routes to achieve high-throughput and high-
reproducibility synthesis of MONPs, as well as the use of “green” synthetic approaches to 
ameliorate off-target toxicity. Finally, we discuss the technical and regulatory challenges 
which need to be overcome for MONP-based antimicrobial medicines to reach the clinic. 
Overall, it is clear that MONPs have great potential as antimicrobial agents, and there are 
potentially some “quick wins” from the repurposing of already-approved nanoparticle-based 
medicines (e.g. those based on iron oxide nanoparticles). There remain however a number 
of hurdles, both technical and biological, to the clinical translation of new MONP-based 
formulations. Future research needs to focus on: i) obtaining a more detailed understanding 
of how MONPs behave in vivo (in terms of their location in the body, pharmacokinetics, 
pharmacodynamics and toxicity); ii) new routes to high-reproducibility synthesis on the 
industrial scale; and, iii) developing a robust panel of quality control assays to produce 
systems appropriate for use in patients. 
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