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ABSTRACT

Experiments and field observations have shown that there are at least two modes of be-

haviour for river plumes. In many cases, the plume turns to the right (in the Northern

hemisphere) on leaving the river mouth and follows the direction of Kelvin-wave prop-

agation. Alternatively, a ‘bulge’ can form in the plume and a fraction of the outflow

volume becomes trapped near the mouth. This paper discusses how bulge formation can

be affected by the vorticity profile at the river mouth. Due to the image effect, regions

of cyclonic vorticity tend to propagate rightwards, while regions of anticyclonic vortic-

ity propagate leftward upon exit from the source. If an outflow consists of regions of

cyclonic vorticity to the left of regions of anticyclonic vorticity, the two image effects

are in competition. We explore this phenomenon using a quasi-geostrophic model with

piecewise-constant potential vorticity, which allows the vorticity profile at the source to

be set as part of the problem. We present analytic solutions valid in the source region and

at the head of the plume, and show that all of the outflow travels rightwards if and only

if the region of cyclonic vorticity is dominant. The initial-value problem for the model

is integrated numerically using the method of contour dynamics, and the full parameter

space is explored. We find that if the cyclonic and anticyclonic contributions cancel, as in

the experiments of Avicola and Huq (2003), then steady solutions are unstable and a bulge

can form downstream of the river mouth.
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1. Introduction

Rivers play an important role in the transport of nutrients, sediment and pollutants

from the land to the sea, and as such the dynamics of coastal outflow plumes is an active

area of study. Outflow plumes that are large enough to be affected by planetary rotation

often comprise two distinct parts: a recirculating ‘bulge’ of fresh water that accumulates

near the river mouth, and a coastally-trapped current that transports some or all of the out-

flow away from the mouth in the direction of Kelvin-wave propagation (Horner-Devine

et al., 2015). This prototypical structure has been observed in the Chang Jiang, Hudson

and Columbia river plumes (Beardsley et al., 1985; Chant, 2008; Horner-Devine, 2009), as

well as in laboratory and numerical studies (Avicola and Huq, 2003; Chen, 2014). How-

ever there are also observations of river plumes that do not form a bulge. For example,

this is true of the Delaware river (Münchow and Garvine, 1993b;a) and the Chesapeake

bay outflow (Donato and Marmorino, 2002). Other plumes may operate in either mode at

different times of the year (Conlon, 1982; Shetye et al., 1993).

In cases where a bulge is present, the fraction of the outflow volume that accumulates

there is strongly affected by vorticity dynamics. Attempts to predict this fraction based on

some measure of vorticity fall into two categories: those that give estimates based on the

vorticity of the bulge (Nof and Pichevin, 2001), and those that depend on the vorticity at

the source (Fong and Geyer, 2002; Horner-Devine et al., 2006). This work is in the spirit

of the second category.

A convenient way to visualise the effect of source vorticity on plume behaviour is

through the so-called ‘method of images’. A vortex near an impermeable boundary moves

as though there is an image vortex, of equal strength and opposite sign, located on the

opposite side of the boundary. The image vortex creates a pressure field that advects the

physical vortex parallel to the boundary. A cyclonic vortex propagates in the direction of

Kelvin-wave flow (rightward in the Northern hemisphere, referred to hereafter as down-

stream), while an anticyclonic vortex propagates upstream due to this image effect. In the
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context of a coastal outflow, regions of cyclonic vorticity increase transport in the coastal

current, while regions of anticyclonic vorticity feed the bulge in the source region, and can

even drive fluid upstream in the direction opposite to Kelvin-wave propagation (Johnson

et al., 2017). The vorticity profile of a real outflow most likely has regions of positive

(cyclonic) vorticity and regions of negative (anticyclonic) vorticity, with the location and

strength of these regions changing due to variations in tides, winds and discharge rate.

To illustrate the impact of the spatial variability of vorticity, consider the following

simple example: an outflow in the Northern hemisphere consists of a region of positive

vorticity on the left, and a region of negative vorticity on the right, looking seaward. Image

vorticity drives a tendency for fluid emerging from each region to turn and propagate into

the other. Alternatively, if the outflow consists of a region of negative vorticity on the left

and a region of positive vorticity on the right, there is no competition and the fluid with

negative vorticity turns upstream unimpeded (Garvine, 2001; Magome and Isobe, 2003).

In general, we will define a ‘competitive region’ of an outflow to be any region where

positive vorticity lies to the left of negative vorticity, and the behaviour of competitive

outflows, i.e., an outflow that is competitive everywhere, is the main subject of this work.

Although it is known that vorticity plays an important role in outflow dynamics, it is

not clear how source vorticity can be controlled–or even measured accurately–in a labo-

ratory (see §4.3 of Crawford (2017) for a discussion of the difficulties involved). In situ

measurements of vorticity are even more problematic, and so this work is guided largely

by previous laboratory experiments. Avicola and Huq (2003) discuss how differences in

experimental set-up can affect source vorticity, suggesting that this is responsible for the

discrepancy between their experimental results and those of Klinger (1994). Avicola and

Huq (2003) suggest that their outflow has a stronger cyclonic vorticity than in Klinger

(1994), and this prevents a bulge from forming as fluid is carried away from the source

under a stronger image effect. Instead of measuring vorticity directly, Fong and Geyer

(2002) and Horner-Devine et al. (2006) present their results in terms of a source Rossby
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number, the ratio of the source vorticity to the background rotation rate. However, as noted

by Horner-Devine et al. (2015), coastal current transport seems to depend only weakly on

the source Rossby number and so it is likely that other factors need to be considered.

Garvine (2001) shows that plume vorticity can be modified by either topographic stretch-

ing or baroclinic effects, but the present model isolates the effect of image vorticity at the

source by using a 11
2
-layer ocean and a vertical coastline.

a. Idealised models

One way to avoid the difficulties associated with measuring source vorticity is to use

an idealised, inviscid model where the potential vorticity (PV) of the outflow can be spec-

ified. Johnson et al. (2017) use a model in which the outflow has the same density as a

buoyant upper layer of oceanic fluid. Both the outflow and the upper layer have uniform

PV, and the difference between these two values (the PV anomaly, or PVa) governs the dy-

namics. If the upper layer is deeper than the river mouth (positive PVa) then fluid columns

stretch on leaving the source and, by PV conservation, gain vorticity. The source vor-

ticity is cyclonic everywhere and all the outflow travels downstream, leading to a steady,

constant-width coastal current and no bulge formation. On the other hand, if the upper

layer is shallower than the river mouth (negative PVa) then fluid columns squash on leav-

ing and lose vorticity. In some cases, this leads to an outflow where the source vorticity is

negative everywhere and so all fluid turns left, forming an upstream coastal current with

only a fraction of the outflow eventually recirculating downstream. Kubokawa (1991) also

uses an idealised quasi-geostrophic (QG) model in which the outflow is split between flu-

ids of two different PVs. Part of the outflow has the same PV as the upper ocean layer,

and the remainder has a lower PV, so that some regions of the outflow are competitive.

Kubokawa shows that possible flows are split into three distinct modes depending on the

total volume and the PV distribution of the outflow, these being a steady coastal current,

a widening current and an anticyclonic gyre mode. This study builds on these idealised

models, generalising the work of Kubokawa (1991) to a wider range of PV distributions,

3



and re-analysing the previous results in the framework of vortex competition. In particu-

lar, we derive a simple constraint on the source vorticity that must be satisfied in order for

the outflow to form a steady plume with no bulge (the coastal current mode).

The model developed here is not appropriate for quantitative comparison with real

outflows, due to two important simplifications. Firstly, the QG limit (which is necessary

for the analytical progress made below) does not allow for an outcropping density front,

so the model ignores density differences between the river plume and the active ambient

fluid. However, the vortex dynamics that are study of this work should still play a role in

a more realistic setting and may sometimes (for example, in the limit of weak horizontal

stratification) be the dominant dynamical factor. It was also shown in Jamshidi and John-

son (2019) that extending the same model to order-one Rossby number has little effect on

the qualitative behaviour of the plume. Secondly, we have chosen to model the coast as a

vertical wall and are thus ignoring the effect of topographic stretching, which introduces

additional cyclonic vorticity into the plume. The role played by topography in plume be-

haviour is discussed at length in Pimenta et al. (2011), but as it pertains to the present work

we note that for a steep bottom slope the plume is known to be ‘surface advected’ and the

influence of topography is small. The relevance of this model in an oceanographic context

is discussed further in §6.

This work is organised as follows. §2 describes the mathematical model, and deter-

mines the range of parameters for a competitive outflow. §3 presents steady solutions to

the long-wave limit of the model, and derives a necessary and sufficient condition for the

existence of the coastal current mode. The full QG equations are solved numerically in

§4, and the unsteady features of these results are discussed in §5.

2. Formulation

Consider flow relative to a frame rotating about a vertical axis Oz at constant angular

speed f/2 > 0. Suppose that there is a straight, vertical coast at y = 0 and consider flow
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Figure 1: Fluid is expelled from a coastal source located at |x| < W , y = 0. The ocean
fluid in y ≥ 0 initially consists of an upper, active layer (with the same density as the
outflow) on top of a deep, denser, inactive layer. The source vorticity is positive in x < xS ,
and negative in x > xS .

in y ≥ 0 only, with Ox directed along the coast. Initially the ocean in y > 0 is still, with a

buoyant upper layer of uniform depth D lying on top of an infinitely deep, dense layer. At

time t = 0 a source in the coast located at |x| < W starts emitting fluid of the same density

as the buoyant layer at a rate Q0DS per unit time, where DS is a measure of the source

depth and so Q0 is the outflow area flux. If |D − DS| is sufficiently small then the flow

is geostrophic everywhere and the motion is governed by the quasi-geostrophic equation

for conservation of PV, formulated in terms of h(x, y, t), which measures the departure of

the depth interface from the initial value D. Under these assumptions, the source vorticity

profile can be expressed in terms of the outflow velocity and PVa, which can be chosen

in such a way that the outflow is competitive. One simple way to do this is to let the PVa

take two values: Π∗ > 0 in −W < x < x∗S , and Π∗R < 0 in x∗S < x < W , where x∗S is the

location of the dividing streamline in the outflow at which the sign of the vorticity changes.

Fluid that exits the outflow to the left of x∗S has positive vorticity, and will be referred to

as HPVF (high potential-vorticity fluid). The HPVF competes with fluid that exits to the

right of x∗S and has negative vorticity (LPVF, low potential-vorticity fluid). The choice of

piecewise-constant PVa allows for accurate and efficient numerical simulations of the flow

using the method of contour dynamics with surgery (Dritschel, 1989), and also facilitates
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the analytical results that follow. A similar model with piecewise constant vorticity was

used by Stern and Whitehead (1990) to study the flow of a jet around a corner in a non-

rotating environment. A schematic of the situation described above is shown in Figure

1.

We now present the governing equations and boundary conditions for the model,

based on the notation and scaling introduced in Johnson et al. (2017) (referred to as

JSM hereafter). Horizontal lengths are non-dimensionalised on the source-vortex scale

LV = (Q0/Π
∗DS)1/2, speeds onQ0/LV and t on the advective time L2

V /Q0 = (DSΠ∗)−1.

The governing equation is therefore

∇2ψ − ψ/a2 =


0 in the ambient

1 in HPVF

ΠR in LPVF.

(1)

Here, ψ = g′h/fQ0 is a streamfunction that is related to the non-dimensional velocity by

(u, v) = (−ψy, ψx), and ΠR = Π∗R/Π
∗. The parameter a = LR/LV is the non-dimensional

Rossby radius, and is discussed in more detail below. The choice of LV for horizontal

length-scale is a natural one for the study of vortical effects, as it ensures that the width

of the vortically-drive current remains O(1), while the Kelvin-wave decay scale changes

with a. Later, we will take the long-wave limit of (1), which requires that LV /W � 1.

Note that this does not place any restriction on the Kelvin number, K = W/LR, which

was introduced by Garvine (1995) as a means of classifying plume behaviour. Outflows

with largeK have relatively slow flow and are in geostrophic balance, while outflows with

small K are little-affected by rotation.

The source is impulsively switched on at t = 0, with the outflow velocity given by a
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specified profile Q′(x). The boundary condition at the coast is therefore

v(x, 0, t) =


0, |x| > W/LV

Q′(x), |x| < W/LV .

(2)

In the QG limit a Kelvin wave of unit amplitude propagates to the right at infinite speed,

setting the coastal interface displacement for all time as

ψ(x, 0, t) = Q(x), (3)

with Q(x) = 1 for x > W/LV and Q(x) = 0 for x < −W/LV . Although in this work we

restrict ourselves to steady mass efflux profiles, the extension to unsteady profiles Q(x, t)

follows immediately and is considered by both Kubokawa (1991) and, for the uniform-PV

case, in Southwick et al. (2017).

The relative vorticity is given by ζ = ∇2ψ, so from (1) and (3) the source vorticity

profile is completely specified as

ζ(x, 0, t) = ζS(Q) =


1 +Q/a2 0 < Q < Q+

ΠR +Q/a2 Q+ < Q < 1,

(4)

where Q+ = Q(xs) is the fraction of the outflow occupied by the HPVF. Note that ζS is a

function of Q, with x appearing parametrically in (4). This means that many of the results

below do not depend on the choice of outflow profile Q(x), and is a common feature of

‘hydraulic’ problems (Pratt and Whitehead, 2008).

Equation (4) shows that the source vorticity in the HPVF is always positive. Some

of the LPVF will have negative vorticity if ΠR + Q+/a
2 < 0, and all of the LPVF has

negative vorticity if ΠR + 1/a2 < 0. Therefore the entire outflow is competitive if and

only if ΠR < −1/a2. Figure 2 illustrates two vorticity profiles: in (a) the whole outflow is
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Figure 2: Two examples of the source vorticity profile, ζS(Q), with a = 1 and Q+ = 0.5.
(a) ΠR = −2 > 1/a2, so that the outflow is competitive. (b) ΠR = −0.8 < −1/a2 so that
the outflow is competitive for Q < 0.8.

competitive, while in (b) the non-competitive region of the LPVF where ζS > 0 is shown

dotted.

a. The parameter a

The present model involves two physical mechanisms. The first is the image effect

discussed above, and the second is the flow driven by the Kelvin wave. Although in the

QG limit the Kelvin wave itself propagates in the ambient at infinite speed (as reflected

in the boundary condition (3)), the flow that it drives in the expelled fluid is of a finite

speed, which scales with 1/a. If the Rossby number is allowed to be O(1) the Kelvin

wave propagates at finite speed. However, once the Kelvin wave has passed a station x

the qualitative behaviour at that station is much the same as in the QG limit (Jamshidi and

Johnson, 2019). The parameter a therefore measures the relative strengths of Kelvin-wave

flow and the image effect, with a larger corresponding to a stronger image effect. The

limit a → ∞ eliminates the Kelvin wave and reduces the governing equations (1) to

those of two-dimensional flow (Johnson and McDonald, 2006). On the other hand, a = 0

is equivalent to an outflow with zero PVa and no image effect to turn the river plume. The
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importance of a is discussed in greater detail in JSM.

3. The coastal current mode

JSM show that if the source vorticity is positive everywhere, no bulge forms and all

of the outflow travels downstream in a steady, constant-width coastal current. Kubokawa

(1991) finds that this ‘coastal current mode’ occurs if Q+ is greater than a critical value

QC, which is a function of ΠR and a. In this section we present solutions that describe

the coastal current mode in the long-wave limit of the present model, and show that the

critical ratio can be interpreted in terms of a simple condition on the source vorticity.

a. The steady long-wave equations

The field equation (1) can be solved analytically in the long-wave limit, where distur-

bances to the interface occur on scales that are much larger in the x-direction than in the

y-direction. Formally, this limit requires that the source is wide compared to the chosen

length-scale LV , however we are guided by JSM who find that their long-wave theory

captures the essential dynamics even in the limiting case where the outflow is modelled

as a point source. Therefore let ε = LV /W be small and introduce X = εx and T = εt,

so that the source region is |X| < 1. Suppose additionally that the boundaries that mark

the PV jumps do not overturn, so there are single-valued functions y = w1(X,T ) and

y = w2(X,T ) that denote the boundaries between LPVF and HPVF, and between HPVF

and the ambient ocean layer respectively. Under these assumptions, the field equation (1)

becomes, at leading order,

ψyy − ψ/a2 =


0 y > w2

1 w1 < y < w2

ΠR 0 < y < w1.

(5)
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Equation (5) is a free-boundary problem to be solved subject to the coastal boundary

condition (3) and the far-field condition

∇ψ → 0 as y →∞. (6)

For ease of notation we will now revert to using the lower-case variables x and t. The

streamfunction ψ can be written

ψ0 = Qee
−y/a y > w2,

ψ+ =− a2 + a2 cosh [(y − w2)/a] +Qee
−y/a w1 < y < w2,

ψ− =− a2ΠR + A cosh [(y − w1)/a]

+B sinh [(y − w1)/a] 0 < y < w1, (7)

where A, B and Qe are to be determined by continuity conditions at the interfaces and

the coastal boundary condition (3). The function Qe is the net flux of ocean fluid at any

station x.

When the outflow is in coastal current mode, all of the river water travels downstream

and so ψ takes the valuesQ+ and zero on y = w1 and w2 respectively. The unique solution

in the ambient is therefore ψ0 ≡ 0 so that Qe = 0 and the ambient layer is stagnant. The

flow in −1 < x < xS is unaffected by the region of LPVF, so the solution is exactly the

same as for the positive-PVa outflows of JSM. That is, w1 = 0 and

cosh (w2/a) = 1 +Q/a2. (8)

Downstream of xS , the condition ψ(w1) = Q+ is applied to (7):

Q+ + a2 = a2 cosh [(w1 − w2)/a], (9)

Q+ + a2ΠR = A, (10)
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so that the width of the HPVF, w2−w1, is constant. Note that the negative root of (9) must

be taken so that w2 > w1. The along-shore velocity u is continuous at y = w1 so that from

(7),

B = a2 sinh [(w1 − w2)/a]. (11)

The coastal boundary condition (3) can then be written in terms of w1 alone:

Q+ a2ΠR = (Q+ + a2ΠR) cosh (w1/a) +
√

(2a2Q+ +Q2
+) sinh (w1/a). (12)

Equation (12) only has physically meaningful solutions for certain values of the param-

eters a, Q+ and ΠR, and it is these conditions that determine whether the coastal current

mode is possible. We will discuss these conditions and their physical meaning presently,

but first note that if the conditions are met the solution in the source region is given by

w1

a
= log

F (Q)

F (Q+)
, (13)

for

F (Q) = a2ΠR +Q+
√
Q2 + 2a2(ΠR(Q−Q+) +Q+).

This expression is valid in the source region, and gives the offshore location of the internal

PV jump as a function ofQ. The boundary of the outflow plume, w2, can be found through

(9). Downstream of the source, Q ≡ 1 and the coastal current has constant width.

Figure 3 shows two examples of steady long-wave profiles in the source region, plot-

ted as a function of Q. In both cases, the dashed curve is w1 from (13), and the solid curve

is the plume boundary w2. Figure 3(b) has Q+ = 0.5 and ΠR = −1 − 1/a2, with these

parameter values chosen so that the source vorticity profile is antisymmetric about x = 0

and the ratio of HPVF to LPVF is 1:1. This is the source vorticity profile described in the

experiments of Horner-Devine et al. (2006), and consists of a cyclone and anticyclone of

equal and opposite strength. Figure 4 shows wD
A , the width of the coastal current down-
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Figure 3: Steady long-wave profiles in the source region. The solid curve shows w2, the
boundary of the river plume, and the dashed curve is w1, the location of the PV jump
within the current. (a) a = 0.8, Q+ = 0.7,ΠR = −2, (b) a = 1.5, Q+ = 0.5,ΠR = −1.44.

12



0 0.5 1 1.5 2

0.5

1

1.5

2

a

wD
A

Figure 4: The width of the coastal current, as a function of a, for the special case where
the source vorticity profile is antisymmetric. The dashed curve shows the width of the
interior PV jump.

stream of the source region for the antisymmetric vorticity profile, plotted as a function

of a. As a increases the image effect becomes stronger relative to the Kelvin-wave driven

flow, and the profile approaches the vorticity-dominated limit of Johnson and McDonald

(2006), where the current width is equal to twice the vortex-length LV .

As noted above, the coastal current mode is only possible under certain conditions.

We now derive these conditions by considering the parameter range in which (13) is valid.

i. Competitive outflows For the moment, let us restrict ourselves to the case where the

entire outflow is competitive, so that ΠR < −1/a2. With this condition imposed, (13) is

valid provided F (1) is real-valued, or

Q+ > QC =
ΠR + 1/2a2

ΠR − 1
. (14)

Thus, as in Kubokawa (1991) we find that the fraction of the outflow occupied by the

HPVF must exceed a critical value QC in order for a steady coastal current to form. Out-

flows dominated by vorticity (either with large a or large |ΠR|) require more HPVF, and a

stronger cyclonic vortex, in order to form a coastal current.

The physical meaning of (14) can be seen by re-writing the equation in terms of source

vorticity. From (4), ζS can be written as a function of Q (equivalently the streamfunction
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ψ) and integrated across the source region:

∫ 1

0

ζS dQ = Q+ +
1

2a2
+ ΠR(1−Q+), (15)

which is positive exactly when Q+ > QC. That is, the coastal current mode occurs if

and only if the net contribution of the source vorticity is positive. The first two terms of

(15) are positive, and correspond to the downstream flow generated by the cyclonic part

of the outflow and the Kelvin wave respectively (since the second term is the only one that

depends on the Rossby radius a, and vanishes in the vorticity dominated limit of a→∞).

For a steady current to form, the sum of these two must be greater in magnitude than

the third term, which is negative and corresponds to the upstream flow generated by the

anticyclonic part of the outflow.

ii. Other outflows The integral condition (15) suggests that previous results about

coastal current formation in a QG system should be re-analysed with source vorticity in

mind. In JSM, the outflow has uniform PVa, Π. They find that if Π = 1 (and so ζS > 0

everywhere) then the coastal current mode always occurs, while if Π = −1 the coastal

current mode is impossible, although other steady solutions may occur. The second case

differs from our set-up since the anticyclonic portion of the outflow is on the left and there

is no competition between vortices, resulting in upstream propagation even in steady flow.

In Kubokawa (1991), the outflow is split between fluid with zero PVa on the left of

the source and LPVF on the right. If a > 1 then all of the LPVF has negative vorticity and

so the outflow is competitive. In our notation, the vorticity integral becomes,

∫ 1

0

ζS dQ =

∫ 1

0

Q

a2
dQ+

∫ 1

Q0

dQ, (16)

where Q0 is the fraction of the outflow that has zero PVa. Equation (16) is positive if

Q0 > 1 + 1/2a2, which agrees with the condition for coastal current formation given in
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(3.3a) of Kubokawa (1991).

Finally let us now consider the case where only a portion of the outflow is competitive,

and the source vorticity is positive at the downstream edge (as in Fig. 2(b)). This situation

occurs in the present model if Q+ < |a2ΠR| < 1, in which case the competitive region is

0 < Q < |a2ΠR|. One can show that (13) is valid and the coastal current mode occurs if

and only if ∫ |a2ΠR|

0

ζS dQ > 0, (17)

so that the critical fraction is QC = a2Π2
R/2(1− ΠR).

To summarise the results of this section, we have shown that for a competitive out-

flow the coastal current mode occurs if and only if the source vorticity profile satisfies an

integral condition of the form (15). In fact, there is a simple physical interpretation of this

constraint. The element ζδQ represents the total amount of vorticity contained in a patch

of infinitesimal area δQ with uniform vorticity ζ . Equation (15) shows that the plume be-

haves just as the sum of all of these infinitesimal patches, and turns to the right if its ‘total

vorticity’ is positive, as if it were a cyclonic vortex of finite area. Non W-competitive

regions of the outflow do not interfere in this process and so are not counted, although

of course they still influence the plume strucutre. The general nature of this condition

suggests that it might have wider applicability, and an extension to O(1) Rossby number

is briefly discussed in the appendix. We also emphasise that the integral condition (15)

does not depend on the specific outflow profile, but only on the relative strengths of the

cyclonic and anticyclonic parts.

4. Numerical results

The full equations (1) (without the long-wave approximation) can be solved using

the method of contour dynamics with surgery, which gives fast and accurate results for

problems involving piecewise-constant potential vorticity (Dritschel, 1989). In this case,
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the velocity field u = (u, v) can be written as

u(x, t) = −
∑
k

Πk

∫
Ck

K0 (|x− xk|/a) dxk. (18)

The kernel K0 is the modified Bessel function of the second kind of order zero, which is

the appropriate Green’s function for the Helmholtz equation (1). The sum is taken over all

contours Ck, where each contour is parameterised by some xk and the jump in potential

vorticity between contours is given by Πk. Once the velocity field for the (discretised) con-

tours has been computed numerically, each contour is advected using a standard 4th-order

Runge-Kutta scheme. Since the computational speed of this algorithm increases with the

square of the number of discretisation points, Dritschel (1989) further employs ‘surgery’,

where small filaments (which do not contribute much to the dynamics) are systematically

removed from the main contour. After each advective step, the discrete contours are ‘re-

noded’ in such a way that the resolution is proportional to the local curvature. For our

particular problem involving a fixed boundary, we must modify (18) to account for con-

tributions from image contours, as well as from the source itself. The contribution from

each of these terms is analysed in more detail for a uniform PV outflow in Southwick et al.

(2017).

Below, we present results from an initial-value problem where the source is impul-

sively switched on at t = 0, and the outflow has a uniform velocity profile Q′(x) = 1/2.

Simulations must begin with an initial contour, for which we use a thin half-ellipse lying

in the source region. Results are insensitive to the choice of initial contour, provided it is

sufficiently smooth and covers the entire source.

Figure 5 shows a contour dynamic (CD) run for a competitive outflow in coastal cur-

rent mode. The parameters are: a = 0.8, Q+ = 0.7 and ΠR = −2, and results are shown

at, from top to bottom, t = 15, 30, 45. The half-width of the outflow is 3, so the long-wave

parameter ε = 1/3. The plume is shaded, with the LPVF hatched darker. Red dashed

curves in the source region show the steady long-wave profiles from §3a, which are in
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Figure 5: Contour dynamic results for a competitive QG outflow in coastal current mode.
The speed ratio a = 0.8, the fraction of the outflow that has positive vorticity is Q+ = 0.7
and the PV anomaly of the negative vorticity region is ΠR = −2. The half-width of the
outflow is 3, and results are shown at, from top to bottom, t = 15, 30, 45. In this and all
subsequent figures showing contour dynamics the river plume is shaded, and the LPVF is
hatched. Vertical dashed lines mark the source region and xS , the point where the source
vorticity changes sign. The red dashed lines in the source show the steady long-wave
solutions from §3a, and those at the head of the plume in (a) and (b) show the rarefaction
computed in §5a.
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Figure 6: As in Figure 5(b) but for a narrow source with half-width 0.5.

excellent agreement with the numerical results. The coastal current develops quickly: it is

almost entirely set-up by t = 15 and by t = 45 has extended to x = 15. At all times the

plume is led by a rarefaction consisting only of LPVF, the shape of which is derived below

in §5a and plotted as a red dashed line. Between the rarefaction and the steady current

there is an eruption of fluid from the coastal current into the ocean. The eruption initially

grows offshore, before later curling up into an eddy that propagates downstream. In (b)

and (c), the plume boundary can no longer be written as a single-valued function of x and

the analytical results break down. However the cause of the eruption and its initial devel-

opment can be be qualitatively understood through long-wave theory, and this is done in

§5b. The volume of fluid contained within the eruption increases, and eventually the erup-

tion is strong enough that it retains all of the HPVF (and some of the LPVF) that leaves the

source after a certain time. Far away from the site of the eruption the plume is unaffected,

so the coastal current and rarefaction are stable features of the plume’s evolution.

Figure 6 shows a CD run that tests the applicability of the long-wave theory to the full

QG problem by using a narrow source. The parameters are the same as for Figure 5(b),

but with ε = 2. The overall plume shape appears to be largely unaffected by using a larger

value of ε, and the analytic results still match the numerics very well.

Figure 7 shows a CD run for an outflow with an antisymmetric vorticity profile. The

net contribution from the source vorticity is zero, and the condition (14) is at equality.

The steady profile predicted by the long-wave theory is only in partial agreement with
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Figure 7: As Figure 5, but for an antisymmetric outflow vorticity profile. The parameters
are: a = 1, Q+ = 0.5,ΠR = −2 and the flow is shown at t = 20, 50, 60. Dotted blue
curves in (c) show numerically computed steady solutions to the full problem (i.e. without
the long-wave approximation).
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Figure 8: Vorticity contours for the antisymmetric outflow at t = 40. Black contours show
ζ = 0.
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the numerics, and no constant-width current occurs. For this set of parameters, the flow

immediately downstream of the source is quasi-steady, and there is a bulge of LPVF which

appears trapped to the coast. At the head of the plume the rarefaction and the speed of

propagation are well-captured by the long-wave theory, but nonlinear, non-periodic waves

develop between the head and the bulge at later times. The antisymmetric source vorticity

profile is closest to the experiments of Horner-Devine et al. (2006), where the outflow

introduces an equal amount of positive and negative vorticity, so it is interesting that this

is the only vorticity profile for which we observe a quasi-steady bulge downstream of

the source, as is commonly seen in laboratory experiments. Figure 8 plots the vorticity

contours at t = 40. The bulge has strong negative vorticity, and there is a thin layer of

positive vorticity around the outside. This structure is in good qualitative agreement with

previous experimental results (c.f. Fig. 2 of Horner-Devine et al. (2006)). We note that

the steep sections of the plume boundary (for example, at x ≈ 7 in Fig. 7(a)) are in fact

transient features that quickly either erupt into filaments or dissipate, and in general the

plume boundary (excluding filaments) does not have steep gradients ∂w/∂x.

To investigate the extent to which the long-wave approximation is responsible for

discrepancies between theory and numerics, we ran two further experiments using the

same antisymmetric outflow profile. First we conducted another CD run (not shown) with

ε = 0.1. The quasi-steady bulge is still present, although the steady profile agrees with

the numerical results over more of the source region. We also used the iterative method

described in Southwick et al. (2017) to numerically compute steady solutions to the full

problem (i.e. without the long-wave approximation). These are shown as dotted blue

curves (Fig. 7(c)) and confirm that steady solutions to the full problem do exist. The

stability of these solutions is discussed in the following section.

Figure 9 shows CD results for a competitive outflow that doesn’t meet the vorticity

integral condition (15), and so by the long-wave theory the coastal current mode is not pos-

sible. At early times fluid is directed mainly offshore (Fig. 9(a)), causing the rarefaction
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Figure 9: As Figure 5, but for an outflow where the net contribution of the source vorticity
is negative. The parameters are: a = 1.5, Q+ = 0.3,ΠR = −1 and the flow is shown at
t = 20, 40, 60.
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to narrow and eventually pinch off from the bulk. The combined effect of the Kelvin-wave

flow and the image of the HPVF is not sufficient to overcome the anticyclonic part of the

outflow, and the plume detaches from the coast (as in Stern and Whitehead (1990)). A

similar cycle of pinch-off and re-attachment was observed by Horner-Devine et al. (2006)

(their Figure 14) in experiments with a low density contrast between the outflow and the

ambient.

5. Unsteady flow features

In this section, we use properties of the time-dependent long-wave equations to give

a qualitative explanation for the eruptions seen in the CD results, as well as a description

of the rarefaction and behaviour near the plume nose. The general form of the variable

coefficients in the streamfunction (7) is

A = a2(ΠR − 1) + a2 cosh [(w1 − w2)/a] +Qee
−w1/a,

B = a2 sinh [(w1 − w2)/a]−Qee
−w1/a,

Qe = Q+ a2ΠR − a2 (cosh (w2/a) + (ΠR − 1) cosh (w1/a)) .

The interface locations w1 and w2 can be found using the kinematic boundary condition

v =
∂wi

∂t
+ u

∂wi

∂x
on y = wi(x, t), (19)

for i = 1, 2. Using the fact that ψ is a streamfunction, this becomes

∂wi

∂t
=
∂ψ

∂x
+
∂ψ

∂y

∂wi

∂x
=

∂

∂x
ψ(x,wi(x, t)), (20)
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where

ψ(x,w1) = −a2 + a2 cosh [(w1 − w2)/a] +Qee
−w1/a, (21)

ψ(x,w2) = Qe. (22)

The pair of equations (20) give a first-order, nonlinear hyperbolic system that is forced

in the source region by the outflow velocity Q′(x). In both the rarefaction and the initial

development of the eruption, the system reduces to a single equation with a well-defined

wave-speed that allows for a simple interpretation of the CD results.

a. Leading rarefaction

For all parameter values, there is a region of the plume close to the nose that consists

only of LPVF (the ‘head’ region). Here there is no layer of HPVF between the LPVF and

the ambient ocean so we may define w = w2 = w1. The system (20) reduces to a single

equation for w:
∂w

∂t
+ CR(w)

∂w

∂x
= 0, (23)

where the wave-speed in the head region is

CR(w) =
(
1/a+ aΠR(1− e−w/a)

)
e−w/a. (24)

At early stages the downstream plume has ∂w/∂x < 0, so a self-similar rarefaction de-

velops if C ′R(w) < 0 and small values of w travel faster than larger values. In fact CR

is a decreasing function for relevant values of w (i.e. between zero and the width of the

coastal current) so that a rarefaction always forms. The nose of the plume moves at speed

CR(0) = 1/a, which is just the speed of the Kelvin-wave flow. At any time t, the rarefac-

tion shape is given by

x− 1 = CR(w)(t− tc(w)), (25)
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where tc(w) is the time at which the characteristic carrying that value of w emerges from

the source region. JSM show that, for the special case of a uniform outflow velocity

Q′(x) = 1/2, the crossing time tc = 2a(exp (w/a)− 1), and so (25) becomes an implicit

equation for w. The rarefaction solution is plotted as a red dashed line in Fig. 5 - 9. There

is good agreement in the head region, and the nose always propagates at the predicted

speed 1/a. Note that the preceding discussion does not require the outflow to be in coastal

current mode, and indeed the long-wave theory is accurate near the nose even for the

unsteady plume shown in Figure 9.

b. Eruption from the coastal current

The long-wave theory can also be used to explain eruptions of coastal fluid into the

ambient. Although eruptions are seen in all CD runs, they have different characteristics

that broadly coincide with whether the net contribution of the source vorticity is positive,

zero or negative. For outflows that have net positive source vorticity, the eruption propa-

gates downstream and ejects a thin layer of fluid far into the ocean. In Figure 7, where the

source vorticity is antisymmetric, the eruption is bounded and a bulge of LPVF is retained

near the source. Finally, if the net contribution from the source vorticity is negative and

outflows are not in coastal current mode, then the eruption occurs within the source region.

During the early stages of eruption (Fig. 5(a)) w1 and w2 are displaced by approximately

the same amount, so for a first approximation we may consider the characteristic equations

(20) with w2 = w1 +H , where the constant H is given by the steady profile (9) as

H = a cosh-1
(
1 +Q+/a

2
)
. (26)

With this substitution, the wave-speed is

CE(w1) =
1

a

(
1 + a2ΠR(1− e−w1/a) + (

√
Q+(2a2 +Q+)−Q+)e−w1/a

)
e−w1/a, (27)
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which is similar to (24) apart from an extra term due to interaction between LPVF and

HPVF. Since values of w1 are conserved along curves moving at speed dx/ dt = CE(w1),

the initial movement of the eruption is downstream if CE is positive. For antisymmetric

outflows whereQ+ = 1/2 and ΠR = −1−1/a2, the wave-speed CE vanishes at the down-

stream edge of the source causing disturbances to become trapped. A similar situation is

discussed in Johnson and Clarke (1999) in the context of topographic control, where they

show that a vanishing wave-speed leads to a build up of momentum, and prevents long-

wave steady profiles from being realised in the CD simulations. This can be understood by

considering a small perturbation δ(x, t) to the steady flow wS
1 . To first order, the kinematic

boundary condition (20) becomes

δt =
[
ψ(wS

1 )− CE(wS
1 )δ
]
x
,= −

(
CE(wS

1 )δ
)
x
, (28)

using the fact that in steady flow ψ(wS
1 ) = Q+ is constant. Multiplying (28) by CE shows

that the perturbation momentum CEδ is conserved and so as CE → 0 the amplitude δ

becomes arbitrarily large. Therefore, in an outflow where the net contribution of the source

vorticity is zero, the steady long-wave profiles of §3a are unstable to small perturbations

and so will never be seen in the initial value problem.

Figure 10(a) shows two representative examples of CE(w1) corresponding to the CD

runs presented in §4, with the coastal current mode of Figure 5 shown as a solid curve

and the antisymmetric outflow of Figure 7 as a dashed curve. The maximum width of

wS
1 is marked with a circle. Both curves have a negative gradient, so any perturbation

to steady flow will steepen on the upstream side as smaller values of w1 move faster.

However note that for the antisymmetric profile the curve flattens as w1 increases, so

∂w1/∂x remains O(1) and the eruption in Figure 7 is bounded. On the other hand the

solid curve corresponding to Figure 5 is positive at the downstream edge and has a steeper

gradient, so the eruption propagates downstream and is relatively strong, as is discussed in

Stern (1986). To further examine bulge formation in antisymmetric outflows, Figure 10(b)
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Figure 10: (a) The long-wave speed (27) at the early stages of an eruption. The solid line
uses the same parameters as the coastal current mode of Figure 5; and the dashed line uses
the same as the antisymmetric profile of Figure 7. Circles mark the downstream width of
the steady profile. (b) The slope of CE at the downstream width wD

1,A for antisymmetric
profiles, as a function of a.

plots the slope of CE at the downstream edge of the source. As a increases and vorticity

becomes more dominant, |C ′E(w1,A)| is larger, so waves steepen more and the eruption is

no longer bounded. Thus, in the QG model, it seems that quasi-steady bulges can only

exist in antisymmetric outflows where vortical effects are relatively weak.

We briefly consider the behaviour of the outflow in Figure 9, where the net contri-

bution from the source vorticity is negative and the coastal current mode is not possible.

Instead, the profile given by equation (13) is only valid over part of the source region,

with the radical vanishing and F (Q) becoming complex at Q = 0.73. Differentiating (13)

gives
∂w1

∂x
=

a Q′(x)√
(Q2 + 2a2(ΠR(Q−Q+) +Q+))

, (29)

so that the loss of the steady solution is associated with an infinite gradient in the profile

and, as in Stern (1986), a strong eruption of coastal fluid that here detaches completely

from the coast.
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6. Summary and conclusions

Numerical and theoretical results for coastal outflows have been discussed in terms

of a quasi-geostrophic model which allows for complete control over the source vorticity

profile by specifying the PV distribution of the expelled fluid. This is the key feature of

this work, as it gives insight into the relationship between the vorticity of the outflow and

the resulting plume structure. In particular, we are interested in the case of a ‘competitive

outflow’, where negative vorticity is on the right of the source and positive vorticity is on

the left, as in this situation the image effect imparts a tendency for cyclones and anticy-

clones to pass through each other. Analytical steady solutions to the long-wave equations

have been derived, and it is shown in §3 that the coastal current mode is only possible if

the net contribution of the source vorticity (the integral of ζ with respect to the stream-

function ψ over competitive regions of the outflow) is positive. It is encouraging that the

results from Kubokawa (1991) agree with our, more general, condition on the outflow.

Kubokawa’s results do not depend on the long-wave approximation and so this suggests

that the source vorticity condition is applicable even when ε = O(1).

The numerical results of §4 confirm that when the region of cyclonic vorticity is dom-

inant all fluid turns to the right after leaving the source (Fig. 5) and a stable coastal current

develops. The plume nose consists entirely of LPVF and propagates at the speed of the

Kelvin-wave driven flow, Q0/LR (where Q0 is the area flux of the outflow). The head of

the intrusion is a self-similar rarefaction, which can be described by long-wave theory. If

the net contribution of source vorticity is negative, the anticyclonic region is dominant and

the coastal current mode is not possible. The plume cannot remain attached, and separates

from the coast as it leaves the source (Fig. 9). The transition case, where the cyclonic and

anticyclonic contributions cancel, is closest to the laboratory experiments of Avicola and

Huq (2003) and Horner-Devine et al. (2006). A steady long-wave profile exists but it is

unstable to small perturbations and, depending on the value of a, the plume can develop

a quasi-steady bulge just downstream of the source (Fig. 7). The bulge forms due to the
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accumulation of short-wave energy, and appears to reduce the downstream transport of

LPVF. It is notable that these features are only seen in runs where the net vorticity is zero.

a. Oceanographic context

It is suggested in Avicola and Huq (2003) and by Chen (2014) that fluid from the

right-hand side of the outflow tends to gather in the bulge, so that both the sign and the

distribution of source vorticity play a role in the initial development of the plume, and

therefore contribute to the overall structure. However in situ measurements of plume vor-

ticity are rare, particularly in the source region, although there is much evidence that where

bulges exist they are anticyclonic (for example in Figure 5 of Chant (2008)). This work

has therefore been guided by laboratory plumes and, despite the simplicity of the model,

has reproduced many of their qualitative features, with a bulge core that consists of nega-

tive vorticity, and a thin layer of positive vorticity at the plume boundary and in the coastal

current. However, modelling the outflow as a rectangular channel (as is done here and

in many experiments) ignores variations in topography and estuary shape, which surely

affect the behaviour of the plume. This is discussed at length in the outflow context by

Pimenta et al. (2011), and for flow around a cape by Lin et al. (2018), who show that sep-

aration of the East Greenland coastal current is caused by widening isobaths. We should

also emphasise that the principal result (15) applies only to outflows with a competitive

vorticity structure, which may not always be the case. In fact, the source velocity profile

of the Delaware river from Münchow and Garvine (1993a) features landward flow on the

left-hand side of the estuary, so that the vorticity is cyclonic throughout.

We hope that the discussion of vortical effects presented here is also relevant for the

more general problem of flow through a sea strait or around a cape. Whitehead and Miller

(1979) and Bormans and Garrett (1989) discuss flow through the Strait of Gibraltar, where

relatively fresher Atlantic water flows eastward and forms an anticyclonic gyre in the Alb-

oran sea. Bormans and Garrett (1989) suggest that the flow turns through an inertial circle,

and so separates from the coast to form a gyre if the inertial radius U/f is greater than the
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radius of curvature at the corner of the strait. In this inertial framework, where vortex

effects are absent, a gyre always forms when the flow is around a sharp corner. The QG

model used here balances the Coriolis term with pressure gradient, so vorticity dynamics

dominate over inertia and gyre formation is relatively rare. A more nuanced treatment of

rotational flow around a corner, that includes contributions from relative vorticity, inertia

and topography is an important avenue for further work.

APPENDIX

Jamshidi and Johnson (2019) discuss the outflow problem for O(1) Rossby number using

a semi-geostrophic (long-wave) model with uniform PV. Here we consider the equivalent

set-up for a competitive outflow, and show that the coastal current mode is only possible

if the net contribution from the source vorticity is positive.

The governing equations for semi-geostrophic flow are:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− v = −∂h

∂x
,

u = −∂h
∂y
,

∂h

∂t
+
∂

∂x
(uh) +

∂

∂y
(vh) = 0, (30)

where, following Jamshidi and Johnson (2019), x has been non-dimensionalised with W ,

y with LR, u and v with
√
g′DS and

√
g′DS(LR/W ) respectively, h with DS and t with

W/
√
g′DS . The long-wave parameter is LR/W and is assumed to be small (note that this

is different to ε = LV /W in the QG model). The potential vorticity q is piecewise constant,

and takes non-dimensional values 1/H , 1, and qR in the ambient ocean, the HPVF and the

LPVF respectively. The presence of an ambient ocean-layer with H > 1 is a necessary

requirement in this model for the plume to have ζ > 0 at y = w2. From conservation of
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PV and continuity of h and u, the layer-depth h is

h =


1 + (H − 1) cosh (y − w2) w1 < y < w2

1
qR

+ A cosh [
√
qR(y − w1)] +B sinh [

√
qR(y − w1)] y < w1,

(31)

where

A =
qR − 1

qR

+ (H − 1) cosh (w1 − w2),

B =(H − 1) sinh (w1 − w2)/
√
qR.

As in the QG model, the ambient ocean is undisturbed. The interface widths w1 and w2

are determined by the flux conditions

Q0 =

∫ w2

0

uh dy =
h2
S −H2

2
, (32)

Q+ =

∫ w2

w1

uh dy =
h2

1 −H2

2
, (33)

where Q0 is the non-dimensional volume flux of the outflow, and hS and h1 are the layer-

depths at the coast and w1 respectively. The expressions for w1 and w2 are complicated

and not particularly instructive, but can be found computationally using symbolic manip-

ulation. For a given Q0 and H we test values of Q+ and qR to numerically determine the

region of the parameter space where w1 is valid and so the coastal current mode is possi-

ble. For the particular case of Q0 = 1.5, H = 2, the region of the parameter space where

a coastal current is possible is shown shaded in Figure 11.
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Figure 11: Numerically computed region of the (Q+, qR) parameter space for which the
coastal current mode exists (shaded grey). The integrated source vorticity is positive to
the right of the dashed line. The outflow parameters are Q0 = 1.5 and H = 2.

We then compute the source vorticity integral analytically.

∫
source

ζS dQ =

∫ Q0

0

qhS − 1 dQ

= −Q0 +

∫ Q+

0

hS dQ+ qR

∫ Q0

Q+

hS dQ

= −Q0 −
H3

3
+

1− qR

3

(
H2 + 2Q+

)3/2
+
qR

3

(
H2 + 2Q0

)3/2
, (34)

where the last step has made use of (32). The region to the right of the dashed line in

Figure 11 shows where the net contribution is positive. There is good agreement between

these two regions, so again it seems that the coastal current mode can occur if and only if

the net contribution of source vorticity is positive.
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