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Abstract 

Introduction: SDF-1α is a chemoattractant cytokine that can deliver both acute 

and chronic cardioprotective benefits to the heart. Although CXCR4 has been 

viewed as a main receptor for SDF-1α, a secondary receptor, CXCR7, has 

emerged as an important mediator of SDF-1α signalling. Interestingly, 

endothelial CXCR7 has been found to promote regeneration and ameliorate 

fibrosis in various tissues and organs; however, its exact role in ischaemic 

disease has yet to be determined. Therefore, we sought to examine the 

expression and function of CXCR7 in cardiovascular tissues, focusing on its 

potential as a novel cardioprotective strategy. 

Methods: RNAscope in situ hybridization, western blotting and flow cytometry 

were used to investigate expression and function of CXCR7 on endothelial cell 

lines, isolated mouse endothelial cells, and in the whole mouse heart. We 

examined CXCR7 downstream signalling pathways in presence and absence of 

CXCR7 agonists TC14012 and VUF11207 fumarate, as well as the effects of the 

CXCR7 agonists on endothelial cell migration and acute ischaemia-reperfusion 

injury. 

Results: CXCR7 is expressed in the adult mouse heart and in the endothelial 

cell lines MCEC and HUVEC. Most CXCR7 protein in the endothelial cells was 

observed to be intracellular under basal conditions. In line with this expression 

profile, exposure to CXCR7 agonists failed to activate cardioprotective protein 

kinases ERK1/2 and PI3K/Akt. Moreover, VUF11207 did not ameliorate acute 

ischaemia-reperfusion injury, whereas the role of both CXCR7 agonists in 

migration and angiogenesis is less clear. 

Conclusions: CXCR7 is expressed in the mouse vascular endothelium, but its 

role in activating cardioprotective signalling pathways, as well as its overall 

contribution to cardioprotection is unclear. Activation of the CXCR7 receptor 

does not appear to be a viable acute cardioprotective strategy in mice. 
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Impact statement 

Acute myocardial infarction (MI) affects over 180,000 people per year in the UK 

alone. Despite advances in emergency medicine, which significantly reduced the 

morbidity and mortality of cardiovascular diseases in the last 60 years, there is 

still scope to limit the damage levered by MI, via novel cardioprotective or pro-

regenerative interventions. 

This work presents the results of an investigation into the role of CXCR7 

receptor in MI and whether its modulation can afford cardioprotection or 

stimulate angiogenesis in ex vivo and in vitro models. It suggests a pro-

angiogenic role of endothelial CXCR7, specifically pertaining to cell migration, 

which could affect future approaches to either limit or initiate angiogenesis in a 

physiological or a pathological setting. There was no direct cardioprotective 

effect of CXCR7 observed in our experiments and further work is needed to 

elucidate its role in cardioprotection after MI. The results presented in this thesis 

will mostly benefit the research community within academia who could draw on 

its work to design experiments to further test the hypotheses set in this thesis. 

Furthermore, this work could also benefit research organizations outside 

academia to build upon the data presented in this work and to design pro- or 

anti-angiogenic therapies based on CXCR7 receptor modulation.  

Most of all, the work in this thesis contributes to a body of research on a 

relatively novel CXCR7 receptor and its role in cardioprotection and cell 

migration aspect of angiogenesis. Combined with research that will be 

performed over the following years or decades this thesis could help to bring 

advances in cardioprotective and pro-regenerative therapies, which could 

positively impact patient morbidity and mortality after MI.  
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1 Introduction 

The term cardiovascular disease encompasses a multitude of conditions, where 

narrowing or blockage of blood vessels leads to detrimental effects on the heart. 

One of the most prevalent causes of morbidity and mortality in the western world 

is a group of conditions that belong under an umbrella term of coronary artery 

disease (CAD). Characterized by formation of an atherosclerotic plaque that 

forms inside one or more coronary arteries, via the process known as 

atherosclerosis; CAD is an inflammatory and fibrotic process that occurs in stages 

2. It begins with an accumulation of white blood cells and fatty lipids inside the 

coronary arteries, followed by formation of one or more lipid cores that can be 

surrounded by a fibrous cap 3,4. There is progressive stenosis and a gradual 

stiffening of the vessels, which impedes coronary blood flow. Due to decreased 

lumen and haemodynamic changes present in the vessels, the thin fibrous cap 

overlying the plaque can rupture or erode, which causes accumulation of red 

blood cells and formation of a blood clot that can either fully occlude the artery in 

question or form a thrombus 3, 5. Subsequently, if the narrowing of the vessel is 

severe enough, the lack of oxygen flowing to the heart will cause myocardial 

ischemia and can even lead to myocardial infarction. The formation of an 

atherosclerotic plaque is not an immediate process and it can take decades for 

the vessel to be occluded enough to become clinically significant. Patients with 

atherosclerosis are often not aware of the severity of their condition. That is, until 

they experience an ischaemic episode, characterized by a transient chest pain, 

known as angina 6.  

Hyperlipidaemia, diabetes, hypertension, as well as unhealthy lifestyle choices, 

including obesity, poor diet and smoking can severely affect the rate of 

atherosclerosis, and lead to coronary artery disease development 7, 8. 

Due to high prevalence of CAD and atherosclerosis in the increasingly aging 

population it is important to promote prevention, especially regarding the risk 

factors and lifestyle choices, which can play an important role in the development 
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of coronary artery disease 9, 10. Overall, cardiovascular disease is a widespread 

problem with approximately 7 million people affected by it in the UK alone (BHF 

statistic, 2016). Thus, it is important to develop strategies and promote new 

research to tackle the growing problem of cardiovascular disease not only in the 

UK, but globally.  

1.1 Myocardial infarction 

Although the rate of deaths attributable to cardiovascular disease has declined by 

more than three quarters since 1961, there are still a high proportion of patients 

with CAD that will go on and suffer a myocardial infarction (BHF statistic 2016). 

Acute myocardial infarction (MI) affects around 188,000 people in the UK every 

year and despite constant advances in emergency medicine it is still responsible 

for significant morbidity and mortality (BHF statistics, 2016) 11. In terms of  

pathophysiology, acute myocardial infarction can be defined as a loss of 

cardiomyocytes as a consequence of an ischaemic insult 12. However, myocardial 

infarction is a complex process with many metabolic and structural changes 

providing additional detrimental effects to the heart. During MI the coronary 

arteries become blocked, cutting off oxygen supply to the heart and generating 

an ischaemic environment that results in necrosis of the affected part of the heart 

muscle 13. There are several recognized clinical interventions, such as 

intravenous thrombolytic therapy and primary percutaneous coronary intervention 

(PCI) that aim to re-establish blood flow. However, these treatments focus 

primarily on early reperfusion, which, although beneficial overall, is known to 

cause additional reperfusion-related injury 14. Further to the more common 

mechanical interventions, there are also pharmacological interventions capable 

of affording cardioprotection and salvaging the still-viable myocardium. Kubler 

and Haass defined the term cardioprotection (also known as acute 

cardioprotection) as any intervention, either mechanical or pharmacological, that 

is capable of preserving the integrity of the heart by reducing or preventing 

myocardial damage 15.  
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The field of cardioprotection has come a long way since then, with several 

interventions emerging as potentially suitable clinical therapies.  For example, a 

member of the β-blocker family metoprolol and glucagon-like peptide-1 drug 

exenatide, which have shown promise in clinical trials, are currently undergoing 

further evaluations as to their cardioprotective potential 16-18. 

Nevertheless, the extent of damage suffered by the myocardium is still dependent 

on timely reperfusion; therefore, research into minimizing reperfusion injury and 

promoting regeneration of damaged myocardium is one of the most important 

areas of cardiovascular research 19. 

The damage seen after MI occurs in two stages, first during ischaemia and then 

again during reperfusion. As the blood vessel is blocked and the blood supply to 

the myocardium is affected, a series of biochemical and metabolic changes take 

place in the now ischaemic heart muscle 20, 21. After MI, reperfusion is crucial to 

begin myocardial salvage, while itself being a detrimental phenomenon 14. The 

reestablishment of coronary blood flow during reperfusion can cause further 

cardiomyocyte necrosis, myocardial stunning and microvascular dysfunction, 

where the damage to the endothelium prevents normal blood flow and causes a 

potentially deadly no-reflow phenomenon 20, 22. Therefore, when devising 

approaches to protect the viability of heart muscle, either ischemic injury, 

reperfusion injury, or both can be targeted. To describe these actions, the term 

cardioprotection is commonly used.  

 Ischaemic injury  

Myocardial ischaemia occurs as a result of a mismatch between the supply and 

the demand of oxygen, with the extent of the damage to the myocardium 

dependent on the duration and magnitude of tissue ischaemia 23. Consequentially, 

timely reperfusion strategy remains a foremost priority when it comes to MI 

interventions. During ischaemia, there is a series of metabolic changes that 

underpin the diminished oxygen supply to the heart muscle.  
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Obstruction or blockage of a coronary blood vessel impedes blood flow and 

causes a reduction in available glucose in myocardial tissues. This leads to 

reduced availability of ATP, and with it a switch to anaerobic metabolism, namely 

anaerobic glycolysis 12.  However, the myocardium is not equipped with sufficient 

anaerobic metabolic pathways to supply the high provisions of ATP needed for 

normal function, and available ATP is quickly used up 24, 25.  

Therefore, when exposed to ischemia, there is a dilatation of coronary vessels to 

try and increase the blood flow and keep the myocardium sufficiently supplied with 

oxygen and glucose to satisfy the metabolic needs. Despite these efforts, ATP is 

quickly depleted, leaving the heart vulnerable to the effects of ischaemia. 

Meanwhile, the switch from aerobic to anaerobic metabolism lowers the pH, and 

activates a buffering mechanism 12. Hydrogen ions are excreted via the Na+/H+ 

exchanger followed by a large influx of sodium ions to balance the loss of 

intracellular hydrogen  26. Furthermore, activation of various ATPases brought on 

by a lowered pH causes an efflux of potassium ions accompanied by an 

accumulation of cytosolic calcium, which provides an arrhythmogenic 

environment  27,12. The metabolic changes outlined above also trigger the release 

of intracellular proteases, such as the calcium-dependent protease calpain 28. 

Calpain then exerts a disruptive effect on the cell structure, and its activation leads 

to hypercontractility and subsequent activation of apoptotic pathways. It also 

paves the way for the opening of the mitochondrial permeability transition pore 

(MPTP) during reperfusion 26, 28.  

 Reperfusion injury 

The existence of lethal reperfusion injury separate from the ischaemic damage 

has been something of a controversy over the past couple of decades, with its 

existence having sometimes being called into question 29-31. Some authors have 

contested the evidence in favour of reperfusion injury, citing the lack of available 

human data and failure to translate the beneficial effects of ameliorating 

reperfusion injury from bench to bedside. However, since then, lethal reperfusion 



26 

 

injury has garnered support and has become generally accepted as an insult to 

the myocardium that occurs separate from the ischaemic damage 14. As with 

ischaemic injury, reperfusion injury is also associated with damage and death of 

cardiomyocytes, although via different pathologies than those outlined above.  

Microvascular dysfunction in the form of activated leukocytes and platelets, 

generation of reactive oxygen species (ROS), increased extravasation of fluid and 

proteins all converge to deal a harmful blow to the endothelium 22, 32. A detrimental 

process known as the no-reflow phenomenon can also occur during reperfusion 

period of myocardial infarction 33.  The term refers to damage sustained by the 

endothelium by all major pathogenic mechanisms, namely injury due to 

ischaemia/reperfusion (IR), thrombus formation and increased endothelial 

susceptibility to injury 34. It is also associated with adverse post-infarct 

complications, as well as a higher mortality rate and can occur in as many as a 

third of cases of MI 35, 36.  A less harmful process that can occur during reperfusion 

is myocardial stunning, which unlike the no-reflow phenomenon is deemed less 

injurious and is usually followed by a complete functional recovery 37. It can arise 

after as little as 15 minutes of ischaemic injury and is largely facilitated by release 

of free radicals and excessive calcium 38. Even though the myocytes are injured 

in this process, they ultimately recover their function without a prolonged 

detriment to the heart muscle 19. Altogether, reperfusion injury prompts a second 

wave of cardiomyocyte death, however, if it is established early enough (between 

2 to 3 hours) the benefits greatly exceed the harm and aid in salvaging the at-risk 

myocardium 19. 
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1.2 The role of endothelial cells and angiogenesis in MI 

 Endothelial cell development  

The term endothelium refers to the innermost layer of vessels found in the 

cardiovascular and lymphatic system. Therefore, it is broadly divided into vascular 

and lymphatic endothelium. This thesis primarily focuses on the vascular 

endothelium, which is further divided into arterial and venous endothelium, and 

comprised of specialized cells called endothelial cells. In mice, as well as humans, 

endothelial cells develop from hemangioblasts derived from the mesoderm, which 

give rise to both, multipotent haematopoietic stem cells (HSC) and angioblasts 39. 

To generate both cell types, hemangioblasts form clusters, also called blood 

islets, and positioning of the cells within those clusters provides the distinction 

between the two cell types 40. Cells, which will become haematopoietic cells 

become clustered in the middle, while the angioblasts arrange themselves along 

the periphery 39, 41. Angioblasts give rise to endothelial cells, which further 

differentiate into either arterial or venous endothelial cells. The entire process of 

endothelial cell development is highly regulated and involves a multitude of 

transcription and growth factors in order to achieve formation of vascular plexuses 

present in the adult organism 42.  

Pinto et al. suggest that 55% of all nuclei in the murine heart belong to the 

endothelial cells, 32% to cardiomyocytes and 13% to fibroblasts 43. Moreover, 

endothelial cells are reported to make up only 3.2 – 5.3% of the volume fraction 

of the rat heart 44. Disparities in numerical representation of different cell types 

that appear in the published literature can be partially attributed to different 

research methods employed to investigate the cellular composition of the heart, 

with results obtained by Pinto et al. considered to be the most reliable 45. However, 

the percentages of cells that comprise the heart are also proposed to vary 

between species and regions of the heart 46. Furthermore, despite the endothelial 

cells not comprising a large proportion of the heart volume, they play an important 

role in cardiac physiology and pathology. For example they play a pivotal role in 
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maintaining vasomotor tone, modulating cardiac growth and development, and 

are known to modulate cardiac rhythmicity 47. Additionally, endothelial dysfunction 

contributes to the development of congestive heart failure through impaired 

systemic perfusion and diminished exercise capacity 48. 

Along with the aforementioned cell types, there is another type of cell postulated 

as capable of differentiating into mature endothelial cells. Endothelial progenitor 

cells (EPC) are bone marrow-derived cells, first identified by Asahara et al. in 1997 

49.They were described by Urbich and Dimmeler as non-endothelial progenitor 

cells, which possess clonal ability to multiply and are capable of differentiating into 

mature endothelial cells 50. The existence of EPC has been widely debated, as it 

is unclear how exactly they develop and give rise to mature endothelial cells 51, 52. 

Furthermore, to investigate EPC researchers have employed numerous different 

methods of cell isolation and characterization, which makes it difficult to surmise 

if the investigated populations of cells were comparable across different studies 

53. Additionally, there is a lack of in vivo evidence of EPC existence and only a 

few studies so far have attempted to examine the clinical relevance of these cells 

51. So far, research points towards EPC being comprised of HSC in various stages 

of differentiation, and which display certain pro-angiogenic functions (e.g. 

vascular repair), but with little evidence of potential for vascular differentiation 54, 

55. Due to the increasing presence of EPC in the literature, research regarding 

these cells cannot be ignored, but the use of term “EPC” should be further defined 

to include a specific type of cell and its precise function so their contribution to 

vascular processes in health and disease can be properly characterized 56.  

 Angiogenesis 

Angiogenesis is an important physiological process, whereby new vessels 

develop from pre-existing vessels through migration, growth and differentiation 

of endothelial cells and their progenitors, as mentioned above 57.  
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This requires cooperation of a range of cell types and signalling pathways, as well 

as numerous pro-angiogenic factors such as vascular endothelial growth factor 

(VEGF), basic fibroblast growth factor (bFGF) and others 58, 59. As in other crucial 

physiological processes angiogenesis is tightly regulated; however, it becomes 

dysregulated during many pathological conditions, such as inflammation, cancer 

and ischaemic heart disease 59, 60. One of the mechanisms through which 

angiogenesis occurs is sprouting, which proceeds in several key stages: i.) 

endothelial cell activation by various growth factors (e.g.:VEGF, bFGF) and 

subsequent degradation of extracellular matrix (ECM) components by  MMPs and 

(MMP1 and MMP2) ii.) migration of endothelial cells into ECM and towards a pro-

angiogenic stimulus (e.g. hypoxia) forming new endothelial sprouts as they 

proceed, iv.) after which the sprouts extend towards the pro-angiogenic stimulus, 

creating a vessel lumen and ultimately forming a new blood vessel 61. This thesis 

will focus on one aspect of angiogenesis, namely endothelial cell migration. It 

consists of three distinct processes: i.) directional migration of cells toward a 

gradient set by soluble chemoattractants (e.g. VEGF) - chemotaxis, ii.) directional 

migration produced by mechanical forces (e.g. fluid shear stress) - mechanotaxis 

and iii.) directional migration, which is generated by a gradient of immobilized 

ligands (e.g. integrins) - haptotaxis 62-67.  

The role of angiogenesis in many pathological conditions, including 

cardiovascular diseases, has been well documented. Current therapies aimed at 

treating myocardial infarction mainly deal with restoration of blood flow to the 

ischaemic area, be it mechanical or pharmacological. This brings with it its own 

problems and its efficacy is largely dependent on the time of initiation of the 

treatment 68. As the understanding of neovascularization after myocardial 

infarction has grown, so has the notion to harness angiogenesis as a potential 

tool to restore blood flow to ischaemic myocardium 69. 
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One of the strongest stimuli for the induction of angiogenesis is hypoxia, whilst 

also being a defining feature of ischaemic heart disease. VEGF represents a 

crucial element in the angiogenic process, since it can stimulate quiescent 

endothelial cells and activate them to commence the process of new vessel 

growth. During a period of hypoxia, there is activation of hypoxia inducible factor 

1 (HIF-1), a heterodimeric transcription factor that induces VEGF gene expression 

and subsequently secretion of VEGF, leading to new sprout formation  (Fig. 1-1) 

70.  

Hypoxia is also one of the main characteristics of MI. As described in section 1.1.1 

the blockage of coronary vessels leads to impaired oxygen delivery to the area of 

infarcted myocardium, resulting in localized tissue ischaemia 12. This causes 

oxygen sensing mechanisms in the heart to detect low levels of oxygen in the 

tissue and initiate the pro-angiogenic response, which forms a part of the tissue 

regeneration process in infarcted myocardium 71. Early reperfusion of the infarcted 

myocardium was shown to be an effective strategy in improving outcome after MI 

14.  

 

 

Figure 1-1: Hypoxia acts as a powerful angiogenesis stimulus. Hypoxia activated HIF-1α, 

which couples to ubiquitously expressed HIF-1β subunit to form initiate gene expression of several 

hypoxia-induced genes, such as VEGF. Pro-angiogenic properties of VEGF then stimulate 

activation, migration and differentiation of endothelial cells into new blood vessels. Image adapted 

from Rahimi et al.72 
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The idea to use angiogenesis to aid heart regeneration after MI is not new, and 

such treatments are defined as pro-regenerative.  PCI, thrombolysis and other 

pharmacological interventions are already being used to minimize damage seen 

from MI and can be very effective when applied quickly. However, these 

procedures will not benefit all patients equally. Patients presenting with 

microvascular dysfunction, who lack a well-developed collateral circulation exhibit 

prolonged ischaemia, and perfusion of the ischaemic myocardium via PCI does 

little to improve the clinical outcome 73. In such cases, stimulating angiogenesis 

and restoring microvascular integrity can be an effective way to overcome the 

hurdle posed by dysfunctional microvasculature and aid in successfully 

reperfusing the ischaemic myocardium. Similarly, use of pro-angiogenic growth 

factors has been hypothesized to have beneficial effects on the ischaemic 

myocardium, although this area of research is still in its infancy and needs to be 

explored further 74.  

1.3 The role of ligand SDF-1α and chemokine receptors CXCR4 and 

CXCR7 in cardiovascular health 

 SDF-1α 

SDF-1 (stromal derived factor 1); also termed CXCL12 is an 8 kDa peptide 

belonging to a group of peptides known as chemokines. Chemokines are made 

of four conserved cysteines with two disulphide bonds and function primarily as 

chemoattractants 75. They are involved in various cell processes, including cell 

trafficking, activation, and differentiation. In order to achieve this, they bind to G-

protein coupled receptors (GPCRs) that signal via G-proteins or less commonly, 

through β-arrestins 76, 77. SDF-1 is a ligand for two such G-protein coupled 

receptors, CXCR4 and CXCR7, where CXCR4 signals through G-proteins and 

CXCR7 through the β-arrestin pathway (Fig 1-2)78. There are multiple splice 

variants of SDF-1, with SDF-1α, which is made up of three exons being the most 

common 75.  
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The remaining splice variants all contain the same three exons as SDF-1α, with 

an additional fourth exon that is unique to each of the alternative splice variants 

75. Due to SDF-1α being expressed in most body tissues and organs, its 

degradation is an important and well-regulated process and consists of N-

terminus proteolysis and C-terminus degradation. The latter is mediated by 

carboxypeptidase N and is specific to SDF-1α, which is the most widespread and 

arguably most crucial variant 75, 79, 80. Other SDF-1 isoforms include SDF-1β that 

exhibits functions relating to the embryonic development and the vascular system, 

and SDF-1γ, which is a predominant variant of SDF-1 expressed in the rat adult 

brain, whilst also being expressed in the hearts of humans and mice 80-83. Little is 

known about the rest of the SDF-1 splice variants, namely the δ, ε and φ isoforms 

75. Considering they have only recently been identified in human tissues, their 

prospective roles in the human body have not yet been defined. 
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Figure 1-2: Signalling crosstalk between CXCR4 and CXCR7. Binding of SDF-1α to CXCR4, 

CXCR7 or the CXCR4/CXCR7 heterodimer activates several downstream signalling pathways 

and induces phosphorylation of various kinases, including, MAPK, PKA and PI3K. Image from 

Wuerth et al.84. 

 CXCR4 

SDF-1α/CXCR4 axis is important in numerous physiological processes, including 

cell migration, homing, survival, organogenesis and angiogenesis 1, 85. CXCR4 

receptor belongs to the C-X-C family of chemokine receptors, where two N-

terminal cysteine (C) residues are separated by a different amino acid (X) 86. 

Originally identified as a human immunodeficiency virus co-receptor, CXCR4 is 

expressed in a variety of cells including cells of the immune and central nervous 

system, endothelial cells, cardiomyocytes, and fibroblasts 87-91. Due to the wide 

range of actions it encompasses it can be exploited for clinical applications, such 

as mobilization of hematopoietic stem cells in certain types of cancer, via blockage 

of the CXCR4 receptor 92, 93. It therefore comes as no surprise that this axis has 

been widely studied in the context of cancer and autoimmune diseases, as well 

as being identified as a possible cardioprotective effector 76, 94, 95.   

Deregulation of the SDF-1α/CXCR4 axis is crucial to many pathological states 

and has also been found to be an important player in myocardial infarction and 

other hypoxic conditions, such as ischaemic cardiomyopathy 96, 97. Exploiting its 

cell homing properties, SDF-1α/CXCR4 axis has also been used to home cells to 

the ischaemic myocardium to increase myocardial salvage and improve left 

ventricular (LV) function 98-100. Supporting the role of SDF-1α/CXCR4 in 

cardiovascular disease are also numerous genome-wide association studies 

(GWAS) that link it with increased risk for myocardial infarction and death, but 

leave us in the dark as to the exact nature of this link 101-103.  Despite the fact that 

there is still much to be discovered about the CXCR4 receptor, it is the lesser 

known CXCR7 receptor that will be the main focus of this thesis. 
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 CXCR7 

While the SDF-1α/CXCR4 axis might be well studied, CXCR4 receptor is not the 

only receptor capable of binding SDF-1α. CXCR7, also known by its alternative 

names, ACKR3 (atypical chemokine receptor 3) and RDC1 (receptor dog cDNA 

1) is an atypical chemokine receptor that binds two known ligands, I-TAC 

(Interferon-inducible T-cell alpha chemo-attractant or CXCL11) and SDF-1α. 

Interestingly, recent studies have shown that CXCR7 can bind SDF-1α with 

approximately ten to twenty times greater affinity than CXCR4 78, 104. CXCR7 was 

first cloned from the canine cDNA library in 1990 by Libert et al., and attracted 

interest due to greater than 90% similarity between its dog and human homologs 

105. It was initially thought to be a VIP (vasoactive intestinal peptide) or calcitonin-

gene related receptor; however, this notion was later dismissed due to lack of 

evidence 106-108. Thus, it was not until 2005, when its now-confirmed ligands I-TAC 

and SDF-1α were identified, that the interest in the CXCR7 receptor began to 

grow 78, 106, 109.  

Expression and signalling  

CXCR7 is expressed in a variety of mammalian cells and tissues, including in  the 

heart, lung, liver, brain and the immune system, however, its exact expression 

profile, as well as its function remain disputed 109. Recent studies have shown 

CXCR7 expression by several different types of endothelial cells, including 

endothelial progenitor cells, human pulmonary microvascular endothelial cells, 

human umbilical vein endothelial cells (HUVEC), and human lymphatic 

endothelial cells 110-113. Meanwhile the expression profile of CXCR7 in the cardiac 

endothelial cells has not yet been thoroughly examined, with most CXCR7 

expression data postulated from effects seen in transgenic mice with endothelial-

specific inducible CXCR7 deletion 114, 115. Cardiac origin of endothelial cells might 

be an important factor when investigating the role of endothelial CXCR7 in the 

heart, due to high degree of heterogeneity and a different transcriptional profile 

that can be attributed to endothelial cells in a tissue-specific manner 116, 117. 
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Similarly, the expression level of CXCR7 in cardiomyocytes is not well 

established. 

 

  

CXCR7 has been shown to induce SDF-1α ligand internalization and degradation, 

along with providing cells with a growth and survival advantage and increased 

adhesion properties 113, 118. Upon further examination it was discovered that the 

DRYLAIV motif (Asp-Arg-Tyr-Leu-Ala-Ile-Val)  present in the majority of 

chemokine receptors is replaced by the DRYLSIT (Asp-Arg-Tyr-Leu-Ser-Ile-Thr) 

motif in CXCR7  (Figure 1-3) 109. Since, DRYLAIV motif is considered vital for G 

protein coupling and calcium signalling, it is proposed that CXCR7 cannot signal 

through G-proteins, as it is common with GPCRs, and is also insensitive to 

pertussis toxin in most tissues 113, 119, 120.  

 

Figure 1-3: Comparison of DRYLAIV and DRYLSIT motifs in CXCR4 and CXCR7. Classical 

chemokine receptors, such as CXCR4 exhibit a DRYLAIV motif that is necessary for G protein 

signalling. On the other hand, atypical chemokine receptors (e.g. CXCR7) possess a DRYLSIT 

motif that replaces the DRYLAIV motif (differences between motifs are underlined in red) and 

allows them to preferentially bind and signal through β-arrestins. Substituted amino acids are 

underlined red on the graphic. Image adapted from Asri et al. 1. 
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Calcium  plays an important role in many cellular processes, such as cell survival, 

cell death, as well as setting the cellular membrane potential 121. Since Ca2+ 

signalling typically occurs through G protein signalling, CXCR7 signalling on its 

own cannot elicit Ca2+ mobilization. In order to initiate the rise in intracellular 

calcium, phospholipase C (PLC) cleaves phosphatidylinositol bisphosphate 

(PIP2) into secondary messengers inositol trisphosphate (IP3) and diacylglycerol 

(DAG). IP3 then goes on to stimulate the opening of the IP3-mediated Ca2+ 

channels and subsequently triggers a rise in intracellular calcium, as seen in 

Figure 1-6 76, 122.  

Since CXCR4 and CXCR7 both possess the same ligand, SDF-1α, it can be a 

challenge determining precisely which receptor is responsible for the observed 

actions. One of the hallmarks of CXCR7 signalling is its inability to signal through 

G proteins and its reliance, instead, on signalling via β-arrestins 123. β-arrestins 

are scaffolding proteins more commonly associated with receptor desensitization 

and were long believed to lack meaningful signalling capacity, acting instead as 

cellular response dampeners 124. Rather than signal through a G-protein signalling 

pathway, CXCR7 recruits β-arrestin in a ligand-dependent fashion 123. Cells 

featuring transfected CXCR7 were shown to recruit β-arrestin to the plasma 

membrane following the incubation with either, SDF-1α or I-TAC ligand 125, 126. 

One of the most prominent differences of β-arrestins and G-protein signalling is 

the inability of β-arrestins to induce calcium mobilization, a hallmark of GPCR 

signalling 113, 120. However, active signalling of the SDF-1α/CXCR7 axis that is 

capable of activating effectors downstream of β-arrestins, has since been shown 

in various cell types, such as haematopoietic stem cells 127, 128. 

One exception where CXCR7 seems to utilize G proteins for signalling is in 

astrocytes, where there is evidence of a G-protein dependent mechanism 

resulting from SDF-1α binding to CXCR7 129-132. However, due to its inability to 

signal thorough G proteins in other tissues, CXCR7 was initially thought incapable 

of independent signalling and viewed solely as a decoy receptor for SDF-1α 119. 
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It is true that upon binding of SDF-1α or I-TAC, CXCR7 aids in internalizing and 

degrading the ligand, functioning as a scavenger receptor 133, 134. However, recent 

evidence points to it also being capable of independent signalling through β-

arrestins. This appears to be the case with CXCR7, where evidence points to 

activation of mitogen activated protein kinases (MAPK), PI3K and AKT after 

binding by SDF-1α and I-TAC 84, 123, 127, 135, 136.  

CXCR7 receptor also heterodimerizes with its fellow chemokine receptor CXCR4, 

in response to binding of the SDF-1α ligand. Before the discovery of CXCR7, 

CXCR4 was considered a unique receptor for SDF-1α and this ligand –receptor 

couple was widely studied due to its importance in a variety of cellular processes 

137. CXCR4/CXCR7 heterodimers form quickly and efficiently and can signal 

through G proteins and β-arrestins, with the argument being made for preferential 

activation of the latter 120, 135. Formation of CXCR4/CXCR7 heterodimers also 

modifies some of the properties of CXCR4 when not bonded in a dimer, namely 

calcium signalling 120. Interestingly, CXCR7/CXCR4 heterodimers on the other 

hand are able to elicit a greater Ca2+ response than CXCR4 receptor signalling 

on its own 135, 138. Furthermore, SDF-1α is also capable of forming homodimers 

under physiological conditions, but CXCR7 receptor preferentially binds the 

monomeric form 109, 139, 140. Despite abundant evidence of heterodimerization in 

vitro, in recent years questions were posed whether CXCR4/CXCR7 can form 

heterodimers in vivo, since there is not a lot of evidence to support this claim 109, 

133, 141, 142.  

It has been previously reported that CXCR7 is scarcely expressed on the surface 

of most cells, including endothelial cells, with a substantial intracellular pool of the 

receptor present in the cytosol of various types of cells 143, 144. SDF-1α-

CXCR4/CXCXR7 ligand-receptor pair is internalized following SDF-1α binding, 

which might explain the intracellular reservoir of the receptor 141. It is also a 

possibility that internally located CXCR7 recycles back to the cell membrane, 

where it regains functional activity 78, 109.  
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Hartmann et al. showed that in T-cells a portion of intracellular CXCR7 is located 

in endosomes, as evidenced by the co-staining of CXCR7 with endosomal 

markers 144.  Therefore, they propose that only a small fraction of CXCR7 that 

constantly shuttles between the intracellular stores and the surface membrane is 

available under a steady-state level. As such, CXCR7 is capable of scavenging 

and internalizing its chemokine ligands, which are then degraded to prevent their 

release  back into the circulation 134. Nevertheless, in the presence of increasing 

evidence the prospect of CXCR7 possessing a signalling role independent of its 

scavenging function cannot be ignored. 

CXCR7 in cardiac development and transgenic knockout models 

CXCR7 is also important in embryogenesis and early cardiac development as 

evidenced by cardiovascular defects present in transgenic mice with germline 

deletion of the receptor. In the heart, CXCR7 expression has been detected at 

embryonic day (E) 10.5, followed by a change in the expression pattern at E14.5. 

Thereby, it is postulated that CXCR7 is abundantly expressed during periods of 

critical cardiac growth and vascularization 109. This is supported by the fact that 

CXCR7 expression also corresponds to the period of coronary vascular 

development, including vascular plexus formation and vascular remodelling 

between E11.5 and E16.5, after which the receptor expression steadily decreases 

145. Interestingly, just as the expression of CXCR7 decreases, there is a rise in 

CXCR4 receptor expression, which also coincides with the period of development 

when CXCR4 and SDF-1α germline knockout mice die 88, 109, 113, 146, 147.  

There have been several papers published on the effects of CXCR7 germline 

deletion.  Gerrits et al. reported that mice with a germline  CXCR7-/- genotype 

exhibited a 30% survival rate 1 week after birth, with adult mice of the same 

genotype displaying signs of myocardial degeneration and fibrosis 148. They also 

noted that some CXCR7-/- mice presented with an enlarged heart, as well as 

hyperplasia of the ventricles and the septum 148.  
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Yu et al. published observations of semilunar valve thickening and ventricular 

septal defects, while Sierro et al. observed thickening of the pulmonary valve, the 

aorta and the bicuspid arterial valves; a phenotype, which was also reiterated in 

mice with endothelial-specific deletion of CXCR7 114, 119. There are slight but 

noticeable differences in phenotypes of CXCR7-/- mice produced by different 

groups, which can be attributed to distinct genetic manipulations used to generate 

these mice. Some of these characteristics are shared with the CXCR4-/- mice, but 

most are unique to the CXCR7 -/- mice 149. 

CXCR4 and CXCR7 receptor agonists 

 

As the interest in CXCR7 increased, so did the demand for a highly selective 

CXCR7 agonist, which does not activate CXCR4. There are currently three 

agonists of CXCR7 available for commercial use, the small molecule agonists 

VUF11207 and VUF11403, and the peptidomimetic TC14012 agonist. TC14012 

started out as TC140, a CXCR4 inverse agonist, derived from the horseshoe crab 

peptide polyphemusin 150. It was later modified to TC14012, a serum-stable 

CXCR4 compound. Introduction of C-terminal amidation on TC14012 removed 

conformational constrains present on T140, which allowed it to bind to CXCR7 

and recruit β-arrestins, with a binding strength comparable to the natural ligand 

SDF-1α 151, 152.  VUF11207 was among 24 derivates that were synthesized by 

Wijtmans et al. from a styrene-amide scaffold and pharmacologically evaluated to 

determine their structure-activity relationship and functional activity. Structural-

activity relationship was determined by competition binding experiments and 

assessed the impact of different chemical groups “attached” to the styrene-amide 

scaffold on CXCR7 affinity. The compounds that displayed favourable affinity to 

CXCR7 were then subjected to further functional evaluation. VUF11207 along 

with another compounds VUF11403 emerged as the compounds that performed 

best in the functional pharmacological tests. 
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The β-arrestin2 recruitment assay on CXCR7-expressing HEK293 cells revealed 

VUF11403 as a high-affinity ligand of CXCR7 with an EC50 of 1.0 nM and 

VUF11207 with an EC50 of 1.6 nM, surpassing the affinity displayed by SDF-1α in 

this assay (EC50= 2.6 nM) 153. Additionally, both compounds also performed well 

in an ELISA internalization assay, with both reducing CXCR7 surface availability, 

although VUF11207 (EC50 = 14.1 nM) displayed higher efficacy than VUF11403 

(EC50 = 23.7 nM). Based on these results, VUF11207 was selected as the best 

CXCR7 agonist to use in the study. Moreover, VUF11207 is also one of the few 

commercially available CXCR7 agonists and antagonists with a fully disclosed 

chemical structure (Figure 1-4) 153. 

 

Figure 1-4: Chemical structure of VUF11207 fumarate. Image courtesy of Wijtmans et al. 153 
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1.4 Cardioprotective and pro-regenerative interventions 

 Current cardioprotective interventions 

Cardioprotective agents – ischaemic injury 

There are a considerable number of cardioprotective strategies that have been 

shown to be effective in experimental models, with most of them focusing on 

reperfusion, but there are some, such as β-blocker drugs, that are aimed solely 

at ameliorating ischaemic injury. β-blockers are believed to be able to reduce the 

progression of ischaemic damage and therefore reduce the final infarct size 154. 

However, clinical trials have failed to conclusively demonstrate this effect when 

administered to the patients 155-158. As such, they might not be the universal 

cardioprotective agents they were once believed to be.  

Nevertheless, β-blockers are still considered an important part of post-myocardial 

infarction management, and represent one of the most prescribed cardiovascular 

drug groups 154. Another approach in targeting ischaemia associated with 

myocardial infarction makes use of hypothermia (30 - 35°C), which is thought to 

arrest the progression of ischaemic damage and improve outcomes after MI 159, 

160. Still, this therapeutic approach is not without its limitations. There is a lack of 

safe cooling techniques available, and since target temperature should be 

reached well before the reperfusion stage to ensure maximum benefit, it might not 

be very advantageous for patients suffering with out-of-hospital MI. However, It 

could bring additional benefits to  patients if administered as an adjunct therapy 

together with PCI 161. Moreover, sodium-hydrogen exchange inhibitors (e.g. 

Cariporide), capable of ameliorating the rise in intracellular calcium have been 

shown to afford cardioprotection when administered prior to the index ischaemia 

162, 163. However, that makes them useful agents in circumstances such as 

coronary artery bypass surgery (CABG) where ischaemic insult is expected, and 

less so in acute myocardial infarction where the onset of ischaemia cannot be 

predicted. Furthermore, sodium-hydrogen inhibitors exhibit adverse off-target 
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effects, increasing mortality and the rate of cardiovascular events, which further 

limits their prospective use as safe and effective cardioprotective agents 164, 165 

Cardioprotective agents – reperfusion injury 

As opposed to dealing with ischaemic injury, the bulk of interventions and drugs 

show a cardioprotective effect on the heart by exhibiting their effects at the 

reperfusion stage of the I/R injury. To date, rapid restoration of blood flow to the 

affected area of the heart muscle remains the most effective cardioprotective 

strategy. This is mostly achieved via primary percutaneous coronary intervention 

(PCI) or thrombolytic therapy (e.g. tissue plasminogen activator, streptokinase) 

that breaks down the obstructing blood clot 166-168.  

In recent years, a lot of effort has been put into shortening the time between the 

onset of symptoms and the start of reperfusion 169. However, it is not always 

possible to bring the patients to the cardiology unit in sufficient time to allow for 

maximum benefit that can be gained from mechanical reperfusion 166. Therefore, 

pharmacological therapies that have shown promise in protecting the heart 

against the onslaught of damage seen after myocardial infarction could help 

provide additional benefit in situations where timely PCI cannot be achieved.  

Volatile anaesthetic agents have been shown to exert beneficial effects during 

CABG surgery, where transient ischemia due to surgery is known to occur. There 

is also evidence of a more direct cardioprotective involvement of volatile 

anaesthetics, such as isoflurane and other fluranes, in various in vitro and in vivo 

models of I/R injury 170-173. Exenatide, an antidiabetic drug is another agent that 

has been shown to reduce the final infarct size when administered as a continued 

infusion, just before the start of PCI. Exenatide is an analogue of hormone 

glucagon-like peptide 1 (GLP-1), linked with activation of pro-survival kinase 

pathways when administered prior to reperfusion 174, 175. Despite these actions, it 

is not yet known if its effects lead to improved clinical outcomes, with more clinical 

trials needed to assess its cardioprotective ability 17, 176.  
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In contrast, Cyclosporine-A displays its cardioprotective capacity by preventing 

the opening of the MPTP at reperfusion stage, which reduced the final infarct size 

in experimental studies 177. Therefore, it comes as a surprise that a recent large 

randomized clinical trial Cyclosporine and Prognosis in Acute Myocardial 

Infarction Patients (CIRCUS), which included patients with ST-segment elevation 

myocardial infarction (STEMI), did not show a beneficial effect for Cyclosporine-

A with all-cause mortality as primary endpoint of the trial 176, 178 . This goes to 

show how hard it is to achieve a successful translation of a cardioprotective 

approach from experimental models in vitro and in vivo to the efficacious therapy 

that can be used in the clinic. 

Pre-conditioning 

One of the most promising non-pharmacological cardioprotective interventions is 

ischaemic pre-conditioning.  A technique, that delays cell death by subjecting the 

myocardium to brief episodes of ischaemia before a sustained episode of 

infarction has been first described by Murry et al. who showed that it reduces 

infarct size in dogs 179.  

Pre-conditioning is not dependent on the existence of collateral coronary 

circulation or the size of the animal model and the beneficial effects afforded by 

pre-conditioning have been since observed in many different species, including 

humans  180-183. Despite the breakthrough pre-conditioning provided, it was hard 

to apply it to the clinical setting, since the pre-conditioning treatment would have 

to be applied in the patient before the MI has even occurred. It was not until the 

discovery of ischaemic post-conditioning by Zhao et al.  that the clinical application 

became a possibility  184. Post-conditioning works on a similar basis to pre-

conditioning with the only exception being that the brief ischaemic cycles are 

applied prior to reperfusion instead of prior to ischaemia. The discovery of post-

conditioning also cemented the case for lethal reperfusion injury, since the 

treatment was applied after ischaemia and could therefore not reduce its impact 

185.  
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To test how well the treatments that were so successful in animal models 

performed in humans, STEMI patients were subjected to post-conditioning cycles 

of ischaemia shortly after initiating reflow in the proof of concept trial by Staat et 

al. 186. The clinical trial was a success and showed a reduced creatine kinase 

(surrogate marker for infarct size) in the pre-conditioned group of patients. 

However, many clinical trials that came thereafter showed only a small benefit of 

pre- and post-conditioning or failed to replicate this feat entirely 187, 188. This might 

be due to the latter trials making use of a less regulated patient environment, with 

a more real-life scenario where potential confounders and variables cannot be 

controlled for accurately.  

Overall, pre-conditioning technique and its variations (remote ischaemic 

conditioning, post-conditioning) are seen as beneficial for the heart, however 

finding the right setting for their utilization, so they can exert the most impact, has 

proven challenging.  

 The role of CXCR4 and CXCR7 

RISK cardioprotective pathway 

The Reperfusion Injury Salvage Kinase (RISK) signalling pathway was first 

described by Yellon’s group in 2002 to define the cardioprotective effects of 

urocortin 189. It consists of two parallel signalling cascades PI3K/AKT and 

MEK1/ERK1/2, which underlie the cardioprotective effects of several known 

interventions (e.g. preconditioning, adenosine) 190-192. In order for the pro-survival 

kinases of the RISK pathway to be able to afford cardioprotection, they must be 

activated at the time of early reperfusion 190. For example, IPC-mediated 

cardioprotection through the RISK pathway occurs in two phases: i.) the trigger 

phase, which occurs during the preconditioning cycles and ii.) the early 

reperfusion phase, when activation of pro-survival kinases is postulated to prevent 

the opening of the mPTP and consequently mitigates the I/R injury 193, 194.  
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However, the cardioprotective effects exhibited by RISK pathway activation are 

not limited to IPC and can also be observed with administration of 

pharmacological agents, such as adenosine, insulin, opioids and others 190, 194-196. 

Thus, the current consensus is that the RISK signalling pathway is shared by most 

cardioprotective therapies 191.  

The RISK pathway is activated by G protein signalling, which phosphorylates 

Phosphoinositide-3-kinase (PI3K) and MEK1/2, triggering a signalling cascade 

involving phosphorylation of AKT also known as protein kinase B and ERK1/2 

also known as mitogen protein kinase (MAPK3/1), respectively. It is important to 

note that PI3K/AKT and ERK1/2 are not restricted to the RISK pathway. In fact 

they are involved in many pathological and physiological signalling pathways and 

represent some of the most ubiquitous signalling molecules present in nearly 

every cell in the human and murine organism 197, 198. However, in the context of 

cardioprotection, where AKT and/or ERK1/2 signalling is posited to culminate in 

beneficial effects on the myocardium, the term RISK signalling pathway is used 

to describe their involvement. Similarly, the so-called Survivor Activating Factor 

Enhancement (SAFE) pathway, which signals through JAK-STAT has also been 

shown to confer cardioprotection, independently of the RISK pathway 199. Both, 

RISK and SAFE signalling pathway activation was shown to reduce final infarct 

size at reperfusion, with the pathways often described as a molecular basis of 

cardioprotection 200-202. Additionally, Huang et al. suggested that the SDF-

1α/CXCR4 axis affords cardioprotection directly by working through STAT3, which 

forms a part of the SAFE signalling pathway 203. The cardioprotective stimulus is 

thought to work twofold, indirectly through the ability of CXCR4 to mobilize stem 

cells and directly via activation of the RISK and SAFE pathways (Fig. 1-5) 203, 204.  

However, this thesis will focus on the role of RISK signalling pathway in SDF-1α 

signalling. 
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Figure 1-5: Signalling through RISK and SAFE cardioprotective pathways. 

RISK pathway signalling involves activation of a GPCR, which in turn phosphorylates either MAPK 

or PI3K, leading to ERK1/2 and AKT activation, respectively. This in turn blocks the mPTP opening 

and prevents cell death from reperfusion injury. On the other hand, SAFE cardioprotective 

pathways signals through TNF-α binding to a TNF receptor, which induces activation of the 

JAK/STAT complex. This again leads to blockage of the mPTP and cell survival.  Image adapted 

from Lacerda et al 199. 
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The role of CXCR4 in cardioprotection 

Due to known effects of SDF-1α on stem cell homing, retention, repair, as well as 

ventricular remodelling it comes as no surprise that investigation of 

cardioprotective properties of SDF-1α/CXCR4 axis has garnered a lot of interest 

100, 205, 206. The sustained release of engineered SDF-1α analogue from a hydrogel 

injected into the myocardium peri-MI, has proven an effective cardioprotective 

measure in a rat model of myocardial infarction 207. The procedure was performed 

in vivo with permanent ligation of the LAD and analysis of rat hearts 4 weeks post-

MI showed reduction of LV fibrosis in hearts injected with a hydrogel containing 

the engineered SDF-1α analogue versus hearts injected with hydrogel alone. The 

administration of SDF-1α has also proven cardioprotective when delivered directly 

via an intracardiac injection post-MI in an in vivo permanent ligation model. Mice 

injected with SDF-1α displayed significantly better cardiac function than the 

controls, immediately post infarction and in the longer term, along with decreased 

scar formation, which was observed several weeks after the initial ischaemic insult 

100. Furthermore, pre-conditioning increases the levels of SDF-1α, and it is 

hypothesized that the cardioprotective effects exhibited by this intervention are 

due to SDF-1α/CXCR4 signalling through RISK cardioprotective pathway (Figure 

1-6) 91, 190.  

Additionally, injection of skeletal myoblasts overexpressing SDF-1α post-MI in an 

in vivo rat model of MI with permanent LAD ligation, improved LV contractile 

function and promoted myocardial regeneration in the long term  208. Interestingly, 

administration of skeletal myoblasts overexpressing SDF-1α into the peri-infarct 

zone 8 weeks post-MI still managed to improve contractility of the LV 8 weeks 

post-treatment, specifically fractional shortening, compared to the LV contractility 

observed prior to cell therapy. Meanwhile, administration of skeletal myoblasts 

without SDF-1α overexpression, did not afford such cardioprotection 209.  

Furthermore, SDF-1α administration prior to MI improved myocardial functional 

recovery immediately post-MI in a mouse Langendorff I/R model.  
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These beneficial effects have largely been attributed to the SDF-1α/CXCR4 

signalling axis, with fewer studies focusing on the role of the CXCR7 receptor 203. 
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Figure 1-6: SDF-1α/CXCR4 signalling through the RISK cardioprotective pathway. RISK 

pathway signalling involves activation of a GPCR, which in turn phosphorylates either MAPK or 

PI3K arm of the signalling pathway, leading to ERK1/2 and AKT activation, respectively. This in 

turn blocks the opening of the mPTP and prevents cell death. At the same time SDF-1α/CXCR4 

signalling also triggers Ca2+ mobilization, involved in many cellular processes, through PIP2/IP3 

signalling. 

On the other hand, there is also evidence that CXCR4 can act in a detrimental 

fashion, worsening the outcome after MI. In a study by Liehn et al. CXCR4 

heterozygous knockout mice exhibited reduced infarct size when measured 4 

weeks after myocardial infarction 210. This could be due to CXCR4-dependent 

alteration of adverse remodelling and involvement of reparative pathways, 

however there were no additional effects on cardiovascular function 210. 

Transgenic rats, in which CXCR4 overexpression in the heart has been achieved 

with administration of an adenoviral vector, showed an increase in infarct size and 

worsening cardiac function, when compared to wild type rats. CXCR4 

overexpression was also associated with increased inflammatory cell infiltration 

and cardiomyocyte apoptosis in the ischaemic heart 211.  

Similarly, induced overexpression of SDF-1α in rat cardiomyocytes led to worse 

outcomes when rats were subjected to I/R injury compared to controls. Although, 

supra-physiological levels of the ligand could be responsible for part of the effect 

211, 212. The case remains that there is evidence for both, protective and 

detrimental effects of CXCR4 receptor in the cardiovascular setting.  

Previous studies also suggested that the timescale of CXCR4 increase in the 

heart after MI does not correspond to the peak of SDF-1α activity 213. It looks as 

though the way SDF-1α/CXCR4 axis behaves, depends at least partially upon the 

temporal alignment and/or the timing of SDF-1α and CXCR4 expression, which 

then dictates whether the subsequent downstream signalling events prove to the 

beneficial or detrimental to the ischaemic heart 206.  
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The role of CXCR7 in cardioprotection 

Compared to CXCR4, less is known about the signalling through CXCR7 in 

cardioprotection, be it through the RISK pathway, or other signalling pathways. 

There is mounting evidence of RISK and SAFE pathway involvement through 

ERK1/2, AKT, JAK/STAT and MAPK pro-survival signalling downstream of 

CXCR7 receptor in tumour progression and metastasis, but less is known about 

CXCR7 signalling in cardiovascular cell types 214-218. One of the hallmarks of RISK 

pathway activation is phosphorylation of ERK1/2 and AKT, which can be easily 

determined in an experimental setting, for example via western blotting. Past 

research shows that CXCR7 activation, using either SDF-1α or TC14012, can 

induce ERK1/2 and/or AKT phosphorylation on various cell types, including 

cardiac stem cells, HUVEC, and T cells of the immune system 115, 219, 220. CXCR7 

has been shown to signal via recruitment of β-arrestins to the plasma membrane, 

as described in section 1.3. However, less is known about signalling downstream 

of CXCR7, and what further signalling pathways this might activate. Current 

knowledge of SDF-1α/CXCR7 signalling via RISK pathway in different cell types 

is summarized in Figure 1-7.  

Chen et al. showed by western blotting that SDF-1α induced phosphorylation of 

AKT on c-kit+  rat cardiac stem cells 15 min after administration 219. On the other 

hand, the administration of CXCR7 small interfering RNA (siRNA), in the presence 

of SDF-1α, inhibited AKT phosphorylation and restricted cell migration in 

response to SDF-1α 219. Kumar et al. showed that pre-treatment of Jurkat T cells 

with CXCR4-blocking antibody and subsequent administration of SDF-1α, 

induced maximal phosphorylation of AKT 15 min after administration 220. This was 

interpreted as an indication of PI3K/AKT signalling by SDF-1α via CXCR7. 
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Figure 1-7: SDF-1α/CXCR7 signalling through the RISK cardioprotective pathway. The 

binding of SDF-1α to CXCR7 triggers β-arrestin recruitment, which in turn activates either the 

MAPK (ERK1/2) or the AKT arm of the RISK signalling pathway, leading to cell proliferation and 

chemotaxis or cell survival, respectively. 

Phosphorylation of AKT was abrogated in the presence of wortmannin, an 

irreversible PI3K inhibitor. Pre-treatment of Jurkat T cells with wortmannin before 

stimulation with SDF-1α also inhibited cell survival, suggesting the importance of 

CXCR7-AKT signalling pathway for T cell survival 220.  
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Similarly, SDF-1α incubation in the presence of CXCR4-blocking antibody elicited 

maximal phosphorylation of ERK1/2 10 min post-administration, and was found 

to play an important role in the chemotactic response of Jurkat T cells 220. 

Moreover, Rajagopal et al. showed that HEK293 cells transfected with CXCR7 

have the ability to recruit β-arrestins after stimulation with SDF-1α, leading to 

sustained ERK1/2 activation 135. Moreover, phosphorylation of AKT and ERK1/2 

as a result of CXCR7 stimulation has been reported in rat cardiac stem cells 219. 

Similarly, Zhao et al. showed that SDF-1β signalling through CXCR7 protects from 

palmitate-induced apoptosis via AMPK and p38 MAPK in H9C2 (rat cardiac 

myoblast) cells 221.  Thus, various evidence suggests that CXCR7 activation is 

able to couple to PI3K/AKT and ERK1/2 kinases.  

Only a few papers focus specifically on CXCR7 in endothelial cells. Zhang et al. 

showed that activation of CXCR7 via administration of TC14012 in HUVEC 

induces phosphorylation of PI3K, which stimulates endothelial tube formation. 

This change in phosphorylation status was abrogated by administration of PI3K 

inhibitor, LY294002, which  also inhibited tube formation 222. Further information 

about the importance of AKT and ERK1/2 activation in endothelial cells comes 

also from experiments performed on isolated mouse aorta endothelial cells by 

Hao et al. 115. In this study, pre-treatment of cells with IL-1β induced cell 

proliferation, while the administration of CXCR7 antagonist or CXCR7 siRNA, 

decreased phosphorylation of AKT and ERK1/2 and consequently reduced cell 

proliferation.  Therefore, it seems that in endothelial cells CXCR7-dependent 

activation of ERK1/2 and/or AKT plays a role in angiogenesis and cell 

proliferation, processes through which CXCR7 could exert its cardioprotective 

effects. Nevertheless, the exact signalling components downstream of SDF-

1α/CXCR7 have not yet been elucidated, and they might differ in various cell types 

and tissues  
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Hao et al. have shown that intraperitoneal administration of CXCR7 agonist, 

TC14012 (10 mg/kg), immediately post-MI and then every 6 days for 24 days, in 

an in vivo mouse model of MI with permanent ligation, significantly decreased final 

infarct size 4 weeks post-MI. However, the role of CXCR7 and its agonists in an 

acute myocardial infarction setting has not yet been defined 115. Hao et al. 

reported that mice with inducible, endothelial-specific CXCR7 deletion exhibit 

increased neointima formation after endothelial denudation injury in the femoral 

artery 115. Furthermore, Hao’s group also showed that endothelial deletion of 

CXCR7 in mice impaired cardiac function, reduced survival rate and increased 

infarction size after permanent ligation myocardial infarction. Therefore, evidence 

exists of endothelial CXCR7 being important for not only cardiac development, 

but also cardiac function and warrants further investigation in terms of its 

cardioprotective capacity. 

The study by Hao et al. has been published during my PhD, and unfortunately 

explored many of the same ideas that I was also interested in, especially the role 

of CXCR7 agonists on long-term cardioprotection and the role of CXCR7 in 

myocardial infarction in CXCR7 knockout mice 115. That prompted me to focus 

more on the acute side of cardioprotection, as well as the pro-angiogenic aspects 

of CXCR7 so as to explore more novel concepts, rather than just repeat what has 

already been published before. 
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The role of CXCR4 and CXCR7 in myocardial regeneration 

 

As already discussed in section 1.4.1 there are a variety of clinical interventions, 

either mechanical of pharmacological, that can be utilized in the setting of 

myocardial infarction. Most of those interventions are based on re-establishing 

blood flow, providing so-called reperfusion therapy. However, not all patients will 

benefit from reperfusion therapy equally; for example those with microvascular 

dysfunction will experience less benefit from reperfusion therapy than those 

without 223. For those patients, increasing the rate of vessel regeneration in the 

infarcted myocardium can offer an alternative, long-term approach to  

cardioprotection afforded by timely reperfusion.  Most current therapies focus on 

acute cardioprotective interventions, usually administered during or immediately 

after MI. However, many MI patients then go on to develop heart failure and 

designing therapies aimed at long-term pro-regenerative solutions that go past 

the scope of acute cardioprotection, could also improve patient prognosis and 

decrease the rate of heart failure occurrence. Native pro-angiogenic response 

after MI is present in the adult heart to some extent although the mechanism of 

vessel regeneration in the ischaemic heart in general is not well understood 224, 

225 . Furthermore, this response is likely insufficient to cope with the damage 

caused by coronary vessel occlusion 225, 226.  

 

Pro-angiogenic therapies administered after MI have shown therapeutic potential 

in preclinical studies in the past. Most pro-angiogenic therapies investigated so 

far have focused on delivery of angiogenic growth factors or stem and progenitor 

cells that are believed to have pro-angiogenic potential, with limited success 63, 

227, 228. However, there are many different stages involved in the mechanism of 

angiogenesis, offering numerous therapeutic targets that researchers can 

explore, with the hopes that SDF-1α can become one of them. 
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SDF-1α is a major contributor to the process of angiogenesis. It plays a crucial 

role in endothelial cell migration, retention, proliferation, as well as recruitment 

and survival of EPCs to sites of ischaemia-induced injury 229,112, 230. Therefore, 

SDF-1α/CXCR4 signalling in the infarcted myocardium is thought to promote 

recruitment and survival of adipose-derived regenerative cells, c-kit+ endogenous 

cardiac stem cells and bone marrow stem cells 96, 98, 206. Stem cells that have been 

externally delivered to the ischaemic heart (e.g. intramyocardial, intracoronary 

injection) have been shown to improve cardiac function and limit damage to the 

left ventricle, despite poor retention and engraftment at the site of injection 99, 100. 

The beneficial effects of injected stem cells are hypothesized to be a result of 

paracrine effects of stem cells on their surrounding cells, such as release of 

cytokine growth factors and stimulation of angiogenesis and are largely believed 

to  rely on SDF-1α/CXCR4 signalling. Preliminary animal studies on rodents 

showed good regeneration of cardiac function after injection of stem cells into 

ischaemic myocardium 231. However, despite several clinical trials showing 

improvement in clinical outcomes after stem cell administration in patients with 

ischaemic heart disease, no study has yet shown myocardial regeneration on a 

scale of that seen in animal studies 232, 233. This further highlights the widening 

chasm between bench and bedside and is emblematic of what is occurring in the 

areas of myocardial regeneration, cardioprotection and beyond. 

The role of CXCR7, however, is even less understood. There is a lack of 

knowledge regarding the role of CXCR7 in cardiac injury and subsequent 

revascularization and regeneration efforts that take place in the damaged tissues. 

Most of the data so far comes from groups studying CXCR7 in regeneration and 

fibrosis of various tissues, with little research focusing specifically on the heart 234, 

235.  A great deal of studies on CXCR7 have focused on its role in angiogenesis 

in the context of cancer biology, but less so in other processes 236, 237. Increased 

levels of CXCR7 have been shown in tumour vasculature, where CXCR7 plays 

an important role in tumour formation, metastasis, and tumour angiogenesis 238, 

239. 
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Research conducted by Yan et al. suggests that CXCR7 is not involved in EPC 

migration and proliferation, whereas EPC survival depends solely on CXCR7 112.  

Formation of SDF-1α-induced EPC tube formation on the other hand, is heavily 

dependent on both receptors working in unison to guarantee a maximum  

response 112. This highlights a complementary rather than redundant role of both 

receptors regarding the EPC, which could also extend to other cell types (e.g. 

differentiated endothelial cells). CXCR7 was also found to mediate matrix 

metalloprotease- 2 (MMP-2) release, which could represent another mechanism 

responsible for CXCR7-triggered revascularization after ischaemic injury 112, 118. 

Additionally, Hao et al. showed that inhibition of CXCR7 negatively affects 

angiogenesis, while Zhang et al. showed that SDF-1α promotes tube formation, 

proliferation and migration of HUVEC, although they do not distinguish whether 

these actions are mediated through CXCR4 or CXCR7 receptors 115, 222.  

Furthermore, Ding et al. reported that CXCR7-Id1 signalling mediates liver 

regeneration and limits fibrosis, while CXCR4-FGFR1 signalling in the same 

setting promoted fibrogenesis 234. CXCR7 was also found   to promote lung 

alveolar repair and to abrogate fibrosis after acute lung injury, by signalling 

through the Wnt signalling pathway 240. Additionally, SDF-1α/CXCR7 signalling 

after pneumonectomy prompted AKT-dependent MMP-14 release from activated 

platelets, which stimulated alveolar regeneration 235.  

All in all, there is mounting evidence of CXCR7 involvement in angiogenesis and 

through that a potential to help re-establish sufficient vascular supply to the 

myocardial tissue damaged by ischaemia/reperfusion (I/R) injury. This pro-

angiogenic approach through CXCR7 could potentially provide long term benefits 

to the heart. 
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1.5 Hypothesis and Aims 

 Original hypothesis 

The original hypotheses to be investigated in this thesis are: 

1. CXCR7 is expressed on cardiovascular cell types. 

 

2. Activation of endothelial CXCR7 stimulates components of 

cardioprotective and regenerative signalling pathways.  

 

3. Activation of CXCR7 induces acute cardioprotection after myocardial 

infarction  

 

4. Activation of CXCR7 promotes long-term regeneration by stimulating 

angiogenesis  

 Aims 

The specific aims and objectives of the study are to: 

1. Investigate expression of CXCR7 in cardiovascular cell types.  

- Confirm expression of CXCR7 in mouse cardiovascular tissues. 

- Confirm expression of CXCR7 in endothelial cells of cardiac origin. 

- Investigate localization of CXCR7 and CXCR4 receptors in endothelial 

cells and identify an appropriate cell line for use in in vitro experiments. 

2. Investigate whether CXCR7 agonist VUF11207 exhibits cardioprotective 

effects in a rat ex vivo perfusion model. 

- Investigate if the administration of VUF11207 prior to reperfusion has an 

effect on the final infarct size in MI. 

- Investigate if the administration of VUF11207 prior to reperfusion has an 

effect on the LDH release during MI. 
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- Examine whether the administration of VUF11207 prior to reperfusion has 

an effect on the functional parameters of the heart. 

3. Investigate whether administration of CXCR7 agonists is able to induce AKT 

and/or ERK1/2 phosphorylation, in order to examine RISK pathway signalling. 

- Examine the effect of VUF11207 and SDF-1α on AKT, ERK1/2 

phosphorylation status in HUVEC. 

- Examine the effect of TC14012 and SDF-1α on AKT, ERK1/2 

phosphorylation status in HUVEC. 

4. Generate mice with inducible, endothelial-specific CXCR7 deletion. 

- Characterize the mouse model by investigating endothelial CXCR7 RNA 

and protein content. 

- Examine whether the mice exhibit the loss of endothelial CXCR7 protein. 

5. Investigate the effects of CXCR7 agonists on HUVEC migration. 

- Examine the effects of CXCR7 agonists, VUF11207 and TC14012 on 

HUVEC migration via Boyden chemotaxis chamber.  
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2 Materials and methods 

This chapter describes the general methods and materials used throughout this 

thesis. All reagents used were from Sigma-Aldrich (Dorset, UK), unless stated 

otherwise. All perfusion solutions were made using water from a MiliQ dispenser 

with a resistance of >18.0 MΩ and filtered (1 μm pore size) before use. 

2.1 Experimental use of animals 

All animals were housed in individually ventilated cages with 12h light/dark cycles 

under pathogen-free conditions. Standard chow and water for the animals was 

provided ad libitum, with the temperature of the housing unit maintained at 21°C. 

Animals were regularly inspected for signs of ill health (reduced weight gain, 

piloerection, hunching etc.) and routine care was administered by the University 

College London (UCL, UK) Biological Services Unit (BSU). Experiments were 

performed in line with best practice as described by the Home Office License 

Training Course Modules 1-4. All animal work was carried out in accordance with 

the Guidelines on the operation of Animals (Scientific Procedures) Act, as 

published by the UK home office in 1986 and Amendment Regulations 2012. All 

procedures contained within the application have been reviewed by the 

institutional veterinary surgeon Olga Woolmer (2017). The experiments are 

conducted within the terms of the Animals (Scientific Procedures) Act 1986, under 

Project License number PPL 70/8556, (“Protection of the Ischaemic and 

Reperfused Myocardium”) issued to Prof. Derek Yellon in 2015. 

2.2 Transgenic mouse lines 

 Generation of transgenic mice 

Ackr3tm1Twb flox/+ mice were originally generated by Timothy W. Behrens, M.D.  

(University of Minnesota, MN, USA) 114. Mice were obtained from Mutant Mouse 

Resource and Research Centre (MMRRC) from a cryopreserved embryo stock.  
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Briefly, mice were generated with the help of a targeting vector designed to 

insert loxP sites, which are 34 base pair (bp) sequences that allow DNA to be 

modified in the presence of Cre recombinase, from either side of exon 2 of 

the Cxcr7 (Ackr3) locus (Figure 2-1). The targeting vector used for the generation 

of this transgenic line was created from PCR cloned 129/SvEv genomic DNA that 

has been inserted into the pK11-2xLox-MCS12.  

The linearized targeting vector was then electroporated into 129/SvEv embryonic 

stem (ES) cells. Correctly targeted, ES cells were injected into C57BL/6 mouse 

blastocysts. Chimeric offspring were crossed with C57BL/6J mice, and agouti 

offspring were screened for presence of the targeted allele, Cxcr7 flox. 

 

 

 

Figure 2-1: Cre/Lox mechanism for transgenic mouse generation. A.) iCreERT2 (inducible 

Cre) transgene product expression is spatially regulated by the Pdgfb promoter. B.) Administration 

of tamoxifen causes a translocation of iCreERT2 protein into the nucleus. C.) In the nucleus, Cre 

induces recombination at loxP sites flanking exon 2, D.) resulting in excision of exon 2 and 

generation of endothelial-specific Cxcr7iΔEC mice. KO = Cxcr7iΔEC.  
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 Endothelial-specific gene ablation 

In order to examine the tissue-specific effects of Cxcr7 in adult mice, inducible 

iCreERT2 recombinase driven by the endothelial-specific platelet- derived growth 

factor B promoter (Pdgfb), referred to as Pdgfb-iCreERT2 was used.  

Since this form of Cre recombinase first needs to be induced by tamoxifen 

injection, it allowed us to not only spatially, but also temporally regulate the 

induction of Cre recombinase, and with it, Cxcr7 gene deletion. Temporal 

regulation of Cxcr7 deletion in vascular tissues is particularly important due to 

severe cardiovascular defects exhibited by embryos lacking Cxcr7 in the 

vasculature 119, 148. The iCreERT2 form of the Cre gene encodes a Cre sequence 

adjoined to a single human mutated ER (oestrogen receptor) binding domain, to 

which tamoxifen (oestrogen receptor modulator) binds to initiate nuclear 

translocation of iCreERT2 protein. Importantly, mutated ER receptor domain is not 

activated by endogenous ligand 17β-oestradiol to prevent unwarranted 

translocation of Cre protein 241. 

iCreERT2 has been previously reported as having lower background activity and 

higher efficacy than other Cre systems 242. C57BL/6JCre/+ mice expressing 

tamoxifen-inducible improved Cre recombinase driven by the platelet derived 

growth factor subunit B promoter (Pdgfb-iCreERT2), were obtained from Dr 

Marcus Fruttiger (UCL, London) and generated as described elsewhere 243. 

Pdgfb-iCreERT2 colony founders used to set up our colony also contained floxed 

Cxcr4 alleles. Cxcr4fl/fl animals were obtained from Dr Dan R. Littman (Columbia 

University, NY, USA) and generated using methods published elsewhere 244. 

 Colony maintenance 

Mice were bred as outlined in Figure 2-2 below. The iCreERT2 (henceforth called 

“Cre”) transgene was maintained as heterozygous for several reasons. Firstly, the 

exact insertion site of the Cre transgene is unknown due to random integration of 

the transgene construct and therefore it is difficult to distinguish homozygous and 
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heterozygous genotype, with heterozygous expression of Cre sufficient to induce 

recombination at the loxP sites 243, 245. Additionally, the very insertion of the Cre 

construct can cause disruption of the gene into which it inserts 246. Certain 

versions of Cre also have the ability to produce unanticipated effects when in 

homozygous form, such as myocardial dysfunction observed in myocyte-Cre 

overexpressing mice 247. Therefore, it is preferable to maintain mice as 

heterozygotes.  

Breeding pairs were made up of animals between 8 and 16 weeks of age, with 

females being allowed a maximum of 6 litters. Litters were weaned at 3 weeks of 

age after which ear biopsies were collected and genotypes determined by PCR. 

To describe the genetic status of transgenic animals, certain abbreviations are 

used throughout the text: wild type (WT, Cxcr7fl/fl Cre-, Cxcr7WT), floxed (FL, fl/fl, 

Cxcr7fl/fl Cre+ injected with Tamoxifen, Cxcr7iΔEC).  
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Figure 2-2: Transgenic mouse breeding scheme. A) Depicted are mouse breeding pairs 

used to breed experimental transgenic animals in our experiments. B.) Additional 

control mice that would need to be generated in order to investigate any potential 

effects of tamoxifen or Cre, since tamoxifen can exhibit various degrees of toxicity 

and certain Cre strains display detrimental effects on mouse tissues. 

 Mouse genotyping 

Mouse biopsies were collected by BSU staff shortly after weaning at 3 weeks of 

age. Total DNA was isolated from mouse ear biopsies, using Direct PCR lysis 

reagent (Viagen Biotech, CA, USA) and Proteinase K (Qiagen, Norway) in a ratio 

of 10:1 overnight at 55°C. Afterwards, samples were heated to 90°C for 45 min to 

terminate the lysis process and were subsequently stored at -20°C before 

analysis.  

PCR reactions were run using Taq PCR Master Mix Kit (Qiagen, 201443) with 

reagents outlined in Table 2-1 and 2-2 below.  Sequences of PCR primers used 

are listed in Table 2-3. 
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Reagent Volume per 

sample (µl) 

Final concentration 

10mM dNTPs 2.0 250µM of each dNTP 

10x PCR buffer 0.4 2x 

Forward primer 0.5 0.2 pmol/µL 

Reverse primer 0.5 0.2 pmol/µL 

Distilled water  15.4 - 

Taq DNA polymerase 0.2 - 

Template DNA  1.0 - 

Total volume per sample (µl) 20 

Table 2-1: PCR reaction mix components for Cxcr4 and Cre genotyping. 
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Reagent Volume per 

sample (µl) 

Final concentration 

10mM dNTPs 2.5 250µM of each dNTP 

10x PCR buffer 0.5 2x 

WT forward primer 0.5 0.2 pmol/µL 

FL forward primer 0.5 0.2 pmol/µL 

Common reverse primer 0.5 0.2 pmol/µL 

Distilled water  13.3 - 

DMSO 0.5 - 

Taq DNA polymerase 0.2 - 

Template DNA  1.5 - 

Total volume per sample (µl) 20 

Table 2-2: PCR reaction mix components for Cxcr7 genotyping. 
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Primer name Primer sequence (5’-3’) Tm (°C) 

Cxcr7 WT forward primer GCTGCAAACCCGTGAACAAGG  61.7 

Cxcr7 FL forward primer TCTATCGCCTTCTTGACGAGTTCTTC  60.1 

Cxcr7 Common reverse primer GGGCTCTCTGGCCGTTCTCTC  65.2 

Cxcr4 forward primer CCACCCAGGACAGTGTGACTCTAA 64.4 

Cxcr4 reverse primer GATGGGATTTCTGTATGAGGATTAGC 61.6 

Pdgfb-Cre forward primer CCAGCCGCCGTCGCAACT 62.8 

Pdgfb-Cre reverse primer GCCGCCGGGATCACTCTCG 65.3 

Table 2-3: PCR primer sequences and their melting temperatures. 

All PCR primers were purchased from Eurofins Genomics (Germany) and were 

dissolved in distilled MiliQ water at 100 pmol/µL, with the final working 

concentration of 10 pmol/µL. 

The PCR-cycling protocol outlined in Table 2-4 was used for Cxcr4 and Cre PCR 

reactions on a PTC-200 Peltier Thermal Cycler (MJ Research, Canada), including 

a heated lid setting. Samples were run using a “touch-down” cycling technique, 

where the annealing temperature is reduced from 65°C to 60°C by 1°C per cycle 

prior to standard cycling at 60°C annealing temperature. This allows for primers 

to achieve a highly specific binding at the first available temperature with further 

cycles utilizing incrementally lower annealing temperatures to achieve maximum 

efficiency of reaction. Subsequently, this also allows for reduction of non-specific 

binding at lower annealing temperatures providing a specific, sensitive and high-

yield reaction 248. 
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PCR stage Temperature and duration Description 

5 cycles of: 

1. 94°C – 30 s  DNA denaturing 

2. 65°C – 30 s, decreasing 1°C per 

cycle until it reaches 60°C 

Primer annealing 

3. 72°C – 30 s DNA synthesis 

Then 40 cycles of: 

16. 94°C – 30 s DNA denaturing 

17. 60°C – 30 s Primer annealing 

18. 72°C – 1 min DNA synthesis 

Then 4°C until collection. 

Table 2-4: Cxcr4 and Cre PCR thermocycling protocol. 

Loading buffer was added to the samples and they were subsequently run on an 

agarose gel consisting of 2% agarose powder dissolved in 1x TAE buffer (Tris 40 

mM, acetic acid 20 mM and EDTA 1mM) at 118V in an Owl Easycast B2 Mini Gel 

Electrophoresis System (Thermo Fisher, MA, USA) electrophoresis chamber filled 

with TAE buffer. Migration distance was determined using the marker dyes added 

to the PCR loading buffer and electrophoresis of the gel was stopped once the 

leading front of the dye reached approximately 75% of the available gel distance, 

which occurred around the 40-minute time mark.  The Cxcr4 WT band presented 

at 481 bp and FLOXED band at 550 bp, whereas Pdgfb-Cre had a single band 

with a molecular weight of 440 bp. Primers utilized for detection of WT and FL 

bands are outlined in Figure 2-3 below.  
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Syto® 60 Red Fluorescent Nucleic Acid Stain (Thermo Fisher) was added to the 

gel before it solidified to allow for fluorescent detection of DNA bands. Images 

were obtained using a 700 nm laser via Odyssey® LI-COR imagining platform 

and software. 

To determine the sizes of DNA bands, each experiment was run alongside a 

BenchTop 1 Kb DNA Ladder (Promega, WI, USA). To detect any possible 

contamination each experiment was also run with an additional lane containing 

PCR master mix where DNA template was substituted with distilled water.  

 

Figure 2-3: Detection of wildtype (WT) and floxed (FL) gene sequences. A.) Combination of 

the WT forward primer (green arrow) and common reverse primer (orange arrow) produces a 212 

bp gene product, indicative of a WT genotype. B.) In mice with floxed Cxcr7 (FL) the sequence 

utilized by the WT forward primer is largely separated or obstructed, which renders the WT forward 

primer ineffective. Instead, floxed mice possess a neomycin resistance gene (neo) cassette insert, 

to which the FL forward primer (yellow arrow) binds and together with the common reverse primer 

forms a 709 bp gene product indicative of a FL genotype.  F = forward, R = reverse.  

Representative images of expected PCR results are shown in Figure 2-4 below. 
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Figure 2-4: Representative mouse PCR genotyping images. A.) Cxcr7 had a floxed (FL) band 

at 709 bp and wild type (WT) band at 212 bp, with B.) Cxcr4 presenting with a WT band at 481 bp 

and FL at 550 bp and finally, C.) the presence of Pdgfb-Cre was confirmed by a single 440 bp 

band, whereas WT animals displayed no visible bands. 

Cxcr7 genotyping was performed using the thermocycling protocol outlined in 

Table 2-5. 
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PCR stage Temperature and duration Description 

1.  94°C – 5 min Initiation/melting 

Then 40 cycles of: 

2. 94°C – 15 s  DNA denaturing 

3. 65°C – 30 s, decreasing 1°C per 

cycle until it reaches 55°C 

Primer annealing 

4. 72°C – 40 s DNA elongation 

Followed by    

5. 72°C – 5 min Amplification 

Then 4°C until collection. 

Table 2-5: Cxcr7 PCR thermocycling protocol. 

Once the thermocycling protocol has ended, the samples were run on a 1.5% 

agarose gel at 90 V for 90 min in 1 x TAE buffer, before visualisation on the 

Odyssey LI-COR system as described above. WT band (primer 1 and 2) was 

visible on the gel as 212 bp and FLOXED band (primer 2 and 3) at 709 bp. 

 Tamoxifen administration 

Since mice were generated using the inducible version of Cre recombinase, 

administration of tamoxifen or its active metabolite 4-hydroxytamoxifen was 

necessary to induce translocation of Cre product from the cytoplasm into the 

nucleus. In the absence of tamoxifen the iCreERT2 protein remains in the 

cytoplasm, where it is sequestered by heat shock protein 90 (HSP90) 243. 

Tamoxifen (T5648, Sigma-Aldrich) was adminstered via intraperitoneal (i.p.) 

injection, daily for three consecutive days with 100 µL of 15 mg/mL.  
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Tamoxifen was dissolved in 1:10 ratio of 100% ethanol to groundnut oil, by first 

introducing tamoxifen powder into 100% ethanol and agitating for ~20 min or until 

dissolution occurred, before adding the correct volume of groundnut oil and further 

agitating the mixture at 37°C until adequately mixed. Mice were injected between 

the ages of 6 – 14 weeks and left for 3 weeks after the date of the last injection to 

ensure the loss of protein, then used between the ages of 9 – 17 weeks. The age 

of experimental mice used did not surpass 16 weeks old due to susceptibility of 

the C57BL/6 strain to develop various age-related conditions (obesity, type 2 

diabetes, atherosclerosis) 249. Generated transgenic mouse lines produced litters 

with predicted robust expression of the recombinant enzyme throughout the 

microvascular endothelium of adult mice approximately 48 hours after 

administration of tamoxifen, as previously reported 243. After administration of 

tamoxifen, mice were monitored daily for any adverse effects. Tamoxifen-

associated mortality was <10%.  

2.3 Cell cultures  

Human umbilical vein endothelial cells (HUVEC, C2519A, Lonza, Switzerland) 

and immortalized mouse cardiac endothelial cells (MCEC, Cellutions Biosystems, 

Ontario, Canada), were both cultured as monolayers. HUVEC were cultured using 

Endothelial cell growth medium 2 kit (CC22111, PromoCell, Germany) or EGM-2 

bullet kit medium (CC-3162, Lonza) at 37°C and 5% CO2, while MCEC cells were 

cultured using DMEM media (11965092, Gibco, MA, USA) supplemented with 5% 

foetal bovine serum (FBS) and penicillin/streptomycin also at 37°C and 5% CO2. 

Both cell types were passaged when they reached 70- 80% confluence. 

Accutase solution or TrypLE Express Enzyme (12605028, Gibco) were used for 

the passaging of HUVEC and 0.25% Trypsin-EDTA (Thermo-Fisher Scientific) 

was used for passaging of MCEC cells. The media was changed every 2-3 days. 
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2.4 Mouse cardiac endothelial cell isolation 

 Preparation of anti-CD31 coated Dynabeads 

Dynabeads Sheep Anti-Rat IgG (11035, Invitrogen, MA, USA) were prepared by 

using 25 µl of Dynabeads solution (1 x 107 beads) in 1500 µl of wash buffer (0.1% 

bovine serum albumin/phosphate buffered saline), and subsequently washed four 

times with the wash buffer using the DynaMagTM magnetic separator (Thermo 

Fisher), before  resuspending in wash buffer and addition of anti-mouse CD31 

antibody (1:100, 553370, BD Biosciences, NJ, USA). Dynabeads were left to 

incubate on the rotator, overnight in the fridge at 4°C, before being washed and 

resuspended in the wash buffer, and stored at 4°C, for a maximum of 2 days, 

before use. 

 Cardiac endothelial cell isolation 

Two to four C57BL/6 mice were anesthetized via i.p. injection of pentobarbitone 

sodium (30mg/kg; Animalcare, UK) and heparin (30IU). Once the mice were 

under deep anaesthesia and no longer possessed a pedal reflex, hearts were 

rapidly excised and placed in cold DMEM media (Gibco). The hearts were then 

transferred to the sterile laminar flow hood, where they were washed with 

phosphate buffered saline (PBS, Oxoid, UK) twice to remove blood and minced 

into small pieces to increase cell yield. Afterwards, hearts were digested by 1 

mg/mL collagenase II (Worthington, NJ, USA) dissolved in DPBS with calcium 

and magnesium (Dulbecco’s Phosphate Buffered Saline, sterile, Gibco) and 

filtered using 0.2 µm cellulose acetate membrane filter, then placed on the shaker 

at 37°C, 150 revs/min for 1 hour, with occasional swirling to prevent 

sedimentation.  

After, the solution was triturated and passed through a 70 µm strainer (Falcon, 

Fisher Scientific, NH, USA), followed by the addition of 10 mL EGM-2 medium 

(CC-3162, Lonza). The suspension was centrifuged for 5 min at 2300 rpm, after 

which the pellet was resuspended in anti-CD31-enriched Dynabeads and 
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incubated for 40 min on the rotator at 30 revs/min and 4°C to reduce phagocytic 

activity. After incubation, the cell suspension was repeatedly washed with the 

wash buffer on the DynaMagTM magnetic separator and finally resuspended in 

EGM-2 medium (Lonza) and plated in a 12-well plate. Cells were incubated in the 

incubator at 37°C, 5%CO2 and media was changed every 3 days. After 10-12 

days in culture, when cells reached approximately 70% confluence, cells were 

harvested for experiments. 

2.5 Western blotting 

 Tissue collection 

Mice were anaesthetized as described in section 2.4.2. Tissues were harvested 

and immediately homogenized using cold lysis buffer (Tris 100 mM pH 6.8, NaCl 

300 Mm, NP40 0.5%) with the volume topped up to 100 mL with distilled water 

and pH adjusted to 7.4. Whole mouse hearts were first mounted on the 21G 

cannula via the aorta and flushed with cold PBS buffer, before undergoing 

homogenization. Lysis buffer was further supplemented with Halt™ Phosphatase 

Inhibitor Cocktail 100X (final conc. 1X, Thermo Fisher) and Halt™ Protease 

Inhibitor Cocktail 100X (final conc. 1X, Thermo Fisher) before use. A total of 100 

µL of lysis buffer was used per 10 mg of tissue to achieve satisfactory protein 

extraction. For cell samples, a confluent T75 flask was scrapped using a Corning® 

cell scraper, with 150 µL of supplemented lysis buffer used per flask.  After manual 

homogenization or cell scrapping, samples were left for 10 min on ice, before 

centrifugation at 10,000 rpm for 10 min. Subsequently, the supernatant was 

placed in a fresh Eppendorf tube and stored at -80°C until use.  

 BCA protein quantification 

Total protein content of samples was calculated using bicinchoninic acid (BCA)-

copper (II) sulphate (CuSO4) colorimetric assay as described below. Protein 

content is measured by reduction of Cu2+ to Cu+ by protein present in the sample 

and subsequent chelation of two BCA molecules to each Cu+ ion.  
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This reaction causes the solution to change from green to purple colour, with the 

intensity of the colour proportional to the concentration of protein in the sample. 

After protein extraction samples were further diluted 1:5 in lysis buffer and a total 

of 5 μL of the mix was placed into a 96-well plate in duplicates, along with pre-

diluted bovine serum albumin (BSA) standards from Pierce (Thermo Fisher, 

23208). This was topped up to 200 μL with a 1:50 mix of copper sulphate (Thermo 

Fisher) and BCA (Pierce). The plate was placed in the 37°C incubator for 30 mins 

and then absorbance at 562 nm measured on a FLUOstar Omega plate reader 

(BMG Labtech). The protein concentrations were calculated by interpolation from 

the standard curve obtained from the abovementioned BSA standards. 

Once the total protein concentration was known, samples were diluted to the 

same volume and concentration needed to load 20 μg of protein. Finally, loading 

buffer consisting of Laemmli buffer (Bio-Rad, CA, USA) and β-mercaptoethanol 

in ratio 20:1 were added to the samples, before they were boiled for 10 min at 

100°C in order to ensure denaturation of proteins. Samples were then used 

straight away or stored at -20°C until needed. 

 Experimental protocol 

A total of 20 μg of protein was loaded on to a 10% Invitrogen Nuvex NuPAGE 

MOPS SDS gel (Invitrogen) or TGX Tris-Glycine 10% gel (Bio-Rad), subjected to 

electrophoresis in an XCell Sure Lock Mini Cell chamber (Invitrogen) or Mini 

Trans-Blot® Electrophoretic Transfer Cell (Bio-Rad), respectively. NuPAGE™ 

MOPS SDS Running Buffer (20X, Invitrogen) was used for Invitrogen gels and 

10x Tris/Glycine Buffer (Bio-Rad) was used for Bio-Rad gels. 

Voltage and duration were set as suggested by the manufacturer for a given gel. 

After electrophoresis, proteins were transferred onto an Amersham Protran 

nitrocellulose membrane (GE Healthcare, IL, USA) in a Bio-Rad Mini Protean 

chamber (Bio-Rad) using freshly-made transfer buffer (Tris-base 25 mM, glycine 

200 mM, 20% methanol, pH 8.3) at 100 V, 0.3 mA for 1 h on ice. 
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Successful transfer was confirmed with 0.1% Ponceau S staining of the 

membrane. Once the transfer was complete the membranes were blocked with 

5% bovine serum albumin (BSA) in PBS for 1 hour at RT and subsequently 

incubated with relevant antibodies in 5% BSA in 0.1% PBS-Tween. Following 

incubation with primary antibodies, membranes were washed three times in PBS-

Tween (PBS-T), and subsequently incubated with goat anti-rabbit or goat anti-

mouse secondary fluorescent antibodies (both 1:10,000, LICOR) in Odyssey® 

blocking buffer (LI-COR, Bad Homburg, Germany) and PBS 1:1, for 1 h at room 

temperature, before being washed six times for 10 min in PBS. Precision Plus 

Protein™ Dual Color Standard (Bio-Rad) was used to determine protein band 

size. Blots were visualized and quantified using Odyssey Infrared Imaging System 

(LI-COR).  

 WES western blotting 

Murine cardiac endothelial cells were isolated as described in section 2.4. 

Following 10-12 days of incubation in PromoCell endothelial growth medium 

(CC22111, PromoCell) supplemented with 10% penicillin/streptomycin (Gibco), 

cells were lysed using a total of 60 µL of lysis buffer (Tris 100 mM pH 6.8, NaCl 

300 Mm, NP40 0.5%). A total of 1 µg of protein sample was loaded into the 13 – 

230 kDa protein cartridge (ProteinSimple, CA, USA) with each capillary already 

containing protein standards, and run according to the manufacturer’s 

instructions.  All reagents were purchased from ProteinSimple. WES western 

blotting (ProteinSimple) is system with automated protein separation and 

detection using capillary-based cartridges.  

It allows for use of very small protein quantities and is gel-free, since the entire 

western blotting process for an individual sample takes place within a single 

capillary. Western blotting analysis was performed using Compass software for 

Simple Western (ProteinSimple). 
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2.6 Ac-LDL uptake assay 

The identity of endothelial cells can be confirmed via an acetylated low-density 

lipoprotein (Ac-LDL) uptake assay. Scavenger pathway present in endothelial 

cells and macrophages allows for 7-15 times higher uptake of fluorescently-

labelled Ac-LDL, when compared to fibroblasts and smooth muscle cells, and 

provides a simple, yet effective way to confirm endothelial cell identity 250. Isolated 

murine cardiac EC were obtained as described in section 2.4. They were plated 

on Nunc™ Glass Bottom Dishes (Thermo Fisher) and cultured in EGMTM-2 

Endothelial Cell Growth Medium-2 BulletKitTM (Lonza, Switzerland) for 10 days. 

Afterwards, cells were incubated with 10 µg/mL Alexa Fluor™ 488 AcLDL 

(L23380, Thermo Fisher) for 2 hours at 37°C and the nuclei stained with Hoechst 

33342 Solution (1:200, 62249, Thermo Fisher). After staining cells were washed 

with DPBS and images obtained using a 40x objective on a Leica confocal 

microscope, with excitation wavelength at 488 nm, and collecting the 500-550 nm 

emitted light. 

2.7 Flow cytometry 

MCEC, HUVEC or isolated murine endothelial cells were detached using either 

0.25% Trypsin (Thermo Fisher) for MCEC or Accutase for HUVEC and isolated 

mouse endothelial cells. All cells were counted using a haemocytometer 

(Marienfeld, Germany) and centrifuged at 1,200 rpm for 5 min. Cells were then 

resuspended in 1 mL DBPS (Thermo Fisher) and fixed using 1% 

paraformaldehyde for 10 min on ice. Afterwards, cells were washed with 0.1% 

BSA/PBS (isolation buffer) and centrifuged at 5,000 rpm for 5 min. 
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Cell samples that underwent permeabilization were resuspended in 0.1% Triton 

X-100 for 3 min at room temperature prior to washing with the isolation buffer. 

Cells were then re-suspended in isolation buffer and incubated with either anti-

CXCR7 rabbit monoclonal primary antibody (1:100, ab138509, Abcam, UK), anti-

CXCR4-PE mouse antibody (1:20, FAB21651P, R&D systems, MN, USA), rat 

IgG2B PE-conjugated isotype control (R&D Systems, IC013P, 1:50) or Isolectin 

GS-IB4 Alexa 647 (IB4, 1:50, I32450, Thermo Fisher). Goat anti-rabbit Alexa-488 

conjugated antibody (1:1000, A11008, Thermo Fisher) was used as a CXCR7 

secondary antibody in flow cytometry experiments. 

Samples were then analysed using a BD Accuri™ C6 flow cytometer (BD 

Biosciences) with 10,000 live cells (as determined by forward scatter/side scatter 

gating) counted for each sample. Positive Alexa-488 fluorescence (CXCR7) was 

determined on the FL-1H channel (488 nm laser, 585/30 nm filter; H-height). 

Positive CXCR4-PE and IgG2B PE-conjugated isotype fluorescence was 

measured on the FL-2H channel (488 nm laser, 585/40 nm filter) and positive GS-

IB4 Alexa 647 fluorescence was measured using the FL-4H channel (640 nm 

laser, 675/25 nm filter). The number of positively labelled (+ve) cells was 

determined using FlowJo (Tree Star, OR, USA) analysis software via a gating 

method described in section 3.3.1.  

2.8 RNAscope in situ hybridization 

Mice were anaesthetized as previously described in section 2.4.2 and hearts 

quickly excised. The aorta was cannulated using a 21G cannula and the heart 

was manually flushed through with ~5 mL PBS to remove the remaining blood, 

then flushed with 10% formalin solution for fixation. Hearts were left immersed in 

10% formalin overnight before being sent to UCL IQPath histology services (UCL, 

UK), where they were paraffin-embedded and cut longitudinally into equally thick 

slices (<7 µm), ready for staining. RNAscope® technology (Advanced Cell 

Diagnostics, CA, USA), was used to detect mRNA expression, according to the 

instructions published on the manufacturer’s website (Figure 2-5).  
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Briefly, Cxcr7-specific probe manufactured by Advanced Cell Diagnostics was 

used to probe for mRNA expression and amplified by TSA® Plus fluorophore 

Cyanin 3 (1:500, Perkin Elmer, MS, USA). Following this, slices were also stained 

with Isolectin GS-B4 - Alexa 647 (1:50, I32450, Thermo Fisher) for 2 h, before 

washing with PBS, counter-staining the nuclei with DAPI (Advanced Cell 

Diagnostics) for 30 s and finally mounting on to a glass slide with Prolong Gold 

Antifade Mountant (P36930, Life Technologies). After leaving the slides to dry 

overnight, the fluorescent signal was scanned using a Leica confocal microscope. 

Confocal images were obtained using a 40x objective and at 1024 x 1024 pixel 

resolution. Cxcr7 probe was detected using excitation wavelength 488 ± 20 nm 

and emission wavelength 510 ± 20 nm. For Isolectin GS-B4 Alexa 647 an 

excitation wavelength of 650 ± 10 nm and emission wavelength of 670 ± 10 nm 

was used. 

 

Figure 2-5: RNAscope in situ hybridization workflow. Cells or tissue are first permeabilized 

before undergoing hybridization of target-specific oligo probes to target RNA. After, signal 

generated by the hybridized probes is amplified and subsequently detected  
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2.9 Langendorff perfusion  

Sprague Dawley rats were provided from a colony established and maintained by 

the BSU facility (UCL, UK).  Male rats weighing 250-350 g were anaesthetized by 

i.p. injection of pentobarbitone (170 mg/kg) and heparin (160 IU/kg). The onset of 

surgical level of anaesthesia was determined by the absence of pedal and corneal 

reflexes prior to cardiac excision and exsanguination. Following this, hearts were 

excised and immediately arrested in ice-cold Krebs control solution, containing: 

NaCl 118 mM, CaCl2 1.84 mM, glucose 11 mM, NaHCO3 25 mM, MgSO4 1.22 

mM, KH2PO4 1.21 mM and KCl 4.7 mM. The aorta was cannulated, and the hearts 

were mounted on a Langendorff apparatus, with continuous perfusion performed 

through the aorta with gassed Krebs control solution (95% O2: 5% CO2, pH 7.3-

7.4). Solutions were circulated through the perfusion apparatus at 37°C and at a 

constant pressure of approximately 80 mmHg (generated by the height of the 

perfusion columns). Special care was taken to avoid any bubbles in the perfusion 

apparatus that might impede the flow of solution. A silk suture (3-0, Ethicon, UK) 

was placed under the left anterior descending artery, mid-distance to the apex 

and subsequently tightened during the period of ischaemia, to produce regional 

ischaemia distal to the placement of the suture. The left atrium was removed, and 

an intraventricular balloon made of polyvinyl chloride cling film and connected to 

the pressure transducer was passed through the left atrium into the left ventricle 

and filled with distilled water to provide the systolic and diastolic pressure 

measurements. A unipolar electrocardiogram (ECG) recording was used to 

assess cardiac rhythm: two ECG leads were attached to the cannula (earth and 

negative electrodes), and a wire electrode was inserted into the left ventricular 

wall at the apex of the heart. A representative image of rat heart mounted on the 

Langendorff apparatus can be seen in Figure 2-6.  
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Figure 2-6: Cannulated heart on the Langendorff perfusion apparatus. A.) Silk suture 

underlying the LAD that when tightened results in an area of regional ischaemia downstream of 

LAD (added yellow shading), B.) Temperature probe in the right atrium, C.) ECG earth and 

negative leads, D.) ECG positive lead. 

 Experimental protocol 

The term “ischaemic preconditioning (IPC)” describes several short cycles of 

global ischaemia and reperfusion that are applied to the heart before the onset of 

index ischaemia, and induce a potent cardioprotection in all mammalian species 

tested 251. Therefore, IPC was used as a positive control for cardioprotection in a 

Langendorff perfusion model. The drug to be tested, CXCR7 agonist VUF11207 

fumarate (Tocris, UK) was administered via the perfusate beginning 5 min before 

reperfusion until the end of reperfusion. Rats were randomized to one of three 

groups, with researchers blind to the treatment, however due to the nature of IPC, 

the blinding for that group was not possible (Figure 2-7). 
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Figure 2-7: Langendorff perfusion experimental protocol. Rats were randomly allocated to 

three different groups. A.) 10 min stabilization period, three 5 min cycles of IPC, 35 min LAD 

ischaemia, 2 h reperfusion; B.) 40 min stabilization, 35 min LAD ischaemia, 2 h reperfusion with a 

perfusion switch from Krebs to vehicle (Krebs) 5 min before onset of reperfusion; C.) 40 min 

stabilization, 35 min LAD ischaemia, 2 h reperfusion with a perfusion switch from Krebs to 

VUF11207 (1µM) 5 min before onset of reperfusion. LDH samples were collected at times as 

indicted by blue arrows. Figure not to scale.  

 Exclusion criteria 

Pre-defined exclusion criteria were set according to recommendations of Botker 

et al. before the experiment to ensure consistency as seen in Table 2-6 below 252. 

Heart rate, coronary flow, temperature, perfusion pressure (mmHg), systolic, 

diastolic and developed pressure (mmHg) were collected every 5 min to ensure 

optimal heart function and adherence to exclusion criteria.  
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Baseline exclusion criteria (prior to any intervention, e.g. IPC) 

Parameter Rat Heart 

Time to perfusion > 3 min 

Coronary flow < 10 or > 28 mL/min 

Arrhythmias 
> 10 ectopic beats 
Ventricular tachycardia or fibrillation should not occur 

HR < 200 or > 400 bpm 

LV diastolic pressure < 5 or > 10 mmHg 

LV developed pressure < 70 or > 130 mmHg 

Temperature 37 ± 0.5°C (< 36 or > 38°C for > 1 min) 

Reperfusion exclusion criteria 

Parameter Rat Heart 

Coronary flow ≤ ischaemic flow 

Arrhythmia duration (VT or VF) 
> 2 min 
(intervene immediately – flicking, KCl or cold buffer) 

HR < 150 bpm 

Infarct criteria 

Parameter Rat Heart 

AAR < 35 or > 70% of ventricular tissue 

Table 2-6: Pre-set exclusion criteria for ex vivo Langendorff experiments.  

 Endpoint 1: Infarct size assessment 

The primary endpoint of ex vivo experiment was infarct size (IS) after IR. This was 

expressed as a percentage of area at risk (IS/AAR), which is the area of 

myocardial tissue, that was susceptible to ischaemic damage during the period of 

LAD occlusion.  
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After the conclusion of the experimental protocol, the heart was taken off the 

perfusion rig, the silk-suture underlying the LAD was re-tightened and the heart 

was injected with approx. 0.5 mL of 0.25% Evans Blue dye to delineate the AAR, 

which was set as percentage of whole heart area (AAR/whole heart area) as seen 

in Figure 2-8 below. 

 

Figure 2-8: Quantifying AAR via planimetry. A.) Scanned transverse section of the heart 

showing staining with Evans blue; B.) The background was removed, and the colour channels 

separated to obtain only the red channel image; C.) The pixel intensity threshold was set to 

encompass the entire heart slice to obtain whole heart area for AAR calculation; D.) The threshold 

was set to encompass only the portion of the heart slice not stained by Evans blue (white area) to 

delineate AAR. AAR was calculated as percentage of whole heart area by measuring threshold 

area (pixels) in ImageJ.   

At the end of perfusion, the heart was removed from the cannula, weighed and 

placed into the -20°C freezer for 1 hour. Subsequently, the heart distal to the site 

of LAD occlusion was sliced into 5-8 sections and stained with 1% 2,3,5-

Triphenyltetrazolium chloride (TTC) dissolved in 5 mL of phosphate buffer (2 parts 

100 mM monobasic sodium phosphate and 8 parts 100 mM dibasic sodium 

phosphate). TTC staining was used to differentiate metabolically active versus 

inactive tissue. It is a white compound that is enzymatically reduced to red 1,3,5-

triphenylformazan (TPF) in metabolically active tissues due to activity of various 

dehydrogenases. However, in metabolically inactive (dead) tissues the enzymes 

are washed out and white 253.  

A B C D
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Following incubation in TTC for 20 min in the dark at 37°C, heart slices were fixed 

in 10% formalin at RT and incubated in formalin for further 15 min before scanning 

with a Canon scanner (LiDE 210, Canon, Japan) and analysed with Image J 

(version 1.52a, National Institute of Health, MD, USA), using planimetry as 

depicted in Figure 2-9. Analysis was performed blinded to the treatment group by 

both researchers separately, after which the results were averaged between the 

two observers. If the obtained values differed more than 10% between the 

observers, the heart slices were re-analysed by both. 

 

Figure 2-9: Quantifying IS via planimetry. A.) Scanned transverse section of the heart; B.) The 

background section was removed, and channels separated to obtain only green channel image; 

C.) The threshold was set to encompass only the portion of the heart that was metabolically 

inactive as determined by TTC (red area). IS was calculated as percentage of AAR by measuring 

threshold area (pixels) in ImageJ.   

 Endpoint 2: LDH release 

To provide an alternate endpoint to IS assessment, coronary effluent samples 

were collected for lactate dehydrogenase (LDH) measurement at defined 

timepoints in the protocol as outlined in Figure 2-7 above. LDH is an intracellular 

enzyme present throughout most cells and normally located in the cytosol. 

Following damage to the sarcolemma it is released into the circulation, where it 

has historically served as a surrogate marker of cardiac injury in clinical practice 

and cardiovascular research 253-255 .  

A B C
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The first sample for LDH measurement was collected immediately after heart was 

mounted on the cannula, followed by collection at 9 min into stabilization/prior IPC 

intervention, then 39 min into stabilization just prior to ischaemia, then at 31 and 

34 min into ischaemia, before and after switching to vehicle/drug, respectively. 

Finally, the last and most important LDH sample was collected 15 min into 

reperfusion, which was the point of maximum LDH release, as determined from 

previous experiments in our laboratory 255.  

LDH content was measured with a commercially available LDH kit, Pierce™ LDH 

Cytotoxicity Assay Kit (88953, Thermo Fisher) in a 96-well plate according to the 

manufacturer’s instructions. The prepared plate was subsequently measured 

using a FLUOstar Omega microplate reader (BMG Labtech, UK) at 490 nm and 

680 nm wavelengths, whereby subtracting the 680 nm from the 490 nm 

wavelength ensured the elimination of background signal from the samples. The 

LDH measurements were adjusted to the flow rate (mL/min) and weight (g) of 

each individual rat heart to ensure consistency. The final LDH measurement was 

therefore calculated as amount of LDH product in a coronary effluent 

concentration (pg x mL-1) x coronary flow divided by the weight of the rat heart 

(mL x min-1 x g-1), and finally expressed as pg x g-1 x min-1. 

2.10  Cell migration 

HUVEC were cultured as described in section 2.3. At passage 4-8 they were 

detached from the surface of the flask using TrypLE Express (Gibco) reagent and 

counted using a haemocytometer (Marienfeld,). 450,000 cells were centrifuged at 

1,300 rpm for 5 min and resuspended in Endothelial Cell Serum-free Defined 

Medium (Cell Applications Inc., CA, USA), supplemented with 5% 

penicillin/streptomycin (Gibco). Drug treatments were prepared in DPBS and 

included FBS, SDF-1α (Miltenyi Biotec, Germany), TC14012 (Tocris, UK), 

VUF11207 fumarate (Cayman Chemical, MI, USA). 
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Before the start of the experiment, a 12-well chemotaxis chamber (Neuro Probe, 

MD, USA) was disassembled (see Figure 2-10 for chamber diagram) and 150 µL 

DPBS containing drug treatments was pipetted into the wells in the lower portion 

of the chamber. A polycarbonate filter membrane with 8 µm pores was placed on 

top of the lower chamber (PFB8, Neuro Probe), followed by a rubber gasket and 

the top portion of the chamber. Finally, a cell mixture containing 150,000 HUVEC 

suspended in 100 µL of Endothelial Cell Serum-free Defined Medium was 

carefully pipetted into the top wells of each chemotaxis chamber. The cellular 

migration was allowed to proceed for 3 hours in a cell incubator at 37°C and 5% 

CO2.  Afterwards, the membrane was carefully removed from the chamber, dipped 

in PBS and the bottom-part of the membrane was wiped free of residual non-

migrated cells three times before being placed in ice-cold methanol for 5 mins. 

After fixation, the membrane was air dried and stained with 0.5% crystal violet dye 

in PBS for 5 min, before air-drying and scanning with a Canon scanner (LiDE 210, 

Canon, Japan).  

 

 

Figure 2-10: Technical diagram of a representative chemotaxis chamber. DBPS containing 

drug treatments is shaded blue and HUVEC cell mixture is coloured red, with the filter membrane 

(purple line) placed in between. Cellular migration proceeds in a downward direction (from red to 

blue), and cells remain attached to the underside of the filter membrane, after migrating through 

membrane filter pores. Adapted image courtesy of Neuro Probe. 
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2.11 RNA isolation and quantitative real-time PCR  

 RNA extraction 

Mice were anaesthetized as described in section 2.4.2. An incision made just 

below the sternum of the mouse was extended diagonally and distally, and a 

section of ribcage was removed to expose the heart. Lungs and oesophagus were 

removed and distal end of thoracic aorta exposed. The aortas was blunt dissected 

along their length and separated from the underlying spinal tissue. The aortas 

were cut at the distal thoracic end and at the level of descending aorta and fatty 

tissue removed. Harvested aortas were stored in 300 µL of RNAlater® solution 

until needed. Total RNA was isolated using a RNeasy kit (Qiagen, Germany) at 

RT with RNase-free DNase I (Qiagen) used for removal of trace amounts of DNA, 

as per the manufacturer’s instruction, as briefly outlined in Table 2-7 below. Prior 

to RNA extraction, aortas (30 mg total) were homogenized using 23G needle, 

vortexing and sonication (10 s, 130W, 20 kHz, Vibra-Cell, CT, USA) in 600 µL of 

RLT buffer (RNeasy kit, Qiagen) with 1% β-mercaptoethanol (β-ME), which 

reduced RNases and disrupted protein sulphide bonds, respectively. Lysate was 

then centrifuged at 20,000 g and 1 volume of 70% of ethanol was added to the 

supernatant before transferring the solution to a RNeasy spin column containing 

a silica-based membrane, which bound the RNA, before elution with RNA-free 

water. RNA was quantified using an LVIS plate in a FLUOstar Omega plate reader 

(BMG Labtech, Germany), with 1 unit of absorbance (260 nm) corresponding to 

44 µg/mL of RNA. Extracted RNA was either stored at -20°C or used immediately 

in a reverse transcriptase polymerase chain reaction.  
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Step Buffer Centrifugation (speed, duration) 

1. RLT + 1% β-ME/ethanol 700 µL 10,000 rpm for 15 s, discard flow-through 

2. RW1 500 µL  10,000 rpm for 15 s, discard flow-through 

3. 10 μL DNase I solution + 70 µL 

RDD 

Incubate for 15 min at RT 

4. RW1 500 µL 10,000 rpm for 15 s, discard flow-through 

5. RPE 500 µL 10,000 rpm for 15 s, discard flow-through 

6. RPE 500 µL 10,000 rpm for 2 min, discard flow-through 

 Change collection tube 

7. RNase-free water 50 µL 10,000 rpm for 1 min, keep flow-through 

(RNA-rich) 

Table 2-7: RNA extraction was performed using RNeasy kit (Qiagen), as per the 

manufacturer’s suggestion. 

Initially, RLT buffer supplemented with 1% β-ME was added to the homogenized tissue sample 

in the supplied RNeasy spin column (step 1), centrifuged and flow-through from the collection 

tube discarded. Subsequently, different buffers were added to the sample and either incubated 

or immediately centrifuged (steps 2-6). Finally, a fresh collection tube was used to elute the 

RNA-rich flow-through (step 7) with RNase-free water.  

 Reverse transcriptase polymerase chain reaction protocol (RT-qPCR) 

A two-step RT-qPCR reaction was used, firstly reverse transcribing extracted 

RNA to cDNA and secondly, utilizing a qPCR step to obtain quantifiable levels of 

RNA in our samples.  
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cDNA was generated using 100 ng of RNA with the AffinityScript cDNA Synthesis 

Kit (Agilent, CA, USA), using 20 µL RNase-free distilled H2O, 10 µL first strand 

master mix, 3 µL Oligo(uT) primer, 1µL Affinity Script reverse transcriptase and 

100ng of RNA per reaction, as described in Table 2-8. 

Reagent Volume per sample (µL) 

RNase-free water 20 

cDNA master mix (2X) 10 

Oligo(dT) primers 3 

AffinityScript reverse transcriptase 1 

Template RNA Variable 

Total volume per sample (µL) 34 + template RNA volume 

Table 2-8: Reagents and volumes used to perform reverse transcription step, to obtain 

cDNA from RNA.  

The thermocycling protocol (Table 2-9) was used to reverse transcribe extracted 

RNA into cDNA, using PTC 200 Thermal Cycler, MJ Research).  
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Table 2-9: RNA reverse transcription thermocycling protocol used for obtaining cDNA from 

RNA. 

The cDNA was then used immediately in a quantitative polymerase chain reaction 

(qPCR) or stored at 4°C for a maximum period of 5 days. 

By utilizing a dye that fluoresces when bound specifically to the minor groove of 

double stranded DNA (dsDNA), qPCR allows for real-time quantification of DNA 

in the sample. During the annealing phase, PCR primers bind to the target 

sequence and elongate to produce complementary dsDNA, to which SYBR ® 

green dye binds and fluoresces. As the amount of PCR product increases over 

the successive cycles, so does the signal intensity of the fluorescent tag, providing 

a way to detect and quantify the amount of RNA in the sample. 

The qPCR step was performed using 2X Brilliant SYBR® green (Agilent), 

according to the manufacturer’s instructions, with the full list of reagents and 

quantities used set out in the Table 2-10 and the qPCR thermocycling protocol 

outlined in Table 2-11. 

 

 

 

 

PCR stage Temperature and duration Description 

1.  25°C for 5 minutes Primer annealing 

2. 42°C for 25 minutes cDNA synthesis 

3. 95°C for 5 minutes Termination of reaction 
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Reagent Volume (µL) 

2X Brilliant SYBR® green 12.5 

Nuclease-free water 5.5 

Forward primer (2 pmol/L) 1 

Reverse primer (2 pmol/L) 1 

Template cDNA 5 

Total volume (µL)  25 

Table 2-10:  Quantitative PCR reaction reagents and volumes. 

 

PCR stage Temperature and duration Description 

1. 95°C for 5 min Hot start 

2. 95°C for 30 s DNA denaturing 

3. 60°C for 30 s Primer annealing 

4. 72°C for 30 s DNA synthesis 

Repeat steps 2-4 for 39 cycles 

5. 65°C to 95°C, increment 1°C for 

5 s 

Melt curve generation 

Table 2-11:  Quantitative PCR thermocycling protocol. 

All primers were maintained in a stock solution of 100 pmol/µL in autoclaved 

distilled water with a working concentration of 2 pmol/µL.  
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Gapdh and Hprt are constitutively expressed genes that were used as controls in 

the qPCR experiments. Primers for qPCR were purchased from Sigma-Aldrich 

(Cxcr7) or Eurofins (Gapdh, Hprt). Primer sequences are described in Table 2-

12. 

Table 2-12: RT-qPCR primer sequences 

After loading the samples into a 96-well PCR plate (Thermo Fisher), the plate was 

placed on a shaker for 30 s and briefly centrifuged, before being placed in a CFX 

Connect™ Real time PCR Detection System (Bio-Rad) and run as outlined in 

Table 2-11 above. 

Primer name Primer sequence (5’-3’) 

Gapdh forward   AGGTCGGTGTGAACGGATTTG 

Gapdh reverse TGTAGACCATGTAGTTGAGGTCA 

Hprt forward TCAGTCAACGGGGGACATAAA 

Hprt reverse GGGGCTGTACTGCTTAACCAG 

Cxcr7 forward AAAAACATTTGAGTTCAGGGG 

Cxcr7 reverse TACAGCAAGTTTCACTCAAC 
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Figure 2-11: Representative plot of fluorescence during qPCR amplification. Fluorescence 

intensity (arbitrary units) is shown on y-axis and cycle number on x-axis. The representative 

amplification curve crosses the detection threshold line (Cq value) at approx. cycle 21, whereas a 

curve for a sample without template cDNA would not rise above the threshold line, unless 

contaminated. Image courtesy of Bio-Rad. 

Typical data obtained from a qPCR is shown in Figure 2-11. The fluorescence 

intensity (y-axis) is detected by the spectrofluorometric thermal cycler and it 

increases proportionately with the amount of detected PCR product. There are 

two distinct amplification phases, the exponential phase, where the amount of 

PCR product doubles with each subsequent cycle (x-axis) and the non-

exponential phase in which the reaction gradually uses up the reaction 

components and eventually plateaus. The most important point during the 

amplification reaction is the quantification cycle (Cq/Ct) value, which signifies the 

cycle number at which intensity of fluorescence rises above background levels 

and can be successfully detected. A lower Cq value represents a higher level of 

target template present in the sample and can therefore be detected sooner. 

Higher Cq values represent lower amount of target template, with higher number 

of cycles needed for successful fluorescent detection.  
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Double Delta Ct analysis (2-∆∆Ct) was used to calculate the relative differences 

between our chosen samples and expressed as a fold-difference, with target gene 

values (Cxcr7 ∆Ct) averaged to Gapdh and Hprt housekeeping genes in 

representative graphs. Ct values for all genes were obtained in triplicates. Cxcr7 

∆Ct = Ct (average of Cxcr7) – (average of Ct Gapdh + Ct Hprt), ∆∆Ct = ∆Ct 

(Cxcr7WT) – ∆Ct (Cxcr7iΔEC), fold gene expression = 2-∆∆Ct. 

 

Figure 2-12: Representative melt curve. The melt curves of several samples. All curves in this 

example are single-peak curves, denoting a homogenous melting point and therefore a relatively 

pure sample. Reaction temperature is plotted on the x-axis, with y-axis showing the rate of change 

of the relative fluorescence units (RFU) versus time (T), with the peak at the melting temperature 

(Tm). Image courtesy of Bio-Rad. 

In addition to amplification plots, a melt (dissociation) curve was also generated 

for each sample with representative image (Figure 2-12). The premise of a melt 

curve is the detection of dissociation of cDNA, which should provide a single, 

defined peak for pure samples and allows us to detect the signal produced by 

template cDNA accumulation, as opposed to non-specific dsDNA presence. 
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2.12 Statistical analysis and power calculations 

In estimating the total number of repeats required per experiment, calculations of 

statistical power were made using an online tool from the 

powerandsamplesize.com website. Statistical analysis was performed using 

GraphPad PRISM version 5.0 for Windows (GraphPad Software, Inc., CA, USA). 

Data is expressed as mean ± SEM, and p < 0.05 was accepted as statistically 

significant with the specific statistical test reported with each result. 

Sample size: Sample size calculations were used to estimate the minimum 

number of repeats for each experiment, based on pilot data. For all power 

calculations Gaussian distribution was assumed with a significance level of 5% 

(α=0.05) and 80% power (β=0.2). Sample size is reported with each result 

separately.  

Normality: Sample-size permitting, a normality test was performed to determine 

whether the data come from a Gaussian (parametric test) or non-Gaussian (non-

parametric test) population. Due to small sample sizes the most relevant test used 

was the Shapiro-Wilk normality test. If a sample size was too low to run a normality 

test, a Gaussian distribution was assumed. Since non-parametric tests exhibit 

lower power and require substantially higher sample sizes, if sample size was too 

low to run a normality test, a Gaussian distribution was assumed.  
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3 Investigation of CXCR7 expression in cardiovascular cell 

types 

3.1 Background 

Since the discovery of CXCR7 receptor ligands, SDF-1α and I-TAC, over a 

decade ago, the presence of CXCR7 has been confirmed in many tissues, 

including in endocardial cells where it aids early cardiac development, and 

germline deletion of the receptor results in perinatal lethality 114. Less is known 

about the presence of the receptor in adult cardiovascular tissues, (e.g. 

endothelial cells), and its expression and function in various cell types has yet to 

be elucidated. Previously published literature also suggests that CXCR7 is 

expressed in juvenile mouse cardiomyocytes up to at least P5, but additional 

evidence of expression in cardiomyocytes from adult mice is not available. 

therefore, we also wanted to observe whether CXCR7 expression can also be 

detected in the adult cardiomyocytes 148. 

Therefore, we aimed to determine the expression profile of endothelial CXCR7 in 

the mouse heart, while we also wanted to observe whether CXCR7 expression 

can be detected in the adult cardiomyocytes 148, 115. CXCR7 expression in mouse 

vascular endothelium was visualized by using in situ hybridization while in cardiac 

endothelial cells western blot analysis was used 115, 119. Moreover, since 

successful isolation of endothelial cells can present a challenge, HUVEC, as well 

as the immortalized mouse cardiac endothelial MCEC cell line were utilized to 

examine the expression of CXCR7 and CXCR4 .  

3.2 Research aims and objectives 

Investigate expression of CXCR7 in cardiovascular cell types: 

- Confirm expression of CXCR7 in mouse cardiovascular tissues. 

- Confirm expression of CXCR7 in endothelial cells of cardiac origin. 
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- Investigate localization of CXCR7 receptor in endothelial cells and identify 

an appropriate cell line for use in in vitro experiments. 

3.3 Methods 

In addition to the general methods described in Chapter 2, the following specific 

methods were used in the experiments described in this chapter. 

 Flow cytometry  

First, cultured cells were trypsinized and fixed as described in section 2.7, before 

being run through the Accuri C6 flow cytometer. To identify the live population of 

cells in fixed-cell samples, a gating protocol was established based on forward 

(FSC) and side scatter (SSC) parameters, as well as propidium iodide (PI) 

staining. Forward scatter plotted against side scatter in a density plot reveals the 

size of cells and their granularity, respectively, which allows for exclusion of very 

small and granular cells, likely to be cell debris 256, 257.  

However, this method only enriches for live cells but does not have the power to 

completely eliminate non-viable cells from the analysis. Therefore, PI, a 

fluorescent nucleic acid stain able to discern viable cells from non-viable ones, 

was used. PI intercalates into the nuclear DNA of dead cells which have a 

disrupted plasma membrane, without any sequence preference, binding to every 

fourth or fifth base pair in the sequence.  

This allows detection of dead cells by the emission of red fluorescence, when 

excited with a laser of an appropriate wavelength 258. Experiments in which <5% 

of cells were positive for PI staining, were accepted. To determine the percentage 

of PI-labelled cells, manual gating was used with gates placed at the intersection 

of peaks from negative control sample and target sample in a histogram overlay. 

A total of 10,000 cells were counted per sample. 
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 Western blotting antibodies 

Western blotting was performed according to the protocol described in section 2.5 

with anti-CXCR7 (RDC1) rabbit monoclonal antibody (1:1000, ab138509, 

Abcam). Anti-GAPDH mouse monoclonal antibody (1:2000, ab8245, Abcam) or 

anti-α-Tubulin mouse monoclonal antibody (1:2000, ab7291, Abcam) were used 

to quantify loading controls. IRDye® 800CW goat anti-rabbit IgG (1:10,000, Li-

COR), or IRDye® 680RD Goat anti-mouse IgG (1:10,000, LI-COR) secondary 

fluorescent antibodies were used for detection. 

3.4 Results 

To confirm the presence of CXCR7 mRNA in mouse cardiac tissue, RNAscope in 

situ-hybridization was performed on paraffin-embedded whole-heart mouse 

slices. Initially, the tissue samples underwent antigen retrieval and protease 

treatment to ensure target mRNA availability. After, an RNA-specific 

oligonucleotide probe was added and allowed to bind to the target mRNA and was 

subsequently hybridized to a series of signal amplification molecules. Finally, the 

addition of TSA® Plus Cyanine 5 fluorophore enabled visualization of the target 

mRNA using a confocal microscope. Since the main objective was to identify the 

presence of CXCR7 in endothelial cells, the tissues were also co-stained with 

isolectin B4-Alexa 647 conjugate (IB4) to delineate the endothelial cells present 

in the myocardium (Figure 3-1).  

Co-staining with IB4 allowed confirmation of CXCR7 mRNA detection in 

endothelial cells and autofluorescence emitted by myocardial tissues confirmed 

the presence of CXCR7 mRNA in cardiomyocytes. Autofluorescence emitted by 

cardiac tissues, specifically cardiomyocytes, is thought to arise from mitochondrial 

dehydrogenases, containing flavin adenine dinucleotide (FAD) undergoing 

oxidation and detectable with a green laser (488 nm) excitation  used in confocal 

microscopy 259. This enabled the typical morphology of cardiomyocytes to be 

observed even in the absence of cardiomyocyte-specific markers.  
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To confirm that the CXCR7 mRNA signal was not caused due to autofluorescence 

or non-specific signals, positive and negative species-specific RNAscope control 

mRNA probes, obtained as part of the RNAscope kit were used. The positive 

control probe targeted the gene Ppib, which gives rise to Peptidyl-prolyl cis-trans 

isomerase B enzyme, otherwise known as Cyclophilin B, a cyclosporine-binding 

protein involved in protein folding and variety of immune responses, and which is 

known to be present in the heart 260-263. The Ppib positive control probe gave rise 

to easily identifiable, specific Ppib mRNA dots that were present in moderate 

numbers throughout mouse myocardium, as expected (Figure 3-2, B). The 

negative control probe is specific to the Escherichia coli dihydrodipicolinate 

reductase (DapB), involved in bacterial lysine synthesis pathway 264. 
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Figure 3-1: CXCR7 mRNA expression in murine vascular endothelium. CXCR7 mRNA (green 

dots) is present in endothelial cells (white arrows) and cardiomyocytes (yellow arrows) of adult 

mouse hearts as detected by RNAscope in situ hybridization. IB4 (red) was used to label 

endothelial cells and DAPI (blue) depicts cellular nuclei. Autofluorescence on the green (488 nm) 

channel allows visualization of cardiomyocytes. 

Since DapB is not known to be present in animal or human tissues, no specific 

signal was expected. The probe only produced a few faint dots, lacking the 

intensity of dots produced by application of the positive control probe, as would 

be expected from a successful RNAscope experiment (Figure 3-2, A). 

 

Figure 3-2: Positive and negative control mRNA probe RNAscope experiment. A.) The 

negative control probe targeted to bacterial DapB (green dots) shows only a faint signal, while B.) 

positive control probe against Ppib mRNA (green dots) gives rise to strong fluorescent signals on 

the green (488 nm) channel. Nuclei are stained with DAPI (blue) and endothelial cells are labelled 

with IB4 (red).  

Expression of mRNA in the tissue does not always correlate with protein 

expression, therefore CXCR7 protein expression was investigated using a 

western blot analysis. CXCR7 protein expression was examined in whole mouse 

heart and mouse aorta tissue homogenates, as well as cell homogenates 

obtained from MCEC and HUVEC cell cultures. Further, cardiac endothelial cells 

(EC) were isolated from wild type mouse hearts using a CD31-Dynabeads 
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complex and were also included in the western blot analysis. Isolation of EC is 

known to be challenging due to their fragility, and cell cultures often contain cells 

of non-endothelial origin. Hence, several assays were deployed to validate the 

population of cells obtained as endothelial cells. 

 

Figure 3-3: Ac-LDL uptake assay on cardiac endothelial cell culture. Cardiac endothelial cells 

were isolated using CD31-Dynabeads complex. Addition of ac-LDL-Alexa Fluor 488 to a live 

endothelial cell culture results in the uptake of ac-LDL by endothelial cells, and detection of a 

strong signal when excited with the green (488 nm) confocal laser (top panel).  Addition of Hoechst 

nuclear stain (blue) on its own, does not produce a detectable signal on the 488 nm channel 

(bottom panel). 

One method of identifying endothelial cells is to incubate them with a fluorescent 

modified acetylated LDL (ac-LDL), which they readily take up. When submitted 

to an ac-LDL uptake assay EC displayed positive uptake, with >90% EC 

becoming fluorescent after 2 h (Figure 3-3, top row). There was little background 

fluorescence present after the addition of ac-LDL, nor was there any observable 

fluorescent signal on the 488 nm channel when Hoechst nuclear stain was 
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added to the cell culture in the absence of ac-LDL; indicating the validity of 

detected signal (Figure 3-3, bottom row).  

To further determine the percentage of endothelial cells in the isolated cell 

culture, EC were fixed, labelled with IB4 and analysed by flow cytometry. 

 

Figure 3-4: Flow cytometry gating for a viable cell population on cardiac EC culture. A.) A 

representative density plot depicting a gated “live” subpopulation of cells based on forward and 

side scatter parameters, with 62.7% of counted cells determined as viable. B.) Histogram overlay 

with non-stained (grey) and PI stained (red) cells already gated for live population (as shown in A) 

on the FL-3H channel (>670 nm emission), depicting only a single defined peak, which overlays 

the non-stained sample almost completely with only 1.29% of cells identified as positively labelled 

with PI, and therefore determined to be non-viable.  

Flow cytometry samples were first gated to separate intact cells from debris. This 

was achieved by displaying the cells population on a FSC and SSC density plot, 

with a gate placed manually around the region containing the cells (Figure 3-4, 

A). The percentage of non-viable cells in the population was then determined by 

counting the percentage of PI+ve cells in the FL-3H fluorescent channel (Figure 3-

4, B; 1.29%).  
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Figure 3-5: Flow cytometry IB4 endothelial labelling of cardiac EC culture. A.) Representative 

histogram overlay of IB4 labelling, with IB4-Alexa 647 (pink) and unlabelled cells (grey) on the FL-

4H channel (675/25 nm emission), with 91.2% of cells IB4+ve. B.) The percentage of isolated EC 

that were determined to be IB4+ve in 5 individual isolations. 

When labelled with endothelial cell marker IB4, the major peak of endothelial cells 

is shifted to the right, denoting greater fluorescence on the FL-4H channel, and 

confirming the majority of cells to be endothelial (Figure 3-5, A). These preliminary 

experiments revealed that ~90% of the cells isolated from mouse heart using this 

procedure were endothelial cells, as they were positively identified using the 

endothelial marker IB4 (Figure 3-5, B).  
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Figure 3-6: CXCR7 western blotting of murine cardiovascular tissues, cardiac EC and 

commercially available cells. Western blot analysis of murine heart and aortic tissues A.), 

MCECs and HUVEC B.), as well as murine isolated cardiac endothelial cells C.). All tissues and 

cell types display CXCR7 protein band at approximately 41 kDa. GAPDH and α-Tubulin were used 

as loading controls, both displayed bands approx. 36 kDa in size. Red arrows signify the molecular 

weight markers. 

Once satisfied that the isolated cardiac cultures contained mainly cells of 

endothelial origin, the focus was shifted to the investigation of CXCR7 protein 

expression in various tissues. CXCR7 expression was examined by western blot 

analysis in whole mouse heart and aorta tissue homogenates (Figure 3-5, A), 

commercially available human umbilical vein endothelial cells (HUVEC) and 

immortalized mouse cardiac endothelial cells (MCEC, Figure 3-5, B), as well as 

EC (Figure 3-5, C). A 41 kDa band was detected in all tissues and cell types 

tested, which is the size expected for CXCR7. This suggests that CXCR7 is 

expressed in the adult mouse heart, aorta and likely in cardiac endothelial cells. 

Since CXCR7 is readily internalized and yet must be present on the plasma 

membrane in order to be capable of binding its ligand and activating signalling 

pathways, the intracellular localization of CXCR7 in EC was determined 265. 
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Figure 3-7: Membrane-bound and intracellular expression of CXCR4 and CXCR7 in MCEC. 

Representative flow cytometry histograms of cells labelled with CXCR4 (red), CXCR7 (green) and 

isotype-labelled or labelled with the secondary antibody alone (grey). Cell count is represented on 

the y-axis, plotted against fluorescence intensity on the x-axis. Left panels depict membrane-

bound (i.e.: non-permeabilized) CXCR4/CXCR7 labelling, and right panels depict intracellular (i.e.: 

after permeabilization) signal. The percentage of labelled cells is indicated. NON-PERM = non-

permeabilized, PERM = permeabilized. 

Due to the low number of endothelial cells that could be isolated from the mouse 

heart, it was not feasible to evaluate CXCR4 and CXCR7 expression in these 

cells. Instead, intracellular and cell-surface expression of CXCR4 in the MCEC 

and HUVEC cell lines was examined.  
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However, since the utilized CXCR7 antibody recognized the C-terminus of the 

protein it cannot be used to determine intracellular vs cell-surface expression 

profile of CXCR7. Instead, this experiment can be used as a gauge of antibody 

specificity where non-permeabilized or “membrane-bound” labelling corresponds 

to non-specific binding and permeabilized or “intracellular” labelling to specific 

binding of the monoclonal CXCR7 antibody (ab138509). 

 

Figure 3-8: Membrane-bound and intracellular expression of CXCR4 and CXCR7 in HUVEC. 

Representative flow cytometry histograms of cells labelled with CXCR4 (red), CXCR7 (green) and 

isotype-labelled or labelled with the secondary antibody alone (grey). Cell count is represented on 

the y-axis, plotted against fluorescence intensity on the x-axis. Left panels depict membrane-

bound (i.e.: non-permeabilized) CXCR4/CXCR7 labelling, and right panels depict intracellular (i.e.: 
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after permeabilization) signal. The percentage of labelled cells is indicated. NON-PERM = non-

permeabilized, PERM = permeabilized. 

 

Figure 3-9: Intracellular and membrane-bound expression of CXCR4/CXCR7 in MCEC and 

HUVEC. The percentage of cells exhibiting cell-surface (NON-PERM) and internal (PERM) 

CXCR4/CXCR7 labelling in MCEC and HUVEC cell lines. Green bars depict CXCR7 labelling and 

red bars indicate CXCR4. Permeabilized (intracellular, PERM) samples displayed significantly 

increased percentages compared to their non-permeabilized (membrane-bound, NON-PERM) 

counterparts for both receptors, CXCR4/7 and both cell lines, MCEC and HUVEC, indicating that 

the majority cells express receptor intracellularly. ** p < 0.01, *** p < 0.001, Student’s t-test, n = 

an individual flow cytometry experiment. 

Cells were either permeabilized, to allow the antibody to reach the intracellular, 

internalized population of CXCR4 receptor, or non-permeabilized to investigate 

surface, membrane-bound expression, with representative histogram overlays for 

MCEC and HUVEC shown in Figure 3-7 and 3-8, respectively.  
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Only a small proportion of MCEC were found to possess detectable surface 

CXCR4 labelling (Figure 3-9, A; non-perm vs perm = 2.1 ± 0.3% vs 93.5 ± 1.7%, 

n=6; p < 0.001). In HUVEC, the proportion of cells with surface CXCR4 labelling 

was slightly higher (Figure 3-9, B; non-perm vs perm = 16.2 ± 5.0% vs 62.8 ± 

6.6%; p < 0.01). When either cell type was permeabilized, the majority of cells 

displayed CXCR4 labelling, indicative of intracellular pool of receptors capable of 

binding the utilized anti-CXCR4 antibody. Overall, the percentage of cells with 

membrane-bound CXCR4 was quite low, which denotes that only a small 

proportion of MCEC and HUVEC express detectable levels of active receptors on 

the cell surface.  

Interestingly, when non-permeabilized MCEC or HUVEC were labelled with 

CXCR7 antibody there were detectable levels of staining on both cell types 

(Figure 3-9, bottom row; MCEC vs HUVEC = 17.1 ± 8.8% vs 25.7% ± 3.5%), 

suggesting that the specificity of this particular antibody was lower than expected.  

3.5 Discussion 

Despite being revealed as an SDF-1α receptor over a decade ago, the expression 

of CXCR7 in the heart, and specifically in the heart endothelium has not received 

as much attention as in other tissue types. Additionally, some published results 

have been obtained using antibodies with questionable specificity for CXCR7 and 

are therefore not particularly informative 266. Therefore, the expression of CXCR7 

mRNA and protein in the heart endothelium needed to be confirmed.  

RNAscope in situ hybridization confirmed the presence of CXCR7 mRNA in 

endothelial and cardiomyocyte cells found in the adult mouse myocardium. 

Furthermore, using western blot analysis CXCR7 protein was detected in whole 

mouse heart and aortic tissue, as well as commercially available endothelial cell 

lines and freshly isolated cardiac EC.  
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These results are consistent with published data reporting CXCR7 expression in 

cells of endothelial origins as described in detail in section 1.3.3 110-113. Most 

previous studies focused on non-cardiac tissues and none have shown the 

expression of CXCR7 on isolated cardiac endothelial cells specifically. Due to the 

limited numbers of cells that could be isolated from the mouse heart, in this study 

western blot analysis was only performed on a single EC sample. However, 

western blot analysis coupled with RNAscope in situ hybridization is enough to 

confirm the presence of CXCR7 in endothelial cells of cardiac origin.  

Additionally, RNAscope in situ hybridization revealed positive CXCR7 mRNA 

staining on cardiomyocytes, which were identified based on their observed 

morphological features. In general, not much is known about expression of 

CXCR7 in non-endothelial cardiovascular cell types, including cardiomyocytes, 

with only a handful of papers addressing the expression of CXCR7 receptors in 

those cells 123, 265, 267.  This is perhaps not surprising given the fact that recent 

studies point specifically to endothelial CXCR7 as capable of pro-regenerative 

and anti-fibrotic effects in multiple tissue types 234, 235. Furthermore, the presence 

of CXCR7 mRNA might not correlate with actual tissue protein expression and 

further experiments are needed to confirm CXCR7 expression in adult mouse 

cardiomyocytes. Cardiac EC served as a valuable tool to show the expression of 

CXCR7 protein, however, isolation and culture of cells has proven challenging. 

Using a Dynabeads-CD31 complex, a semi-pure population of EC was obtained, 

but at a cost of reduced cell numbers. This meant that using EC for experiments 

where a high volume of cells is needed to achieve valid results was not deemed 

feasible. Therefore, commercially available cell lines were utilized to provide cells 

of endothelial origin capable of expressing endogenous CXCR7.  
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When probed with anti-CXCR7 antibodies MCEC and HUVEC cell lines displayed 

a strong CXCR7 band using a western blot method. However, western blotting 

analysis does not distinguish between membrane-bound and intracellular (and 

therefore inactive) CXCR7. Therefore, further examination of the intracellular vs 

membrane-bound expression profile of CXCR7 was needed.  

Flow cytometry revealed that for both cell types studied, only a small proportion 

of cells contain detectable membrane-bound CXCR4 receptor. A higher 

proportion of cells with of CXCR4 membrane-bound labelling was detected in 

HUVEC compared to MCEC. Despite being of cardiac origin, MCECs are an 

immortalized cell-line, and therefore resemble their endogenous counterparts 

less. Primary cells, like HUVEC, more closely resemble healthy cells found in their 

tissue of origin, especially during early passages, as they have not yet 

accumulated mutations due to tumorigenesis or continuous cell culture 268.  

Immortalized cell lines are produced by overcoming the replicative senescence, 

which occurs in non-immortalized cells and is characterized by biochemical, 

morphological and functional changes, such as gradual shortening of telomeres 

269, 270. This can affect cell signalling and as a result, some immortalized cell lines 

display altered cell signalling pathways compared to non-immortalized cells 268, 

271. However, the published literature suggests that immortalized EC can retain 

their angiogenic potential in vivo and are deemed a valuable in vitro model, 

despite being less comparable to cells that one might find in vivo. 272, 273. 

Interestingly, permeabilization of MCEC and HUVEC revealed intracellular 

CXCR4 labelling of a much greater proportion of cells. There are multiple 

published studies noting the presence of intracellular pools of CXCR4 and CXCR7 

receptors in various cell types. Intracellular expression of CXCR4 receptor has 

been confirmed in hematopoietic progenitor cells, foetal mesenchymal cells and 

HUVEC 274, 275 276. The function of the intracellular pool of receptors remains 

disputed. 
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Early research suggests that after binding to SDF-1α, CXCR4 is rapidly 

endocytosed to regulate CXCR4 plasma membrane expression, playing a vital 

role in modulation of migratory clues 274.   

Meanwhile, intracellular pools of CXCR7 receptors have been detected in several 

cells of the immune system, including B and T cells, as well as tumour cells 143, 

144, 214, 277. Intracellular pool of CXCR7 receptor is thought to aid the scavenger 

function of CXCR7, by providing a way to quickly clear excess SDF-1α from 

circulation 133. However, the solely scavenging function of CXCR7 has been 

questioned by studies suggesting an active signalling role of CXCR7 through β-

arrestins 123. One theory would be that an intracellular pool of CXCR7 can recycle 

back to the membrane as either a scavenger of SDF-1α or as a receptor capable 

of active signalling, a capacity that will be discussed further in section 5.5. 

However, since we did not examine the intracellular vs membrane-bound labelling 

of CXCR7 receptor in our experiments, we cannot compare the percentage of 

cells expressing membrane-bound vs intracellular CXCR7 labelling in HUVEC 

and MCEC. Nevertheless, the existence of intracellular pool of not only CXCR4 

but also CXCR7 in endothelial cells is highly likely, although future research with 

a reliable and flow cytometry-compatible antibody is needed to confirm it.  

However, we have observed that the CXCR7 antibody utilized for flow cytometry 

(ab138509) might have lower specificity than desired. As it recognizes an 

intracellular epitope on the C-terminus section of the CXCR7 protein, non-

permeabilized cells should not display labelling with this particular antibody. 

However, ~17% MCEC and ~26% HUVEC displayed labelling with CXCR7 

antibody in their non-permeabilized state. Despite the antibody not being 

advertised as flow cytometry-compatible it raises questions regarding it’s 

specificity. Antibodies advertised as specific, which also recognize additional 

epitopes, can be hugely detrimental to scientific research, since the results 

obtained with such antibodies are not reliable.  
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Research into CXCR7 has garnered a lot of interest in the past years and 

specificity, or lack thereof, of antibodies represents a major hurdle for the scientific 

community, a topic previously addressed by Berahovich et al. 266 

 

 Summary 

The expression of CXCR7 was demonstrated in mouse cardiovascular tissues, 

endothelial cell lines and endothelial cells of cardiac origin. CXCR7 mRNA was 

also detected in cardiovascular cells of non-endothelial origin, namely 

cardiomyocytes. Additionally, CXCR7 receptor was detected in both, MCEC and 

HUVEC cells, however due to its primary cell origins HUVEC were chosen as the 

most suitable cell type for further in vitro experiments.  
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4 The effect of CXCR7 agonist VUF11207 fumarate in the 

Langendorff ex vivo heart perfusion model 

This chapter contains a project that was carried out in collaboration with Dr 

Catherine Wilder, who provided technical expertise necessary for the use of this 

experimental model. 

4.1 Background 

Previous studies have shown that administration of SDF-1α in various forms 

acts in a cardioprotective fashion, improving the state of myocardial tissue after 

I/R (e.g. infarct size reduction). Since CXCR7, an SDF-1α receptor has been 

shown to activate CXCR4-independent, β-arrestins-biased signalling it was 

postulated that it could exhibit cardioprotective effects in a wider range of 

cardiovascular disorders, including MI. More specifically, past research 

highlighted a cardioprotective role for β-arrestins signalling in mice with 

exaggerated catecholamine stimulation, such as heart failure 278, 279.  

In order to investigate the role of CXCR7 in acute MI setting, a rat ex vivo 

Langendorff I/R perfusion model was utilized. To allow for distinction between 

the effects of CXCR4 and CXCR7 receptor, VUF11207 a CXCR7-specific 

receptor agonist, was used immediately prior to reperfusion, as outlined in 

Figure 2-7. 

4.2 Research aims and objectives 

Investigate whether CXCR7 agonist VUF11207 exhibits cardioprotective effects 

in a rat ex vivo perfusion model: 

- Investigate if the administration of VUF11207 prior to reperfusion has an 

effect on the final infarct size in MI. 

- Investigate if the administration of VUF11207 prior to reperfusion has an 

effect on the LDH release during MI. 
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4.3 Methods 

The methods used are described in section 2.9. Rat isolated perfused hearts were 

randomized to one of three experimental groups: 1.) vehicle perfused group, 

where 5 min prior to reperfusion the perfusion solution was switched from Krebs 

to vehicle; 2.) IPC group, which received 3 x 5 min cycles of regional ischaemia 

prior to index ischaemia and 3.) VUF11207 perfused group, where Krebs 

perfusion was switched to 1 µM VUF11207 5 min before the onset of reperfusion. 

Experimental protocol is further described in section 2.9.1. 

During each experiment, LDH samples were collected and analysed as described 

in section 2.9.4. Following the conclusion of each experiment, hearts were stained 

with Evans blue dye and TTC, and analysed as described in section 2.9.3.  
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4.4 Results 

When using the Langendorff ex vivo perfusion model it is important to maintain 

the consistency of LAD suture placement between experimental groups. To 

ensure that, AAR was measured independently by two observers, with the 

average results reported in Figure 4-1, A. There was no significant difference 

observed between AAR of different groups, therefore the experimental 

consistency was deemed satisfactory.  

 

Figure 4-1: Area at risk and infarct size assessment in isolated rat hearts. A.) Area at risk as 

a percentage of total ventricular area did not differ between groups. B.) Infarct size as a percentage 

of area at risk was found to be significantly lower in the IPC group compared to the vehicle group. 

The VUF11207 group was found not to be significantly different from the vehicle group. Normality 

was confirmed with a Shapiro - Wilk test. n = 6 hearts per group, * p < 0.05, One-way ANOVA with 

Dunnett’s post-hoc test with all groups compared to vehicle. AAR = area at risk, IS = infarct size, 

ns = non-significant. 
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Infarct size was also independently determined by two observers, with the 

average values for each heart reported as a percentage of area at risk, in Figure 

4-1, B. The infarct size analysis showed that the positive control group, which 

received IPC prior to index ischaemia, exhibited significantly lower average infarct 

size than the vehicle group (vehicle vs IPC = 25.6 ± 3.1 vs 12.3 ± 3.0; p < 0.05). 

The VUF11207 group was not significantly different than the vehicle group.  

 

 

Figure 4-2: LDH release during ex vivo isolated heart perfusion. A.) Graphical representation 

of time-dependent release of LDH (the amount of LDH in pg released per min per gram of 

ventricular weight). B.) Dot plot representing release of LDH 15 min after onset of reperfusion 

(R+15’). IPC group displayed a significantly lower LDH release than the vehicle group, * p < 0.05, 

One-way ANOVA with Dunnett’s post-hoc test with all groups compared to vehicle. The period of 

index ischaemia is shaded pink on the graph; n = 6 hearts per group. 

In order to confirm the infarct size measurements using a different analysis, some 

of the perfusate was collected for LDH analysis at various timepoints during the 

experiment, as shown in section 2.9.1. Timepoints for collection of LDH samples 

were derived from previously published literature 255. The time-course of LDH 

release from the perfused heart is shown in Figure 4-2, A.  
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Due to potentially confounding effect of IPC treatment at timepoint -39’ the area 

under the curve for this experiment was not examined and overall statistical 

analysis was not performed for all timepoints together. Instead, samples collected 

15 min after the onset of reperfusion were of special interest, since peak LDH 

release was previously shown to occur during the first 10-15 min of the reperfusion 

stage Figure 4-3, B 255. Corroborating the infarct size measurements, the IPC 

group exhibited significantly lower “peak” LDH release than the vehicle group 

(vehicle vs IPC = 6.7 ± 1.1 vs 2.0 ± 0.3; p < 0.05), but the VUF11207 group was 

unchanged from vehicle. 

Along with the infarct size and LDH release measurements, several functional 

parameters were also observed during the course of the experiment. Flow rate 

was measured in mL of perfusate per minute and was not significantly different 

between any of the groups (Figure 4-3, A). Flow rate gradually decreased as the 

experiment progressed, for all three groups. The lowest flow rate in the IPC group 

prior to index ischaemia occurred during the 3 x 5 min IPC cycles as expected. 

During the three IPC cycles, total flow was manually turned off and those 

timepoints were, therefore, not included in the statistical analysis. Heart rate was 

not significantly different between the vehicle and the IPC group for all observed 

timepoints (Figure 4-3, B). VUF11207 group displayed a gradual lowering of the 

heart rate, especially in the last couple of timepoints; however, this was not 

statistically significant when compared to the vehicle group. 
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Figure 4-3: Flow rate and heart rate measured during the ex vivo isolated heart perfusion. 

A.) Time-course of flow rate measurements showed no significant differences between different 

experimental groups. B.) The time-course of heart rate measurements showed that for the last 

three timepoints at the end of the reperfusion stage, VUF11207 group displayed a significantly 

lower heart rate than the IPC group. The period of index ischaemia is shaded pink on the graph. 

One-way ANOVA with Dunnett’s post-hoc test with all groups compared to vehicle, all 

comparisons were non-significant; n = 6 hearts per group. 
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Figure 4-4: Left ventricular developed pressure during the ex vivo isolated heart perfusion. 

Left ventricular developed pressure was obtained by subtracting the end-diastolic pressure from 

the systolic pressure, both obtained via the intraventricular balloon. The time-course of developed 

pressure measurements showed no significant differences between the groups. One-way ANOVA 

with Dunnett’s post-hoc test with all groups compared to vehicle, all comparisons were non-

significant; n = 6 hearts per group. 

Another functional parameter that was observed during the course of the 

experiment was left ventricular developed pressure. The left ventricular developed 

pressure was obtained by subtracting the end diastolic pressure from the systolic 

pressure, which was measured via a balloon positioned inside of the left ventricle. 

The plotted time-course of the developed pressure showed no significant 

differences between the groups for the entire duration of the experiment (Figure 

4-4). Due to the lack of perfusion during the 3 x 5 min IPC cycles, the contractility 

of the heart was reduced. As a result, the developed pressure was lower in the 

IPC group than in other groups for the same timepoints. Therefore, those 

timepoints were not included in the statistical analysis. 
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Figure 4-5: Perfusion pressure and heart temperature during the ex vivo isolated heart 

perfusion. Perfusion pressure was maintained at 70mmHg or above, during the experiment. 

There were no significant differences observed between the three groups. During the 3 x 5 min 

IPC cycles, perfusion was switched off, hence the pressure reading was 0 (below the y-axis limit). 

Temperature was maintained at 37 ± 0.5°C with some fluctuations observed between when 

switching between different stages of the experiment (stabilization, ischaemia, reperfusion). 

Statistical analysis showed no significant differences between the three experimental groups. 

One-way ANOVA with Dunnett’s post-hoc test with all groups compared to vehicle, all 

comparisons were non-significant; n = 6 hearts per group.  
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Further functional parameters that were observed during the course of the 

experiment were perfusion pressure and internal heart temperature. Perfusion 

pressure was maintained around 70mmHg and there were no significant 

differences in the perfusion pressure between the vehicle, IPC and VUF11207 

groups for the entire duration of the experiment (Figure 4-5, A). The slight dip in 

the perfusion pressure following the change from the regional ischaemia to the 

reperfusion stage of the experiment was mostly related to the switch between the 

perfusion columns on the Langendorff apparatus. Heart temperature was 

maintained at 37 ± 0.5°C and remained stable throughout the duration of the 

experiment, with no significant differences present, when either the IPC group or 

the VUF11207 were compared to vehicle (Figure 4-5, B). 

There were a total of 29 rats used in the ex vivo isolated heart experiment with 18 

included in the final analysis (Figure 4-6). Exclusions were made based on the 

exclusion criteria described in section 2.9.2. Most hearts (8) were excluded due 

to AAR being <35%, after staining with Evans blue dye. One heart was excluded 

due to tearing of the aorta mid-way through the experiment, which made further 

retrograde perfusion through the aorta impossible. A single heart was excluded 

due to a period of ventricular fibrillation, which lasted for more than 2 min and did 

not respond to ice-cold KCl treatment. Lastly, another heart was excluded for 

presenting with a heart rate that did not consistently stay above 200 bpm during 

the stabilization period. The total number of exclusions per group was very similar 

across the three groups. Three hearts were excluded from the VUF11207 group 

and 4 hearts excluded from each of the IPC and vehicle groups. There was no 

significant difference in the numbers excluded from each group. 
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Figure 4-6: Experimental exclusions during ex vivo isolated rat heart perfusion 

experiments. 29 animals were used with 18 included in the analysis. Most animals (62%) were 

excluded due to their AAR falling outside of the inclusion criteria. Further exclusions occurred 

either because of low heart rate (3%, HR) and   being too low or long duration of ventricular 

fibrillation (3%, v-fib).  A single heart (4%) was also excluded due to a torn aorta. 

4.5  Discussion 

The Langendorff ex vivo perfusion model is a well-described model used to 

investigate cardiac function independently of other organ systems and can offer 

important insights into the ability of drugs to protect the heart from I/R injury. One 

of the most common endpoints of ex vivo isolated heart perfusion is infarct size 

assessment, normally performed using a combination of Evans blue dye and TTC 

staining. In vivo, larger infarct size has been shown to correlate with adverse 

cardiac remodelling and haemodynamic dysfunction; therefore, interventions that 

can limit the initial infarct size are expected to confer long-term cardioprotective 

benefit 280-282. Many cardioprotective interventions that are applied immediately 

prior to reperfusion aim to inhibit the opening of the mPTP, as this is associated 

with attenuation of reperfusion injury 283, 284. 

62%

28%

4%
3% 3%

Experimental exclusions

Included (18)

AAR <35% (8)

HR <200bp (1)

V-fib >2min (1)

Torn aorta (1)
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Such interventions that target myocardial reperfusion are considered as having 

potential clinical relevance, since they can be delivered after the onset of the 

ischaemic insult and prior to the reperfusion intervention, such as PCI, in the clinic. 

In the Langendorff model, the position of the suture with regard to the LAD 

determines the volume of myocardium subjected to regional ischaemia. The most 

common way to analyse the size of the ischaemic area at risk (AAR), and thereby 

ensure experimental consistency, is by re-tightening the suture at the end of the 

experiment and perfusing the heart with Evans blue dye, staining the perfused 

(i.e. non-ischaemic) tissue blue 285. In this experiment, the size of the AAR was 

not found to be significantly different between the experimental groups; therefore, 

the consistency of suture placement was deemed acceptable. The functional 

parameters measured during the course of the study were also found to be 

consistent between the experimental groups.  

Coronary flow rate was unchanged between the experimental groups, with the 

values consistent with previously published results 286. During the period of 

ischaemia, coronary flow rate exhibited a marked decline, which is expected due 

to perfusion of a smaller region of the heart. After the period of ischaemia, 

coronary flow rate briefly recovered, but then continued to gradually decline due 

to the “dying preparation” nature of the experimental model 286. Heart rate was 

maintained consistently up until the reperfusion stage of the experiment, when the 

VUF11207 group exhibit lowered heart rate in the last three timepoints of the 

experiments. Nevertheless the reduction in heart rate was not statistically 

significant when compared to the vehicle.  

Left ventricular developed pressure (LVDP) was also monitored during the 

experiment. Developed pressure is used as a measure of cardiac function and 

exhibited a reduction for all three experimental groups (vehicle, IPC, VUF11207), 

during the period of ischaemia. The recorded fall in LVDP is a well-established 

consequence of regional ischaemia, and agrees with previously published values 

of ~30% reduction, across all experimental groups 285.  
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Additionally, the combined effect of the delivered ischaemic insult and the dying 

preparation nature of the isolated heart model caused a gradual decline in the 

LVDP until the conclusion of the experiment 286. Perfusion pressure, which was 

maintained at approx. 70 mmHg, remained stable throughout the experiment for 

all experimental groups, as it should in a so-called “constant pressure” model. 

This type of model is a preferred model in a setting of regional myocardial 

ischaemia as it enables autoregulation of coronary tone 252. 

Heart temperature is another important parameter that was closely monitored, 

since it can greatly affect the overall function of the heart 285. Failure to maintain 

the heart at a physiological temperature (37 ± 0.5°C) can  affect the susceptibility 

of the heart to I/R injury, haemodynamic performance, and response to drugs 287. 

Since temperature remained within specified parameters for the entire duration of 

the experiment for all three experimental groups, there is no reason to assume 

that it modified the susceptibility of the rat heart to VUF11207 administration in 

any way.  

From 11 rat hearts that were excluded due to pre-defined exclusion criteria, small 

size of AAR (<35%) was the most common reason for exclusion (n=8). This likely 

occurred due to improper placement of the ligature or insufficient tightening prior 

to the ischaemic insult, and is undesirable, since it is associated with smaller 

infarct sizes and hinders testing of potential cardioprotective interventions in an 

ex vivo isolated heart perfusion model 288. Other exclusions were also 

unremarkable, with no significant differences in the number of exclusions between 

the groups. They included a low baseline heart rate (<200 bpm, n=1) and an 

episode of ventricular fibrillation (n=1), which lasted longer than 2 min. Low 

baseline heart rate is not desirable since it suggests an impaired cardiac function, 

while after the episode of ventricular fibrillation normal sinus rhythm was not 

restored, which prevented the conclusion of the experiment. A single heart also 

displayed a torn aorta, which occurred due to operator error. 
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Final infarct-size assessment and LDH measurements at various timepoints 

during the ex vivo heart perfusion were used as experimental endpoints. Rat 

hearts that received 3 x 5 min cycles of IPC administered prior to index ischaemia, 

exhibited significantly reduced infarct size compared to the vehicle-perfused 

group, which did not receive IPC (Figure 4-1). There has been extensive research 

into the mechanism IPC. It has been shown to exert cardioprotective effects 

through Protein kinase C (PKC) signalling, which is also a common target of 

various cardioprotective pharmacological agents (e.g. opioids, bradykinin) 289, 290. 

Controversy exists surrounding the particular isoenzyme of PKC responsible for 

conferring cardioprotection in the IPC setting, with PKC-δ (delta) and PKC-ε 

(epsilon) emerging as the most likely contenders 291-293. Furthermore, IPC has 

been shown to require activation of PI3K/AKT and ERK1/2 signalling within IPC 

in the first few minutes of reperfusion. This discovery provided a paradigm shift 

from early thinking, which postulated that IPC exerts most of its beneficial effect 

during the period of ischaemia 191, 289. The IPC stimulus was also shown to be 

responsible for the inhibition of the opening of the mPTP during the reperfusion 

period 294. This is believed to be mediated by the PI3K/AKT pathway, thought the 

precise target of the kinase that decreases mPTP opening is not known. In the 

present study, IPC was used solely as a positive control, due to its well-

documented and highly reproducible cardioprotective effect when used in this 

setting 183, 295, 296. In contrast to IPC, administration of CXCR7 agonist VUF11207 

(1 µM), commencing 5 min prior to and continuing throughout reperfusion, did not 

reduce infarct size. Possible reasons for this are discussed below. 

To date, the only publication that directly addresses the role of CXCR7 in MI and 

its cardioprotective effects has been published by Hao et al. 115. They showed that 

using an adenovirus to induce over-expression of CXCR7 prior to inducing in vivo 

MI in mice significantly reduced the average infarct size by ~13%, when measured 

28 days after induction of MI; compared to hearts injected with a control 

adenovirus. Furthermore, Hao et al. administered a CXCR7-specific agonist 

TC14012 i.p., immediately post-MI and every 6 days thereafter for 24 days.  
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Final infarct size analysis 28 days post-MI showed a significant ~16% reduction 

in the average infarct size between the group that received TC14012 injection and 

the group that received saline 115. Additionally, Hao et al. utilized a conditional, 

endothelial CXCR7-knockout model, which exhibited higher infarct sizes than the 

wild type group, when measured 28 days post-MI 115. These mice also exhibited 

reduced survival, greater cumulative death and worse cardiac function within 28 

days post-MI. However, the deleterious effects of endothelial CXCR7 deletion 

only became obvious after the induction of MI, showing that the absence of 

endothelial CXCR7 is detrimental after the occurrence of MI, but not before. These 

data suggest that endothelial CXCR7 plays an important protective role after MI 

and ameliorates the damage sustained by the heart from the ischaemic insult in 

the longer term. On the other hand, Hao et al. did not examine the acute role of 

CXCR7 activation or deletion on MI. Furthermore, all of the infarct size 

measurements were made 28 days post in vivo MI, and after the use of permanent 

ligation, a model which differs substantially from one of ischaemia and 

reperfusion.  

In the permanent ligation experiment the coronary vessel, usually LAD, is 

permanently ligated, which does not allow for reperfusion to the ischaemic area 

to occur directly through the LAD but is achieved through any collateral circulation 

present in the area. This normally results in a larger infarct size, because the 

entire area at risk becomes infarcted 297. It is a model predominantly used to 

investigate longer-term effects, such as ventricular remodelling and cardiac 

contractility. Ex vivo isolated heart experiments on the other hand are more 

commonly used to investigate short-term consequences of MI. They are the 

preferred model when investigating the effects of pharmacological agents, 

especially those administered before or early during the reperfusion period. In 

summary, a permanent ligation model is performed in vivo and focuses on longer 

term ischaemic damage, while the isolated heart perfusion is an ex vivo model 

investigating the effects of acute I/R injury. 
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Both models have their strengths and weaknesses but are ultimately designed to 

examine different aspects of ischaemic damage on the heart post-MI, which might 

be the reason why Hao’s study showed a cardioprotective role of CXCR7, while 

in our experiments VUF11207 did not exhibit such cardioprotective effects. 

Another difference between our study and that of Hao et al. is that they used 

Masson trichrome staining instead of the TTC method for determination of the 

final infarct size, which could also contribute to contrasting results. TTC in 

combination with Evan’s blue dye is frequently used to assess final infarct size 

after an acute MI, since it has the ability to distinguish between metabolically 

active and inactive tissues in the first few hours after the ischaemic insult has 

occurred; as described in section 2.9.3 253. However, TTC staining also relies on 

adequate reperfusion occurring in the ischaemic area, to achieve a clear 

delineation of the infarcted zone. This is a crucial step prior to TTC staining, since 

washout of dehydrogenases upon which TTC acts and haem-containing proteins 

present in the heart is needed to avoid a mottled appearance of the infarcted area 

and underestimation of the infarct size 298. Measuring flow rate can help determine 

whether sufficient washout has occurred for TTC staining to be effective. In this 

study, flow rate was adequate for all experimental groups throughout the duration 

of the experiment. Additionally, flow recovery after the period of index ischaemia 

was satisfactory for all experimental groups and it is unlikely that insufficient 

washout prevented accurate assessment of infarct size  

There are additional factors that could have affected the response to VUF11207, 

among them the existence and extent of collateral coronary vasculature. For 

various mammalian species the extent of coronary collaterals that exist in the 

heart can be drastically different. For example, guinea pigs, dogs and cats exhibit 

much higher rates of collateral flow than rats and mice, which are more similar to 

young and/or healthy humans and display lower rates of collateralization in the 

heart 299-301. However, formation of collaterals in the human heart varies greatly 

between individuals and can be affected by age and disease 302.  
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Past studies also show that in mice, the strain of mice can influence the extent of 

collateral vasculature formation in different vascular beds 303-306. This is important 

because collaterals present in the heart can help ameliorate ischaemic injury by 

supplying blood flow to the ischaemic area, independent of the ligated coronary 

vessel 301. Ultimately, the extent of collateral circulation in the heart could also 

affect the extent of delivery of a pharmacological agent, such as VUF11207, to 

the ischaemic region. Since VUF11207 was administered shortly before 

reperfusion this might not be as relevant as if it were administered prior to, or 

during ischaemia. However, it is still important to note that the varying extent of 

coronary collateralization could also represents a differing number of CXCR7 

receptors present in endothelial cells, which can in turn have an impact on the 

strength of the response to a CXCR7 agonist. There is limited information on the 

presence and importance of coronary collaterals in murine species, it is difficult to 

determine whether collateralization played a significant part in the differences 

observed in results obtained by Hao’s study and ours. 

The time between the administration of CXCR7 agonist and the onset of MI might 

also be an important factor in determining the cardioprotective effects of said 

agonist. In the study performed by Hao et al. the time between the MI and final 

infarct size analysis was 4 weeks, which might mean that CXCR7 or its agonists 

need a longer period or several administrations before exerting beneficial effects 

on the heart. Studies performed on other tissue types by Ding and colleagues 234, 

235, 240 and described earlier in section 1.3.3 would support the theory that CXCR7 

might act in the longer term, with a more regenerative, anti-fibrotic mode of action, 

which could be the reason why VUF11207 did not exhibit cardioprotective effects 

in our study. 

A further explanation for the lack of cardioprotection seen in our study might also 

be the choice of CXCR7 agonist, VUF11207. Most studies examining the effects 

of CXCR7 signalling use the agonist TC14012.  
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However, due to the long duration of the experiment, and consequently large 

volumes (litres) of perfusion buffer needed, the use of TC14012 was not deemed 

financially feasible. T140 compounds, precursor compounds to TC14012, were 

first synthesized and published two decades ago 150, 152, 307. Consequently, 

TC14012 has been commercially available for longer than VUF11207. TC14012 

has also been used in more published articles than VUF11207, and its mode of 

activation and binding properties have been fairly well described, which might also 

explain why this agonist is more popular than others 151, 308. In contrast, VUF11207 

was only synthesized in 2012, and there is only a single published paper using 

VUF11207 153, 309. Additionally, the two agonists have a different chemical 

structure; T14012 is a peptidomimetic agonist and VUF11207 is a small molecule 

agonist. A peptidomimetic compound mimics the properties of a natural peptide 

or protein (in this case SDF-1α) and is able to interact with the same biological 

target and elicit the same biological effect. Often, peptidomimetics also display 

improved bioavailability and duration of activity, compared to natural peptides, 

which makes them an attractive investigative tool for many researchers 310.  

On the contrary, small molecule drugs are low molecular weight compounds, with 

relatively short half-lives that can typically pass through cell membranes with 

ease, due to their small size 311. There are advantages and disadvantages to 

using either small molecule drugs, such as VUF11207 or peptidomimetic 

compounds, like TC14012 with both displaying markedly different 

pharmacokinetics and pharmacodynamics. Perhaps the preferential use of 

TC14012 to VUF11207 is simply due to the fact that it has been around longer 

and is therefore considered a tried and tested approach. 

Based on the reported EC50 of 1.6 nM for VUF11207 in the β-arrestin2 recruitment 

assay in CXCR7-expressing HEK293 cell, it was expected that the concentration 

of 1 µM would be sufficient to exert any beneficial effects 153. Nevertheless, it is 

possible that a greater or smaller concentration might yield different results, and 

time permitting, a concentration-response curve would be the next sensible step. 
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Furthermore, it would be preferable to have a biological readout confirming 

stimulation of CXCR7 receptor, such as a measure of β-arrestin activity, which is 

currently not feasible in an ex vivo model. Another measure that could have been 

taken to ensure that the utilized VUF11207 compound displays functional activity, 

especially after aliquoting and freezing, would be to test its functionality. Such a 

test would be best performed on a cell type where CXCR7-dependent SDF-1α 

signalling has already been shown, e.g. ERK1/2 signalling in Jurkat T cells, and 

with the same drug concentration as intended for isolated rat heart perfusion 

experiments 220. This would help to confirm whether our chosen, commercially 

available CXCR7 agonist VUF11207 has the ability to elicit the same response in 

Jurkat T cells and inform us whether it would make an effective CXCR7 agonist. 

The second endpoint of the ex vivo perfusion experiment was the analysis of LDH 

release at set timepoints throughout the experiment. LDH has been used as a 

surrogate marker of myocardial injury in the clinic, since high circulating values 

are associated with greater myocardial damage and subsequently worse 

prognosis after MI 312, 313. Nowadays, it is still used as a marker of myocardial 

injury in basic research, although it is slowly being replaced by highly sensitive 

and specific cardiac troponin assays, as they become more cost efficient 314.  

The timepoint selected for LDH analysis was 15 min (R+15’) after the start of the 

reperfusion period, since Rossello et al. showed a pronounced peak of LDH 

release between 10 - 15 min of reperfusion and a steady decline thereafter 255. 

IPC significantly reduced LDH release at R+15’ compared to vehicle, whereas 

VUF11207 did not have an effect on LDH release at the same timepoint.  

In general, previously published research has found LDH release to be a relatively 

inconsistent measure of the cardioprotective potential of IPC compared to TTC 

staining 254, 255, 315, 316. Furthermore, peak LDH release does not appear to directly 

correlate to infarct size, whereas it does show correlation with the ischaemia 

length 255. For these reasons, we considered LDH levels as being of secondary 

importance to TTC measurement.  
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It is possible that VUF11207 might have been found to alter LDH levels at 

timepoints other than R+15 min, but to determine this, a prolonged time-course of 

LDH measurements would be needed. Interestingly, Povlsen et al. showed two 

peaks of LDH release following ischaemia instead of one. The first peak occurred 

at 2 - 20 min and the second at 30 - 120 min, after the start of the reperfusion 

period, which is in contrast to the single peak reported by Rossello et al. 254, 255.  

Povlsen et al. also make an interesting observation regarding the correlation 

between the second peak of the LDH release and cardioprotective interventions 

applied past the period of ischaemia 254. They postulate that the first LDH peak in 

the rat heart occurs as a result of ischaemic and early reperfusion damage and 

the second LDH peak as a result of late reperfusion damage, with both peaks 

being amenable to cardioprotective interventions. This would fall in line with IPC, 

which is known to attenuate ischaemic and reperfusion damage, having the ability 

to reduce the level of LDH release during the first peak (R+15’). It is important to 

note that Rossello et al. performed the study on mice, whereas Povlsen et al. used 

rats, which could explain the inconsistent reporting of the existence of the second 

peak. Since our study only collected perfusate for LDH analysis up to R+15’, 

neither the existence of the second peak, nor the effect of VUF11207 on said peak 

could be determined.  

In brief, Hao et al. showed that increased expression of CXCR7 or administration 

of its agonist TC14012 is cardioprotective, while the lack of CXCR7 is deleterious. 

However, they investigated the impact of MI on the heart several weeks thereafter, 

when cardiac remodelling, angiogenesis, fibrosis and scar formation has already 

occurred. Consequently, all of these processes represent possible targets of 

CXCR7 and its agonist TC14012, with prior research already pointing to the 

importance of CXCR7 in ameliorating fibrosis in various tissues; as described in 

section 1.3.3. However, their choice of experimental model and staining preclude 

from investigating the effects of CXCR7 on the initial infarct formation, which 

according to our study are unremarkable. 
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Overall, in our hands the administration of VUF11207 just prior to reperfusion in 

an ischaemia/reperfusion model of a rat heart did not reduce either final infarct 

size or LDH release at our chosen investigated timepoint R+15’. As already 

discussed above, there are several limitations to this study which could preclude 

us from observing the hypothesized effects of VUF11207.  

However, it could be that VUF11207,  or potentially any CXCR7 agonist, lacks the 

ability to exert beneficial effects in an acute setting of MI. As previously published 

by Ding and colleagues, as well as others, most beneficial actions of CXCR7 were 

seen in a chronic setting, either as an anti-fibrotic or a pro-angiogenic effector 234, 

235, 240. This could mean that 2 h for which the VUF11207 is active during the 

reperfusion period is not long enough either to exert its beneficial effects or for the 

ischaemic myocardium to benefit from those effects in a way that we could 

observe in our experiment (i.e. infarct size, LDH release). Additionally, the study 

published by Hao et al., where administration of another CXCR7 agonist, 

TC14012, did demonstrate cardioprotective effects in a chronic MI setting, the 

lack of acute (within hours of the ischaemic insult) cardioprotective  response 

further indicates this as the most likely scenario 115. Therefore, it would be prudent 

to direct further investigation into the beneficial effects of CXCR7 agonist 

administration in an ischaemia/reperfusion setting towards the more chronic anti-

fibrotic and pro-regenerative actions of CXCR7 agonist, rather than into its acute 

cardioprotective actions. 
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 Summary 

IPC decreased final infarct size and reduced LDH release at R+15’. This positive 

control demonstrates that the experiment was successful, and detection of 

significant cardioprotection was technically feasible. However, CXCR7 agonist 

VUF11207 (1 µM) did not affect either the final infarct size, or the LDH release at 

set timepoints throughout the experiment. This suggests that this dose of 

VUF11207 administered at reperfusion does not exhibit cardioprotective effects 

in our ex vivo isolated heart perfusion model.  
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5 The effect of CXCR7 agonists VUF11207 and TC14012 on the 

RISK pathway 

5.1 Background 

As discussed previously in section 1.4.2. there is compelling evidence that 

activation of effectors downstream of CXCR7 is cell type-specific and 

encompasses processes such as, chemotaxis, cell migration and cell survival 123, 

219, 220. However, since our research focuses on the role of CXCR7 in endothelial 

cells, we wanted to investigate the effects of CXCR7 activation on the RISK 

pathway specifically in cells of endothelial origin and its possible links to 

cardioprotection. There is currently little evidence linking RISK pathway activation 

through CXCR7 signalling with a cardioprotective benefit to the heart. However, 

identifying whether CXCR7 is capable of signalling through the RISK pathway is 

an important step towards determining whether there is a role for CXCR7-

dependent acute cardioprotection. 

To investigate RISK pathway activation, CXCR7 agonists VUF11207 and 

TC14102 were used to examine phosphorylation of ERK1/2 and AKT downstream 

of CXCR7 receptor activation. The CXCR7 agonists used in below experiments 

are described in detail in section 1.3.3. 

5.2 Research aims and objectives 

Investigate whether administration of CXCR7 agonists is able to induce AKT 

and/or ERK1/2 phosphorylation, in order to examine RISK pathway signalling: 

- Examine the effect of VUF11207 and SDF-1α on AKT, ERK1/2 

phosphorylation status in HUVEC. 

 

- Examine the effect of TC14012 and SDF-1α on AKT, ERK1/2 

phosphorylation status in HUVEC. 
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5.3 Methods 

In addition to the general methods described in Chapter 2, the following specific 

methods were used in the experiments described in this chapter. 

 Western blotting antibodies 

RISK pathway signalling was investigated in HUVEC, using western blotting 

methods described in section 2.5. Membranes were incubated with anti-phospho 

AKT rabbit monoclonal (1:1000, #9271, Cell signalling), anti-pan AKT mouse 

monoclonal (1:1000, #2920, Cell Signalling), anti-p44/42 MAPK mouse 

monoclonal (1:1000, #9107, Cell Signalling) or anti-phospho p44/42 MAPK rabbit 

polyclonal (1:1000, #4370, Cell Signalling) primary antibodies. 

IRDye® 800CW goat anti-rabbit IgG (1:10,000, Li-COR), or IRDye® 680RD Goat 

anti-mouse IgG (1:10,000, LI-COR) secondary fluorescent antibodies were used 

for detection. 

 Cell treatments 

Prior to western blotting, HUVEC were cultured as described in section 2.3. 

HUVEC were serum-starved for 3 h with DMEM medium (Gibco) supplemented 

with penicillin/streptomycin (Gibco), prior to the administration of the following cell 

treatments prepared in 200 µL of PBS: insulin (100 nM, Sigma-Aldrich), SDF-1α 

(250 nM, Miltenyi Biotec), VUF11207 (100 nM/250 nM, Tocris), Bradykinin (1 µM, 

Sigma-Aldrich) or TC14012 (30 µM, Cayman Chemical). In western blotting 

experiments involving VUF11207, the control cell sample only received 200 µL of 

PBS. For experimental sets containing TC14012, vehicle contained DMSO (final 

conc. <0.05%).  
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 Normalization of western blotting results 

In order to be able to directly compare western blotting results obtained from 

different experimental repeats, individual blots were normalized using an 

additional sample (internal control sample). The internal control sample was used 

solely to ensure a correct analysis of western blots and is therefore not shown in 

the results section. 

5.4 Results  

In order to investigate the effects of CXCR7 agonists VUF11207 and TC14012 on 

phosphorylation of ERK1/2 and AKT, western blotting was used. The selected 

times for HUVEC cell incubation with the relevant drugs were based on previously 

published research described in section 1.4.2, which suggests that incubation of 

5 - 15 min is needed to elicit maximal ERK1/2 and AKT phosphorylation. Insulin 

was used as a positive control for AKT phosphorylation, since its ability to induce 

AKT phosphorylation status in various cell types is well established 317, 318. 

Similarly, SDF-1α has previously been shown to be able to induce 

phosphorylation of ERK1/2 in endothelial cells and was, therefore used as a 

positive control in ERK1/2 phosphorylation experiments  319, 320.  
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Figure 5-1: The effect of VUF11207 (100 nM) on phosphorylation of AKT in HUVEC. 

Administration of insulin (100 nM) 10 min prior to cell lysis induced a significant increase in AKT 

phosphorylation. Administration of SDF-1α (250 nM) for 10 min or VUF11207 (100 nM) for 5 – 30 

min before cell lysis did not significantly affect AKT phosphorylation. Total AKT was used as a 

loading control. *** p < 0.001 insulin vs control, Repeated Measures ANOVA with Bonferroni post-

hoc test comparing all groups to control; n = 6 independent experiments per group. 

Western blotting for phospho-AKT in HUVEC revealed that 10 min treatment with 

insulin (100 nM), induced significant phosphorylation of AKT, with an approx. 4-

fold increase, compared to control (Figure 5-1). The administration of SDF-1α for 

10 min or VUF11207 for various lengths of time as indicated, did not significantly 

affect the phosphorylation status of AKT. 

When western blotting for ERK1/2, SDF-1α administered 10 min prior to cell lysis 

induced significant ERK1/2 phosphorylation, which was increased approx. 5-fold, 

when compared to control (Figure 5-2). Again, administration of VUF11207 for 

various lengths of time did not induce phosphorylation of ERK1/2 at any timepoint. 
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Additionally, insulin administration for 10 min did not induce phosphorylation of 

ERK1/2. 

 

Figure 5-2: The effect of VUF11207 (100 nM) on phosphorylation of ERK1/2 in HUVEC. The 

administration of SDF-1α (250 nM) 10 min prior to cell lysis induced significant phosphorylation of 

ERK1/2. Administration of insulin (100 nM) for 10 min or VUF11207 (100 nM) for 5 – 30 min did 

not induce changes in ERK1/2 phosphorylation status. Total ERK1/2 was used as a loading 

control. * p < 0.05 SDF-1α vs control, Repeated Measures ANOVA with Bonferroni post-hoc test 

comparing all groups to control; n = 5 independent experiments per group. 
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Since the concentration of VUF11207 (100 nM) used in the western blotting 

experiments was lower than that of SDF-1α (250 nM), the concentration of 

VUF11207 was increased to 250 nM in the subsequent experiment (Figure 5-3).  

In this experiment, bradykinin (1 µM) was used as an alternative positive control 

for ERK1/2 activation 321. A single incubation timepoint of 10 min was chosen for 

all experimental groups, on the basis of previously published research, where a 

10 min incubation was sufficient to successfully induce phosphorylation of ERK1/2 

220, 320.  

Bradykinin administration 10 min prior to cell lysis successfully induced 

phosphorylation of ERK1/2 in HUVEC cell, whereas VUF11207 (250 nM), 

administered for the same amount of time, did not induce phosphorylation.  

 

Figure 5-3: The effect of VUF11207 (250 nM) on phosphorylation of ERK1/2 in HUVEC. The 

administration of bradykinin (1 µM) 10 min prior to cell lysis significantly increased induction of 

ERK1/2 phosphorylation. Administration of VUF11207 (250 nM) 10 min prior to cell lysis did not 

have an effect on ERK1/2 phosphorylation levels. Total ERK1/2 was used as a loading control.     

* p < 0.05 bradykinin vs control, Repeated Measures ANOVA with Bonferroni post-hoc test 

comparing all groups to control; n = 4 independent experiments per group. BK = bradykinin. 
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Figure 5-4: The effect of TC14012 on phosphorylation of AKT in HUVEC. The administration 

of insulin (100 nM) 10 min prior to cell lysis induced significant phosphorylation of AKT. 

Administration of SDF-1α (250 nM) for 10 min or TC14012 (30 µM) for 10 – 60 min did not induce 

changes in the AKT phosphorylation status. Total AKT was used as a loading control. * p < 0.05 

insulin vs control, Repeated Measures ANOVA with Bonferroni post-hoc test comparing all groups 

to control; n = 3 independent experiments per group. 

Since VUF11207 did not induce phosphorylation using western blotting, an 

alternative CXCR7 agonist, TC14012 was also investigated. In these 

experiments, administration of insulin (100 nM) 10 min prior to cell lysis induced 

AKT phosphorylation, which was approx. 2-fold greater than the vehicle control 

(Figure 5-4). Administration of TC14012 (30 µM) for 10, 30 or 60 min, or incubation 

with SDF-1α 10 min prior to cell lysis did not affect the phosphorylation status of 

AKT (Figure 5-4). When western blotting for phospho-ERK1/2, administration of 

neither TC14012, SDF-1α or insulin induced statistically significant 

phosphorylation (Figure 5-5).  
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Figure 5-5: Effect of TC14012 on phosphorylation of ERK1/2 in HUVEC. There was no change 

in ERK1/2 phosphorylation levels with administration of either insulin (100 nM), SDF-α (250 nM) 

or TC14012 (30 µM) in HUVEC. n = 3 independent experiments per group. Total AKT was used 

as a loading control. * p < 0.05 insulin vs control, Repeated Measures ANOVA with Bonferroni 

post-hoc test comparing all groups to control; n = 3 independent experiments per group. 
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Figure 5-6: Effect of insulin and SDF-1α on AKT phosphorylation in HUVEC – pooled data. 

Administration of either SDF-1α (250 nM) or insulin (100 nM) significantly increased AKT 

phosphorylation response compared to control in HUVEC. Data were pooled from experiments 

in Figure 5-1 and Figure 5-4. Total AKT was used as a loading control. * p < 0.05 insulin vs 

control and SDF-1α vs control, Repeated Measures ANOVA with Dunnett’s post-hoc test 

comparing all groups to control; n = 9 independent experiments per group. 

In order to gain a clearer picture of the effects of insulin and SDF-1α on AKT 

phosphorylation, data concerning control, insulin and SDF-1α from western 

blotting experiments with VUF11207 and TC14012 from Figure 5-1 and Figure 5-

4 were pooled together and presented in Figure 5-6. Statistical analysis revealed 

that administration of either insulin (100 nM) or SDF-1α (250 nM) 10 min before 

cell lysis significantly increased AKT phosphorylation compared to control. There 

was an approx. 3-fold increase in mean AKT phosphorylation response after 

administration of insulin and 1.5-fold increase after administration of SDF-1α, 

compared to control. 
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Figure 5-7: Effect of insulin and SDF-1α on ERK1/2 phosphorylation in HUVEC – pooled 

data. Administration of either SDF-1α (250 nM) or insulin (100 nM) significantly increased the 

ERK1/2 phosphorylation response compared to control in HUVEC. Data were pooled from 

experiments in Figure 5-2 and Figure 5-5. Total ERK1/2 was used as a loading control. * p < 

0.05 insulin vs control and SDF-1α vs control, Repeated Measures ANOVA with Dunnett’s post-

hoc test comparing all groups to control; n = 8 independent experiments per group. 

As in Figure 5-6, data in Figure 5-7 were also pooled from previous experiments 

already outlined in Figure 5-2 and Figure 5-5. Administration of insulin (100 nM) 

for 10 min prior to cell lysis significantly increased ERK1/2 phosphorylation 

response, which translated into a 2-fold increase compared to control. Similarly, 

administration of SDF-1α 10 min prior to cell lysis also induced a statistically 

significant increase in mean phosphorylation response of ERK1/2, which was 

approx. 4-fold greater when compared to control, although it exhibited a wide 

spread of data points and consequently a large standard error of the mean. Both, 

insulin and SDF-1α were able to induce a statistically significant induction of either 

AKT or ERK1/2 phosphorylation when values from all relevant experiments were 

collated.   
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5.5 Discussion 

The RISK pathway is an important pro-survival pathway, utilized by many 

mechanical and pharmacological cardioprotective interventions 190, 194-196. The 

parallel signalling cascades of PI3K/AKT and MEK1/ERK1/2 form the cornerstone 

of RISK pathway signalling. Consequently, measurement of the phosphorylation 

of these kinases can offer insight into whether or not a drug is able to induce RISK 

pathway signalling. To investigate the CXCR7-dependent activation of the RISK 

signalling pathway, CXCR7 agonists, VUF11207 and TC14012 were used in 

western blotting experiments in HUVEC. Positive controls, insulin and bradykinin 

significantly induced phosphorylation of AKT and ERK1/2, respectively. SDF-1α 

induced phosphorylation of ERK1/2, but not AKT, whereas VUF11207 and 

TC14012 did not induce phosphorylation of AKT or ERK1/2 at any timepoint 

tested.  

SDF-1α-induced phosphorylation of ERK1/2 was examined in both, VUF11207 

and TC14012 experimental sets. In both cases, the same experimental conditions 

were used; however, the obtained results differ between the two sets. There was 

a notable SDF-1α-dependent ERK1/2 phosphorylation, when SDF-1α (250 nM) 

was administered 10 min before cell lysis, in the set of western blotting 

experiments using VUF11207 (Figure 5-2), but not in the experimental set using 

TC14012 (Figure 5-5). In both cases, there was a large standard error present in 

the SDF-1α data set, showing a large degree of variability in the cell response. 

Statistical power of the TC14012 experimental set was adequate (97.5%) and 

should enable statistical detection of ERK1/2 phosphorylation changes. Having 

an adequately powered experiment reduces the probability of Type II error, and 

since sample size was lower in the TC14012 vs VUF11207 data set (n=3 vs n=5), 

this could have hindered detection of statistical significance 322, 323.   

 



146 

 

Furthermore, since HUVEC are primary cells, the reproducibility of results can 

vary from donor to donor. Even though commercially available HUVEC from 

pooled donors were used in our western blotting experiments, the inherent 

variability of HUVEC cannot be excluded as a possible reason for observed 

differences in obtained results. For that reason we have pooled data from control, 

insulin and SDF-1α from experimental sets including both, TC14012 and 

VUF11207 (Figure 5-7). Pooled data revealed that administration of insulin 

significantly increased induction of ERK1/2 phosphorylation. Since administration 

of insulin in our individual experiments displayed a relatively small effect size, 

pooling the data provided us with more statistical power and; therefore, enabled 

us to observe this effect, which would have likely gone unnoticed. Insulin-induced 

ERK1/2 phosphorylation observed in our pooled data has been described before 

as part of the MAPK arm of insulin signalling response with broad physiological 

implications 324, 325. While an interesting observation, the role of insulin in RISK 

signalling, and more broadly, cardioprotection, goes beyond the scope of this 

thesis, where the primary role of using insulin was as a positive control for 

induction of AKT phosphorylation.   

Pooled data also revealed significantly increased induction of ERK1/2 

phosphorylation after administration of SDF-1α. Individual values obtained for 

SDF-1α-induced phosphorylation of ERK1/2 exhibited a wide spread of data 

points. This was in part counteracted by increasing the sample size by pooling 

data from separate VUF11207 and TC14012 experiments, which allowed us to 

show that administration of SDF-1α (250 nM) does induce ERK1/2 

phosphorylation, which was statistically significant.  

Our results agree with work published by others, showing that SDF-1α induces 

ERK1/2 phosphorylation in various cell types. Chen et al. showed ERK1/2 

phosphorylation in cardiac stem cells stimulated with SDF-1α (100 ng/mL ~ 12.5 

nM), which peaked after a 30 min incubation period 219.  
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Similarly, Laakko et al. showed that Jurkat T cells incubated with SDF-1α (20 

ng/mL ~ 2.5 nM) for 5 min exhibit increased phosphorylation of ERK1/2 326. 

Additionally, a study by Zhuo et al. showed that SDF-1α (100 ng/mL ~ 12.5 nM) 

induces phosphorylation of ERK1/2 in lymphatic endothelial cells, which peaks 30 

min after administration. This supports our findings that SDF-1α induces ERK1/2 

phosphorylation, although altering the time of incubation might be crucial in 

achieving a maximum phosphorylation response, since both Chen’s and Zhuo’s 

group found peak phosphorylation response to occur 30 min after beginning of 

the incubation period. In our experiment, SDF-1α was administered in the 

absence of CXCR7 or CXCR4 inhibitors and activate RISK pathway signalling in 

endothelial cells. Therefore, ERK1/2 phosphorylation could have occurred as a 

consequence of either CXCR4 or CXCR7 activation. We have shown that SDF-

1α is capable of eliciting a response through ERK1/2, but not AKT on endothelial 

cells, both important players in many  signalling pathways. However, they also 

form a crucial part of the RISK cardioprotection signalling pathway, shared by 

many cardioprotective interventions.  

In contrast, administration of SDF-1α (250 nM) did not induce phosphorylation of 

AKT in the experimental set using neither VUF11207 nor TC14012. Pooling the 

data from both experimental sets allowed us to increase the sample size, although 

it was clear that administration of SDF-1α did not induce phosphorylation of AKT. 

On the other hand, positive control insulin (100 nM) performed as expected and 

induced a significant AKT phosphorylation response showing that HUVEC have 

respond to stimuli as expected.  

Our results do not agree with previously published work, where SDF-1α has been 

shown to induce phosphorylation of AKT in various cell types. Possible reasons 

for the discrepancies in obtained results are discussed below.  
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There are two key phosphorylation sites on AKT, namely Thr308  (Threonine 308) 

and Ser473 (Serine 473) with our research focused on Ser473, which can be found 

on the C-terminal hydrophobic motif of the AKT kinase 197, 327. Chen et al. also 

examined phosphorylation of Ser473 on AKT kinase and found that SDF-1α (100 

ng/mL ~ 12.5 nM) administration induced phosphorylation of AKT on cardiac stem 

cells, which peaked after 30 min of incubation 219. Similarly, Shao et al. showed 

that administration of SDF-1α (100 ng/mL ~ 12.5 nM) for 5 min before cell lysis  

on bone marrow-derived cells induced phosphorylation of AKT; however the exact 

phosphorylation site investigated was not reported 328. The investigated site of 

AKT phosphorylation, which is not always reported, could contribute to different 

results observed in AKT phosphorylation studies. Importantly, neither of the above 

studies used endothelial cells. The choice of cell type might be especially relevant 

in the case of cardiac stem cells, which are not terminally differentiated and 

display hugely different characteristics to differentiated cells, including a different 

transcriptomic profile and signalling ability 329. The same is true for differences 

between our obtained results and those obtained by other in regards to ERK1/2 

phosphorylation, with the exception of the site of phosphorylation. Site of 

phosphorylation is not an issue with ERK1/2 as the antibodies for phospho-

ERK1/2 target the same two phosphorylation sites at Tyr204/187 (Tyrosine 

204/187) and Thr202/185 (Threonine 202/185) 330  

When examining the activation of phospho-AKT in endothelial cells, Zhang et al. 

previously reported that SDF-1α (100 ng/mL ~ 12.5 nM) induced phosphorylation 

of AKT specifically in HUVEC cells 222. However, they do not report the time of 

incubation or the phosphorylation site examined, which hinders any direct 

comparison with our study. Meanwhile, Zhuo et al. showed that SDF-1α (100 

ng/mL ~ 12.5 nM) induced AKT phosphorylation in lymphatic endothelial cells with 

peak phosphorylation response present between 10 and 30 min post-

administration 331. They also do not report exactly which phosphorylation site they 

examined; however, their use of cells of endothelial origin seems to suggest that 

cell type is not the reason for the different results obtained by other groups and 
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ours. However, endothelial cells exhibit different phenotypes depending on their 

site of origin. While HUVEC are venous endothelial cells, it is arterial and capillary 

endothelial cells that might represent a more relevant cell type in the myocardium 

332, 333. There are not many commercially available cardiac endothelial cell lines 

and a specific subtype (e.g. arterial) of endothelial cells can be difficult to isolate. 

That is why HUVEC are a popular endothelial cell model; however, it is important 

to remember that their venous origins might not accurately reflect the in vivo state.    

Additional reasons for varying results obtained by us and others, could also 

include the duration of cell starvation without serum, which is intended to reduce 

the basal signalling activity but is often not well reported in published literature 334. 

In our study, the cells were starved for 3 h, whereas most other groups do not 

report whether the cells were starved or not 222, 331. This could mean that the basal 

level of phosphorylation was different between various studies, making increases 

in phosphorylation response more or less difficult to identify.  

Since our interests lay primarily in the CXCR7-dependent activation of RISK 

pathway, CXCR7 agonists VUF11207 and TC14012 were utilized to induce 

CXCR7 signalling in HUVEC. Administration of neither VUF11207 (100 nM and 

250 nM) or TC14012 (30 µM) was able to induce phosphorylation of ERK1/2 or 

AKT in HUVEC.  This disagrees with some of the already published data, 

previously discussed in section 1.4.2 and briefly outlined below.  

SDF-1α incubation in the presence of CXCR4-blocking antibody has been shown 

to elicit maximal phosphorylation of ERK1/2 10 min post-administration on Jurkat 

T cells 220. Additionally, Rajagopal et al. showed that HEK293 cells transfected 

with CXCR7 and stimulated with SDF-1α exhibited sustained ERK1/2 activation 

30 min post administration123. This is in contrast with our results, where direct 

stimulation of CXCR7 via either VUF11207 or TC14012 did not induce 

phosphorylation of ERK1/2, despite the use of similar incubation time points.  
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Similarly, Kumar et al. showed that administration of SDF-1α on Jurkat T cells 

pre-treated with CXCR4-blocking antibody induced maximal phosphorylation of 

AKT 15 min after administration 220. Additionally, Zhang et al. showed that 

activation of CXCR7 via administration of TC14012 (30 µM) in HUVEC induces 

phosphorylation of PI3K, but no time of incubation was discussed 222. We did not 

observe an increase in AKT phosphorylation as a result of CXCR7 stimulation (via 

VUF11207 and TC141012). However, we have found that administration of SDF-

1α alone was already incapable of eliciting an induction of AKT phosphorylation, 

which means that perhaps HUVEC used in this experimental setting are not 

capable of a response in  the form of AKT phosphorylation. Due to that fact, it was 

not surprising that the two utilized CXCR7 agonists also did not elicit an induction 

of AKT phosphorylation.  

Hao et al. decided on a slightly different approach to investigating the involvement 

of CXCR7 in signalling through PI3K/AKT and ERK1/2. They did not induce 

CXCR7 signalling directly, but instead they pre-incubated aortic endothelial cells 

with IL-1β, which increased CXCR7 mRNA levels. Incubation with IL-1β  also 

mimics what happens after myocardial infarction in vivo, when IL-1β signalling is 

known to be active 335. After, they used CXCR7-specific inhibitors to show that 

lack of CXCR7 signalling reduces phosphorylation of ERK1/2 and AKT. Since 

their study differs greatly from the one we performed, we cannot directly compare 

to our results; however, they show that CXCR7-dependent signalling through 

RISK pathway in endothelial cells does occur, at least in the presence of IL-1β. 

The length of incubation with CXCR7 agonists, might also be important, since it 

is possible that a longer duration of receptor stimulation is needed to achieve β-

arrestin-dependent signalling through CXCR7. Such intricacies of CXCR7 

signalling are not well explored and based on available studies we cannot form a 

complete picture of what happens when a CXCR7 agonist binds to its receptor, 

or the exact impact that signal duration or concentration might exert on the 

CXCR4 and CXCR7 receptor signalling.  
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Recently, Gutkind and Kostenis, published an interesting short paper proposing 

that β-arrestins act as rheostats, modulating G protein-dependent signalling, but 

requiring G proteins for signalling through ERK1/2 336. In a classical model of G 

protein signalling, G proteins and β-arrestins compete for binding to the receptor, 

with G proteins initiating signalling and β-arrestins desensitizing the receptor by 

outcompeting the G proteins through steric hindrance. Gutkind and Kostenis 

present a plausible alternative hypothesis, which could help explain why CXCR7 

stimulation is able to induce ERK1/2 signalling in some cases but not others 336. 

They note that β-arrestins  can be recruited to receptors without any detectable G 

protein activity, although this does not lead to successful ERK1/2 phosphorylation 

336. Perhaps something similar occurs with CXCR7-specific agonists, which are 

only able to signal through β-arrestin-biased CXCR7 receptor but fail to activate 

the G protein coupled CXCR4 receptors. To date, no studies explored the 

possibility of a similar connection between G proteins and arrestin-biased ligands 

in PI3K/AKT signalling; therefore, we cannot comment on the possibility of similar 

action occurring during AKT phosphorylation. 

There is not a lot of published research investigating SDF-1α-dependent RISK 

pathway activation specifically in endothelial cells. However, RISK pathway, 

which includes activation of ERK1/2 MAPK kinase or PI3K/AKT pathway 

underpins many known acute cardioprotective interventions. Therefore, 

identifying whether CXCR7 agonists can elicit signalling through the RISK 

pathway can provide the first step towards identifying any acute cardioprotective 

effects the agonists might exhibit. We confirmed that SDF-1α is capable of 

inducing ERK1/2 phosphorylation response in endothelial cells; however, it was 

not able to elicit the same response in terms of AKT phosphorylation. Most 

importantly, neither CXCR7 agonist was able to induce phosphorylation of either 

ERK1/2 or AKT. This means that the ERK1/2 phosphorylation response seen with 

SDF-1α administration is more likely to come from interaction of SDF-1α and 

CXCR4, rather than SDF-1α and CXCR7 receptor. Based on work done by Hao 

et al. it seems that an initial stimuli, such as pro-inflammatory IL-1β, might need 
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to preclude CXCR7 signalling in order to initiate ERK1/2 and/or AKT 

phosphorylation. This might mean that basal state HUVEC, or indeed other 

endothelial cells, are not capable of RISK signalling response, which would need 

to be considered in further experimental approaches. Further work could therefore 

examine RISK signalling in endothelial cells that have undergone I/R injury, such 

as those, which could potentially be harvested from hearts undergoing a murine 

ex vivo heart perfusion experiment.  

 Summary 

Positive controls insulin and bradykinin were able to successfully induce 

phosphorylation of AKT and ERK1/2 in HUVEC, respectively. While the increase 

in ERK1/2 phosphorylation in response to SDF-1α treatment was significant only 

in one of two experimental sets, it was again confirmed in the experimental set 

using pooled data from both sets of experiments. SDF-1α did not induce 

phosphorylation of AKT in either VUF11207 or TC14012 experimental set, nor 

when both data sets were pooled. Administration of CXCR7 agonists VUF11207 

and TC14012 for various lengths of time also did not affect the phosphorylation 

status of either AKT or ERK1/2. All in all, VUF11207 and TC14012 were not able 

to initiate CXCR7-dependent RISK pathway signalling in HUVEC, under chosen 

experimental conditions. Further investigation is needed to confirm whether this 

occurred because CXCR7 does not signal through the RISK signalling pathway, 

or whether an adjustment of experimental conditions is needed to confirm 

CXCR7-dependent RISK pathway activation. 
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6 Unsuccessful endothelial-specific inducible Cxcr7 gene 

deletion with Pdgfb-CreERT2 in adult mice 

6.1 Background 

The ability to manipulate DNA sequence of an organism is an extremely valuable 

investigative tool in the arsenal of a scientist. Arguably the most famous 

mechanism for precision gene manipulation is the Cre-lox system, using a 

topoisomerase enzyme, Cre recombinase, which enables assessment of the 

importance of a specific gene by using in vivo genetic manipulation 337. The 

Fruttiger group generated a Pdgfb-Cre construct, which is widely used by 

researchers and reportedly exhibits activity in aortic and capillary endothelial cells, 

with some non-endothelial cell activity recorded in keratinocytes and 

megakaryocytes 243, 338. Platelet-derived growth factor beta (Pdgfb) plays an 

essential role in migration and proliferation of vascular smooth muscle cells, 

promotes differentiation of endothelial cells and participates in wound healing 

through recruitment of various cell types to the site of injury 339-341.  

Fruttiger’s group  utilized the Pdgfb promoter in tandem with iCreERT2, which is 

the improved, second generation CreER, efficient in initiating Cre recombination, 

and is currently the most successful version of Cre available 342. Pdgfb-Cre line 

provided by the Fruttiger group has been previously successfully utilized to 

generate adult transgenic mice with endothelial-specific labelling of enhanced 

yellow fluorescent protein (EYFP), and was therefore deemed an appropriate line 

to use for our experiments 343.  

In order to generate endothelial-specific transgenic mice we used Pdgfb-CreERT2 

construct obtained from the Fruttiger group and Ackr3tm1Twb flox/+ obtained from the 

MMRRC repository as described in section 2.2. 114, 243. 
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6.2 Research aims and objectives 

Generate mice with inducible, endothelial-specific CXCR7 deletion: 

- Characterize the mouse model by investigating endothelial CXCR7 RNA 

and protein content. 

 

- Examine whether the mice exhibit the loss of endothelial CXCR7 protein. 

6.3 Methods 

In addition to the general methods described in Chapter 2, the following specific 

methods were used in the experiments described in this chapter. 

 Transgenic animals 

Cxcr7iΔEC = Cxcr7flox/flox Cre +/- injected with Tamoxifen 

Cxcr7WT = Cxcr7flox/flox Cre+/+ 

Transgenic mice were generated as described in section 2.2. Experiments with 

Cxcr7iΔEC mice, were performed 3 weeks after the last tamoxifen injection. 

Cxcr7WT mice did not receive any injections.  

 Western blotting 

The expression of CXCR7 was investigated in HUVEC, using western blotting 

methods described in section 2.5. Membranes were incubated with anti-CXCR7 

rabbit monoclonal antibody (1:1000, ab138509, Abcam). Anti-GAPDH mouse 

monoclonal antibody (1:2000, ab8245, Abcam) was used as a loading control.  

IRDye® 800CW goat anti-rabbit IgG (1:10,000, Li-COR), or IRDye® 680RD Goat 

anti-mouse IgG (1:10,000, LI-COR) secondary fluorescent antibodies were used 

for detection. 
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 WES western blotting 

The expression of CXCR7 was investigated on isolated mouse cardiac endothelial 

cells using WES western blotting method as described in section 2.5.4. Anti-

CXCR7 rabbit monoclonal primary antibody (1:20, ab138509, Abcam) and anti-

VDAC1 rabbit monoclonal antibody (1:50, ab154856, Abcam) were used in 

conjunction with rabbit antibody detection kit (ProteinSimple). 

 RNAscope in situ hybridization 

RNAscope in situ hybridization experiment on whole mouse heart slices was 

performed as described in section 2.8. Cxcr7iΔEC mice used for RNAscope in situ 

hybridization were injected with 100 µL of 15 mg/mL tamoxifen for 3 consecutive 

days as described in section 2.2.5. Images of background staining for this 

experiment can be seen in Figure 3-2.  

 Quantitative real-time PCR  

RNA extraction and quantitative real-time PCR were performed on aortas from 

male and female mice aged 8-12 weeks, as described in section 2.12.  

6.4 Results 

To examine whether endothelial-specific deletion of CXCR7 in mice was 

successful, several different experimental procedures were utilized. Firstly, 

western blotting was used to compare CXCR7 protein levels in whole mouse 

hearts between Cxcr7WT mice and genetically modified, tamoxifen injected 

Cxcr7iΔEC mice.  

Tamoxifen administration was performed over 2 consecutive days, starting with 

100 µL of 15 mg/mL of tamoxifen (2 mg/animal total) for 2 consecutive days, which 

did not affect CXCR7 protein levels in whole mouse hearts (Figure 6-1). Since the 

initial dose of tamoxifen was relatively low, the dose was increased for the 

subsequent experiments and injection days increased to 3 consecutive days.  
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Figure 6-1: CXCR7 western blotting on Cxcr7WT and Cxcr7iΔEC whole mouse hearts. Cxcr7iΔEC 

mice were injected with 100 µL of 15 mg/mL tamoxifen for 2 days (2 mg/animal total) to produce 

knockout mice. Wild type (Cxcr7WT) mice received no injections. There was no significant 

difference between the CXCR7 protein levels of Cxcr7iΔEC and Cxcr7WT mice. GAPDH was used 

as a loading control. Student’s t-test, n = an individual mouse heart. KO = Cxcr7iΔEC, WT = Cxcr7WT, 

ns = non-significant. 
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Figure 6-2: CXCR7 western blotting on Cxcr7WT and Cxcr7iΔEC whole mouse hearts. Cxcr7iΔEC 

mice were injected with 100 µL of 15 mg/ml tamoxifen for 3 days (4.5 mg/animal total) to produce 

knockout mice. Wild type (Cxcr7WT) mice received no injections. There was no significant 

difference between the CXCR7 protein levels of Cxcr7iΔEC and Cxcr7WT mice. GAPDH was used 

as a loading control. Student’s t-test, n = an individual mouse heart. KO = Cxcr7iΔEC, WT = Cxcr7WT, 

ns = non-significant. 

Administration of 100 µL of 15 mg/mL tamoxifen (4.5 mg/animal total) for 3 

consecutive days did not have a significant effect on CXCR7 protein levels in the 

whole mouse heart (Figure 6-2). The dose of tamoxifen was again increased to 

100 µL of 20 mg/mL (6mg/animal total) and injected for 3 consecutive days. 

Following western blotting, CXCR7 levels in the whole mouse hearts were 

observed to be unchanged between the Cxcr7WT and Cxcr7iΔEC mice (Figure 6-3). 

The bulk of the protein in whole mouse heart lysates comes from cardiomyocytes, 

which are large cells, in addition to vascular smooth muscle cells, fibroblasts and 

endothelial cells etc. It is possible that all of those cell types express CXCR7, 

making loss of CXCR7 expression in endothelial cells difficult to detect 43.  
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Figure 6-3: CXCR7 western blotting on Cxcr7WT and Cxcr7iΔEC whole mouse hearts. Cxcr7iΔEC 

mice were injected with 100 µL of 20 mg/ml tamoxifen for 3 days (6 mg/animal total) to produce 

knockout mice. Wild type (Cxcr7WT) mice received no injections. There was no significant 

difference between the CXCR7 protein levels of Cxcr7iΔEC and Cxcr7WT mice. GAPDH was used 

as a loading control. Student’s t-test, n = an individual mouse heart. KO = Cxcr7iΔEC, WT = Cxcr7WT, 

ns = non-significant. 

Because it is challenging to isolate sufficient quantities of endothelial cells for 

standard western blotting, the WES automated western blotting system was used. 

In this system the samples are run and probed on small capillaries, allowing 

detection of bands using very small (~1 µg) quantities of protein. To determine 

whether CXCR7 protein was absent in mouse endothelial cells, WES automated 

blotting system was performed on isolated cardiac mouse endothelial cells, as 

previously described in section 2.5.4. This revealed no significant differences 

between the CXCR7 protein levels of Cxcr7WT and Cxcr7iΔEC groups (Figure 6-4).  

It was still challenging to obtain enough endothelial cells for robust analysis of 

CXCR7. CXCR7 should be deleted in all endothelial cells, not just in the heart; 

therefore, thoracic aortas were used to further examine whether endothelial 

CXCR7 deletion was successful.   
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Aortic tissue contains a higher ratio of endothelial cells to other cell types present 

in the tissue and should therefore provide a clearer picture of CXCR7 presence 

in endothelial cells 344. Since investigation of CXCR7 protein levels revealed no 

differences between Cxcr7WT and Cxcr7iΔEC animals, CXCR7 RNA levels were 

also examined. 

RT-qPCR for CXCR7 on Cxcr7WT and Cxcr7iΔEC mouse thoracic aortas did not 

reveal significant differences between the two groups based on their ΔCt values, 

where the smaller ΔCt denotes a higher CXCR7 RNA content (Figure 6-5). This 

translated into the 0.77-fold difference, which was not significant.  

Aortas contain cells other than those of endothelial origin, which can impede the 

investigation of endothelial-specific CXCR7 gene deletion 344. Therefore, 

RNAscope in situ hybridization was used to specifically and directly investigate 

endothelial-specific expression of CXCR7 RNA in whole mouse heart slices. 

Cxcr7WT tissues stained with CXCR7 RNA probe revealed CXCR7 RNA dots 

(white arrows) in IB4-delinated endothelial cells (Figure 6-6, upper panel). 

Interestingly, CXCR7 expression was mainly observed in endothelial cells, with 

lower levels of expression also present in other cell types (e.g. cardiomyocytes). 

Unfortunately, Cxcr7iΔEC tissues also revealed the presence of CXCR7 RNA dots 

in endothelial cells (yellow arrows), pointing to incomplete or unsuccessful 

endothelial-specific CXCR7 deletion (Figure 6-6, lower panel). 
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Figure 6-4: WES western blotting for CXCR7 on isolated mouse cardiac endothelial cells. 

Cxcr7iΔEC animals were injected with 100 µL of 15 mg/mL tamoxifen (4.5 mg/animal total) for 3 

consecutive days to produce knockout animals. Despite some variability, there was no significant 

difference between the CXCR7 protein levels of Cxcr7iΔEC and Cxcr7WT mice. VDAC1 was used 

as a loading control. Note that in the WES automated blotting system, the protein samples run on 

individual capillaries, thus the position of the band can vary between “lanes”. Student’s t-test, n = 

a single cell isolation containing 2 - 4 mouse hearts. KO = Cxcr7iΔEC, WT = Cxcr7WT, ns = non-

significant. 
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Figure 6-5: Quantitative real-time PCR for CXCR7 in mouse aortic tissue.  Cxcr7iΔEC animals 

were injected with 100 µL of 15 mg/mL of tamoxifen for 3 consecutive days (4.5 mg total) to 

produce knockout animals. There was no significant difference detected in CXCR7 RNA content 

between the Cxcr7WT and Cxcr7iΔEC mice. Gapdh and Hprt were used as housekeeping controls. 

Student’s t-test, n = an individual mouse aorta. KO = Cxcr7iΔEC, WT = Cxcr7WT, ns = non-

significant. 
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Figure 6-6: CXCR7 mRNA expression in Cxcr7WT and Cxcr7iΔEC mouse whole heart slices. 

Cxcr7iΔEC animals were injected with 100 µL of 15 mg/mL tamoxifen (4.5 mg/animal total) for 3 

consecutive days to produce knockout mice (Cxcr7iΔEC). CXCR7 mRNA (green dots) is present in 

endothelial cells in wildtype (Cxcr7WT, white arrows) and knockout (yellow arrows) adult mouse 

hearts as detected by RNAscope in situ hybridization. IB4 (red) was used to label endothelial cells 

and DAPI (blue) depicts cellular nuclei. Left and right panels show alternative regions of the same 

tissue slice. KO = Cxcr7iΔEC, WT = Cxcr7WT.  
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6.5 Discussion 

The overall strategy behind the Cre-lox system is to employ site-specific 

recombination, which allows for genetic deletion of the target gene or sequence. 

It is a robust system, and successful recombination depends on both the Cre 

recombinase and the loxP sites performing their intended function. However, if 

the function of either element is impaired, it will result in incomplete or 

unsuccessful manipulation of the target gene.  

After breeding several generations of CXCR7iΔEC mice, we did not observe 

endothelial-specific CXCR7 deletion using several different techniques. Western 

blotting examination revealed unchanged levels of CXCR7 protein when 

comparing Cxcr7WT and Cxcr7iΔEC animals. Similarly, RT-qPCR and RNAscope in 

situ hybridization showed that CXCR7 mRNA was still present in endothelial cells 

of Cxcr7iΔEC animals.  

Western blotting of whole mouse heart tissue showed no changes between 

CXCR7 protein expression in Cxcr7WT and Cxcr7iΔEC mice. The initial dose of 

tamoxifen was set at 2 mg per animal total, as it is desirable to use the lowest 

dose of tamoxifen possible, due to its potential toxic side effects at higher doses 

345. Since this comparatively low dose of tamoxifen could have been the reason 

why CXCR7 protein levels persisted unchanged, tamoxifen dose was 

subsequently increased to 4.5 mg per animal total. Since this dose of tamoxifen 

also had no effect on the CXCR7 protein levels it was again raised to 6 mg of 

tamoxifen total. However, this also had no effect on the CXCR7 protein levels, 

which were not significantly different between Cxcr7WT and Cxcr7iΔEC animals. 

The dose of tamoxifen required for a successful initiation of Cre-mediated gene 

deletion via i.p. injection was derived from previously conducted experiments in 

our own lab and from published literature using the same strain of Pdgfb-CreERT2 

mice in which the target gene had been successfully deleted 343, 346.  
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Therefore, it is unlikely that a low concentration of tamoxifen is the reason for 

unsuccessful Cre recombination, and subsequently reduction of endothelial 

CXCR7 protein levels. Additionally, the i.p. route of tamoxifen dosing is a well-

established and commonly used route and is unlikely that choosing this particular 

method over a different administration technique (e.g. oral gavage) played a part 

in the failure to achieve endothelial CXCR7 protein deletion. 

Despite being a great tool to initiate Cre recombination, tamoxifen can be toxic, 

especially with repeat administration or in high doses. The toxicity exhibited by 

tamoxifen is seen in both sexes, and with both, oral and i.p. administration. We 

observed an approx. 10% mortality rate, which was not affected by the number of 

days of tamoxifen injections, although the highest tamoxifen dose of 20 mg/mL (6 

mg per animal total) did exhibit a larger mortality rate of approx. 15% and was 

therefore not utilized beyond the initial experiments.  

Huh et al. showed that tamoxifen toxicity (5 mg tamoxifen/ 20 mg body weight, 3 

consecutive days) can be abolished by proton pump inhibition with omeprazole, 

which points at modulated acid secretion as the likely contributor to tamoxifen-

associated toxicity 347. Jahn et al. reports tamoxifen-associated mortality as 3.7% 

for 3 consecutive days of injection; however, the skill of the handler is also known 

to affect the mortality rate 345. Furthermore, mortality rate of tamoxifen, although 

known, is often not reported which precludes us from making a more informed 

observation on whether our mortality rate was abnormal compared to that seen 

by others. There is a small possibility that tamoxifen at sufficiently high dose to 

activate Cre recombinase (6 mg/animal total) killed the mice, while in surviving 

mice and those with lower level of injected tamoxifen Cre was not induced and 

therefore CXCR7 loss could not be detected. Similarly, if endothelial CXCR7 

deletion in adults is lethal, then the surviving mice would not exhibit detectable 

CXCR7 loss. However, both of these possibilities are unlikely to have occurred in 

our transgenic model.  
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It is also important to note that whole mouse heart tissue contains cells of non-

endothelial origin that express CXCR7, which could hinder detection of CXCR7 

protein changes on the endothelial level. For example, CXCR7 mRNA was found 

to be expressed in human fibroblasts, and CXCR7 protein and mRNA were 

detected in rat vascular smooth muscle cells 123, 267. Further, CXCR7 mRNA was 

also shown to be expressed in mouse cardiomyocytes, as previously shown by 

us in section 3.4. and elsewhere 148. The cumulative CXCR7 protein content of 

these non-endothelial cells could have obstructed detection of endothelial-specific 

CXCR7 changes, which means that it might be difficult to detect deletion of 

endothelial CXCR7 on the level of whole mouse heart.    

For that reason, CXCR7 protein content was also assessed in isolated endothelial 

cells via WES western blotting method, which enables detection of protein level 

changes even in small protein samples. WES did not reveal any significant 

differences between the CXCR7 protein levels of Cxcr7WT and Cxcr7iΔEC mice. 

Despite a low sample size of Cxcr7iΔEC cells (n=2) , the observed standard error 

in both, Cxcr7WT and Cxcr7iΔEC mice, were such that altering the n number would 

perhaps have an effect on the statistical outcome of the experiment; however, we 

chose to examine endothelial CXCR7 expression with other methods (e.g. qPCR). 

Combined, western blotting experiments in whole mouse heart tissue and isolated 

endothelial cells point to unsuccessful deletion of endothelial CXCR7 gene. 

Since protein content in endothelial cells persisted unchanged despite increasing 

the concentrations of tamoxifen, I examined more directly if CXCR7 mRNA was 

still present after tamoxifen administration. Ideally, isolated endothelial cells would 

have been used for this experiment; however, obtaining samples of isolated cells 

that were suitable for a successful qPCR experiment was challenging. Instead, 

thoracic aorta tissue was used to assess cellular mRNA levels.  

Again, there was no difference observed between Cxcr7WT and Cxcr7iΔEC animals. 

However, like whole mouse heart tissue, aortic tissue also contains non-

endothelial cell types, which could obstruct determination of endothelial-specific 
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CXCR7 deletion. For example, vascular smooth muscle cells that make up a large 

portion of aortic vessel wall, and fibroblasts, which can be found in the outer layer 

of the aortic vessel wall, both express CXCR7 123, 267. RNAscope in situ 

hybridization in combination with IB4 labelling was used to determine the 

presence of CXCR7 mRNA specifically in endothelial cells. Unsurprisingly, there 

was no difference between the Cxcr7WT and Cxcr7iΔEC mice, with both displaying 

CXCR7 mRNA dots in endothelial cells positively labelled with IB4. Interestingly, 

expression was mostly localized within EC suggesting that previous western 

blotting experiments should have been able to detect any reduction in CXCR7 

expression if it had been decreased.  

Cxcr7WT and Cxcr7iΔEC animals consistently displayed comparable levels of 

CXCR7 on protein and mRNA level, an indication of an unsuccessful CXCR7 

gene excision/deletion. In summary, a combination of experiments investigating 

endothelial CXCR7 protein and mRNA changes showed that target gene deletion 

had not occurred, and endothelial cells continued to express CXCR7 protein. This 

could have occurred due to a variety of reasons. For example, the parent-of-origin 

effect, whereby the sex of the parent with a specific allele can have an effect on 

the expression of that gene, is known to occur in certain Cre driver lines 348, 349.  

Additionally, Gallardo et al. and Hayashi et al. reported maternal Cre excision 

patterns that were different than those inherited paternally, for their respective Cre 

driver lines 350, 351. Seeing as a functioning Cre recombinase is crucial for target 

gene deletion, any modification in expression of Cre recombinase could result in 

unsuccessful deletion of endothelial CXCR7 in our mouse model. This could have 

been verified by experiments to measure expression levels of Cre. 

 

Other recombination anomalies, such as mosaic or inconsistent gene deletion and 

deletion in off-target tissues are also known to occur 352-354. Additionally, Cre gene 

expression inconsistency between littermates is also possible, and variability in 

Cre expression has been shown in certain endothelial and haematopoietic Cre 
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driver lines 349, 355. These gene expression anomalies can be difficult to detect, 

and such knowledge can become anecdotally known in specific labs, but it is 

rarely followed by a detailed characterization of a Cre driver line and is not 

commonly disseminated to a wider audience.  

Cre protein is expressed and present in the cell cytoplasm until after the injection 

of tamoxifen, when it translocates into the nucleus and initiates Cre recombination 

at the loxP sites 342. This attribute of Cre recombinase would enable us to check 

whether endothelial cells are the ones expressing Cre by using an anti-Cre 

antibody via a technique such as western blotting or immunohistochemistry. 

However, we know from personal correspondence with Kirsty Naylor and Prof. 

Christiana Ruhrberg (University College London, UK) that this particular Cre is 

indeed expressed in endothelial cells obtained from Cre transgenic mice. 

Furthermore, the Cre construct used in our experiments contains an EGFP 

element, which can also be used to assess the expression of Cre in target tissues. 

If EGFP can be detected in endothelial tissue of Cre-positive mice, then Cre 

recombinase is expressed in those tissues. Furthermore, to determine whether 

successful Cre recombination has taken place in target tissues, mice can be 

injected with tamoxifen and their target tissue genotyped for the presence of the 

recombined allele.  

Experiments described above would inform us on whether Cre was successfully 

expressed in target tissues and the ability of said Cre recombinase to initiate loxP 

site recombination in those tissues. Additionally, we could have also utilized 

primers to distinguish a recombined (knockout) vs floxed allele, which would 

reveal directly whether Cxcr7 has been successfully excised in target tissues.  

We would achieve that by designing primers that bind upstream and downstream 

of respective loxP sites surrounding exon 2 of the Cxcr7 gene. This would mean 

that when running a PCR, a floxed allele would produce a larger product and a 

recombined allele a shorter product, since the exon 2 of Cxcr7 would no longer 

be present in the target tissue of the mouse with a successfully recombined allele, 
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providing us with a clear-cut way to investigate whether our target sequence was 

successfully excised. 

Mouse lines that were inbred for a significant number of generations over a long 

period of time can also accumulate mutations, leading to genetic drift 356.  Genetic 

drift refers to spontaneous changes occurring in genomic DNA, and can have an 

effect on the mouse phenotype 356.  The mice used in our experiments were not 

an inbred strain, which decreased the probability of genetic drift. Inbred mice are 

brother-sister mated for more than 20 generations and a small, spontaneous DNA 

mutation can have a significant impact on their genetic makeup, due to their 

genetic uniformity 356. Mice that are not inbred or are regularly backcrossed  to a 

relevant genetic background accumulate genetic changes at a slower rate and 

are not as susceptible to the occurrence of spontaneous DNA mutations 357. 

Nevertheless, there is still a possibility that a critical mutation could have occurred 

in this time period. For example, in the event that the mutation was at or near a 

loxP site, the ability to excise the CXCR7 exon flanked by loxP sites could be lost. 

It could have been interesting to perform genomic sequencing on genetic material 

obtained from colony founders and later generations of mice to investigate if such 

mutations have indeed occurred.  

Moreover, the distance between loxP sites can also have an impact on the 

success rate of Cre recombination, since the longer the distance the more difficult 

the DNA sequence can be to recombine 358. However, the loxP sites in our mice 

were <1000 bp apart (as confirmed by PCR), which is far shorter than the >20,000 

bp sequences that have previously been reported as challenging to recombine 

359.   

Most papers report favorable recombination efficiency with a comparable distance 

between loxP sites and it seems unlikely for this to be the reason why endothelial 

CXCR7 gene expression persisted in our transgenic mouse model 360. 
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Ultimately, the most likely reason for unsuccessful deletion of CXCR7 gene in 

endothelial cells rests with the actual Pdgfb-Cre driver line itself. Pdgfb is known 

to exhibit the highest level of expression in the endothelial tip cells, which lead 

sprouting vessels during development, while stalk cells, which form most of the 

trunk of the sprouting vessel, are known to express less 361. Consequently, using 

the Pdgfb-Cre driver will result in different subpopulations of endothelial cells (e.g. 

stalk cells) exhibiting varying levels of Cre recombinase activity.  

Furthermore, Claxton et al. report that in these mice certain large vessels such as 

the dorsal aorta do not exhibit Cre recombinase activity at P1 243. Since dorsal 

aorta later develops into parts of descending aorta, it is possible that this lack of 

Cre activity affects a large portion of mouse aorta (used in our characterization 

experiments), which would prevent CXCR7 gene deletion in the vessel from 

occurring 243. It is also important to note that most of their model characterization 

was performed on pups with the majority of focused placed on endothelial cells 

found within developing vessels. Additionally, when Cre recombination was 

induced in the retinal plexus of an adult animal as opposed to a pup, 

recombination was seen to occur only in a small subpopulation of cells 243. It is 

possible that this extends beyond the retina to other vascular beds, which would 

make Pdgfb unsuitable as an endothelial Cre driver line in adult mice and more 

suitable for investigating endothelial cells during blood vessel development. 

However, in my experiments, expression of Cre was not investigated, and 

therefore it is not known whether Cre was actively expressed in target tissues. 

The hypothesis that Pdgfb-Cre is more suitable to use in pups could have been 

tested by investigating CXCR7 endothelial-cell deletion in adults and pups 

injected with tamoxifen.  

If pups injected with tamoxifen displayed successful deletion of CXCR7 in a large 

population of endothelial cells, but not adult mice, then it is likely that age of mouse 

at tamoxifen injection is important for successful deletion of CXCR7 in endothelial 
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cells. Further work is needed to validate these hypotheses, and asses the 

suitability of Pdgfb-Cre in adult inducible transgenic mouse models.  

Therefore, for researchers hoping to use an endothelial-specific Cre driver line for 

generating adult transgenic mice, I would recommend one of the well-researched 

vascular cadherin 5 (Chd5) Cre driver lines, since Chd5 is expressed in all 

endothelial cells, and its Cre constructs exhibit good rates of recombination 338. 

 Summary 

Western blotting, qPCR and RNAscope in situ hybridization revealed that CXCR7 

protein and mRNA levels continued to be detected in endothelial cells of the heart 

and aorta of Cxcr7iΔEC animals. Expression of CXCR7 mRNA and protein in 

Cxcr7iΔEC cells was quite robust and comparable to the levels observed in Cxcr7WT 

mice. It is therefore possible that endothelial-specific CXCR7 gene deletion was 

unsuccessful. Based on the paper by Claxton et al., the Cre recombination activity 

of Pdgfb-Cre line is far superior in neonatal mice, while Cre recombination activity, 

when induced in adult mice is poor and limited to a small subpopulation of cells 

243. Therefore, an alternative Cre driver line (e.g. Chd5) should be considered for 

future transgenic models with endothelial-specific inducible CXCR7 deletion in 

adult mice.  
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7 Examining the effect of VUF11207 and TC14012 on 

endothelial cell migration 

This chapter contains work that was carried out in collaboration with Kaloyan 

Takov, who provided two experimental repeats for Figure 7-4. 

7.1 Background 

Angiogenesis is a crucial physiological process, which enables formation of new 

vessels from pre-existing vasculature and is described in more detail in section 

1.2.2 362. Along with its role in vascular development, angiogenesis is also 

involved in many pathological processes, such as diabetic retinopathy and wound 

healing 363, 364. It consists of different stages of vessel formation, one of which is 

cell migration. However, angiogenesis as a whole, and specifically cell migration 

require a trigger, which can be either mechanical, chemical or in the form of an 

immobilized ligand 62-67.  

 

SDF-1α has previously been shown as a pro-angiogenic factor capable of 

stimulating endothelial cell migration 62, 365. However, there is limited data 

available regarding CXCR7-dependent cell migration since most studies either 

focused on the CXCR4 receptor or did not differentiate between the two 366, 367. 

Therefore, we wanted to examine the role of CXCR7 in endothelial cell migration 

in vitro, for which CXCR7 agonist TC14012 and VUF11207 were used in a 

multiwell Boyden chamber assay. CXCR7 agonists used for cell migration 

experiments were previously described in detail in section 1.3.3. 

 

7.2 Research aims and objectives 

Investigate the effects of CXCR7 agonists on HUVEC migration: 

- Examine the effects of CXCR7 agonists, VUF11207 and TC14012 on 

HUVEC migration via Boyden chemotaxis chamber.  
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7.3 Methods 

In addition to the general methods described in Chapter 2, the following specific 

methods were used in the experiments described in this chapter. 

 Cell culture 

HUVEC were cultured as previously described in section 2.3. Prior to the 

experiment, HUVEC were serum-starved for 3 h with DMEM medium (Gibco) 

supplemented with penicillin/streptomycin (Gibco). HUVEC were used in the 

experiment between passages 5-8. 

 Cell treatments with VUF11207 and TC14012 

HUVEC were cultured as described in section 2.10. At the beginning of the 

experiment VUF11207 (100 nM, 1 µM, 30 µM), SDF-1α (100 nM), TC14012 (1 

µM, 10 µM, 30 µM), TC14012 (1 µM) + SDF-1α (100 nM), PBS alone or 10% FBS 

diluted in PBS were added to the migration chamber for the duration of the 

experiment. For experimental sets containing TC14012, DMSO (<0.05% final 

conc.) was added to all treatments. All individual migration experiments were 

normalized to 10% FBS.  

 Cell migration analysis 

After the conclusion of the experiment, blots were stained with 0.5% crystal violet 

as described in section 2.10 and visualized with LiDE 210 Canon scanner. Each 

sample was assayed in duplicate. Obtained images were analysed using ImageJ 

software.  
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7.4 Results 

To investigate whether CXCR7 agonists, VUF11207 and TC14012 stimulate 

migration of HUVEC, a series of cell migration experiments were performed. As 

shown in Figure 7-1, administration of SDF-1α (100 nM) or VUF11207 at various 

concentrations did not significantly increase cell migration after a 6 h migration 

experiment in HUVEC.   

Based on previously published data and observed lower variation in cell response, 

the duration of cell migration was shortened to 3 h and the above experiment 

repeated 368, 369. As seen in Figure 7-2, SDF-1α (100 nM), but not VUF11207 (100 

nM – 30 µM), significantly increased HUVEC cell migration compared to control 

(SDF-1α vs ctrl = 79.1 ± 13.3 % vs 45.6 ± 7.6 %, p < 0.01). However, no effects 

on migration were seen with VUF11207. 
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Figure 7-1:  The effect of VUF11207 on 6 h cell migration in HUVEC. Cells were treated with 

SDF-1α or VUF11207 at the beginning of the experiment and allowed to undergo cell migration 

for 6 h. None of the treatments significantly increased cell migration compared to control. A.) 

Representative image of cell migration membrane stained with 0.5% crystal violet. VUF11207 is 

listed only as respective concentrations. B.) Quantification of cell migration. Results were 

normalized to 10% FBS. One-way ANOVA with Dunnet’s post-hoc test with all groups compared 

to control, all comparisons were non-significant; n = 4 individual migration experiments. Ns = non-

significant. 
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Figure 7-2: The effect of VUF11207 on 3 h cell migration in HUVEC. Cells were treated with 

SDF-1α or VUF11207 at the beginning of the experiment and allowed to undergo cell migration 

for 3 h. Administration of SDF-1α (100 nM) significantly increased cell migration compared to 

control. A.) Representative image of cell migration membrane stained with 0.5% crystal violet. 

VUF11207 is listed only as respective concentrations. B.) Quantification of cell migration. Results 

were normalized to 10% FBS. ** p < 0.01 SDF-1α 100 nM vs ctrl, One-way ANOVA with Dunnet’s 

post-hoc test with all groups compared to control; n = 5 individual migration experiments. 
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Figure 7-3: The effect of TC14012 on cell migration in HUVEC. Cells were treated with SDF-

1α or TC14012 at the beginning of the experiment and allowed to undergo cell migration for 3 h. 

Administration of SDF-1α (100 nM) or TC141012 (1 µM) significantly increased cell migration 

compared to control. A.) Representative image of cell migration membrane stained with 0.5% 

crystal violet. TC14012 is listed only as respective concentrations. B.) Quantification of cell 

migration. Results were normalized to 10% FBS. * p < 0.05 SDF-1α 100 nM vs ctrl, TC14012 1 

µM vs ctrl, One-way ANOVA with Dunnet’s post-hoc test with all groups compared to control; n = 

6 individual migration experiments. Ns = non-significant.  
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In order to confirm the above experiments, an alternative CXCR7 agonist, 

TC14012, was tested in a new set of experiments using 3 h cell migration. Here, 

SDF-1α (100 nM) significantly increased HUVEC migration (Figure 7-3) compared 

to control, as expected (SDF-1α vs ctrl = 74.7 ± 14.9 % vs 36.3 ± 6.1 %, p < 0.05). 

Similarly, administration of TC14012 (1 µM) resulted in a significant increase in 

HUVEC migration, compared to control (TC14012 vs ctrl = 78.4 ± 17.0 % vs 36.3 

± 6.1 p < 0.05). Higher concentrations of TC14012 (10 µM and 30 µM) had no 

effect on HUVEC migration. 

Since both TC14012 and SDF-1α exhibited pro-migratory effects, we wanted to 

test whether a combination of both drugs would further increase HUVEC migration 

compared to each drug administered alone (Figure 7-4). Co-incubation of SDF-

1α (100 nM) and TC14012 (1 µM) significantly increased HUVEC migration 

compared to control (SDF-1α + TC14012 vs ctrl = 109.5 ± 12.7 % vs 41.0 ± 5.8 

%, p < 0.01). The additive cell migration effect was also significant when 

compared to TC14012 (1 µM) administered alone (SDF-1α + TC14012 vs 

TC14012 = 109.5 ± 12.7 % vs 69.5 ± 8.5 %, p < 0.05), but not when compared to 

SDF-1α (100 nM) administered alone. In contrast, incubation of either SDF-1α 

(100 nM) or TC14012 (1 µM) alone did not significantly increase HUVEC migration 

in this experiment. 
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Figure 7-4: The effect of TC14012 + SDF-1α on cell migration in HUVEC. Cells were treated 

with SDF-1α, TC14012 or a combination of both at the beginning of the experiment and allowed 

to undergo cell migration for 3 h. Administration of SDF-1α (100 nM) + TC14012 (1 µM) 

significantly increased cell migration compared to control. SDF-1α (100 nM) or TC14012 (1 µM) 

administered on their own did not significantly increase HUVEC migration compared to control. 

A.) Representative image of cell migration membrane stained with 0.5 % crystal violet. B.) 

Quantification of cell migration. Results were normalized to 10% FBS. ** p < 0.01 SDF-1α + 

TC14012 vs ctrl, # p < 0.05 SDF-1α + TC14012 vs TC14012, One-way ANOVA with Tukey’s post-

hoc test comparing all groups to each other; n = 6 individual migration experiments. 
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Figure 7-5: The effect of TC14012 and SDF-1α on cell migration in HUVEC - pooled data. 

Cells were either treated with SDF-1α (100 nM) or TC14012 (1 µM) at the beginning of the 

experiment and allowed to undergo cell migration for 3 h. Administration of either SDF-1α or 

TC14012 significantly increased cell migration compared to control. Data were pooled from 

experiments presented in Figure 7-3 and Figure 7-4. Results were normalized to 10% FBS. ** p < 

0.01 SDF-1α vs ctrl and TC14012 vs ctrl, One-way ANOVA with Tukey’s post-hoc test comparing 

all groups to each other; n = 12 individual migration experiments. 

Administration of neither SDF-1α, nor TC14012 was able to consistently generate 

a significant increase in HUVEC cell migration in previous experiments. 

Therefore, we pooled data from two experiments utilizing comparable 

methodology (Figure 7-3 and 7-4), in order to increase the n numbers and show 

more definitively whether SDF-1α (100 nM) or TC14012 (1 µM) are capable of 

inducing cell migration. Separate administration of either SDF-1α or TC14012 

significantly increased mean HUVEC cell migration when compared to control 

(SDF-1α vs ctrl = 74.6 ± 8.7 % vs 38.6 ± 4.7 %, p < 0.01; TC14012 vs ctrl = 73.9 

± 9.2 % vs 38.6 ± 4.7 %, p < 0.01). Based on the pooled data, both SDF-1α and 

TC14012, act in a pro-migratory fashion in our experimental model.  
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7.5 Discussion 

Following the discovery of CXCR7 as an alternative receptor for SDF-1α, it was 

postulated that, like CXCR4, it plays an important role in a variety of physiological 

processes. Since SDF-1α is a known chemotactic factor, which participates in 

vessel regeneration, tumour cell migration, and homing of HSC and other stem 

cell types, a clear hypothesis was that CXCR7 is also involved in some, if not all 

of these processes 370-373. With increased interest in the CXCR7 receptor, new 

agonists were developed, enabling investigation of the effects of CXCR7 separate 

from those of CXCR4 151, 153. Based on previous results indicating a role for 

CXCR7 in angiogenesis broadly, and cell migration specifically, we wanted to 

examine the role of CXCR7 in endothelial cell migration in an in vitro cell migration 

assay 366, 374.  

SDF-1α (100 nM) increased HUVEC migration after 3 h, but not after 6 h of 

incubation. CXCR7 agonist VUF11207 did not increase HUVEC migration at any 

concentration tested, while TC14012 significantly increased HUVEC migration at 

1 µM, but not at 10 or 30 µM. Pooling data from two separate experiments 

confirmed that both, SDF-1α and TC14012 increase HUVEC migration at 100 nM 

and 1 µM, respectively. As previously discussed in section 1.3.3.3 the 

concentration of both agonists used in the cell migration assay was based on their 

EC50 values and was expected to be sufficient to elicit a response.  

CXCR7 has been shown  to be involved in different aspects of angiogenesis of 

various types of endothelial cells and their progenitors 375. Deletion of CXCR7 in 

cardiac microvessels has been shown to impair the expression of pro-angiogenic 

growth factor HB-EGF (Heparin-binding EGF-like growth factor) 119, 222, 375. 

Furthermore,  Melo et al. described an essential role for CXCR7 in HSC cell 

migration after stimulation with SDF-1α and Essencay et al. reported pro-

migratory effects of SDF-1/CXCR7 axis in glioma cell migration 366, 367.  



181 

 

The majority of cell migration experiments were performed using a 3 h incubation 

protocol versus the 6 h migration protocol, due to the positive control (SDF-1α) 

exhibiting significantly increased cell migration only in the latter. One of the 

reasons for this might be unstable gradients in the cell migration chamber, created 

by fluid level imbalances 376. Such imbalances can be introduced into the 

experiment during the pipetting phase or during the placement of a liquid-porous 

membrane over the bottom half of the migration chamber. It is challenging to 

account for such errors due to difficulties with quantifying and controlling said 

gradients in a migrations chamber 376. Therefore, a 3 h incubation, which 

produced more reproducible and, therefore more reliable results was used for the 

remainder of cell migration experiments.  

Not all researchers agree that CXCR7 exhibits pro-migratory effects, Mazzinghi 

et al. reported that while CXCR7 is involved in  human renal EPC survival and 

adhesion to endothelium, it was CXCR4 that mediated cell migration 377. Similarly, 

Dai et al. reported that the migration of bone marrow-derived EPC was not 

affected by the administration of either CXCR4-blocking antibody or CXCR7 

inhibitor (CCX733) 374. Interestingly, of the two agonists tested, only TC14012 

significantly increased HUVEC migration in our study (Figure 7-3). This reflects 

the discrepancy observed in past studies, where there is little consensus over the 

existence of pro-migratory effects via CXCR7. The differences may also be 

related to the type of cell (EPC versus differentiated endothelial cell), and type of 

drug, (CXCR4 inhibitor vs CXCR7 agonist), that were seen to have an effect in 

the above experiments. After all, small molecules of different structures can have 

very different characteristics, including potential off-target effects. 

Past research indicates that VUF11207 and TC14012 exhibit high affinity to 

CXCR7 and/or strong β-arrestin recruitment abilities. 151, 153, 308. VUF11207 

displayed high affinity (pKi = 8.1) in a CXCR7 radioligand binding assay using 

radiolabelled SDF-1α 153. It also performed favourably in a β-arrestin2 recruitment 

assay, as discussed previously in section 1.3.3. 153. 
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TC14012, a CXCR4 inverse agonist, also exhibited good β-arrestin recruitment to 

CXCR7 using a BRET-based experimental system 151. The investigation of β-

arrestin recruitment to CXCR7 does not directly measure the specificity of 

VUF11207 and TC14012. Instead, it measures the ability of the agonist to initiate 

recruitment of β-arrestins, which is G-protein independent and limited to CXCR7. 

Additionally, measuring affinity does not directly measure specificity 378. However, 

it is often argued that high-affinity can be equaled to high-specificity, since 

selecting for high-affinity compounds should ensure highly specific binding 378. 

Therefore, selecting for high-affinity compounds based on functional binding 

assays coupled with sophisticated computer modelling experiments is considered 

a tried and tested approach of determining drug specificity 379. Nevertheless, there 

are very few studies and consequently limited data available on the affinity, 

specificity and potency of both drugs, especially in the case of VUF11207, which 

was not commercially available until recently 153.  

Levoye et al. reported that anti-CXCR7 antibody reduced SDF-1α-dependent 

migration at 30 nM, but not at 0.3 nM or 3 nM. They interpret these results as 

showing that CXCR7 acts as a modulator of migration by scavenging SDF-1α and 

thereby decreasing its activity on CXCR4 120. However, this interpretation does 

not agree with our results.  If that were the case then TC14012 would not be able 

to increase cell migration when administered alone, since it does not bind to or  

activate CXCR4. Therefore, it could be that CXCR7 acts as a modulator of 

CXCR4-dependent cell migration when both receptors are active, while also being 

able to directly stimulate cell migration in the absence of CXCR4 activation 120. 
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We also wanted to examine the effect of both, SDF-1α and TC14012 combined 

on HUVEC migration. Co-administration of  SDF-1α (100 nM) and TC14012 (1 

µM) significantly increased cell migration of HUVEC, while in the same experiment 

either drug administered alone did not exhibit a significant increase in cell 

migration (Figure 7-4). Since SDF-1α and TC14012 were observed to significantly 

increase cell migration in previous experiments, increasing the number of repeats 

could increase the power of the experiment to detect a significant difference 

between the groups. Similarly, using an incubation time of more than 3 h might 

assist with analysis as the staining of migrated cell is clearer after a longer period 

of time; however, this can come at an expense of reproducibility/repeatability of 

results, as already discussed above. Interestingly, co-administration of SDF-1α 

and TC14012 also significantly increased cell migration, when compared to 

TC14012 (1 µM) alone.  

To overcome the inconsistent results obtained with SDF-1α (100 nM) and 

TC14012 (1 µM) data was pooled from two separate experiments with 

comparable experimental setup (Figure 7-5). Combining the two experiments 

provided a higher n number and therefore more statistical power. In turn, both 

compounds produced statistically significant increases in HUVEC migration when 

compared to control. Therefore, we confirmed that SDF-1α acts as a pro-

migratory molecule, as previously shown by others 222, 380, 381. Since we did not 

differentiate between the CXCR4 and CXCR7 receptor involvement we cannot 

comment on whether pro-migratory signalling in this instance proceeds through 

either one single receptor or perhaps through both. On the other hand, 

administration of CXCR7 agonist TC14012 also resulted in HUVEC migration 

increase in our pooled data. Since TC14012 is not reported to show any signalling 

through CXCR4 it can be presumed that this pro-migratory effect proceeds 

entirely via the CXCR7 receptor. This is particularly interesting since CXCR7 has 

not been shown previously as actively involved in cell migration in HUVEC.  
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Instead it has been presented as capable only of aiding in cell migration by 

scavenging excess SDF-1α entering the pro-migratory SDF-1α/CXCR4 signalling 

axis 141. However, our results show that TC14012 is capable of increasing 

endothelial cell migration through CXCR7, adding to the number of other pro-

angiogenic processes that the CXCR7 receptor has been shown to participate in 

112.  

Interestingly, co-administration of SDF-1α and TC14012 did not significantly 

increase cell migration when compared to SDF-1α alone. As described earlier, 

increasing the number of repeats and using a slightly longer incubation period 

could help solve this problem. Alternatively, the SDF-1α concentration used in 

HUVEC cell migration experiments might not elicit a maximal chemotactic 

response, which could help explain the low effect size observed. Nevertheless, 

the obtained results suggest that CXCR7 plays an active role in cell migration and 

there are two possible reasons how this occurs. 

In the event that SDF-1α at 100 nM does not elicit a maximal chemotactic 

response, be it through CXCR4 and/or CXCR7, addition of TC14012 further 

stimulates chemotactic signalling and consequently further increases the cell 

migration response. As previously stated, Jinquan et al. report that on CD4+ T 

lymphocytes they observed a bell-shaped SDF-1α dose response curve with the 

greatest chemotactic response observed at 100 ng/mL, which is equivalent to 

approx. 12.5 nM 382. Since we used 100 nM SDF-1α in our experiments, this 

concentration could have already surpassed the dose needed for a maximal 

response. The experiments by Jinquan et al. were performed on CD4+  T 

lymphocytes and the question remains whether their findings can be directly 

extrapolated to endothelial cells 382. This could be investigated by performing a 

dose-response curve for SDF-1α and TC14012 on HUVEC to determine which 

concentration elicits a maximal response in a cell migration experiment. 
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On the other hand, if 100 nM SDF-1α did already elicit a maximal response it 

could be that addition of TC14012 activates signalling through an alternative 

pathway to that utilized by SDF-1α. Past research suggests that SDF-1α/CXCR4-

dependent cell migration signals through PI3K/Akt 230, 383. We did not observe 

phosphorylation of Akt with TC14012 in our western blotting experiments (section 

5.4), which would suggest CXCR7 chemotactic signalling proceeds through a 

different signalling pathway. Again, this could be examined by combining SDF-1α 

at a concentration that elicits a maximal chemotactic response with TC14012 to 

observe whether incubation of both drugs together results in further increase in 

cell migration compared to incubation of these drugs alone. 

Additionally, TC14012 significantly increased cell migration only at 1 µM, but not 

at 10 or 30 µM. This might suggest a bell-shaped concentration-response curve, 

rather than a sigmoidal curve for involvement of TC14012 in cell migration. Bell-

shaped concentration response curves are often indicative of a complex biological 

relationship between the ligand and its target 217. Levoye et al. also suggest that 

the chemotactic curve of SDF-1α/CXCR7 interaction is bell-shaped, which 

translates into increased cell migration at lower concentrations. The existence of 

a bell-shaped chemotactic curve for SDF-1α is also shown by Jinquan et al. on 

CD4+ T lymphocytes and considering the intricate signalling interplay exhibited 

between CXCR4 and CXCR7 in other physiological and pathological processes 

lends this theory/hypothesis further credence  382, 384, 385.   

Overall, we have shown that along with SDF-1α, TC14012 is also able to induce 

endothelial cell migration. This is important since pro-migratory effects of SDF-1α 

have been previously contributed solely to the SDF-1α/CXCR4 signalling axis, 

while we have shown that CXCR7 exhibits pro-migratory effects in its own right, 

along with its other pro-angiogenic actions described previously (e.g. tubule 

formation) 386. In a broader setting this means that due to its various pro-

angiogenic effects CXCR7 might play an important role in long-term regeneration 

of heart muscle after MI.  
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We know that angiogenesis plays a crucial role in the myocardium post-MI, as 

rebuilding the vascular network and establishing sufficient collateral circulation 

helps to reperfuse the heart after MI. Therefore, there is potential for developing 

of pro-regenerative therapies based on the CXCR7 receptor that would aid in 

myocardial salvage and recovery after MI. Despite the existence of many pro-

angiogenic therapies, few have shown promise when taken into from bench to 

bedside. Therefore, any novel pro-angiogenic therapy represents an exciting 

target that could provide beneficial effects to patients who have suffered from a 

myocardial infarction and also prevent the occurrence of heart failure in these 

patients later in life.  

 Summary 

Administration of SDF-1α (100 nM) exhibited pro-migratory effects on HUVEC 

after 3 h, but not after 6 h. CXCR7 agonist VUF11207 did not increase HUVEC 

migration at any concentration tested, while TC14012 elicited a cell migration 

response at 1 µM; demonstrating a possible pro-migratory role of CXCR7. 

Combined treatment of SDF-1α and TC14012 significantly increased cell 

migration, although in the same experiment SDF-1α and TC14012 administered 

alone did not significantly increase cell migration. Pooling data from multiple 

experiments revealed that both, SDF-1α (100 nM) and TC14012 (1 µM) exhibit 

pro-migratory effects. In conclusion, not only CXCR4 but also CXCR7 looks to be 

involved in endothelial cell migration downstream of SDF-1α binding. However, 

each receptor might stimulate endothelial cell migration through different 

intracellular pathways and further research is needed to elucidate their respective 

roles during this process.  
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8 General conclusions 

CXCR7 has only recently been discovered as an atypical chemokine receptor for 

the ligand SDF-1α, in addition to the already established CXCR4 receptor. Since 

the role of CXCR4 in cardioprotection and angiogenesis has been well 

documented, focus was expanded to CXCR7 and its role in these processes, 

which was aided by emergence of novel CXCR7 receptor modulators. 

To date, CXCR7 has been shown to be involved in anti-fibrotic and pro-

regenerative effects in various endothelial cell types and shown to exert 

cardioprotective effects in murine tissues. Past research also revealed the 

presence of CXCR7 receptor in non-endothelial cell types; however, it is the 

endothelial CXCR7 which has shown most therapeutic potential. The main aim of 

this thesis was to investigate the effects of CXCR7 agonist administration on acute 

MI, as well as determining the mechanism behind CXCR7 receptor activation on 

endothelial cells. Furthermore, we also wanted to examine the pro-regenerative 

potential of endothelial CXCR7, by probing its participation in endothelial cell 

migration, a crucial step in the process of angiogenesis. Each of these factors has 

been discussed in detail in previous chapters.  

After confirming the presence of CXCR7 on isolated endothelial cells and 

commercially available endothelial cell lines, our focus was shifted on to 

determining the cardioprotective potential of CXCR7 via the CXCR7 agonist 

VUF11207.  

Described as CXCR7-biased with no purported action on CXCR4, it represented 

a fine investigative tool to be used on rat isolated perfusion model ex vivo. 

Interestingly, administration of VUF11207 immediately prior to reperfusion 

afforded no measurable cardioprotection in our model.  
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However, as previously discussed in section 4.5., there are numerous reasons 

why this could have occurred and what the implications are. Based on the cell-

migration results presented in this thesis the culprit might be the agonist, 

VUF11207, which also failed to initiate endothelial cell migration, further described 

below. Therefore, this lack of observed cardioprotection does not necessarily 

signify the lack of CXCR7 cardioprotective potential immediately after MI. Further 

research would be needed to fully comprehend the role of CXCR7 in this setting 

by making use of reliable CXCR7 agonists to ensure the validity of obtained 

results. 

This thesis also examined the role of the RISK signalling pathway in endothelial 

CXCR7 receptor activation. Since RISK pathway, which includes signalling 

through PI3K/AKT and MAPK pathways, is known as the main effector of 

cardioprotection, which is initiated by binding of SDF-1α to CXCR4, it was 

expected that CXCR7 would exhibit similar signalling properties. Surprisingly, this 

was not the case for CXCR7. Administration of CXCR7 agonists VUF11207 or 

TC14012 failed to activate either PI3K/AKT or MEK/ERK arm of the RISK 

signalling pathway. Again, this does not eliminate a possible role for CXCR7 in 

cardioprotection, although it suggests that a different signalling axis is behind any 

cardioprotective effects exhibited by CXCR7. There is still a lot of uncertainty and 

contrasting results regarding the signalling abilities of the CXCR7 receptor, 

compounded by the fact that it does not signal via classical G protein signalling, 

but instead utilizes less well understood β-arrestin-biased signalling. Further work 

is needed to decode the exact signalling pathway downstream of CXCR7 receptor 

activation and investigate whether its activation is capable of affording 

cardioprotection. 

The aim of this thesis was also to generate an inducible transgenic mouse model 

of endothelial CXCR7 deletion, which could help shed light on the acute 

cardioprotective potential of endothelial CXCR7 receptor.  
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However, the desired transgenic model was not generated successfully, which 

somewhat hindered the plans for this thesis to be focused mainly on 

cardioprotection. In the light of the issues we faced with the transgenic mice, the 

focus was switched to another aspect of CXCR7 receptor function. As with 

CXCR4, there is evidence of CXCR7 involvement in various aspects of 

angiogenesis, including cell migration. In the scope of MI, angiogenesis is 

particularly important, since it has the ability to salvage ischaemic myocardium, 

impact ventricular remodelling and consequently prevent the transition to heart 

failure. Angiogenesis is also involved in tissue regeneration in the long term as 

opposed to acute cardioprotection, which affords beneficial effects immediately 

after MI. Therefore, CXCR7 participation in cell migration, and consequently 

angiogenesis, could present a potential pro-regenerative role of CXCR7.  

Interestingly, multiwell Boyden chemotaxis assay suggested a pro-angiogenic 

role for CXCR7 agonist TC14012, but not VUF11207, using a commercially 

available endothelial cell line. Any pro-angiogenic effects observed with 

administration of SDF-1α have previously been attributed to its signalling via the 

CXCR4 receptor, with CXCR7 portrayed mainly in a scavenging role, regulating 

circulating SDF-1α. However, the data presented in this thesis suggest a pro-

migratory role for CXCR7 in HUVEC, independent of the CXCR4 receptor, which 

represents a novel finding of this thesis. As discussed in Chapter 7 and elsewhere, 

the downstream effectors responsible for initiating cell migration might differ 

between the CXCR4 and CXCR7 receptors. This highlights a need for further 

research into the cell migration role of endothelial CXCR7, to elucidate the exact 

mechanism responsible for the observed effects and explain the difference in pro-

angiogenic potential of both CXCR7 agonists, which have been discussed in 

detail in section 7.5. 
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In conclusion, I believe there was merit in querying the involvement of CXCR7 in 

cardioprotection and angiogenesis, specifically cell migration. For clarification, my 

original aims focused more on the role of immediate vs longer-term 

cardioprotection examined through generation of CXCR7 transgenic animals and 

utilization of commercially-available CXCR7 agonists. However, half way through 

my PhD a study was published by Hao et al., which already explored many of the 

same ideas that I was also interested in, which meant that the scope for 

undertaking novel research in this area shrunk significantly. To retain an aspect 

of novelty in my thesis I then turned to less-explored immediate cardioprotection 

(observed <day after initial MI), as well as the cell-migration role of endothelial 

CXCR7 as the central theme of this thesis. As discussed throughout this thesis, 

investigation of acute cardioprotective effects of CXCR7 mere hours post-MI did 

not yield positive results. This is perhaps not surprising as most beneficial effects 

that CXCR7 has been shown to exert, occurred throughout a longer period of time 

(weeks) post-MI. Since angiogenesis in the heart post-MI also does not occur 

immediately, but represents a long-term process it is more likely that CXCR7 

exhibits its beneficial effects by affecting re-vascularization of the damaged 

myocardium. This would agree with the lack of acute cardioprotection seen in 

Chapter 4, as well as the lack of RISK pathway involvement seen in Chapter 5. 

Consequently, CXCR7 might represent an exciting target for pro-regenerative 

treatments, but its future as an acute cardioprotective effector seems uncertain. 

Hence, future work on this topic will be better suited to a research group that 

utilizes techniques, which are capable of successfully identifying and 

characterizing novel pro-regenerative targets. 
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