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Abstract

We develop a stabilized cut finite element method for the stationary convection diffusion problem
on a surface embedded in Rd. The cut finite element method is based on using an embedding of the
surface into a three dimensional mesh consisting of tetrahedra and then using the restriction of the
standard piecewise linear continuous elements to a piecewise linear approximation of the surface.
The stabilization consists of a standard streamline diffusion stabilization term on the discrete
surface and a so called normal gradient stabilization term on the full tetrahedral elements in the
active mesh. We prove optimal order a priori error estimates in the standard norm associated with
the streamline diffusion method and bounds for the condition number of the resulting stiffness
matrix. The condition number is of optimal order for a specific choice of method parameters.
Numerical examples supporting our theoretical results are also included.

Keywords: cut finite element method, convection–diffusion–reaction, PDEs on surfaces,
streamline diffusion, continuous interior penalty

1. Indroduction

Contributions. We develop and analyze cut finite element method for the convection-diffusion
problem on surfaces. The cut finite element method is constructed as follows: (i) The surface is
embedded into a three dimensional domain equipped with a family of meshes. (ii) A piecewise
linear approximation of the surface is computed for instance using an interpolation of the distance
function. (iii) The active mesh is defined as the subset of elements that intersect the discrete
surface. (iv) A finite element approximation is defined by using a variational formulation together
with a restriction of the finite element space to the active mesh as trial and test space.

In order to stabilize the method we add two stabilization terms: (i) A streamline diffusion
stabilization, which is added on the discrete surface and stabilizes the method in the convection
dominated case. (ii) A normal gradient stabilization term on the full three dimensional tetrahedra
in the active mesh, which provides control of the variation of the discrete solution in the direction
normal to the surface.

Streamline diffusion or Streamline upwind Petrov–Galerkin methods for stabilization of trans-
port dominated problems in flat domains were introduced in [1] and [17]. In order to show stability
of the method and an optimal order bound on the condition number we add the normal gradi-
ent stabilization, which enables us to show that the condition number is of optimal order for a
specific choice of method parameters. As an alternative to the normal gradient stabilization one
may use face stabilization [2] [5], full gradient stabilization [4], or face stabilization in combination
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with normal gradient stabilization on the surface [18]. Full gradient stabilization does not lead
to optimal condition number estimates in the convection dominated case and does not extend
to higher order approximations. The stabilization proposed in [18] has similar properties as the
normal gradient stabilization we analyze here.

Previous Work. CutFEM, or trace FEM, for partial differential equations on surfaces was first
introduced for the Laplace-Beltrami operator in [20] without stabilization and is now a rapidly
developing technique. In [2] a stabilized version based on so called face stabilization or ghost
stabilization, which provides control over the jump in the normal gradient across interior faces
in the active mesh was introduced and analyzed. In particular it was shown that the condition
number scaled in an optimal way. In [22] a streamline diffusion trace finite element method for the
convection-diffusion problem on a surface was studied, here only streamline diffusion stabilization
was added and the skew symmetric discretization of the convection term was used. In [5] the
pure convection problem on a surface with face stabilization was analyzed. In [4] a full gradient
stabilization method for the Laplace-Beltrami operator was developed and analyzed. In [3] an
abstract framework for analysis of cut finite element methods on embedded manifolds of arbitrary
codimension was developed and, in particular, the normal gradient stabilization term which we
employ in this paper was introduced and analyzed (see also [12] for an analysis in the case of
high order approximation). Coupled bulk-surface problems were considered in [6] and [13]. Higher
order versions of trace fem for the Laplace-Beltrami operator were analyzed in [23, 12]. Finally
in, [16], [19], and [21], extensions to time dependent problems were presented.

Several other techniques for solving partial differential equations on surfaces have been pro-
posed. Most notably, the original idea of Dziuk, [8] was to use a triangulation of the surface. We
refer to [9] and the references therein for an overview.

Organization of the Paper. In Section 2 we introduce the model problem, in Section 3 we define
the cut finite element method, in Section 4 we derive our main theoretical results, in Section 5
we prove a bound on the condition number, and in Section 6 we present numerical results that
confirm our theoretical results.

2. The Model Problem

2.1. The Surface

Let Γ be a smooth surface without boundary embedded in R3 with signed distance function
ρ, such that the exterior unit normal to the surface is given by n = ∇ρ. We let p : R3 → Γ be the
closest point mapping. Then there is a δ0 > 0 such that p maps each point in Uδ0(Γ) to precisely
one point on Γ. Here Uδ(Γ) = {x ∈ R3 : |ρ(x)| < δ} is the open tubular neighborhood of Γ of
thickness δ > 0.

2.2. Tangential Calculus

For each function u on Γ we let the extension ue to the neighborhood Uδ0(Γ) be defined by the
pull back ue = u ◦ p. For a function u : Γ→ R we define the tangential gradient

∇Γu = PΓ∇ue (2.1)

where PΓ = I − n ⊗ n, with n = n(x), is the projection onto the tangent plane Tx(Γ), and the
surface divergence

divΓ(u) = tr(u⊗∇Γ) = div(ue)− n · (ue ⊗∇) · n (2.2)

where (u ⊗ ∇)ij = ∂jui. It can be shown that the tangential derivative does not depend on the
particular choice of extension.
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2.3. The Surface Convection-Diffusion Problem

The strong form of the convection diffusion problem on Γ takes the form: find u : Γ→ R such
that

Lu = β · ∇Γu+ αu− ε∆Γu = f on Γ (2.3)

where β : Γ→ R3 is a given tangential vector field, α : Γ→ R, and f : Γ→ R are given functions,
and ε ≥ 0 is a given constant.

We assume that the coefficients α and β are smooth and that there is a constant α0 such that

0 < α0 ≤ inf
x∈Γ

(α(x)− 1

2
divΓβ(x)) (2.4)

We note that using Green’s formula and assumption (2.4) we obtain the estimate

(Lv, v)Γ = ((α− 1

2
divΓβ)v, v)Γ + ε‖∇Γv‖2Γ ≥ α0‖v‖2Γ + ε‖∇Γv‖2Γ (2.5)

The weak formulation of (2.3) takes the form: find u ∈ V = H1(Γ) such that

a(u, v) = (f, v)Γ ∀v ∈ V (2.6)

where
a(v, w) = (β · ∇Γv, w)Γ + (αv,w)Γ + ε(∇Γv,∇Γw)Γ (2.7)

In the case ε > 0 we may conclude using Lax–Milgram’s lemma that there is a unique solution to
(2.6). In the case ε = 0 we refer to [5] for an existence result.

We will be interested in the behavior of the numerical method for coefficients that satisfy

0 ≤ ε . 1, α ∼ 1, β ∼ 1, α+
1

2
divΓβ ∼ 1 (2.8)

with particular focus on the convection dominated case.

3. The Finite Element Method

3.1. The Discrete Surface

Let Ω0 ⊂ R3 be a polygonal domain that contains Uδ0(Γ) and let {T0,h, h ∈ (0, h0]} be a
family of quasiuniform partitions of Ω0 into shape regular tetrahedra with mesh parameter h. Let
Γh ⊂ Ω0 be a surface without boundary such that Γh ∩ T is either empty or a subset of some
hyperplane for each T ∈ T0,h and let nh be the piecewise constant exterior unit normal to Γh.

Assumption A. The family {Γh : h ∈ (0, h0]} approximates Γ in the following sense:

• Γh ⊂ Uδ0(Γ), and the closest point mapping p : Γh → Γ is a bijection, for all h ∈ (0, h0].

• There are constants such that for all h ∈ (0, h0],

‖ρ‖L∞(Γh) . h2, ‖n− nh‖L∞(Γh) . h (3.1)

Let Th be the active mesh in the mesh

Th = {T ∈ Th,0 : T ∩ Γh 6= ∅} (3.2)

and let Fh be the set of all interior faces in Th. Let Kh be the induced partition of Γh, defined by

Kh = {K = T ∩ Γh : T ∈ Th} ∪ {F ∈ Fh : F ⊂ Γh} (3.3)

and let Eh be the set of edges in the induced partition Kh of Γh.
We shall also use the notation ωl = p(ω) = {p(x) ∈ Γ : x ∈ ω ⊂ Γh}, in particular Klh = {Kl :

K ∈ Klh} is a partition of Γ, and ‖v‖ω denotes the L2 norm over the set ω equipped with the
appropriate measure.
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3.2. The Stabilized Finite Element Method
Let Vh be the space of continuous piecewise linear functions defined on Th. To implement

a discrete version of the variational form of (2.3) we introduce discrete approximations, αh and
βh, of the physical parameters α and β. The assumptions made on these approximations will be
specified in Assumption B below.

The finite element method takes the form: find uh ∈ Vh such that

Ah(uh, v) = Lh(v) ∀v ∈ Vh (3.4)

The forms are defined by

Ah(v, w) = ah(v, w) + sh,1(v, w) + sh,2(v, w) (3.5)

with

ah(v, w) = (βh · ∇Γhv, w)Kh + (αhv, w)Kh + ε(∇Γhv,∇Γhw)Kh (3.6)

sh,1(v, w) = τ1h(βh · ∇Γhv + αhv, βh · ∇Γhw)Kh (3.7)

sh,2(v, w) = τ2h
γ(nh · ∇v, nh · ∇w)Th (3.8)

where ∇Γhv = PΓh∇v = (I − nh ⊗ nh)∇v is the tangential gradient on Γh, and

Lh(v) = lh(v) + lsh,1(v) = (fe, v)Kh + τ1h(fe, βh · ∇Γhv)Kh (3.9)

Here the streamline diffusion stabilization term sh,1 is added to control the solution in the convec-
tion dominated case and the normal gradient stabilization term sh,2 is added to control potential
instabilities caused by the cut elements. The streamline diffusion stabilization sh,1 includes the
weighting parameter

τ1 =

{
cτ1β

−1
∞ if β∞h ≥ ε (high Peclet number regime)

cτ1hε
−1 if β∞h ≤ ε (low Peclet number regime)

(3.10)

where cτ1 is a positive parameter and β∞ = ‖βh‖L∞(Γh). Observe that this can be more compactly
written

τ1 = cτ1 min(β−1
∞ , hε−1) (3.11)

The normal gradient stabilization term sh,2 has two parameters: τ2 and γ. The parameter γ will
be chosen in the interval γ ∈ [0, 2), see the discussion in Remark 3.1 below. The parameter τ2
should be chosen proportional to τ−1

1 , to scale correctly in β∞ and ε, more precisely

τ2 = cτ2 max(β∞, εh
−1) (3.12)

where cτ2 is a positive parameter.

Remark 3.1. From the stability estimate and consistency we have that the parameter γ in (3.8)
must be chosen in the range 0 ≤ γ < 2. More precisely, the derivation of the coercivity of
Ah provides an upper bound on γ, guaranteeing that the stabilization is strong enough, and the
consistency result provides the lower bound, guaranteeing that the stabilization is weak enough
not to affect the optimal order of convergence (see the a priori estimate). The condition number
estimate, see Theorem 6.1, however shows that the best choice is γ = 1. This is the largest γ, and
thus the weakest stabilization, that gives optimal order condition number.

Remark 3.2. In [4] the so called full gradient stabilization was proposed and analyzed for the
Laplace-Beltrami operator. Applying the same idea for the convection-diffusion problem we find
that a suitable full gradient stabilization term takes the form

sh,3(v, w) = τ2h
2(∇v,∇w)Th (3.13)

where τs is defined in (3.12) and the powers of h are given by the a priori error estimate (see com-
ments in Remark 5.3. We note that the normal control provided by the full gradient stabilization
term is weaker compared to the normal gradient due to the different h scalings. To prove coercivity,
at least using straight forward estimates, we will need to use the antisymmetric formulation of the
convection term. See Remark 5.1 below. Note also that the h scaling here is fixed while in the
normal gradient stabilization we have some flexibility (the choice of γ).

4



4. Preliminary Results

4.1. Extension and Lifting of Functions

In this section we summarize basic results concerning extension and liftings of functions. We
refer to [2], [7], and [15], for further details.

Extension. Recalling the definition ve = v ◦ p of the extension and using the chain rule we obtain
the identity

∇Γhv
e = BT∇Γv (4.1)

where
B = PΓ(I − ρκ)PΓh : Tx(K)→ Tp(x)(Γ) (4.2)

and κ = ∇⊗∇ρ is the curvature tensor (or second fundamental form) which may be expressed in
the form

κ(x) =

2∑
i=1

κei
1 + ρ(x)κei

aei ⊗ aei (4.3)

where κi are the principal curvatures with corresponding orthonormal principal curvature vectors
ai, see [11, Lemma 14.7]. We note that there is δ > 0 such that the uniform bound

‖κ‖L∞(Uδ(Γ)) . 1 (4.4)

holds. Furthermore, B : Tx(K) → Tp(x)(Γ) is invertible for h ∈ (0, h0] with h0 small enough, i.e,
there is B−1 : Tp(x)(Γ)→ Tx(K) such that

BB−1 = PΓ, B−1B = PΓh (4.5)

See [15] for further details.

Lifting. The lifting wl of a function w defined on Γh to Γ is defined as the push forward

(wl)e = wl ◦ p = w on Γh (4.6)

For the derivative it follows that

∇Γhw = ∇Γh(wl)e = BT∇Γ(wl) (4.7)

and thus
∇Γ(wl) = B−T∇Γhw (4.8)

Estimates Related to B. Using the uniform bound ‖κ‖Uδ0 (Γ) . 1 and the bound ‖ρ‖L∞(Γh) . h2

from the geometry approximation assumption it follows that

‖B‖L∞(Γh) . 1, ‖B−1‖L∞(Γ) . 1 (4.9)

‖PΓPΓh −B‖L∞(Γ) . h2, ‖PΓhPΓ −B−1‖L∞(Γh) . h2 (4.10)

For the surface measures on Γ and Γh we have the identity

dΓ = |B|dΓh (4.11)

where |B| = |det(B)| is the absolute value of the determinant of B and we have the following
estimates

‖1− |B|‖L∞(Γh) . h2,
∥∥1− |B−1|

∥∥
L∞(Γh)

. h2, ‖|B|‖L∞(Γh) . 1,
∥∥|B|−1

∥∥
L∞(Γh)

. 1

(4.12)
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Norm Equivalences. We have

‖v‖L2(Γ) ∼ ‖v‖L2(Γh) and ‖∇Γv‖L2(Γ) ∼ ‖∇Γhv‖L2(Γh) (4.13)

4.2. Properties of the Discrete Approximations of the Coefficients
We make the following assumptions about the approximations αh and βh:

Assumption B. The functions αh, βh are approximations of αe and βe, such that βh is tangential
βh = PΓhβh, and the following properties hold:

• There are constants such that for all h ∈ (0, h0],

‖αh‖L∞(Γh) . 1, ‖βh‖L∞(Γh) . 1, ‖αh −
1

2
divΓhβh‖L∞(Γh) . 1 (4.14)

• There is a constant αh,0 such that for all h ∈ (0, h0],

0 < αh,0 ≤ inf
x∈Γh

αh(x)− 1

2
divΓhβh(x) (4.15)

• There are constants (depending on α and β) such that for all h ∈ (0, h0],

‖β − |B|−1Bβlh‖L∞(Γ) . Cβh
2, ‖α− |B|−1αlh‖L∞(Γ) . Cαh

2 (4.16)

It follows from assumptions A and B that

‖[νh · βh]‖L∞(Eh) . Cβh
2 (4.17)

for all h ∈ (0, h0]. Here the jump is defined by

[νh · βh] = νh,K1
· βh + νh,K2

· βh (4.18)

where νh,Ki denotes the unit vector orthogonal to the edge E ∈ Eh shared by the elements K1 and
K2, tangent and exterior to Ki, i = 1, 2. See [5] for a proof of (4.17).

Remark 4.1. Using the bounds (4.12), (4.10) and the identity (4.2) we note that

‖β − |B|−1Bβlh‖L∞(Γ) . ‖β − PΓβ
l
h‖L∞(Γ) +O(h2) (4.19)

and using (4.12) we have

‖α− |B|−1αlh‖L∞(Γ) . ‖α− αlh‖L∞(Γ) +O(h2) (4.20)

Thus we conclude that (4.16) is equivalent to the simplified assumptions

‖β − PΓβ
l
h‖L∞(Γ) . Cβh

2, ‖α− αlh‖L∞(Γ) . Cαh
2 (4.21)

Remark 4.2. A natural choice is to take αh = αe and βh = PΓhβ
e; then we have

Cα = ‖α‖L∞(Γ) = α∞, Cβ = ‖β‖L∞(Γ) = β∞ (4.22)

We may then verify (4.16), using the simplified form (4.21), as follows:

‖β − PΓβ
l
h‖L∞(Γ) = ‖PΓ(PΓβ

e)l − PΓ(PΓhβ
e)l‖L∞(Γ) (4.23)

= ‖PΓ(PΓβ
e − PΓhβ

e)l)‖L∞(Γ) (4.24)

= ‖PΓ(PΓPΓβ
e − PΓhPΓβ

e)l)‖L∞(Γ) (4.25)

= ‖(PΓ(PΓ − PΓh)PΓβ
e)l)‖L∞(Γ) (4.26)

≤ ‖PΓ(PΓ − PΓh)PΓ‖L∞(Γ)‖β‖L∞(Γ) (4.27)

= ‖PΓnh‖2L∞(Γ)‖β‖L∞(Γ) (4.28)

. h2‖β‖L∞(Γ) (4.29)

where we used the identity PΓβ
e = βe and the estimate

‖PΓnh‖L∞(Γ) = ‖PΓ(nh − n)‖L∞(Γ) ≤ ‖nh − n‖L∞(Γ) . h (4.30)

For α we clearly have α− αlh = α− (αe)l = 0.
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4.3. Some Technical Estimates

Here we will recall two inequalities that are useful in the analysis of the stabilized method. The
first that was originally introduced in [3] is a Poincaré type inequality showing that the L2-norm
of the finite element solution in the bulk mesh Th can be controlled by the L2-norm over the
discrete surface plus the normal component of the bulk gradient, scaled with h. The second is a
trace inequality showing that the scaled L2-norm of the finite element solution over the edges of
the tesselation of the discrete surface can be bounded by the L2-norm over the surface, plus the
scaled normal stabilization term.

Lemma 4.1. There is a constant such that for all v ∈ Vh,

‖v‖2Th . h‖v‖2Kh + h2‖nh · ∇v‖2Th (4.31)

Proof. See [3] Proposition 8.8.

Lemma 4.2. There is a constant such that for all v ∈ Vh,

h‖v‖2Eh . ‖v‖2Kh + h‖nh · ∇v‖2Th (4.32)

There is a constant such that for all v ∈ Vh +H2(Th),

h2‖v‖2Eh . ‖v‖2Th + h2‖∇v‖2Th + h4‖∇2v‖2Th (4.33)

where ∇2v = ∇⊗∇v is the Hessian of v.

Proof. To show (4.32) we first use inverse estimates to pass from edges to faces to elements

‖v‖2E . h−1‖v‖2F . h−2‖v‖2T (4.34)

where E = F ∩ Γh and F ⊂ ∂T . Next summing over all E ∈ Eh, employing (4.31), and using
the fact that to each T there is at most four edges E such that E ⊂ ∂T , we obtain the desired
estimate

h‖v‖2Eh . h−1‖v‖2Th . ‖v‖2Kh + h‖nh · ∇v‖2Th (4.35)

The inequality (4.33) follows by first applying the trace inequality

‖v‖2E . h−1‖v‖2F + h‖∇v‖2F (4.36)

see [14], to pass from the edge E to the face F such that E = F ∩Γh. Then we apply the standard
trace inequality

‖w‖2F . h−1‖w‖2T + h‖∇w‖2T (4.37)

with w = ∇v to pass from the face F to an element T such that F ⊂ ∂T . We obtain

‖v‖2E . h−1‖v‖2F + h‖∇v‖2F (4.38)

. h−1(h−1‖v‖2T + h‖∇v‖2T ) + h(h−1‖∇v‖2T + h‖∇2v‖2T ) (4.39)

. h−2‖v‖2T + ‖∇v‖2T + h2‖∇2v‖2T (4.40)

Summing over all edges E ∈ Eh we obtain (4.33).
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4.4. Interpolation Error Estimates

For the error analysis in the next section we will use the following mesh-dependent norm:

|||v|||2h = ‖v‖2Kh + ε‖∇Γhv‖2Kh + τ1h‖βh · ∇Γhv‖2Kh + τ2h
γ‖nh · ∇v‖2Th (4.41)

Let πh : L2(Th) → Vh be the Clément interpolant and recall the standard interpolation error
estimate

‖w − πhw‖Hm(Th) . hs−m‖w‖Hs(Th) (4.42)

for w ∈ Hs(Th) and 0 ≤ m ≤ s ≤ 2. When interpolating functions of the form w = ve, with
v ∈ Hs(Γ), the following stability of the extension

‖ve‖Hs(Uδ(Γ)) . δ1/2‖v‖Hs(Γ) (4.43)

is used together with a trace inequality to derive the interpolation error estimate

‖v − (πhv
e)l‖Hm(Γ) ∼ ‖ve − πhve‖Hm(Γh) . hs−m‖v‖Hs(Γ) m ∈ {0, 1},m ≤ s ≤ 2 (4.44)

see [2] and [20] for details. Furthermore, we have the following energy norm estimate of the
interpolation error.

Lemma 4.3. Let τ1 be defined by (3.11), τ2 by (3.12), with 0 ≤ γ; then there is a constant such
that

|||ue − πhue|||2h . max(β∞h
3, εh2)‖u‖2H2(Γ) (4.45)

Proof. Considering the definition of (4.41) we see that the bound for the first two terms is an
immediate consequence of (4.44),

‖ue−πhue‖2Kh+ε‖∇Γh(ue−πhue)‖2Kh . h4‖u‖2H2(Γ)+εh
2‖u‖2H2(Γ) . max(h4, εh2)‖u‖2H2(Γ) (4.46)

For the third term of (4.41), that is related to the streamline diffusion stabilization, we have using
(4.44) and the definition (3.11) of τ1,

τ1h‖βh · ∇Γh(ue − πhue)‖2Kh . τ1β
2
∞h

3‖u‖H2(Γ)

. min(β−1
∞ , hε−1)β2

∞h
3‖u‖2H2(Γ) . β∞h

3‖u‖H2(Γ) (4.47)

where for the last inequality we used the fact min(β−1
∞ , hε−1)β∞ ≤ 1. Finally, for the fourth term

we obtain

τ2h
γ‖nh · ∇(ue − πhue)‖2Th . τ2h

γ+2‖ue‖2H2(Th)

. τ2h
γ+3‖u‖2H2(Γ) . max(β∞h

3, εh2)hγ‖u‖2H2(Γ) (4.48)

where we used the assumption (3.12) on τ2 to conclude that

τ2h
γ+3 = max(β∞, εh

−1)hγ+3 = max(β∞h
3, εh2)hγ (4.49)

Collecting the bounds we obtain

|||ue − πhue|||2h . max(h4, εh2, β∞h
3, εh2, β∞h

3+γ , εh2+γ)‖u‖2H2(Γ) (4.50)

and the desired result follows for γ ≥ 0.

5. A Priori Error Estimates

In this section we will prove the main result of this paper: an optimal error estimate in the
streamline derivative norm and an estimate that is suboptimal with O(h

1
2 ) for the error in the

L2-norm. To give some structure to this result we first prove coercivity, which also establishes the
existence of the discrete solution, then continuity and finally estimates of the geometrical error
and consistency.
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5.1. Coercivity

Compared to a standard coercivity result for a problem set in the flat domain we must here
control the terms appearing due to jumps in the discrete approximation of β over element faces.
To obtain this control we need to use equation (4.17) of Assumption B and the normal grandient
stabilization.

Lemma 5.1. Let γ < 2 and h0 be small small enough, there is a constant ccoer > 0 such that for
all v ∈ Vh and h ∈ (0, h0],

ccoer|||v|||2h . Ah(v, v) ∀v ∈ Vh (5.1)

The constant ccoer takes the form

ccoer = min
(

1, αh,0 − C1h0, 1− C2h
2−γ
0

)
(5.2)

where C1 and C2 are positive constants.

Proof. We have

Ah(v, v) = ah(v, v) + sh,1(v, v) + sh,2(v, v) = I + II + III (5.3)

Term I. Using Assumptions (4.15) and (4.17) we obtain

ah(v, v) = (βh · ∇Γhv, v)Kh + (αhv, v)Kh + ε(∇v,∇w)Kh (5.4)

= ((αh −
1

2
divΓhβh)v, v)Kh + ([νh · βh]v, v)Eh + ε(∇v,∇w)Kh (5.5)

≥ αh,0‖v‖2Kh − C∗Cβ(h‖v‖2Kh + h2‖nh · ∇Γhv‖2Th) + ε‖∇Γhv‖2Kh (5.6)

where we used Green’s formula in (5.5), and in (5.6) we used assumption (4.15) for the first term,
and for the second term we employed the estimate

([νh · βh]v, v)Eh . Cβ(h‖v‖2Kh + h2‖nh · ∇v‖2Th) (5.7)

with hidden constant denoted by C∗. To verify (5.7) we use (4.17) and the inverse estimate (4.32),

([νh · βh]v, v)Eh . ‖[νh · βh]‖L∞(Eh)‖v‖2Eh (5.8)

. Cβh
2‖v‖2Eh (5.9)

. Cβ(h‖v‖2Kh + h2‖nh · ∇v‖2Th) (5.10)

Term II. Using the Cauchy-Schwarz inequality and the bound 2ab ≤ a2 + b2 we obtain

sh,1(v, v) = τ1h(βh · ∇Γhv + αhv, βh · ∇Γhv)Kh (5.11)

≥ τ1h‖βh · ∇Γhv‖2Kh − τ1h‖αhv‖Kh‖βh · ∇Γhv‖Kh (5.12)

≥ τ1
2
h‖βh · ∇Γhv‖2Kh −

τ1
2
h‖αh‖2L∞(Kh)‖v‖

2
Kh (5.13)

Term III. We directly have
sh,2(v, v) = τ2h

γ‖nh · ∇v‖2Th (5.14)
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Conclusion. Collecting the estimates we obtain

Ah(v, v) ≥
(
αh,0 − C∗Cβh− h

τ1
2
‖αh‖2L∞(Kh)

)
‖v‖2Kh + ε‖∇Γhv‖2Kh +

τ1
2
h‖βh · ∇Γhv‖2Kh (5.15)

+
(

1− C∗Cβτ−1
2 h2−γ

)
τ2h

γ‖nh · ∇v‖2Th (5.16)

& min
(

1, αh,0 − C1h0, 1− C2h
2−γ
0

)
|||v|||2h (5.17)

& ccoer|||v|||2h (5.18)

for h ∈ (0, h0] with h0 small enough. The constants C1 and C2 satisfy

C1 = C∗Cβ +
τ1
2
‖αh‖2L∞(Kh) ≤ C∗Cβ +

1

2
min(β−1

∞ , h0ε
−1)α2

∞ . 1 (5.19)

C2 = C∗Cβτ
−1
2 . Cβτ1 . Cβ min(β−1

∞ , h0ε
−1) . 1 (5.20)

where we used the identity τ2 = τ−1
1 . Here α∞ = ‖αh‖L∞(Γh).

Remark 5.1. Note that if we instead start from the skew symmetric discretization of the convec-
tion term

aβ(v, w) =
1

2

(
(βh · ∇Γhv, w)Kh − (v, βh · ∇Γhw)Kh

)
− 1

2
((divΓhβh)v, w)Kh (5.21)

we do not have to use partial integration in Term I since aβ(v, v) = 0. This simplifies the argument
since we immediately obtain

Ah(v, v) = ((αh −
1

2
divΓhβh)v, v)Kh + ε(∇Γhv,∇Γhv)Kh + sh,1(v, v) + sh,s(v, v) (5.22)

We note that [22] uses the skew symmetric form and may thus establish coercivity (with respect
to a weaker norm) without using the stabilization term sh,2. With normal gradient stabilization
we find that we may use the standard or the antisymmetric formulation of the convection term.
However, partial integration must still be used to prove an optimal a priori error estimate, see the
proof of the continuity result in the next section.

5.2. Continuity

We now prove a continuity result.

Lemma 5.2. There is a constant such that for all η ∈ Vh +H2(Th), v ∈ Vh,

Ah(η, v) .
(

max(β∞, εh
−1)h−1‖η‖2Kh + |||η|||2h + C2

β max(h2, β−1
∞ h3−γ)|||η|||2h,∗

)1/2

|||v|||h (5.23)

where
|||η|||2h,∗ = h−1‖η‖2Th + h‖∇η‖2Th + h3‖∇2η‖2Th (5.24)

Proof. We have

Ah(η, v) = ah(η, v) + sh,1(η, v) + sh,2(η, v) = I + II + III (5.25)
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Term I. Using partial integration on the discrete surface followed by the Cauchy-Schwarz inequal-
ity we obtain

I = (αhη, v)Kh + (βh · ∇Γhη, v)Kh + ε(∇Γhη,∇Γhv)Kh (5.26)

= ((αh − divΓhβh)η, v)Kh − (η, βh · ∇Γhv)Kh + ([νh · βh]η, v)Eh + ε(∇Γhη,∇Γhv)Kh (5.27)

≤ (‖αh − divΓhβh‖L∞(Kh))︸ ︷︷ ︸
.1

‖η‖Kh ‖v‖Kh︸ ︷︷ ︸
≤|||v|||h

(5.28)

+ τ
− 1

2
1 h−1/2‖η‖Kh τ

1
2

1 h
1/2‖βh · ∇Γhv‖Kh︸ ︷︷ ︸

.|||v|||h

+ ‖[νh · βh]‖L∞(Eh)‖η‖Eh‖v‖Eh︸ ︷︷ ︸
F.Cβ max(h,τ

−1/2
2 h

3−γ
2 )|||η|||h,∗|||v|||h

+ ε1/2‖∇Γhη‖Kh︸ ︷︷ ︸
≤|||η|||h

ε1/2‖∇Γhv‖Kh︸ ︷︷ ︸
≤|||v|||h

. τ
−1/2
1 h−1/2‖η‖Kh |||v|||h + |||η|||h|||v|||h + Cβ max(h, τ

−1/2
2 h

3−γ
2 )|||η|||h,∗|||v|||h (5.29)

We thus obtain

I .
(
τ−1
1 h−1‖η‖2Kh + |||η|||2h + C2

β max(h2, τ−1
2 h3−γ)|||η|||2h,∗

)1/2 |||v|||h (5.30)

.
(
max(β∞, εh

−1)h−1‖η‖2Kh + |||η|||2h + C2
β max(h2, β−1

∞ h3−γ)|||η|||2h,∗
)1/2 |||v|||h (5.31)

where we used the estimates

τ
−1/2
1 h−1/2 . max(β1/2

∞ , ε1/2h−1/2), h−1/2) Cβτ
−1/2
2 . Cββ

−1/2
∞ (5.32)

which follows directly from the definitions (3.10) and (3.12), of parameters τ1 and τ2.
For F we used (4.17) followed by (4.33) and (4.32) to obtain the bound

F = ‖[νh · βh]‖L∞(Eh)‖η‖Eh‖v‖Eh (5.33)

. Cβhh
1/2‖η‖Ehh1/2‖v‖Eh (5.34)

. Cβh
(
h−1‖η‖2Th + h1‖∇η‖2Th + h3‖∇2η‖2Th

)1/2

︸ ︷︷ ︸
=|||η|||h,∗

(
‖v‖2Kh + h‖nh · ∇v‖2Th

)1/2

︸ ︷︷ ︸
.max(1,τ

− 1
2

2 h
1−γ
2 )|||v|||h

(5.35)

. Cβ max(h, τ
− 1

2
2 h

3−γ
2 )|||η|||h,∗|||v|||h (5.36)

where we used the estimate

‖v‖2Kh + h‖nh · ∇v‖2Th ≤ ‖v‖
2
Kh + τ−1

2 h1−γτ2h
γ‖nh · ∇v‖2Th (5.37)

≤ max(1, τ−1
2 h1−γ)(‖v‖2Kh + τ2h

γ‖nh · ∇v‖2Th) (5.38)

≤ max(1, τ−1
2 h1−γ)|||v|||2h (5.39)

Term II. Using the Cauchy-Schwarz inequality,

II = τ1h(αhη + βh · ∇Γhη, βh · ∇Γhv)Kh (5.40)

. (τ
1/2
1 h1/2‖αh‖L∞(Γh)‖η‖Kh + τ

1/2
1 h1/2‖βh · ∇Γhη‖Kh)τ

1/2
1 h1/2‖βh · ∇Γhv‖Kh (5.41)

. |||η|||h|||v|||h (5.42)

Term III. Using the Cauchy-Schwarz inequality,

III = τ2h
γ(nh · ∇η, nh · ∇v)Th ≤ τ

1/2
2 hγ/2‖nh · ∇η‖Thτ

1/2
2 hγ/2‖nh · ∇v‖Th . |||η|||h|||v|||h (5.43)

Collecting the estimates of terms I-III we directly obtain the desired estimate.
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5.3. Geometric Error Estimates

We have the following estimates: for v ∈ H1(Γ) and w ∈ Vh,

|a(v, wl)− ah(ve, w)| . (ε1/2 + Cα + Cβ)h2‖v‖H1(Γ)(‖w‖2Kh + ε‖∇Γhw‖2Kh)1/2 (5.44)

and for w ∈ Vh,

|l(wl)− lh(w)| . h2‖f‖Γ‖w‖Kh (5.45)

Verification of (5.44). We have

|ε(∇Γv,∇Γw
l)Γ − ε(∇Γhv

e,∇Γhw)Kh | . εh2‖∇Γv‖Γ‖∇Γhw‖Kh (5.46)

see [2] for details. Using (4.1) and changing domain of integration from Γh to Γ we obtain

(βh · ∇Γhv
e, w)Kh − (β · ∇Γv, w

l)Γ = (|B|−1(Bβlh · ∇Γv), wl)Γ − (β · ∇Γv, w
l)Γ (5.47)

= ((|B|−1Bβlh − β) · ∇Γv), wl)Γ . Cβh
2‖∇Γv‖Γ‖w‖Kh (5.48)

where we used Assumption B and (4.13) in the last step. Using the same approach we obtain

(αhv
e, w)Kh − (αv,wl)Γ = ((α− |B|−1αlh)v, wl)Γ . Cαh

2‖v‖Γ‖w‖Kh (5.49)

Finally (5.45) follows in the same way.

5.4. Consistency

We now estimate the consistency error which depends on the geometric error.

Lemma 5.3. For γ > 0, there is a constant such that for all v ∈ Vh and u ∈ H2(Γ),

Ah(ue, v)− Lh(v) . (max(β∞h
3, εh2))1/2‖u‖H2(Γ)|||v|||h + h2‖f‖Γ|||v|||h (5.50)

Proof. We have the identity

Ah(ue, v)− Lh(v) = ah(ue, v)− lh(v)︸ ︷︷ ︸
I

+ sh,1(ue, v)− lsh,1(v)︸ ︷︷ ︸
II

+ sh,2(ue, v)︸ ︷︷ ︸
III

(5.51)

Term I. Using the geometry error estimates (5.44) and (5.45) we directly obtain

I = ah(ue, v)− a(u, vl) + l(vl)− lh(v) (5.52)

. h2‖u‖H1(Γ)(‖v‖2Kh + ε‖∇Γhv‖2Kh)1/2 + h2‖f‖Γ‖v‖Kh (5.53)

. h2‖u‖H1(Γ)|||v|||h + ‖f‖Γ
)
|||v|||h (5.54)

. (max(β∞h
3, εh2)1/2‖u‖H1(Γ)|||v|||h + ‖f‖Γ|||v|||h (5.55)

where we used the estimate
h2 . (max(β∞h

3, εh2))1/2 (5.56)

which holds for all h ∈ (0, h0] with h0 small enough
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Term II. Subtracting the quantity

(β · ∇Γu+ αu− ε∆Γu− f)e = 0 (5.57)

and estimating the resulting terms using (5.48) and (5.49) we obtain

II = τ1h(βh · ∇Γhu
e + αhu

e − fh, βh · ∇Γhv)Kh (5.58)

= τ1h((βh · ∇Γhu
e + αhu

e − fe)− (β · ∇Γu+ αu− ε∆Γu− f)e, βh · ∇Γhv)Kh (5.59)

≤ τ1/2
1 h1/2

(
‖βh · ∇Γhu

e − (β · ∇Γu)e‖Kh + ‖αhue − (αu)e‖Kh (5.60)

+ ε‖(∆Γu)e‖Kh
)
τ

1/2
1 h1/2‖βh · ∇Γhv‖Kh

≤ τ1/2
1 (Cβh

5/2 + Cαh
5/2 + εh1/2)‖u‖H2(Γ)|||v|||h (5.61)

. (β−1
∞ C2

βh
5 + β−1

∞ C2
αh

5 + εh2)1/2‖u‖H2(Γ)|||v|||h (5.62)

. (max(β∞h
3, εh2))1/2‖u‖H2(Γ)|||v|||h (5.63)

where we used the definition (3.10) of τ1 and finally the fact that

β−1
∞ C2

βh
5 + β−1

∞ C2
αh

5 . β∞h
3 (5.64)

for all h ∈ (0, h0] with h0 small enough.

Term III. Using the fact that n · ∇ue = 0 we directly obtain

III . τ2h
γ‖nh · ∇ue‖Th‖nh · ∇v‖Th (5.65)

. τ2h
γ‖(nh − n) · ∇ue‖Th‖nh · ∇v‖Th (5.66)

. τ
1/2
2 hγ/2‖(nh − n)‖L∞(Γh)‖∇ue‖Thτ

1/2
2 hγ/2‖nh · ∇v‖Th (5.67)

. τ
1/2
2 h(γ+3)/2‖u‖H1(Γ)|||v|||h (5.68)

. (max(β∞h
γ+3, εhγ+2)1/2‖u‖H1(Γ)|||v|||h (5.69)

. (max(β∞h
3, εh2)1/2‖u‖H1(Γ)|||v|||h (5.70)

where we used the definition (3.12) of τ2 and at last the restriction γ ≥ 0.
Collecting the estimates for the terms I-III directly completes the proof.

Remark 5.2. Note that from the proof we see that γ must be larger or equal to zero. This lower
bound on γ guarantees that the stabilization is weak enough not to affect the optimal order of
convergence, see Theorem 5.1 in the next section.

Remark 5.3. For the full gradient stabilization (3.13) we note that we get the coarser estimate

III . τ2h
γ‖∇ue‖Th‖∇v‖Th (5.71)

. τ
1/2
2 hγ/2‖∇ue‖Thτ

1/2
2 hγ/2‖∇v‖Th (5.72)

. τ
1/2
2 h(γ+1)/2‖u‖H1(Γ)|||v|||h (5.73)

. (max(β∞h
γ+1, εhγ)1/2‖u‖H1(Γ)|||v|||h (5.74)

and thus we must take γ = 2 to get optimal order. We note that the normal gradient stabilization
is more refined with a smaller consistency error, which allows us to take a larger γ and thus obtain
stronger control compared to full gradient stabilization.
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5.5. A Priori Error Estimate

In this section we will prove an a priori error estimates that is optimal for both convection
and diffusion dominated flows. In the convection dominated regime the error measured in the
streamline derivative norm is optimal, O(h), whereas the error in the L2-norm is O(h3/2), which
is suboptimal with a factor O(h1/2). In the diffusion dominated regime, we show that the error in
the H1-norm is optimal O(h). In the latter case it is also possible to prove optimal error estimates
in the L2-norm following [20, 2], we leave the details of this estimate to the reader.

Theorem 5.1. Let u be the solution to (2.3) and uh the finite element approximation defined by
(3.4) with 0 ≤ γ < 2. If assumptions A and B hold, then there is a constant such that for all
h ∈ (0, h0], with h0 small enough,

|||ue − uh|||2h . max(β∞h
3, εh2)‖u‖2H2(Γ)|||v|||h + h4‖f‖2Γ (5.75)

Proof. Adding and subtracting an interpolant and using the triangle inequality

|||ue − uh|||h ≤ |||ue − πhue|||h + |||πhue − uh|||h (5.76)

. min(β∞h
3, εh2)1/2‖u‖H2(Γ) + |||πhue − uh|||h (5.77)

where we used the energy norm interpolation estimate (4.45) for the first term. For the second
term we obtain using coercivity, Lemma 5.1 with γ < 2,

|||πhue − uh|||h . sup
v∈Vh\{0}

Ah(πhu
e − uh, v)

|||v|||h
(5.78)

Here we have the identity

Ah(πhu
e − uh, v) = Ah(πhu

e − ue, v) +Ah(ue − uh, v) (5.79)

= Ah(πhu
e − ue, v)︸ ︷︷ ︸
I

+Ah(ue, v)− Lh(v)︸ ︷︷ ︸
II

(5.80)

Term I. Employing the continuity result in Lemma 5.2, with η = πhu
e − ue, followed by the

interpolation error estimates (4.42) and (4.45), we obtain

Ah(η, v) .
(

max(β∞, εh
−1)h−1‖η‖2Kh + |||η|||2h + C2

β max(h2, β−1
∞ h3−γ)|||η|||2h,∗

)1/2

|||v|||h (5.81)

.
(

max(β∞, εh
−1)h3 + max(β∞h

3, εh2) + C2
β max(h2, β−1

∞ h3−γ)h4
)1/2

‖u‖2H2(Γ|||v|||h (5.82)

. (max(β∞h
3, εh2))1/2‖u‖2H2(Γ|||v|||h (5.83)

where we finally used the estimate

C2
β max(h6, β−1

∞ h7−γ) . β2
∞h

3 (5.84)

which holds for all h ∈ (0, h0] with h0 small enough since γ < 2 ≤ 4. Thus we conclude that

Ah(η, v) . (max(β∞h
3, εh2))1/2‖u‖2H2(Γ|||v|||h (5.85)

Term II. Using the the consistency error estimate (5.50) we directly obtain

Ah(ue, v)− Lh(v) . (max(β∞h
3, εh2))1/2‖u‖H2(Γ)|||v|||h + h2‖f‖Γ|||v|||h (5.86)

Combining (5.78), (5.85), and (5.86), we obtain

|||πhue − uh|||h . (max(β∞h
3, εh2))1/2‖u‖H2(Γ)|||v|||h + h2‖f‖Γ|||v|||h (5.87)

which together with (5.77) completes the proof.
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6. Condition Number Estimate

Let {ϕi}Ni=1 be the standard piecewise linear basis functions associated with the nodes in Th
and let A be the stiffness matrix with elements aij = Ah(ϕi, ϕj). The condition number is defined
by

κh(A) := |A|RN |A−1|RN (6.1)

Using the approach in [2], see also [10], we may prove the following bound on the condition number
of the matrix.

Theorem 6.1. The condition number of the stiffness matrix A satisfies the estimate

κh(A) . max(β∞h
−1, εh−2, h−γ) (6.2)

for all h ∈ (0, h0] with h0 small enough and 0 ≤ γ < 2. In particular, for γ = 1, we obtain the
optimal estimate

κh(A) . max(β∞h
−1, εh−2) (6.3)

Proof. First we note that if v =
∑N
i=1 Viϕi and {ϕi}Ni=1 is the usual nodal basis on Th then the

following well known estimates hold

h−d/2‖v‖Th . |V |RN . h−d/2‖v‖Th (6.4)

It follows from the definition (6.1) of the condition number that we need to estimate |A|RN and
|A−1|RN .

Estimate of |A|RN . We have

|AV |RN = sup
W∈RN\0

(W,AV )RN

|W |RN
(6.5)

= sup
w∈Vh\0

Ah(v, w)

|W |RN
(6.6)

. max(β∞, εh
−1)hd−2|V |RN (6.7)

where we used the continuity

Ah(v, w) . max(β∞, εh
−1)hd−2|V |RN |W |RN (6.8)

To verify (6.8) we use inverse estimates to derive bounds in terms of ‖v‖Th and ‖w‖Th and then
we employ (6.4) to pass over to the | · |RN norms. More precisely, we use the inverse estimate

‖w‖K . h−
1
2 ‖w‖T , where K = T ∩ Γh to pass from Kh to Th, and the standard inverse estimate

‖∇w‖T . h−1‖w‖T to remove the gradient. We follow the coefficients recalling the notation α∞ =
‖αh‖L∞(Γh) and β∞ = ‖βh‖L∞(Γh), employ the definitions (3.10) and (3.12) of the parameters τ1
and τ2, and the estimate α∞β

−1
∞ h . α∞β

−1
∞ h0 . 1. The bounds are as follows,

ah(v, w) . ‖βh · ∇Γhv‖Kh‖w‖Kh + ‖αhv‖Kh‖w‖Kh + ε‖∇Γhv‖Kh‖∇Γhw‖Kh (6.9)

. β∞h
−1‖∇v‖Th‖w‖Th + α∞h

−1‖v‖Th‖w‖Th + εh−1‖∇v‖Th‖∇w‖Th (6.10)

. (β∞h
−2 + α∞h

−1 + εh−3)‖v‖Th‖w‖Th (6.11)

. hd−2(β∞(1 + α∞β
−1
∞ h) + εh−1)|V |RN |W |RN (6.12)

. max(β∞, εh
−1)hd−2|V |RN |W |RN (6.13)
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sh,1(v, w) = τ1h(βh · ∇Γhv + αhv, βh · ∇Γhw)Kh (6.14)

. τ1(h‖βh · ∇Γhv‖Kh‖βh · ∇Γhw‖Kh + h‖αhv‖Kh‖βh · ∇Γhw‖Kh) (6.15)

. τ1(‖∇v‖Th‖∇w‖Th + ‖v‖Th‖∇w‖Th) (6.16)

. τ1(β2
∞h
−2 + α∞β∞h

−1)‖v‖Th‖w‖Th (6.17)

. τ1β
2
∞(1 + α∞β

−1
∞ h)hd−2|V |RN |W |RN (6.18)

. τ1β
2
∞(1 + α∞β

−1
∞ h)hd−2|V |RN |W |RN (6.19)

. β∞h
d−2|V |RN |W |RN (6.20)

sh,2(v, w) . τ2h
γ‖nh · ∇v‖Th‖nh · ∇w‖Th (6.21)

. τ2h
γ‖∇v‖Th‖∇w‖Th (6.22)

. τ2h
γ−2‖v‖Th‖w‖Th (6.23)

. τ2h
d+γ−2|V |RN |W |RN (6.24)

. max(β∞, εh
−1)hd−2|V |RN |W |RN (6.25)

We conclude that
|A|RN . max(β∞, εh

−1)︸ ︷︷ ︸
τ2

hd−2 (6.26)

Estimate of |A−1|RN . We note that using (6.4) and Lemma 4.1 we have

hd|V |2RN . ‖v‖2Th (6.27)

. h‖v‖2Kh + h2‖nh · ∇v|||2Th (6.28)

. h‖v‖2Kh + τ−1
2 h2−γτ2h

γ‖nh · ∇v|||2Th (6.29)

. max(h, τ1h
2−γ)|||v|||2h (6.30)

where we used the fact that τ−1
2 ∼ τ1 as follows

max(h, τ−1
2 h2−γ) . max(h, τ1h

2−γ) (6.31)

Thus we obtain
|V |2RN . h−d max(h, τ1h

2−γ)︸ ︷︷ ︸
g(h)

|||v|||2h (6.32)

where we introduced the notation g(h) for convenience. Starting from (6.32) and using the coer-
civity (5.1) we obtain

|V |RN . g(h)1/2|||v|||h . sup
w∈Vh\{0}

g(h)1/2Ah(v, w)

|||w|||h
(6.33)

. sup
W∈RN\{0}

g(h)1/2 |AV |RN |W |RN
g(h)−1/2|W |RN

. g(h)|AV |RN (6.34)

where we used (6.32), g(h)−1/2|W |RN . |||w|||h, to replace |||w|||h by g(h)−1/2|W |RN in the de-
nominator. Setting V = A−1X, X ∈ RN , we obtain

|A−1|RN . g(h) = max(h, τ1h
2−γ) (6.35)

Conclusion. Combining the estimates (6.26) and (6.35) we obtain

|A|RN |A−1|RN (. hd−2τ2)(h−d max(h, τ1h
2−γ)) (6.36)

. max(τ2h
−1, τ2τ1h

−γ) (6.37)

. max(β∞h
−1, εh−2, h−γ) (6.38)

where we used the estimate τ2τ1 . 1. Thus the proof is complete.
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7. Numerical Examples

7.1. Convection–Diffusion

We consider convection–diffusion on the spheroid defined by

(x− 1/2)2 + (y − 1/2)2

r2
max

+
(z − 1/2)2

r2
min

= 1

with rmax = 1/2 and rmin = 1/4. The convective velocity was chosen as

β = (1/2− y, x− 1/2, 0)

and it is easily verified that βΓ = PΓβ = β, and that ∇Γ · βΓ = 0. We set α = 0, cτ1 = 1/2 in
(3.10), cτ2 = 0 in (3.12). The right-hand f was chosen by applying the differential operator to the
fabricated solution

u(x, y, z) = 100(x− 1/2)(y − 1/2)(z − 1/2)

In Fig. 1 we show an isoplot of the solution using ε = 10−3 on a given mesh in a sequence of
refinements, and in Fig. 2 we show the velocity field plotted on the same mesh. Finally, in Fig. 3
we present the convergence in L2(Γh) obtained by our method, close to second order.

7.2. Convection–Reaction with a Layer

We consider convection–diffusion on the spheroid defined by

(x− 1/2)2 + (y − 1/2)2

r2
max

+
(z − 1/2)2

r2
min

= 1

with rmax = 0.5 and rmin = 0.45. The convective velocity was chosen as

β = (5− 10y, 10x− 5, 0)

and parameters α = 1, ε = 0. The right-hand f was chosen as

f =

{
1 if z > 0.55
0 if z ≤ 0.55

creating a discontinuity at z = 0.55. In Fig. 4 we show isoplots of the solution using cτ1 = 0,
τ2 = 10−4 (top), and τ2 = 103 (bottom) on a given mesh with γ = 1. Notice the instability for
small τ2 and excessive diffusivity for large τ2. In Fig. 5 we show the corresponding isoplot for
τ2 = 1, cτ1 = 0, and in Fig. 6 we used cτ1 = 1/2, cτ2 = 0. In both cases there are, as expected,
slight over- and undershoots close to the discontinuity.

Acknowledgements

This research was supported in part by the Swedish Foundation for Strategic Research Grant
No. AM13-0029 (PH,MGL), the Swedish Research Council Grants Nos. 2011-4992 (PH) and 2013-
4708 (MGL), and EPSRC, UK, Grant Nr. EP/P01576X/1. (EB)

References

[1] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier-Stokes
equations. Comput. Methods Appl. Mech. Engrg., 32(1-3):199–259, 1982.

[2] E. Burman, P. Hansbo, and M. G. Larson. A stabilized cut finite element method for partial
differential equations on surfaces: the Laplace-Beltrami operator. Comput. Methods Appl.
Mech. Engrg., 285:188–207, 2015.

17



[3] E. Burman, P. Hansbo, M. G. Larson, and A. Massing. Cut finite element methods for
partial differential equations on embedded manifolds of arbitrary codimensions. ESAIM:
Math. Model. Numer. Anal., 52(6):2247–2282, 2018.

[4] E. Burman, P. Hansbo, M. G. Larson, A. Massing, and S. Zahedi. Full gradient stabilized
cut finite element methods for surface partial differential equations. Comput. Methods Appl.
Mech. Engrg., 310:278–296, 2016.

[5] E. Burman, P. Hansbo, M. G. Larson, and S. Zahedi. Stabilized CutFEM for the convection
problem on surfaces. Numer. Math., 141(1):103–139, 2019.

[6] E. Burman, P. Hansbo, M. G. Larson, and S. Zahedi. Cut finite element methods for coupled
bulk-surface problems. Numer. Math., 133(2):203–231, 2016.

[7] A. Demlow. Higher-order finite element methods and pointwise error estimates for elliptic
problems on surfaces. SIAM J. Numer. Anal., 47(2):805–827, 2009.

[8] G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial
differential equations and calculus of variations, volume 1357 of Lecture Notes in Math.,
pages 142–155. Springer, Berlin, 1988.

[9] G. Dziuk and C. M. Elliott. Finite element methods for surface PDEs. Acta Numer., 22:289–
396, 2013.

[10] A. Ern and J.-L. Guermond. Evaluation of the condition number in linear systems arising in
finite element approximations. ESAIM: Math. Model. Numer. Anal., 40(1):29–48, 2006.

[11] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics
in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[12] J. Grande, C. Lehrenfeld, and A. Reusken. Analysis of a high-order trace finite element
method for PDEs on level set surfaces. SIAM J. Numer. Anal., 56(1):228–255, 2018.

[13] S. Gross, M. A. Olshanskii, and A. Reusken. A trace finite element method for a class of
coupled bulk-interface transport problems. ESAIM: Math. Model. Numer. Anal., 49(5):1303–
1330, 2015.

[14] A. Hansbo, P. Hansbo, M. Larson. A finite element method on composite grids based on
Nitsche’s method. ESAIM: Math. Model. Numer. Anal. 37(3):495–514, 2003.

[15] P. Hansbo, M. G. Larson, and K. Larsson. Analysis of finite element methods for vector Lapla-
cians on surfaces. IMA J. Numer. Anal. In press, https://doi.org/10.1093/imanum/drz018

[16] P. Hansbo, M. G. Larson, and S. Zahedi. Characteristic cut finite element methods for
convection–diffusion problems on time dependent surfaces. Comput. Methods Appl. Mech.
Engrg., 293:431–461, 2015.
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Figure 1: Isoplot of the solution on a given mesh.

Figure 2: Velocity field on a given mesh.
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Figure 3: L2(Γh)–convergence of the discrete solution. Dotted line indicates second order convergence.
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Figure 4: Isoplot of the solution on a given mesh for cτ = 0. Top: τ2 = 10−4, bottom: τ2 = 103
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Figure 5: Isoplot of the solution for cτ = 0, τ2 = 1
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Figure 6: Isoplot of the solution for τ2 = 0, cτ = 1/2
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