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Abstract

This online supplement contains the materials and proofs omitted from Kitagawa

and Tetenov (2019), “Equality-minded Treatment Choice.”

B Illustrative Example

In this section, we illustrate the properties of rank-dependent SWFs in comparison with the

utilitarian one in a simple setting with the Gini SWF, WGini(F ) =
∫∞

0
(1−F (y))2dy. We first

compare the welfare ordering on the parametric family of log-normal outcome distributions.

Second, we consider a simple treatment choice problem with binary X in order to illustrate

how the optimal rules fundamentally differ between the two SWFs.

First, consider the welfare ordering over the family of log-normal distributions of out-

comes, Y ∼ log N(μ, σ2), ignoring the treatment choice problem. The mean of Y is given

by E(Y ) = exp(μ + σ2/2). The Gini inequality coefficient for log N(μ, σ2) is given by

2Φ
(
σ/

√
2
)
− 1 (see, e.g., Cowell (1995)), where Φ(∙) is the cdf of the standard normal

distribution. By (5), we have

WGini(μ, σ) ≡ 2 exp

(

μ +
σ2

2

)[

1 − Φ

(
σ
√

2

)]

. (B.1)

This welfare function is increasing in μ, whereas it is not monotonic in σ. For instance, when

μ = 0, WGini(μ, σ) is decreasing in σ for σ < 0.87 and increasing for σ > 0.87. See Figure B.1

for a plot of WGini(μ, σ) over σ ∈ [0, 2] holding μ = 0 fixed. The U-shape of the Gini social
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Figure B.1: Equality-minded welfare for log N(0, σ2).
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Figure B.2: Density of log N(0, σ2).
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welfare indicates that for σ < 0.87, the negative contribution to the social welfare from an

increase in the Gini coefficient dominates the positive contribution from an increase in the

mean, while for σ > 0.87, this relationship reverses. In Figure B.2, we plot the densities of

the log-normal distributions for σ = 0.25, 0.5, and 1. Since E(Y ) is monotonically increasing

both in μ and σ, higher σ is always preferable in terms of the utilitarian social welfare. In

contrast, as shown in the welfare values plotted in Figure B.1, the Gini social welfare yields

the complete opposite welfare ordering over the three log-normal distributions in Figure B.2.

Consider now the treatment choice problem. Suppose there is only one binary covariate

X ∈ {a, b} with Pr(X = a) = Pr(X = b) = 1/2. Consider the following parameterization of

the potential outcome distributions:

Y1|(X = a) ∼ log N(μa, σ
2
a), Y0|(X = a) ∼ log N(0, 0.82),

Y1|(X = b) ∼ log N(μb, σ
2
b), Y0|(X = b) ∼ log N(0, 0.82). (B.2)

According to Theorem 2.1, it suffices to consider non-randomized rules to search for an opti-

mal one. We therefore consider ranking the following four policies: G = {∅, {a}, {b}, {a, b}} ≡

{G∅, Ga, Gb, Gab}.

Suppose σa = σb = 0.8 and μa, μb > 0. Then, in each subpopulation of X = a and

X = b, the distribution of Y1 stochastically dominates the distribution of Y0. Since the

rank-dependent social welfare is clearly monotonic in the first-order stochastic dominance

relationship, treating both {X = a} and {X = b} maximizes the Gini social welfare. This

optimal rule indeed coincides with that of the utilitarian welfare case. In general, when

stochastic dominance relationships between Y1|X- and Y0|X-distributions are present for all

X, the optimal rule for the rank-dependent social welfare agrees with the utilitarian one and

can be obtained by solving the treatment choice problem separately in each subpopulation.

These results change drastically once we let σa 6= σb. Suppose we fix μa = μb = 0, while

we vary both σa and σb over [0.6, 1.2]. As the mean of a log normal random variable is
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Figure B.3: Optimal policies under the additive welfare. Log-normal potential outcome

distributions with μa = μb = 0.
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Figure B.4: Optimal policies under the Gini welfare. Log-normal potential outcome distri-

butions with μa = μb = 0.
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increasing in σ, the optimal treatment rule for the additive welfare is obtained by

G∗
Add =






G∅ if σa < 0.8 and σb < 0.8,

Ga if σa ≥ 0.8 and σb < 0.8,

Gb if σa < 0.8 and σb ≥ 0.8,

Gab if σa ≥ 0.8 and σb ≥ 0.8.

In Figure B.3, we plot the optimal treatment rule under the additive welfare at each grid point

of (σa, σb) ∈ [0.6, 1.2]2. Since the additive social welfare is separable over the subpopulations,

a treatment preferable for one subpopulation does not depend on the treatment assigned to

the other subpopulation. The regions in which different rules from G are optimal form a

quadrant partition, as shown in Figure B.3.

In Figure B.4, we plot the optimal policies in terms of the Gini social welfare. The regions

in which different rules from G are optimal are strikingly different compared with the additive

welfare case (G∗
Add) shown in Figure B.3. In the neighborhood of (σa, σb) = (0.8, 0.8), the

subpopulations to be treated under the Gini social welfare are the converse of those to be

treated under the utilitarian welfare. This is because the Gini social welfare is decreasing in

σ in the neighborhood of σ = 0.8 (Figure B.1), while the additive welfare is monotonically

increasing in σ. Another notable difference is that in contrast to the quadrant partition

observed in the additive welfare case, the partition in the equality-minded welfare case is

more complex. Some treatment rules are optimal in disconnected regions, e.g., Gab is optimal

in the south-west and the north-east regions of the plot. Furthermore, the region in which

Ga is optimal can border the region in which Gb is optimal. On the border between these

regions, the policy maker chooses whether to treat X = a only or X = b only, rather than

whether to additionally treat the other subpopulation.

The non-additive Gini SWF can be locally approximated by an additive SWF in a neigh-

borhood of the baseline outcome distribution (Kasy, 2016) as follows. Let F0 be the baseline

outcome distribution. Then the Gini SWF evaluated at an outcome distribution F local to

F0 is approximately

WGini(F ) ≈ WGini(F0) +

∫ ∞

0

IF (y; WGini, F0)dF (y), (B.3)
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Figure B.5: Optimal policies under the additive approximation of the Gini welfare. Log-

normal potential outcome distributions with μa = μb = 0.

where IF (y; WGini, F0) is the influence function of WGini(∙) at F0 (see, e.g., Wasserman (2006)

for the definition of the influence function)

IF (y; WGini, F0) = −2WGini(F0) + 2

∫ y

0

(1 − F0(ỹ))dỹ.

We examine in the current example how policies derived from this additive approximation

differ from those maximizing the original non-additive Gini SWF. We set the baseline out-

come distribution F0 to log N(0, 0.82) (the outcome distribution of Y0 in the population) and

then evaluate the additive approximation (B.3) for distributions yielded by each treatment

rule at different parameter values (σa, σb).

Figure B.5 plots policies that maximize the additive approximation (B.3) to the Gini

SWF. Since the approximation is additive with respect to F , the treatment chosen for sub-

population with X = a does not depend on the treatment chosen for the subpopulation with

X = b. We hence obtain a quadrant partition similar to Figure B.2. The additive approx-

imation, however, applies a concave function to the outcomes and recommends treatment

only for subpopulations with σx < 0.8 (i.e., where Y1|X has a distribution with a lower

variance, albeit also a lower mean).

A comparison of Figures B.4 and B.5 shows that the optimal policies under the additive
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approximation agree with those under Gini SWF in the neighborhood of the baseline distri-

bution, when both σa and σb are in [0.6, 0.9]. On the other hand, when either of the potential

outcome distributions P (Y1|X = a) or P (Y1|X = b) sufficiently deviates from the baseline

distribution, the additive approximation no longer yields the same treatment preference as

the Gini SWF it is meant to approximate.

C EWM with Estimated Propensity Score

Unknown propensity score is common in observational studies. This section considers the

equality-minded EWM approach with estimated propensity scores and investigates the in-

fluence of the lack of knowledge on propensity scores on the uniform convergence rate of the

welfare loss criterion.

Let ê(x) be an estimator for the propensity score Pr(D = 1|X = x). The empirical welfare

criterion of assignment policy {X ∈ G} with the estimated propensity scores plugged in is

given by

Ŵ e
Λ(G) =

∫ ∞

0

Λ(F̂ e
G(y) ∨ 0)dy,

F̂ e
G(y) ≡ 1 −

1

n

n∑

i=1

[
Di

ê(Xi)
∙ 1{Xi ∈ G} +

(1 − Di)

1 − ê(Xi)
∙ 1{Xi /∈ G}

]

∙ 1{Yi > y}.

The equality-EWM rule with estimated propensity score is defined accordingly as

Ĝe ∈ arg max
G∈G

Ŵ e
Λ(G).

To characterize the uniform convergence rate of the welfare loss of Ĝe, we first assume that

ê(∙) is uniformly consistent to the true propensity score e(∙) in the following sense.

Assumption C.1. For a class of data generating processes Pe, there exist sequences φn, φ̃n →

∞ as n → ∞ such that

lim sup
n→∞

sup
P∈Pe

φnEP n

[
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

]

< ∞, (C.1)

lim sup
n→∞

sup
P∈Pe

φnEP n

[
1

n

n∑

i=1

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣

]

< ∞,
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lim sup
n→∞

sup
P∈Pe

EP n

[(

φ̃n max
1≤i≤n

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

)2
]

< ∞, and (C.2)

lim sup
n→∞

sup
P∈Pe

EP n

[(

φ̃n max
1≤i≤n

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣

)2
]

< ∞

hold.

When the class of data generating processes Pe constrains the propensity score to a

parametric family with compact support of X, a parametric estimator ê(Xi) satisfies this as-

sumption with φn = φ̃n = n1/2. When the propensity scores are estimated nonparametrically

instead, φn and φ̃n are generally slower than n1/2. The rates of φn and φ̃n for nonparamet-

rically estimated propensity scores depend on the smoothness of e(∙) and the dimension of

X, as we discuss further below.

Theorem C.1. Suppose Assumptions 2.1, 2.2 and 3.1 hold. For a class of data generating

processes Pe, if an estimator for the propensity score satisfies Assumption C.1, then

sup
P∈Pe∩P

EP n

[

sup
G∈G

WΛ(G) − WΛ(Ĝe)

]

≤ O

(

φ−1
n ∨

√
v

n

)

. (C.3)

Proof. See Appendix D.

This theorem extends Theorem 2.5 (e) of Kitagawa and Tetenov (2018a) to the cases of

rank-dependent social welfare or unbounded outcome or both. The shown uniform conver-

gence rate implies that the parametrically estimated propensity score achieving φn = n1/2

does not affect the convergence rate property of the welfare loss. With nonparametrically

estimated propensity score, on the other hand, the uniform welfare loss convergence rate

can be slower than the one with the known propensity score obtained in Theorem 3.1. For

instance, if ê(Xi) is estimated by local polynomial regression (with proper trimming), then

for a suitably defined Pe, we have φn = n
1

2+dx/βe and φ̃n = log n ∙ (log n/n)
1

2+dx/βe , where

βe ≥ 1 is the parameter constraining smoothness of e(∙) in terms of the degree of the Hölder

class of functions and dx ≥ 1 is the dimension of X. Since 1
2+dx/βe

< 1
2
, the upper bound of

the uniform convergence rate shown in Theorem C.1 implies

sup
P∈Pe∩P

EP n

[

sup
G∈G

WΛ(G) − WΛ(Ĝe)

]

≤ O
(
n
− 1

2+dx/βe

)
, (C.4)
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as long as the VC-dimension of G is either constant or does not grow too fast as the sample

size increases. For a formal derivation of (C.4) and the precise construction of the local

polynomial estimator for e(∙), see Appendix D.

D Additional proofs

Proof of (18) in Theorem 3.1. Similarly to inequalities (A.14) and (A.15) shown in Ap-

pendix A, the average welfare regret for the normalized cdf case can be bounded by

EP n

[

sup
G∈G

WΛ(G) − WΛ(ĜR)

]

≤ 2|Λ′(0)|
∫ ∞

0

EP n

[

sup
G∈G

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣

]

dy. (D.1)

We hence focus on bounding
∫∞

0
EP n

[

sup
G∈G

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣

]

dy.

Let wG(Zi) be as defined in (A.16), and let

An,G ≡ {F̂G(−∞) < 1} = {n−1

n∑

i=1

wG(Zi) > 0}

denote the event that the normalizing term in F̂ R
G (y) at policy G is nonzero, and Ac

n,G ≡

{F̂G(−∞) = 1} = {n−1
∑n

i=1 wG(Zi) = 0} be the complement of An,G. Using the indicator

functions for An,G and Ac
n,G, F̂R

G (y) can be written as

F̂ R
G (y) =

[

1 −
1

n

n∑

i=1

wR
G,i1{Yi > y}

]

∙ 1{An,G} + [1 − 1{y < min
1≤i≤n

Yi}] ∙ 1{A
c
n,G}, (D.2)

where

wR
G,i =

wG(Zi)

n−1
∑n

i=1 fG(Zi) + 1
, fG(Zi) = wG(Zi) − 1. (D.3)

By the triangle inequality,

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣ ≤

∣
∣
∣F̂R

G (y) − F̂G(y)
∣
∣
∣+
∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣

≤

∣
∣
∣
∣
∣
1

n

n∑

i=1

[
wR

G,i − wG(Zi)
]
1{Yi > y}

∣
∣
∣
∣
∣
∙ 1{An,G} + 1{y < min

1≤i≤n
Yi} ∙ 1{A

c
n,G} +

∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣ .

(D.4)

Let

S−
n ≡ inf

G∈G

1

n

n∑

i=1

fG(Zi),
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Sn ≡ sup
G∈G

∣
∣
∣
∣
∣
1

n

n∑

i=1

fG(Zi)

∣
∣
∣
∣
∣
.

For δ ∈ (0, 1) fixed, define

Ωn,δ ≡ {Sn − EP n(Sn) ≤ δ/2} = {−Sn ≥ −EP n(Sn) − δ/2}.

By Lemma A.3, {fG : G ∈ G} is a VC-subgraph class of functions with VC-dimension at

most v with EP (fG) = 0 and an envelope ‖fG‖∞ ≤ 1−κ
κ

. Hence, by Lemma A.4,

EP n(Sn) ≤ C1
1 − κ

κ

√
v

n

holds, where C1 is the universal constant defined in Lemma A.4. Accordingly, for all n >

n(δ, v) ≡
(

C1(1−κ)
κ(1−δ)

)2

v, −EPn(Sn)−δ/2 > −1+δ/2 holds. Since S−
n ≥ −Sn holds, Ωn,δ being

true and n > n(δ, v) imply S−
n > −1 + δ/2. Hence, on Ωn,δ and for n > n(δ, v), we have

0 ≤ wR
G,i ≤ (2/δ)wG(Zi) and

∣
∣wR

G,i − wG(Zi)
∣
∣ = wR

G,i

∣
∣
∣
∣
∣
1

n

n∑

i=1

fG(Zi)

∣
∣
∣
∣
∣
≤

2

δ
∙ wG(Zi)Sn. (D.5)

On Ωc
n,δ and for G such that An,G is true, we have 0 ≤ wR

G,i ≤ n and

∣
∣wR

G,i − wG(Zi)
∣
∣ ≤ n

1 − κ

κ
. (D.6)

Combining (D.5) and (D.6), (D.4) can be rewritten as

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣

≤
2

δ
∙ Sn ∙

1

n

n∑

i=1

wG(Zi)1{Yi > y} ∙ 1{Ωn,δ ∩ An,G} + n
1 − κ

κ
∙
1

n

n∑

i=1

1{Yi > y} ∙ 1{Ωc
n,δ ∩ An,G}

+ 1{y < min
1≤i≤n

Yi} ∙ 1{Ωn,δ ∩ Ac
n,G} + 1{y < min

1≤i≤n
Yi} ∙ 1{Ω

c
n,δ ∩ Ac

n,G} +
∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣

(D.7)

Note that {S−
n > −1} is equivalent to

{

inf
G∈G

n−1
∑n

i=1 wG(Zi) > 0

}

, implying that An,G is

true for all G ∈ G. Hence, for n > n(δ, v), Ωn,δ ∩ An,G = Ωn,δ, and Ωn,δ ∩ Ac
n,G = ∅ hold for

all G ∈ G. By also noting wG(Zi) ≤ Di

e(Xi)
+ 1−Di

1−e(Xi)
, (D.7) can be further bounded by
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≤
2

δ
∙ Sn ∙

1

n

n∑

i=1

[
Di

e(Xi)
+

1 − Di

1 − e(Xi)

]

1{Yi > y} ∙ 1{Ωn,δ}

+ n
1 − κ

κ
∙
1

n

n∑

i=1

1{Yi > y} ∙ 1{Ωc
n,δ ∩ An,G}

+ 1{y < min
1≤i≤n

Yi} ∙ 1{Ω
c
n,δ ∩ Ac

n,G} +
∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣

≤
2

δ
∙ Sn [P (Y1 > y) + P (Y0 > y)] ∙ 1{Ωn,δ}

+
2

δ
∙

(

1 −
δ

2

)

∙
1

n

n∑

i=1

[(
Di

e(Xi)
+

1 − Di

1 − e(Xi)

)

1{Yi > y} − P (Y1 > y) − P (Y0 > y)

]

∙ 1{Ωn,δ}

+ n
1 − κ

κ
∙
1

n

n∑

i=1

1{Yi > y} ∙ 1{Ωc
n,δ} +

∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣ ,

≤
2

δ
∙ Sn [P (Y1 > y) + P (Y0 > y)]

+
2

δ
∙

(

1 −
δ

2

)

∙
1

n

n∑

i=1

[(
Di

e(Xi)
+

1 − Di

1 − e(Xi)

)

1{Yi > y} − P (Y1 > y) − P (Y0 > y)

]

(D.8)

+ n
1 − κ

κ
∙
1

n

n∑

i=1

1{Yi > y} ∙ 1{Ωc
n,δ} +

∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣ ,

where the second inequality follows from the fact that Sn ≤
(
1 − δ

2

)
holds on Ωn,δ and for

n > n(δ, v), and n1−κ
κ

≥ 1 and n−1
∑n

i=1 1{Yi > y} ≥ 1{y < min1≤i≤n Yi} hold for all y. Since

the second term in (D.8) has mean zero, EP n

[
supG∈G

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣
]

can be bounded by

EP n

[

sup
G∈G

∣
∣
∣F̂R

G (y) − FG(y)
∣
∣
∣

]

≤
2

δ
∙ EP n [Sn] ∙ (P (Y1 > y) + P (Y0 > y))

︸ ︷︷ ︸
(i)

+ n
1 − κ

κ
∙ EP n

[
1

n

n∑

i=1

1{Yi > y} ∙ 1{Ωc
n,δ}

]

︸ ︷︷ ︸
(ii)

+ EP n

[

sup
G∈G

∣
∣
∣F̂G(y) − FG(y)

∣
∣
∣

]

︸ ︷︷ ︸
(iii)

. (D.9)

By Assumption 3.1 (TC) and Lemma A.4, the integral of term (i) in (D.9) can be bounded

as
∫ ∞

0

(i)dy ≤
4C1

δ
∙
1 − κ

κ

√
v

n
Υ, (D.10)
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where we use EP n [Sn] ≤ C1
1−κ

κ

√
v
n

and
∫∞

0
P (Yd > y)dy ≤

∫∞
0

√
P (Yd > y)dy ≤ Υ.

Consider term (ii); by the Cauchy-Schwarz inequality,

(ii) ≤ n
1 − κ

κ

√√
√
√
√EP n





(
1

n

n∑

i=1

1{Yi > y}

)2



√

P n(Ωc
n,δ)

≤ n
1 − κ

κ

√
P (Y > y)

√
P n(Ωc

n,δ)

Bernstein’s inequality (see, e.g., Theorem 12.2 in Boucheron et al. (2013)) implies that

P n(Ωc
n,δ) ≤ 2P n

(

−S−
n − EP n(−S−

n ) ≥
δ

2

)

≤ 2 exp

{

−
(δ/2)2n

2[2(Σ2
f + σ2

f ) + f̄ δ/2]

}

,

where Σ2
f ≡ EP n

[

sup
G∈G

1
n

∑n
i=1 f 2

G(Zi)

]

≤
(

1−κ
κ

)2
, σ2

f ≡ sup
G∈G

1
n

∑n
i=1 EP (f 2

G(Zi)) ≤
(

1−κ
κ

)2
, and

f̄ ≡ sup
G∈G

‖fG‖∞ ≤ 1−κ
κ

. Hence,

√
P n(Ωn,δ) ≤

√
2 exp

{

−
δ2n

16[2(Σ2
f + σ2

f ) + f̄ δ/2]

}

≤
√

2 exp

{

−
δ2κ2n

16[4(1 − κ)2 + (1 − κ)κδ/2]

}

≤
√

2 exp
{
−c1(δ)κ

2n
}

holds, where c1(δ) = δ2/(64+8δ) > 0. The integral of term (ii) can be therefore bounded by

∫ ∞

0

(ii)dy ≤
2
√

2(1 − κ)Υ

κ
∙ n exp

{
−c1(δ)κ

2n
}

. (D.11)

As shown in the proof of equation (17) in Theorem 3.1, Lemma A.5 applies to term (iii)

to yield

∫ ∞

0

(iii)dy ≤
2CT ∙ Υ

κ

√
v

n
(D.12)

Combining (D.1), (D.9), (D.10), (D.11), and (D.12), and setting δ = 1/2, we conclude

EP n

[

sup
G∈G

WΛ(G) − WΛ(ĜR)

]

≤
Λ′(0)Υ

κ

[

CR
1

√
v

n
+ 4

√
2n exp{−CR

2 κ2n}

]

for all n > n(1/2, v) = CR
3

(
1−κ

κ

)2
v, where CR

1 = 16C1 + 4CT , CR
2 = c1(1/2) = 1/272, and

CR
3 = 4C2

1 .
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Proof of Theorem 3.2. We consider a suitable subclass P∗ ⊂ P , for which the worst case

welfare loss can be bounded from below by a distribution-free term that converges at rate

n−1/2. Specifically, we restrict distributions of potential outcomes to those whose sup-

ports are restricted to [0, Υ]. Any such distribution satisfies Assumption 3.1 (TC), since
∫∞

0

√
P (Yd > y)dy =

∫ Υ

0

√
P (Yd > y)dy ≤ Υ.

To simplify the proof, we normalize the range of outcomes to Y ∈ [0, 1]. We rescale the

ourcome to Y ∈ [0, Υ] in the final step of the proof by multiplying Υ to the regret lower

bound, as the rank-dependent SWF is equivariant to a multiplicative positive constant to

Y .

The construction of P∗ proceeds as follows. We restrict the range of outcomes to binary

Y ∈ {0, 1}. By the definition of VC-dimension, there exists a set of v points in X , denoted

x1, . . . , xv ∈ X that are shattered by G. We constrain the marginal distribution of X to be

supported only on (x1, . . . , xv). Let τ ∗ ∈ (0, 1] stated in the current theorem be given. We

put mass p ≡ τ∗

v−1
at xi for all i < v, and mass 1 − τ ∗ at xv. The constructed marginal

distribution of X is common in P∗. Let the distribution of the treatment indicator D be

independent of (Y0, Y1, X), and let D follow the Bernoulli distribution with Pr(D = 1) = 1/2.

Let b = (b1, . . . , bv−1) ∈ {0, 1}v−1 be a bit vector used to index a member of P∗, i.e.,

P∗ = {Pb : b ∈ {0, 1}v−1} consists of a finite number of DGPs. For each j = 1, . . . , (v − 1),

and depending on b, construct the following conditional distributions of potential outcomes

given X = xj ; if bj = 1,

Y0|(X = xj) ∼ Ber

(
1 − γ

2

)

, Y1|(X = xj) ∼ Ber

(
1 + γ

2

)

, (D.13)

and, if bj = 0,

Y0|(X = xj) ∼ Ber

(
1 + γ

2

)

, Y1|(X = xj) ∼ Ber

(
1 − γ

2

)

, (D.14)

where Ber(m) denotes the Bernoulli distribution with mean m and γ ∈ (0, 1) is chosen

properly in a later step of the proof. For j = v, we set the distribution of potential outcomes

to be degenerate at the maximum value of Y , P (Y0 = Y1 = 1|X = xv) = 1. Clearly, Pb ∈ P

for every b ∈ {0, 1}v−1. We accordingly define P∗ =
{
Pb : b ∈ {0, 1}v−1} ⊂ P .

Note that when the outcome distribution is Bernoulli with mean μ, the equality-minded

welfare function equals WΛ = Λ(1 − μ), which is a non-decreasing function of μ. Hence,
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given knowledge of Pb, an optimal treatment assignment rule for the equality-minded welfare

coincides with that for the utilitarian welfare case,

G∗
b = {xj : j < v, bj = 1} ,

which is feasible, since G∗
b ∈ G by the construction of the support points of X. The maxi-

mized social welfare is accordingly obtained as

WΛ(G∗
b) = Λ (1 − μ∗) ,

μ∗ ≡ p(v − 1)

(
1 + γ

2

)

+ (1 − τ ∗) = τ ∗

(
1 + γ

2

)

+ (1 − τ ∗),

which does not depend on b.

Let Ĝ be an arbitrary treatment choice rule as a function of observations Zi ≡ (Yi, Di, Xi),

i = 1, . . . , n, and b̂ ∈{0, 1}(v−1) be a binary vector whose j-th element is b̂j = 1{xj ∈ Ĝ}.

Let μĜ be the mean of outcome Y when the treatment assignment rule Ĝ is implemented

for a given realization of the sample. Outcomes are binary for all P ∈ P∗, hence

μĜ ≡
∫

Ĝ

Pr(Y1 = 1|X = x)dPX(x) +

∫

Ĝc

Pr(Y0 = 1|X = x)dPX(x).

Consider π (b), a prior distribution for b, such that b1, . . . , bv−1 are iid and b1 ∼ Ber(1/2).

The welfare loss satisfies the following inequalities:

sup
P∈P

EP n

[

sup
G∈G

WΛ(G) − WΛ(Ĝ)

]

≥ sup
Pb∈P∗

EP n
b

[
WΛ(G∗

b) − WΛ(Ĝ)
]

≥
∫

b

EP n
b

[
WΛ(G∗

b) − WΛ(Ĝ)
]
dπ(b)

=

∫

b

EP n
b

[
Λ(1 − μ∗) − Λ(1 − μĜ)

]
dπ(b)

≥
∫

b

EP n
b

[
|Λ′(1 − μĜ)|(μ∗ − μĜ)

]
dπ(b)

≥ |Λ′(τ ∗)|
∫

b

EP n
b

[
μ∗ − μĜ

]
dπ(b), (D.15)

where the fourth line follows since Λ(∙) is convex and non-increasing. The fifth line follows

from the observation that for all P ∈ P∗, μG ≥ 1 − τ ∗ for any treatment rule G, therefore

|Λ′(1 − μĜ)| ≥ |Λ′(τ ∗)|.

Consider now bounding
∫
b
EP n

b

[
μ∗ − μĜ

]
dπ(b) from below. Building on the lower bound

calculation for the classification risk of the empirical risk minimizing classifier in Lugosi
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(2002), the proof of Theorem 2.2 in Kitagawa and Tetenov (2018a) considers bounding a

similar quantity, though the current construction of P∗ is different from the construction in

that paper. Therefore, in what follows, we reproduce the proof of Theorem 2.2 in Kitagawa

and Tetenov (2018a) with some necessary modifications.

Consider
∫

b

EP n
b

[
μ∗ − μĜ

]
dπ(b) ≥ γ

∫

b

EP n
b

[
PX(G∗

b4Ĝ)
]
dπ(b)

= γ

∫

b

∫

Z1,...,Zn

PX

(
{b(X) 6= b̂(X)}

)
dP n (Z1, . . . , Zn|b) dπ(b)

≥ inf
Ĝ

γ

∫

b

∫

Z1,...,Zn

PX

(
{b(X) 6= b̂(X)}

)
dP n (Z1, . . . , Zn|b) dπ(b)

where each b(X) and b̂(X) is an element of b and b̂ such that b(xj) = bj , b̂(xj) = b̂j ,

and b(xv) = b̂(xv) = 0. Note that the last expression can be seen as the minimized Bayes

risk with the loss function corresponding to the classification error for predicting binary

unknown random variable b(X). Hence, the minimizer of the Bayes risk is attained by the

Bayes classifier,

Ĝ∗ =

{

xj : π(bj = 1|Z1, . . . , Zn) ≥
1

2
, j < v

}

,

where π(bj|Z1, . . . , Zn) is the posterior of bj . The minimized Bayes risk is given by

γ

∫

Z1,...,Zn

EX [min {π (b(X) = 1|Z1, . . . , Zn) , 1 − π (b(X) = 1|Z1, . . . , Zn)}] dP̃ n

= γ

∫

Z1,...,Zn

v−1∑

j=1

p [min {π (bj = 1|Z1, . . . , Zn) , 1 − π(bj = 1|Z1, . . . , Zn)}] dP̃ n,

(D.16)

where P̃ n is the marginal likelihood of {(Yi, Di, Xi) : i = 1, . . . , n} corresponding to prior

π(b). For each j = 1, . . . , (v − 1) let

k+
j = # {i : Xi = xj , YiDi = 1 or (1 − Yi)(1 − Di) = 1} ,

k−
j = # {i : Xi = xj , (1 − Yi)Di = 1 or Yi(1 − Di) = 1} .

The posterior for bj = 1 can be written as

π(bj = 1|Z1, . . . , Zn) =






1
2

if #{i : Xi = xj} = 0,

( 1+γ
2 )

k+
j ( 1−γ

2 )
k−
j

( 1+γ
2 )

k+
j ( 1−γ

2 )
k−
j +( 1+γ

2 )
k−
j ( 1−γ

2 )
k+
j

otherwise.
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Hence,

min {π (bj = 1|Z1, . . . , Zn) , 1 − π(bj = 1|Z1, . . . , Zn)}

=
min

{(
1+γ

2

)k+
j
(

1−γ
2

)k−
j ,
(

1+γ
2

)k−
j
(

1−γ
2

)k+
j

}

(
1+γ

2

)k+
j
(

1−γ
2

)k−
j +

(
1+γ

2

)k−
j
(

1−γ
2

)k+
j

=
min

{
1, (1+γ

1−γ
)k+

j −k−
j

}

1 + (1+γ
1−γ

)k+
j −k−

j

=
1

1 + a|k+
j −k−

j |
, where a =

1 + γ

1 − γ
> 1. (D.17)

Coarsen an observation of (Yi, Di) into Ỹi defined as

Ỹi =






1 if YiDi + (1 − Yi)(1 − Di) = 1,

−1 otherwise.

(D.18)

Since k+
j − k−

j =
∑

i:Xi=xj
Ỹi, plugging (D.17) into (D.16) yields

γ
v−1∑

j=1

pEP̃ n

[
1

1 + a

∣
∣
∣
∑

i:Xi=xj
Ỹi

∣
∣
∣

]

≥
γ

2

v−1∑

j=1

pEP̃ n

[
1

a

∣
∣
∣
∑

i:Xi=xj
Ỹi

∣
∣
∣

]

≥
γ

2
p

v−1∑

i=1

a
−EP̃n

∣
∣
∣
∑

i:Xi=xj
Ỹi

∣
∣
∣
,

where EP̃ n(∙) is the expectation with respect to the marginal likelihood of {(Yi, Di, Xi), i =

1, . . . , n}. The second inequality follows by a > 1, and the third inequality follows by

Jensen’s inequality. Given our prior specification for b, the marginal distribution of Yi is

Pr(Ỹi = 1) = Pr(Ỹi = −1) = 1/2. Hence,

EP̃ n

∣
∣
∣
∣
∑

i:Xi=xj

Ỹi

∣
∣
∣
∣ =

n∑

k=0

(
n

k

)

pk (1 − p)n−k E

∣
∣
∣
∣2B(k,

1

2
) − k

∣
∣
∣
∣

holds, where B(k, 1
2
) is a random variable following the binomial distribution with parameters

k and 1
2
. By noting

E

∣
∣
∣
∣B(k,

1

2
) −

k

2

∣
∣
∣
∣ ≤

√

E

(

B(k,
1

2
) −

k

2

)2

( ∵ Cauchy-Schwartz inequality)

=

√
k

4
,

we obtain

EP̃ n

∣
∣
∣
∣
∑

i:Xi=xj

Ỹi

∣
∣
∣
∣ ≤

n∑

k=0

(
n

k

)

pk (1 − p)n−k
√

k
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= E
√

B (n, p)

≤
√

np. ( ∵ Jensen’s inequality).

Hence, the Bayes risk (D.16) is bounded from below by

γ

2
p(v − 1)a−

√
np

≥
γ

2
p(v − 1)e−(a−1)

√
np ( ∵ 1 + x ≤ ex ∀x)

=
pγ

2
(v − 1)e−

2γ
1−γ

√
np, (D.19)

therefore

∫

b

EP n
b

[
μ∗ − μĜ

]
dπ(b) ≥

pγ

2
(v − 1)e−

2γ
1−γ

√
np. (D.20)

This lower bound of the Bayes risk has the slowest convergence rate when γ is set to be

proportional to n−1/2. Specifically, let γ =
√

v−1
nτ∗ . Then for all n ≥ 4(v− 1)/τ ∗, γ ≤ 1/2 and

since p = τ∗

v−1
,

−
2γ

1 − γ

√
np = −

2

1 − γ

√
v − 1

nτ ∗

√
nτ ∗

v − 1
= −

2

1 − γ
≥ −4.

Then

pγ

2
(v − 1)e−

2γ
1−γ

√
np ≥

pγ

2
(v − 1)e−4 =

τ ∗

2

√
v − 1

nτ ∗
e−4 =

e−4

2

√
τ ∗

√
v − 1

n
.

Inserting this bound into (D.20) and multiplying by Υ provides a lower bound for (D.15).

This completes the proof.

Proof of Proposition 4.1. Similarly to inequality (A.15) shown in Appendix A, the average

welfare regret of the capacity-constrained estimated policy satisfies

EP n

[

sup
G∈G

WK
Λ (G) − WK

Λ (ĜK)

]

≤ 2|Λ′(0)|
∫ ∞

0

EP n

[

sup
G∈G

∣
∣
∣F̂K

G (y) − FK
G (y)

∣
∣
∣

]

dy. (D.21)

We hence focus on bounding EP n

[

sup
G∈G

∣
∣
∣F̂K

G (y) − FK
G (y)

∣
∣
∣

]

.

Expressing F̂ K
G (y) and FK

G (y) as

F̂ K
G (y) = 1 −

1

n

n∑

i=1

ŵK
G,i ∙ 1{Yi > y},
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FK
G (y) = 1 − EP [wK

G (Z) ∙ 1{Y > y}],

where

wK
G (Z) =

1 − D

1 − e(X)
+ min

{

1,
K

PX(G)

}

w̃G(Z),

ŵK
G,i =

1 − Di

1 − e(Xi)
+ min

{

1,
K

PX,n(G)

}

w̃G(Zi),

where w̃G(Zi) =
[

Di

e(Xi)
− 1−Di

1−e(Xi)

]
∙ 1{Xi ∈ G}. Note that ‖w̃G‖∞ ≤ κ−1. Define

F̃K
G (y) = 1 −

1

n

n∑

i=1

wK
G (Zi) ∙ 1{Yi > y}.

We consider

sup
G∈G

∣
∣
∣F̂K

G (y) − FK
G (y)

∣
∣
∣ ≤ sup

G∈G

∣
∣
∣F̂K

G (y) − F̃K
G (y)

∣
∣
∣

︸ ︷︷ ︸
(iv)

+ sup
G∈G

∣
∣
∣F̃K

G (y) − FK
G (y)

∣
∣
∣

︸ ︷︷ ︸
(v)

, (D.22)

and derive bounds for
∫∞

0
EP n [(iv)]dy and

∫∞
0

EP n [(v)]dy.

For term (iv), we have

∣
∣
∣F̂K

G (y) − F̃K
G (y)

∣
∣
∣ ≤

1

n

n∑

i=1

∣
∣ŵK

G,i − wK
G (Zi)

∣
∣ ∙ 1{Yi > y}

≤ κ−1

∣
∣
∣
∣

K

max{K,PX,n(G)}
−

K

max{K,PX(G)}

∣
∣
∣
∣ ∙

1

n

n∑

i=1

1{Yi > y}

≤
1

κK
|PX,n(G) − PX(G)| ∙

1

n

n∑

i=1

1{Yi > y}.

=
1

κK
|PX,n(G) − PX(G)| ∙ P (Y > y)

+
1

κK
|PX,n(G) − PX(G)| ∙

1

n

n∑

i=1

[1{Yi > y} − P (Y > y)] . (D.23)

Note that by Lemma A.4, EP n

[

sup
G∈G

|PX,n(G) − PX(G)|

]

≤ C1

√
v/n. By the Cauchy-

Schwarz inequality,

EP n

[

sup
G∈G

|PX,n(G) − PX(G)| ∙
1

n

n∑

i=1

[1{Yi > y} − P (Y > y)]

]

≤

√√
√
√EP n

[(

sup
G∈G

|PX,n(G) − PX(G)|

)2
]

∙

√
P (Y > y)(1 − P (Y > y))

n
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≤

√
P (Y > y)

n
, (D.24)

where the second inequality follows from

sup
G∈G

|PX,n(G) − PX(G)|2 ≤
1

n

n∑

i=1

(1{Xi ∈ G} − PX(G))2 ≤ 1.

Hence, by noting 1 ≤
√

v,
∫ ∞

0

EP n [(iv)] ≤
2 (C1 + 1) Υ

κK
∙

√
v

n
(D.25)

Next, consider term (v). Let F̃K
∅ (y) = 1 − n−1

∑n
i=1

1−Di

1−e(Xi)
∙ 1{Yi > y}. We decompose

term (v) as follows:

∣
∣
∣F̃K

G (y) − FK
G (y)

∣
∣
∣ ≤
∣
∣
∣(F̃K

G (y) − F̃K
∅ (y)) − (FK

G (y) − FK
∅ (y))

∣
∣
∣+ |F̃K

∅ (y) − FK
∅ (y)|

= min

{

1,
K

PX(G)

} ∣∣
∣
∣
∣
1

n

n∑

i=1

w̃G(Zi) ∙ 1{Yi > y} − EP [w̃G(Z) ∙ 1{Y > y}]

∣
∣
∣
∣
∣

+ |F̃K
∅ (y) − FK

∅ (y)|

≤

∣
∣
∣
∣
∣
1

n

n∑

i=1

w̃G(Zi) ∙ 1{Yi > y} − EP [w̃G(Z) ∙ 1{Y > y}]

∣
∣
∣
∣
∣
+ |F̃K

∅ (y) − FK
∅ (y)|.

(D.26)

Hence,
∫ ∞

0

EP n

[

sup
G∈G

∣
∣
∣F̃K

G (y) − FK
G (y)

∣
∣
∣

]

≤
∫ ∞

0

EP n

[

sup
G∈G

∣
∣
∣
∣
∣
1

n

n∑

i=1

w̃G(Zi) ∙ 1{Yi > y} − EP [w̃G(Z) ∙ 1{Y > y}]

∣
∣
∣
∣
∣

]

dy

+

∫ ∞

0

EP n

[
|F̃K

∅ (y) − FK
∅ (y)|

]
dy

≤2CT
Υ

κ

√
v

n
+

∫ ∞

0

EP n

[
|F̃K

∅ (y) − FK
∅ (y)|

]
dy, (D.27)

where the second inequality follows from Lemma A.5 with M = 2Υ and F̄ = κ−1, where CT

is the universal constant defined there.

To bound the second term in (D.27),

∫ ∞

0

EP n

[
|F̃K

∅ (y) − FK
∅ (y)|

]
dy ≤

∫ ∞

0

√√
√
√V ar

(
1

n

n∑

i=1

1 − Di

1 − e(Xi)
∙ 1{Y0i > y}

)

dy
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=

∫ ∞

0

√
1

n

{

EP

[(
1

1 − e(X)

)

P (Y0 > y|X)

]

− P (Y0 > y)2

}

≤
∫ ∞

0

√
1

n
EP

[(
1

1 − e(X)

)

P (Y0 > y|X)

]

≤
1

κ
√

n

∫ ∞

0

√
P (Y0 > y)dy ≤

Υ

κ

√
v

n
. (D.28)

Combining (D.21), (D.22), (D.25), (D.27), and (D.28), and noting 1 ≤
√

v, we conclude

EP n

[

sup
G∈G

WK
Λ (G) − WK

Λ (ĜK)

]

≤

(
CK1

K
+ CK2

)

|Λ′(0)|
Υ

κ

√
v

n
,

where CK1 = 4(C1 + 1) and CK2 = 2(2CT + 1).

Proof of Theorem C.1. For any G ∈ G, it holds

WΛ(G) − WΛ(Ĝe) ≤ ŴΛ(G) − Ŵ e
Λ(G) − ŴΛ(Ĝe) + Ŵ e

Λ(Ĝe)

+WΛ(G) − WΛ(Ĝe) − ŴΛ(G) + ŴΛ(Ĝe)

≤ 2 sup
G∈G

|ŴΛ(G) − Ŵ e
Λ(G)| + 2 sup

G∈G

∣
∣
∣ŴΛ(G) − WΛ(G)

∣
∣
∣ , (D.29)

where the first inequality uses Ŵ e
Λ(Ĝe) − Ŵ e

Λ(G) ≥ 0. The mean of the second term in the

right-hand side of (D.29) is O(n−1/2) as shown in equation (17) of Theorem 3.1.

For the first term in the right-hand side of (D.29), following the inequalities shown in

(A.14), we have

|ŴΛ(G) − Ŵ e
Λ(G)| ≤ |Λ′(0)|

∫ ∞

0

|F̂G(y) − F̂ e
G(y)|dy. (D.30)

For every y, the upper bound of |F̂G(y) − F̂ e
G(y)| uniform in G can be obtained as

|F̂G(y) − F̂ e
G(y)|

≤
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣Di1{Yi > y}1{Xi ∈ G}

+
1

n

n∑

i=1

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣ (1 − Di)1{Yi > y}1{Xi /∈ G}

≤
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣ ∙ 1{Y1i > y} +

1

n

n∑

i=1

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣ ∙ 1{Y0i > y}
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=
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣ ∙ P (Y1i > y)

︸ ︷︷ ︸
(vi)

+
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣ ∙ [1{Y1i > y} − P (Y1i > y)]

︸ ︷︷ ︸
(vii)

+
1

n

n∑

i=1

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣ ∙ P (Y0i > y)

︸ ︷︷ ︸
(viii)

+
1

n

n∑

i=1

∣
∣
∣
∣

1

1 − e(Xi)
−

1

1 − ê(Xi)

∣
∣
∣
∣ ∙ [1{Y0i > y} − P (Y0i > y)]

︸ ︷︷ ︸
(ix)

. (D.31)

We derive the convergence rates of the integrated means of terms (vi) - (ix) in (D.31),

separately; by Assumption C.1,

∫ ∞

0

EP n [(vi)]dy ≤ EP n

[
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

]

∙ Υ = O(φ−1
n ).

∫ ∞

0

EP n [(vii)]dy ≤
∫ ∞

0

EP n

[

max
1≤i≤n

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣ ∙

1

n

n∑

i=1

[1{Y1i > y} − P (Y1i > y)]

]

dy

≤

√√
√
√EP n

[(

max
1≤i≤n

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

)2
]∫ ∞

0

√
P (Y1i > y)(1 − P (Y1i > y))

n
dy

≤ O(φ̃
−1

n ) ∙
Υ
√

n
= O

(
φ̃
−1

n /
√

n
)

.

Similarly, we obtain
∫∞

0
EP n [(viii)]dy ≤ O(φ−1

n ) and
∫∞

0
EP n [(ix)]dy ≤ O

(
φ̃
−1

n /
√

n
)
.

These convergence rates for terms (vi) - (ix) and (D.30) imply that

EP n

[

sup
G∈G

∣
∣
∣ŴΛ(G) − Ŵ e

Λ(G)
∣
∣
∣

]

= O

(

φ−1
n +

φ̃
−1

n√
n

)

Hence, by (D.29) and noting that φ̃
−1

n n−1/2 converges faster than n−1/2, we conclude

EP n

[

sup
G∈G

WΛ(G) − WΛ(Ĝe)

]

≤ O
(
(φ−1

n + φ̃
−1

n n−1/2) ∨ n−1/2
)

= O
(
φ−1

n ∨ n−1/2
)
.
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E Equality-minded EWM with Nonparametrically Es-

timated Propensity Score

In this appendix, we consider the equality-minded EWM approach with unknown propensity

score estimated nonparametrically by local polynomial regressions. We provide regularity

conditions under which the nonparametric estimator of the propensity score satisfies As-

sumption C.1 with an explicit characterization of φn and φ̃n.

We consider the leave-one-out local polynomial estimator for e(∙), i.e., ê(Xi) is constructed

by fitting the local polynomials excluding the i-th observation. For any multi-index s =

(s1, . . . , sdx) ∈ Ndx and any (x1, . . . , xdx) ∈ Rdx , we define |s| ≡
∑dx

i=1 si, s! ≡ s1! ∙ ∙ ∙ sdx !,

xs ≡ xs1
1 ∙ ∙ ∙ xsdx

dx
, and ‖x‖ ≡

(
x2

1 + ∙ ∙ ∙ + x2
dx

)
. Let K(∙) : Rdx → R be a kernel function and

h > 0 be a bandwidth, whose dependence on the sample size is implicit in the notation.

At each Xi, i = 1, . . . , n, we define the leave-one-out local polynomial coefficient estimators

with degree l ≥ 0 as

θ̂(Xi) = arg min
θ

∑

j 6=i

[

Dj − θT U

(
Xj − Xi

h

)]2

K

(
Xj − Xi

h

)

,

where U
(

Xj−Xi

h

)
is the vector with elements indexed by the multi-index s, i.e., U

(
Xj−Xi

h

)
≡

((
Xj−Xi

h

)s)

|s|≤l
. With a slight abuse of notation, we define U (0) = (1, 0, . . . , 0)T . Let λn(Xi)

be the smallest eigenvalue of B(Xi) ≡
(
nhdx

)−1∑
j 6=i U

(
Xj−Xi

h

)
UT
(

Xj−Xi

h

)
K
(

Xi−Xj

h

)
.

Accordingly, we construct the leave-one-out local polynomial fit for e(Xi) by

ẽ(Xi) = UT (0)θ̂(Xi) ∙ 1 {λn(Xi) ≥ tn} (E.1)

where tn is a positive sequence that slowly converges to zero, such as tn ∝ (log n)−1. This

trimming constant regularizes the regressor matrix of the local polynomial regression and

simplifies the proof of the uniform consistency of the local polynomial estimator.

To characterize Pe in Assumption C.1, we impose the following restrictions, which are

identical to Assumption E.2 in Kitagawa and Tetenov (2018b).

Assumption E.1. (Smooth-e) Smoothness of the propensity score: The propensity score
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e(∙) belongs to a Hölder class of functions with degree βe ≥ 1 and constant Le < ∞. 1

(PX) Support and Density Restrictions on PX : Let X ⊂ Rdx be the support of PX . Let

Leb(∙) be the Lebesgue measure on Rdx and B(x, r) be the open ball centered at x ∈ Rdx

with radius r. There exist constants c and r0 such that

Leb (X ∩ B(x, r)) ≥ cLeb(B(x, r)) ∀0 < r ≤ r0, ∀x ∈ X , (E.2)

and PX has the density function dPX

dx
(∙) with respect to the Lebesgue measure of Rdx that

is bounded from above and bounded away from zero, 0 < p
X

≤ dPX

dx
(x) ≤ p̄X < ∞ for all

x ∈ X .

(Ker) Bounded Kernel with Compact Support: The kernel function K(∙) has support [−1, 1]dx ,
∫
Rdx K(u)du = 1, and supu K (u) ≤ Kmax < ∞.

Assumption E.1 (PX) is borrowed from Audibert and Tsybakov (2007), and it provides

regularity conditions on the marginal distribution of X. Inequality condition (E.2) constrains

the shape of the support of X, and it essentially rules out the case where X has “sharp”

spikes, i.e., X ∩B(x, r) has an empty interior or Leb (X ∩ B(x, r)) converges to zero as r → 0

faster than the rate of r2 for some x on the boundary of X .

The next lemma collects several properties of the local polynomial estimators that are

useful to prove the bound shown in (C.4). These claims are borrowed from Theorem 3.2 in

Audibert and Tsybakov (2007) and Lemma E.4 in Kitagawa and Tetenov (2018b).

Lemma E.1. Let Pe consist of the data generating processes satisfying Assumption E.1

(Smooth-e) and (PX). Let ẽ(Xi) be the leave-one-out estimator for the propensity score de-

fined in (E.1) whose kernel function satisfies E.1 (Ker).

(i) There exist positive constants c2, c3, and c4 that depend only on βe, dx, Le, c, r0, p
X

,

1Let Ds denote the differential operator Ds ≡ ∂
s1+∙∙∙+sdx

∂x
s1
1 ∙∙∙x

sdx
dx

. Let β ≥ 1 be an integer. For any x ∈ Rdx

and any (β − 1) times continuously differentiable function f : Rdx → R, we denote the Taylor expansion

polynomial of degree (β − 1) at point x by fx(x′) ≡
∑

|s|≤β−1
(x′−x)s

s! Dsf(x). Let L > 0. The Hölder class of

functions in Rdx with degree β and constant 0 < L < ∞ is defined as the set of function f : Rdx → R that are

(β − 1) times continuously differentiable and satisfy, for any x and x′ ∈ Rdx , the inequality |fx(x′) − f(x)| ≤

L ‖x − x′‖β .
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and p̄X , such that, for any 0 < h < r0/c, any c4h
βe < δ, and any n ≥ 2,

P n−1 (|ẽ(x) − e (x)| > δ) ≤ c2 exp
(
−c3nhdxδ2

)
,

holds for almost all x with respect to PX , where P n−1 (∙) is the distribution of
{
(Yi, Di, Xi)

n−1
i=1

}
.

(ii)

sup
P∈Pe

∫

X
EP n−1 [|ẽ(x) − e (x)|] dPX(x) ≤ O(hβe) + O

(
1

√
nhdx

)

holds. Hence, a choice of bandwidth that optimizes the upper bound of the convergence rate

is h ∝ n
− 1

2βe+dx and the resulting uniform convergence rate is

sup
P∈Pe

∫

X
EP n−1 [|ẽ(x) − e (x)|] dPX(x) ≤ O

(
n
− 1

2+dx/βe

)
. (E.3)

(iii)

sup
P∈Pe

EP n

[

(max
1≤i≤n

|ẽ(Xi) − e (Xi)|)
2

]

≤ O

(
h2βe

t2n

)

+ O

(
log n

nhdxt2n

)

holds. In particular, when the bandwidth is chosen as in claim (ii) of the current proposition,

the resulting uniform convergence rate is

sup
P∈Pe

EP n

[

(max
1≤i≤n

|ẽ(Xi) − e (Xi)|)
2

]

≤ O
(
t−2
n log n ∙ n− 2

2+dx/βe

)
. (E.4)

Making use of Lemma E.1, the next proposition shows a propensity score estimator

constructed by suitably trimming ẽ(Xi) satisfies Assumption C.1 with an explicit character-

ization of the growing sequences φn and φ̃n.

Proposition E.1. Let Pe consist of data generating processes that satisfy Assumption E.1

(Smooth-e) and (PX). Let ẽ(Xi) be the leave-one-out local polynomial estimator with degree

l = (βe − 1), trimming sequence for the least eigenvalue tn = (log n)−1, bandwidth sequence

h ∝ n
− 1

2βe+dx , and whose kernel satisfies Assumption E.1 (Ker). Let

ê(Xi) ≡ min {1 − εn, max{εn, ẽ(Xi)}} ∈ [εn, 1 − εn] (E.5)

with a sequence of trimming constants εn that satisfies εn = O(n−a) for some a > 0. Then,

ê(Xi) satisfies Assumption C.1 with φn = n
1

2+dx/βe and φ̃n = (log n)−3/2 ∙ n
1

2+dx/βe .
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Proof of Proposition E.1. Assume that n is large enough so that εn ≤ κ/2 holds. Since

ê(Xi) = ẽ(Xi) whenever ẽ(Xi) ∈
[

κ
2
, 1 − κ

2

]
⊂ [εn, 1 − εn], the following bounds are valid

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣ ≤






2
κ2 |ẽ(Xi) − e(Xi)| if ẽ(Xi) ∈

[
κ
2
, 1 − κ

2

]

(κεn)−1 if ẽ(Xi) /∈
[

κ
2
, 1 − κ

2

]
.

Hence,

EP n

[
1

n

n∑

i=1

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

]

= EP n

[∣∣
∣
∣

1

e(Xn)
−

1

ê(Xn)

∣
∣
∣
∣

]

≤
2

κ2
EP n |ẽ(Xn) − e(Xn)| + (κεn)−1P n

(
ẽ(Xn) /∈

[κ
2
, 1 −

κ

2

])

(E.6)

By Lemma E.1 (ii),

sup
P∈Pe

EP n |ẽ(Xn) − e(Xn)| = sup
P∈Pe

∫

X
EP n−1 [|ẽ(x) − e(x)|] dPX(x) ≤ O

(
n
− 1

2+dx/βe

)
.

Furthermore, by Lemma E.1 (i),

P n
(

ẽ (Xn) /∈
[κ
2
, 1 −

κ

2

])
=

∫

X
P n−1

(
ẽ (x) /∈

[κ
2
, 1 −

κ

2

])
dPX (x)

≤
∫

X
P n−1

(
|ẽ (x) − e(x)| >

κ

2

)
dPX (x)

≤ c2 exp

(

−
c3κ

2

4
nhdx

)

(E.7)

holds for all n satisfying c4h
βe < κ/2, where c2, c3, and c4 are the constants defined in Lemma

E.1 (i). Since εn is assumed to converge at a polynomial rate, ε−1
n P n

(
ê (Xn) /∈

[
κ
2
, 1 − κ

2

])

converges faster than O(n
− 1

2+dx/βe ). Thus, from (E.6), we conclude sup
P∈Pe

EP n

[
1
n

∑n
i=1 |ê(Xi) − e(Xi)|

]
≤

O
(
n
− 1

2+dx/βe

)
, i.e., φn = n

1
2+dx/βe .

For the bounds for the mean of the squared maximum, we have

EP n

[(

max
1≤i≤n

∣
∣
∣
∣

1

e(Xi)
−

1

ê(Xi)

∣
∣
∣
∣

)2
]

≤
4

κ4
EP n

[(

max
1≤i≤n

|ẽ(Xn) − e(Xn)|

)2
]

+ (κεn)−2P n
(
ẽ(Xn) /∈

[κ
2
, 1 −

κ

2

])

By Lemma E.1 (iii) and (E.7), EP n

[(
max1≤i≤n

∣
∣
∣ 1
e(Xi)

− 1
ê(Xi)

∣
∣
∣
)2
]

≤ O
(
(log n)3 ∙ n− 2

2+dx/βe

)
,

i.e., φ̃n = (log n)−3/2 ∙ n
1

2+dx/βe .

The other convergence rate bounds in Assumption C.1 can be shown similarly.
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Combining Proposition E.1 with Theorem C.1 proves the claim made in equation (C.4).
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