# A Divergent Synthetic Route to the Vallesamidine, Strempeliopine and Schizozygine Alkaloids: Total Synthesis of (+)-Vallesamidine and (+)-14,15-Dehydrostrempeliopine

Xiangyu Zhang and James C. Anderson<sup>\*</sup>

Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK

Email: j.c.anderson@ucl.ac.uk

### Contents

| General Experimental                                             | 1  |
|------------------------------------------------------------------|----|
| Experimental procedures and listing of characterisation data     | 2  |
| Chiral HPLC chromatogram of <b>14</b>                            | 32 |
| Crystallographic analyses of <b>11</b>                           | 34 |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra for all compounds | 35 |

# General Experimental

Glassware was flame-dried before use. All solvents and chemicals were used as received unless stated. The anhydrous solvents diethyl ether (Et<sub>2</sub>O), tetrahydrofuran (THF), dichloromethane (DCM), toluene and hexane were obtained from solvent purification system. Thin layer chromatography (TLC) was performed using Merck silica-aluminium plates and visualised by UV light (254 nm) and potassium permanganate or anisaldehyde stains. For column chromatography, Merck Geduran<sup>®</sup> Si 60 silica gel was used.

All <sup>1</sup>H NMR and <sup>13</sup>C NMR data were recorded using Bruker AVANCE III 400 MHz, Bruker AVANCE 500, Bruker AVANCE III 600 MHz and Bruker AVANCE NEO 700 MHz machines at 400, 500, 600 and 700 MHz for <sup>1</sup>H NMR and 101, 126, 151 and 176 MHz for <sup>13</sup>C NMR respectively. Samples were prepared as dilute solutions of CDCl<sub>3</sub>, DMSO-d<sub>6</sub> or MeOD-d<sub>4</sub> and spectra were

recorded at 298K, unless otherwise stated. Reference values for residual solvents were taken as  $\delta$  = 7.26 (CDCl<sub>3</sub>), 2.51 (DMSO-d<sub>6</sub>), 3.30 (MeOD-d<sub>4</sub>) ppm for <sup>1</sup>H NMR and  $\delta$  = 77.2 (CDCl<sub>3</sub>), 39.5 (DMSO-d<sub>6</sub>), 49.0 (MeOD-d<sub>4</sub>) ppm for <sup>13</sup>C NMR. Coupling constants (J) are given in Hz and are uncorrected and multiplicities for coupled signals were denoted as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br. = broad, apt. = apparent and dd = double doublet etc. COSY and DEPT experiments were carried out to aid assignment where appropriate.

Mass spectroscopy data was collected on a Thermo Finnigan Mat900xp (EI/CI), Waters LCT Premier XE (ES) and Agilent 6510 Q TOF mass spectrometers (ESI). Infrared data were collected using Bruker compact FTIR spectrometer. Melting points were uncorrected and recorded on a DigMelt MPA160-SRS machine. Optical rotations were obtained using a Bellingham+Stanley ADP430 series polarimeter. Chiral HPLC was performed using a Chiralcel OD-H 15 cm analytical column.

## Experimental procedures and listing of characterisation data

#### **Compound 15**

Compound **15** is commercially available and can also be prepared using following procedure:



**Procedure**<sup>[1]</sup>: To a mixture of NH<sub>4</sub>OAc (7.50 g, 97.0 mmol) in AcOH (150 mL) was added 2bromobenzaldehyde (6.30 mL, 54.0 mmol) and the resulting mixture was stirred at room temperature for 10 min before nitromethane (10.0 mL) was added slowly. After addition the reaction solution was flushed with nitrogen and heated to 130 °C for 4 h with stirring. Then the orange solution was cooled to room temperature and poured into ice water (200 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (150 mL x 2). The combined organic layers were washed with saturated aq. NaHCO<sub>3</sub> (150 mL x 2), dried (Na<sub>2</sub>CO<sub>3</sub>) and concentrated by rotary evaporation to give crude product as a yellow solid. Hexane (150 mL) was added to the crude product and heated to reflux and during which time diethyl ether was added slowly until most of the solid dissolved. Then the solution was cooled to room temperature and furtherly to 0 °C to afford the recrystalised compound **15** as a microcrystalline yellow solid (9.40 g, 78%) and data was consistent with the literature.<sup>[1]</sup>

R<sub>f</sub> (1:2 CH<sub>2</sub>Cl<sub>2</sub>/hexane): 0.2; m.p. 83.5 – 84.5 °C (lit. 87 – 88 °C) <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 8.41 (1H, d, *J* = 13.6, CH=CHNO<sub>2</sub>), 7.70 (1H, dd, *J* = 7.9, 1.3, Ar*H*), 7.58 (1H, dd, *J* = 7.7, 1.8, Ar*H*), 7.54 (1H, d, *J* = 13.6, CH=CHNO<sub>2</sub>), 7.39 (1H, td, *J* = 7.6, 1.3, Ar*H*), 7.35 (1H, td, *J* = 7.7, 1.8, Ar*H*); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 139.0 (CH=CHNO<sub>2</sub>), 137.7 (CH=CHNO<sub>2</sub>), 134.2 (ArCH), 133.0 (ArCH), 130.5 (ArC), 128.6 (ArCH), 128.2 (ArCH), 126.5 (ArC).

#### **Compound 14**



**Procedure**<sup>2</sup>: To a solution of nitroalkene **15** (3.80 g, 16.5 mmol) in toluene (8.5 mL) was added diethylmalonate (2.50 mL, 16.5 mmol) and catalyst<sup>[2]</sup> (133 mg, 0.16 mmol). The resulting mixture was stirred at room temperature for 3 days and then concentrated by rotary evaporation. Chromatography of the residue on silica gel, using 1:4 EtOAc/hexane, gave compound **14** as a yellow oil (5.83 g, 91%).

R<sub>f</sub> (1:4 EtOAc/hexane): 0.29;  $[α]_D^{25}$  +6.42 (c 0.1, CHCl<sub>3</sub>); Enantiomeric ratio (*e.r.*): 95:5 (Chiralcel OD-H column, 90:10 hexane:isopropanol, 1mL/min, 215 nm, major enantiomer t<sub>r</sub> 7.0 min, minor enantiomer t<sub>r</sub> 12.7 min); absolute stereochemistry was determined by analogy with literature.<sup>2</sup> FTIR (neat, cm<sup>-1</sup>): 2979, 2934, 1726, 1551, 1369, 1285, 1225, 1022; HRMS (ESI-TOF, m/z) calcd. for C<sub>15</sub>H<sub>18</sub>NO<sub>6</sub><sup>79</sup>BrNa [M+Na]<sup>+</sup> 410.0210, found 410.0212; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.61 (1H, dd, *J* = 8.0, 1.2 Hz, Ar*H*), 7.38–7.22 (2H, m, Ar*H*), 7.16 (ddd, 1H, *J* = 8.0, 7.1, 1.9 Hz, Ar*H*), 5.12 (1H, dd, *J* = 13.6, 8.3 Hz, *H*CHNO<sub>2</sub>), 4.95 (1H, dd, *J* = 13.6, 4.4 Hz, HCHNO<sub>2</sub>), 4.76 (1H, td, *J* = 8.3, 4.4 Hz, Ar-C*H*), 4.21 (2H, qd, *J* = 10.8, 7.2 Hz, CO<sub>2</sub>C*H*<sub>2</sub>), 4.12–4.08 (3H, m, CO<sub>2</sub>C*H*<sub>2</sub> and C*H*(CO<sub>2</sub>Et)<sub>2</sub>), 1.24 (3H, t, *J* = 7.1 Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 1.13 (3H, t, *J* = 7.1

Hz, CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 167.5 (*C*O<sub>2</sub>Et), 167.0 (*C*O<sub>2</sub>Et), 135.5 (Ar*C*H), 134.0 (Ar*C*H), 129.8 (Ar*C*H), 128.6 (Ar*C*), 128.0 (Ar*C*H), 125.0 (Ar*C*), 75.9 (*C*H<sub>2</sub>NO<sub>2</sub>), 62.3 (CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 62.2 (CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 53.4 (*C*H(CO<sub>2</sub>Et)<sub>2</sub>), 41.6 (Ar*-C*H), 14.1 (CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>), 13.9 (CO<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>).

 For large scale preparation (> 10 g), the crude product could be used directly without chromatography and first chromatographic purification could be performed after Tsuji-Trost allylation.

#### Compound 13



**Procedure:** To a solution of nitro malonate **14** (13.0 g, 33.5 mmol) in ethanol (90.0 mL) was added *p*-methoxybenzylamine (8.70 mL, 67.0 mmol) and paraformaldehyde powder (1.20 g, 36.9 mmol) and the resulting mixture was heated to 80 °C under nitrogen atmosphere for 2 hours. Reaction mixture was then cooled to room temperature and quenched with 1 M HCl aq. solution (100 mL) followed by extraction with EtOAc (150 mL x 3). Combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation to give the crude product **A** which was put into next step directly without further purification.

Sodium chloride (11.0 g) was added to the mixture of above crude product **A** in DMSO/H<sub>2</sub>O (36.0 mL/12.00 mL) and the resulting mixture was heated to 150 - 160 °C (heating block) under nitrogen atmosphere overnight. The reaction mixture was cooled to room temperature and diluted with water (150 mL) and extracted with EtOAc (150 x 3 mL). The combined organic layers were washed with brine (300 mL x 2), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation. Chromatography of the crude product on silica gel, using 4:5 EtOAc/ hexane, gave titled compound **13** as a yellow foam (11.8 g, 84%). The proton NMR of product shows a mixture of inseparable diastereomers (dr 5:1, determined by <sup>1</sup>H NMR). A small fraction of major diastereomer was obtained for data collection.

R<sub>f</sub> (50% EtOAc in hexane): 0.34; FTIR (neat, cm<sup>-1</sup>) 2927, 2833, 1642, 1549, 1509, 1242, 1024; HRMS (EI, m/z) calcd. for C<sub>19</sub>H<sub>19</sub>N<sub>2</sub>O<sub>4</sub><sup>79</sup>Br [M]<sup>+.</sup> 418.05227, found 418.05232; **Major isomer**: <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (1H, dd, *J* = 8.0 Hz, 1.3, Ar*H*), 7.27 (1H, td, *J* = 7.6, 1.3 Hz, Ar*H*), 7.22 (2H, d, *J* = 8.6 Hz, Ar<sub>PMB</sub>*H*), 7.16 (1H, td, *J* = 7.7, 1.6 Hz, Ar*H*), 7.13 (1H, dd, *J* = 7.7, 1.6 Hz, Ar*H*), 6.87 (2H, d, *J* = 8.6 Hz, Ar<sub>PMB</sub>*H*), 4.99 (1H, q, *J* = 5.2 Hz, CHNO<sub>2</sub>), 4.85 (1H, d, *J* = 14.4 Hz, N-HCH), 4.43 (1H, q, *J* = 6.4 Hz, ArC-C*H*), 4.38 (1H, d, *J* = 14.3 Hz, N-HC*H*), 3.85 (1H, dd, *J* = 13.6, 5.1 Hz, HCH-CHNO<sub>2</sub>), 3.80 (3H, s, OMe), 3.41 (1H, dd, *J* = 13.7, 4.6 Hz, HCH-CHNO<sub>2</sub>), 2.97 (1H, dd, *J* = 18.2, 6.7 Hz, NC(O)HCH), 2.71 (1H, dd, *J* = 18.2, 6.1 Hz, NC(O)HC*H*); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  167.1 (*C*(O)N), 159.6 (Ar<sub>PMB</sub>*C*), 137.3 (Ar*C*), 134.0 (Ar*C*H), 130.0 (Ar<sub>PMB</sub>*C*H x 2), 128.6 (Ar*C*H), 127.8 (Ar*C*H), 127.7 (Ar*C*H), 124.4 (Ar*C*), 114.3 (Ar<sub>PMB</sub>*C*H x 2), 81.7 (CHNO<sub>2</sub>), 55.4 (OCH<sub>3</sub>), 49.8 (N-CH<sub>2</sub>PMP), 46.3 (N-CH<sub>2</sub>), 41.0 (Ar*C*-CH), 34.2 (NC(O)CH<sub>2</sub>).

#### Compound 12



**Procedure:** To a cooled (0 °C) and stirred solution of **13** (11.8 g, 28.2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (94.0 mL) under nitrogen was added Pd(PPh<sub>3</sub>)<sub>4</sub> (330 mg, 0.28 mmol), allyl acetate (4.56 mL, 42.3 mmol) and DBU (6.31 mL, 42.3 mmol). The resulting solution was stirred at 0 °C for 1 hour before it was concentrated by rotary evaporation. Chromatography of the residue on silica gel, using 40% EtOAc in hexane, gave tilted compound **12** as a yellow foam (11.1 g, 86%).

R<sub>f</sub> (50% EtOAc in hexane): 0.4;  $[\alpha]_D^{25}$  +45.3 (c 0.22, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 3064, 2928, 1647, 1538, 1510, 1243, 1174, 1026; HRMS (EI, m/z) cald for C<sub>22</sub>H<sub>23</sub>N<sub>2</sub>O<sub>4</sub><sup>79</sup>Br [M]<sup>+.</sup> 458.08357, found 458.08358; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (1H, dd, *J* = 8.0, 1.2 Hz, Ar*H*), 7.30–7.26 (1H, m, Ar*H*), 7.27 (2H, d, *J* = 8.5 Hz, Ar<sub>PMB</sub>*H*), 7.18 (1H, td, *J* = 7.7, 1.6 Hz, Ar*H*), 6.98 (1H, dd, *J* = 8.0, 1.6 Hz, Ar*H*), 6.89 (2H, d, *J* = 8.5 Hz, Ar<sub>PMB</sub>*H*), 5.41 (1H, dddd, *J* = 16.6, 10.2, 8.2, 6.1 Hz, CH<sub>2</sub>CH=CH<sub>2</sub>), 5.11 (1H, d, *J* = 10.1 Hz, CH=HC*H*), 5.05 (1H, dd, *J* = 16, 1.6 Hz, CH=*H*CH), 4.76 (1H, d, *J* = 14.4 Hz, C(O)N-HC*H*), 4.54 (1H, d, *J* = 14.3 Hz, N-HCHPMP), 3.47 (1H, d, *J* = 14.3 Hz, N-HCHPMP), 2.86–2.78 (2H, m, NC(O)HCH and HCH-CH=CH<sub>2</sub>), 2.74 (1H, dd, *J* = 17.8, 5.7

Hz, NC(O)HC*H*), 2.62 (1H, dd, *J* = 14.7, 8.2 Hz, HC*H*-CH=CH<sub>2</sub>); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 167.6 (*C*(O)N), 159.4 (Ar<sub>PMB</sub>C), 135.4 (Ar*C*), 133.5 (Ar*C*H), 130.1 (Ar*C*H), 129.9 (Ar<sub>PMB</sub>CH x 2), 129.3 (CH=CH<sub>2</sub>), 129.0 (Ar*C*H), 128.2 (Ar*C*H), 128.0 (Ar<sub>PMB</sub>C), 126.1 (Ar*C*), 122.1 (CH=CH<sub>2</sub>), 114.3 (Ar<sub>PMB</sub>CH x 2), 90.3 (CNO<sub>2</sub>), 55.4 (OCH<sub>3</sub>), 52.5 (CH<sub>2</sub>-PMP), 49.6 (C(O)NCH<sub>2</sub>), 44.1 (ArC-CH), 40.4 (allyl *C*H<sub>2</sub>), 35.2 (NC(O)*C*H<sub>2</sub>).

#### Compound 11



**Procedure (B):**To a cooled (0 °C) and stirred solution of **12** (3.18 g, 6.93 mmol) in EtOAc/EtOH (80.0/80.0 mL) was added zinc dust (4.5 g, 69.3 mmol) and 6M HCl aq. solution (23.0 mL, 138.6 mmol). The resulting mixture was stirred at 0 °C until all the starting material was fully consumed (typically around 30 min, checked by TLC). Reaction mixture was then poured into saturated NaHCO<sub>3</sub> aq. Solution (150 mL) at 0 °C and then the whole mixture was filtered through a pad of celite, followed by washing with EtOAc (200 mL). The organic layer was separated, and aqueous layer was extracted by another portion of EtOAc (150 mL). Combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation to give the primary amine **B** as a grey foam (2.90 g, 98%) without further purification.

**Compound B**: R<sub>f</sub> (66% EtOAc in hexane): 0.11;  $[\alpha]_D^{25}$  +33.3 (c 0.27, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>): 3372, 3310, 3064, 2923, 1636, 1509, 1243; HRMS (EI, m/z) calcd. for C<sub>22</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub><sup>79</sup>Br [M]<sup>+.</sup> 428.10939, found 428.10940; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (1H, dd, *J* = 8.0, 1.3 Hz, ArC*H*), 7.45 (1H, dd, *J* = 7.9, 1.7 Hz, ArC*H*), 7.28–7.25 (3H, m, Ar<sub>PMB</sub>CH<sub>2</sub> and ArC*H*), 7.12 (1H, td, *J* = 7.6, 1.7 Hz, ArC*H*), 6.88 (2H, d, *J* = 8.6 Hz, Ar<sub>PMB</sub>CH<sub>2</sub>), 5.65 (1H, ddt, *J* = 17.5, 10.1, 7.5 Hz, CH<sub>2</sub>-CH=CH<sub>2</sub>), 5.09 (1H, dd, *J* = 10.2, 1.9 Hz, CH<sub>2</sub>-CH=HC*H*), 5.04–4.96 (1H, m, CH=HCH), 4.74 (1H,

d, *J* = 14.2 Hz, HCH-PMP), 4.42 (1H, d, *J* = 14.2 Hz, *H*CH-PMP), 3.82 (3H, s, OCH<sub>3</sub>), 3.77 (1H, dd, *J* = 9.3, 6.3 Hz, ArC-CH), 3.22 (1H, d, *J* = 12.6 Hz, CHHNC=O), 2.93 (1H, d, *J* = 12.7 Hz, CHHNCO), 2.83 (1H, d, *J* = 9.3 Hz, HCHC(O)N), 2.73 (1H, dd, *J* = 18.2, 6.3 Hz, *H*CHC(O)N), 2.27 (1H, dd, *J* = 14.0, 7.3 Hz, HCH-CH=CH<sub>2</sub>), 2.02 (1H, dd, *J* = 14.0, 7.7 Hz, *H*CH-CH=CH<sub>2</sub>); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.0 (N*C*=O), 159.2 (Ar<sub>PMB</sub>C), 139.4 (Ar*C*), 133.3 (Ar*C*H), 132.1 (*C*H=CH<sub>2</sub>), 129.9 (Ar<sub>PMB</sub>CH X 2), 129.0 (Ar<sub>PMB</sub>C), 129.0 (Ar*C*H), 128.8 (Ar*C*H), 128.0 (Ar*C*H), 126.4 (Ar*C*), 120.0 (CH=CH<sub>2</sub>), 114.2 (Ar<sub>PMB</sub>CH X 2), 57.5 (CH<sub>2</sub>NC(O)), 55.4 (OCH<sub>3</sub>), 53.0 (*C*-NH<sub>2</sub>), 49.8 (CH<sub>2</sub>-PMP), 45.0 (ArC-CH), 43.3 (*C*H<sub>2</sub>CH=CH<sub>2</sub>), 35.8 (*C*H<sub>2</sub>C(O)N).

**Procedure (17)** <sup>[3]</sup>: A flame-dried, argon filled round bottom flask was added CuI (78.0 mg, 0.41 mmol), *L*-proline (94.0 mg, 0.82 mmol) and K<sub>3</sub>PO<sub>4</sub> (1.70 g, 8.18 mmol), followed by addition of **B** (1.75 g, 4.09 mmol) in anhydrous DMSO (10.0 mL). The mixture was degassed and back filled with argon (repeated 3 times) and then heated to 95 °C (heating block) with stirring for 1 hour (TLC indicated all consumption of starting material). After cooling to room temperature, the reaction mixture was added water (50.0 mL) and EtOAc (50.0 mL). Aqueous layer was separated and extracted with EtOAc (50.0 mL x 2). The combined organic layers were washed with brine (100 mL x 3), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated to give **17** as a brown oil (1.42 g, quant.) which was pure enough to go to next step. A small fraction was purified by chromatography (50% EtOAc/hexane) for data collection.

**Compound 17**: R<sub>f</sub> (50% EtOAc in hexane): 0.21;  $[α]_D^{25}$ -95.1 (c 0.10, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>): 3330, 3079, 2908, 1646, 1608, 1511, 1486, 1244; HRMS (ESI-TOF, m/z): calcd. for C<sub>22</sub>H<sub>25</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 349.1916, found 349.1911; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.14–6.94 (4H, m, Ar<sub>PMB</sub>CH and ArCH), 6.84 (2H, d, *J* = 8.6, Ar<sub>PMB</sub>CH), 6.71 (1H, td, *J* = 7.4, 0.9 Hz, ArCH), 6.41 (1H, d, *J* = 7.8 Hz, ArCH), 5.66 (1H, ddt, *J* = 17.3, 10.2, 7.2 Hz, CH<sub>2</sub>-CH=CH<sub>2</sub>), 5.16–4.99 (2H, m, CH<sub>2</sub>-CH=CH<sub>2</sub>), 4.79 (1H, d, *J* = 14.5 Hz, HCH-PMP), 4.13 (1H, d, *J* = 14.5 Hz, HCH-PMP), 3.82 (3H, s, OMe), 3.45 (1H, t, *J* = 5.9 Hz, ArC-CH), 3.35 (1H, d, *J* = 13.6 Hz, C(O)N-HCH), 3.30 (1H, s, N-H), 3.10 (1H, d, *J* = 13.6 Hz, C(O)N-HCH), 2.75 (1H, dd, *J* = 15.1, 6.5 Hz, NC(O)-HCH), 2.66 (1H, dd, *J* = 15.0, 5.4 Hz, NC(O)-HCH), 2.26 (2H, d, *J* = 7.3 Hz, CH<sub>2</sub>-CH=CH<sub>2</sub>); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 171.0 (NC=O), 159.2 (Ar<sub>PMB</sub>C), 149.8 (ArC), 132.3 (CH=CH<sub>2</sub>), 130.1 (Ar<sub>PMB</sub>CH x 2), 129.9 (ArC), 129.1 (Ar<sub>PMB</sub>C), 128.4 (ArCH), 124.5 (ArCH), 119.9 (CH=CH<sub>2</sub>), 49.1 (PMP-CH<sub>2</sub>), 46.0 (ArC-CH), 44.4 (CH<sub>2</sub>CH=CH<sub>2</sub>), 37.4 (CH<sub>2</sub>C(O)N). **Procedure (11):** To a solution of crude indoline **17** (3.60 g, 10.3 mmol) in methyl chloroformate (80 mL) was added  $Na_2CO_3$  (11.0 g, 103 mmol) and the resulting mixture was heated to 60 °C (oil bath) under  $N_2$  atmosphere and stirred overnight. The reaction mixture was cooled to room temperature and solid was filtered. The filtrate was concentrated via rotary evaporation and chromatography of the residue on silica gel, using 60% EtOAc in hexane, gave **11** as a yellow foam (3.70 g, 88%).

**Compound 11**: R<sub>f</sub> (2:1 EtOAc:hexane): 0.26;  $[α]_D^{25}$  -41.7 (c 0.12, CHCl<sub>3</sub>); m.p. 107.7–109.5 °C; FTIR (neat, cm<sup>-1</sup>) 3003, 2953, 1696, 1660, 1511, 1484, 1365, 1202; HRMS (ESI-TOF, m/z) calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>4</sub> [M+H]<sup>+</sup> 407.1971, found 407.1962; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.87 – 6.78 (8H, m, ArH), 5.57 – 5.47 (1H, m, CH<sub>2</sub>-CH=CH<sub>2</sub>), 5.13 – 5.00 (2H, m, CH<sub>2</sub>-CH=CH<sub>2</sub>), 4.90–4.74 (1H, m, HCH), 4.13 (1H, d, *J* = 13.9 Hz, C(O)N-HCH), 3.91 (1H, d, *J* = 14.6 Hz, *H*CH-PMP), 3.81 (3H, s, OCH<sub>3</sub>), 3.66–3.58 (4H, m, ArC-CH and OCH<sub>3</sub>), 3.54–3.37 (1H, m, C(O)N-HCH), 3.02 (1H, brs, HCH-CH=CH<sub>2</sub>), 2.75 (1H, dd, *J* = 15.1, 6.0 Hz, NC(O)-HCH), 2.69 (1H, dd, *J* = 15.1, 5.2 Hz, NC(O)-HCH), 2.33–2.22 (1H, m, *H*CH-CH=CH<sub>2</sub>); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 170.6 (NC=O), 159.0 (Ar<sub>PMB</sub>C), 153.2 (NCO<sub>2</sub>Me), 142.3 (ArC), 131.5 (CH=CH<sub>2</sub>), 130.8 (ArC), 130.0 (Ar<sub>PMB</sub>CH X 2), 129.2 (ArC), 128.4 (ArCH), 124.2 (ArCH), 123.5 (ArCH), 120.0 (CH=CH<sub>2</sub>), 115.3 (ArCH), 113.9 (Ar<sub>PMB</sub>CH X 2), 69.7 (C-Allyl), 55.4 (OCH<sub>3</sub>), 52.4 (NCO<sub>2</sub>CH<sub>3</sub>), 51.2 (C(O)NCH<sub>2</sub>), 49.0 (CH<sub>2</sub>-PMP), 44.0 (ArC-CH), 40.2 (CH<sub>2</sub>-CH=CH<sub>2</sub>), 37.1 (NC(O)CH<sub>2</sub>).

#### **Compound 18**



**Procedure (C)**: To a solution of **11** (2.50 g, 5.90 mmol) in toluene (120 mL) was added Lawesson's reagent (1.20 g, 2.96 mmol) and the resulting mixture was heated to reflux and stirred for 1 hour. The clear yellow solution was cooled to room temperature and concentrated by rotary evaporation. Chromatography of the residue on silica gel, using 30% EtOAc in hexane, gave intermediate **C** as a white foam (2.32 g, 93%).

**Compound C**: R<sub>f</sub> (30% EtOAc in hexane): 0.49;  $[\alpha]_D^{25}$  -140.0 (c 0.22, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>): 3073, 2953, 1697, 1485, 1438, 1299, 1250, 1238; HRMS (ESI-TOF, m/z): calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup> 423.1742, found 423.1745; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 – 6.79 (8H, m, Ar*H*), 5.65 – 5.43 (2H, m, HCH-PMP and CH<sub>2</sub>-CH=CH<sub>2</sub>), 5.13 – 4.98 (2H, m, CH<sub>2</sub>-CH=CH<sub>2</sub>), 4.69 – 4.42 (1H, m, C(S)N-HCH), 4.32 – 3.92 (1H, m, HCH-PMP), 3.82 (3H, s, OCH<sub>3</sub>), 3.71 – 3.63 (4H, m, C(S)N-HCH and NCO<sub>2</sub>CH<sub>3</sub>), 3.60 (1H, t, *J* = 5.6 Hz, Ar-C*H*), 3.42 – 3.11 (2H, m, CH<sub>2</sub>C(S)N), 3.05 – 2.70 (1H, m, *H*CH-CH=CH<sub>2</sub>), 2.29 – 2.14 (1H, m, HCH-CH=CH<sub>2</sub>); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  200.0 (*C*=S), 159.4 (Ar<sub>PMB</sub>C), 153.2 (NCO<sub>2</sub>Me), 142.1 (Ar*C*), 131.0 (CH=CH<sub>2</sub>), 130.1 (Ar<sub>PMB</sub>CH x 2), 129.9 (Ar<sub>PMB</sub>C), 128.5 (Ar*C*H), 127.6 (Ar<sub>PMB</sub>C), 124.5 (Ar*C*H), 123.6 (Ar*C*H), 120.3 (CH=CH<sub>2</sub>), 115.4 (Ar*C*H), 114.1 (Ar<sub>PMB</sub>CH X 2), 69.7 (*C*-allyl), 56.4 (PMP-CH<sub>2</sub>), 55.4 (OCH<sub>3</sub>), 53.9 (C(S)NCH<sub>2</sub>), 52.5 (NCO<sub>2</sub>CH<sub>3</sub>), 47.1 (CH<sub>2</sub>C(S)N), 44.3 (ArC-*C*H), 40.2 (CH<sub>2</sub>-CH=CH<sub>2</sub>).

**Procedure (18)**: A solution of thiolactam **C** (2.40 g, 5.69 mmol) in methyl iodide (10.0 mL) was heated to reflux and stirred until the complete consumption of starting material (appx. 1 hour, monitored by TLC). Methyl iodide was distilled off (recovered) and the residue was dissolved in methanol (50.0 mL) and cooled to 0 °C and sodium borohydride (1.10 g, 28.5 mmol) was added portion wise. The resulting mixture was stirred at the same temperature for 1 h and then concentrated by rotary evaporation. The residue was quenched with saturated NaHCO<sub>3</sub> aq. solution (30.0 mL) and water (30.0 mL). The mixture was extracted with  $CH_2Cl_2$  (30 mL x 3) and the combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated by rotary evaporation to give **18** as a colourless oil which was pure without further purification (2.21 g, quant.). Chromatography on a small amount of crude product on silica gel was carried out (20% EtOAc in hexane) to give **pure 18** for data collection.

**Compound 18**:  $R_f$  (30% EtOAc in hexane): 0.43;  $[\alpha]_D^{25}$  -54.8 (c 1.04, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 3001, 2950, 1700, 1510, 1460, 1376, 1241; HRMS (ESI-TOF, m/z) calcd. for C<sub>24</sub>H<sub>29</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 393.2178, found 393.2176; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (1H, brs, Ar*H*), 7.22–7.14 (3H, m, Ar<sub>PMB</sub>*H* and Ar*H*), 7.09 (1H, dt, *J* = 7.4, 1.4 Hz, Ar*H*), 6.99 (1H, td, *J* = 7.4, 1.0 Hz, Ar*H*), 6.84 (2H, d, *J* = 8.5 Hz, Ar<sub>PMB</sub>*H*), 5.78 (1H, dddd, *J* = 16.6, 10.1, 8.4, 6.1 Hz, CH<sub>2</sub>-CH=CH<sub>2</sub>), 5.14–4.96 (2H, m, CH<sub>2</sub>-CH=CH<sub>2</sub>), 3.81 (3H, s, OCH<sub>3</sub>), 3.78 (3H, s, NCO<sub>2</sub>CH<sub>3</sub>), 3.40 (1H, d, *J* = 13.1 Hz, HCH-PMP), 3.38–3.35 (1H, m, ArC-CH), 3.31 (1H, d, *J* = 13.2 Hz, HCH-PMP), 3.13–2.94 (2H, m, HCH-CH=CH<sub>2</sub>) and N-HCH-C), 2.84 (1H, dd, *J* = 14.5, 8.4 Hz, HCH-CH=CH<sub>2</sub>), 2.64–2.56 (1H, m, N-HCHCH<sub>2</sub>), 2.28 (1H, d, *J* = 11.6 Hz, N-HCH-C), 2.08–2.02 (3H, m, N-HCHCH<sub>2</sub> and N-CH<sub>2</sub>CH<sub>2</sub>); <sup>13</sup>C NMR (101 MHz,

CDCl<sub>3</sub>) δ 158.7 (Ar<sub>PMB</sub>C), 154.1 (NCO<sub>2</sub>CH<sub>3</sub>), 142.7 (Ar*C*), 134.2 (CH<sub>2</sub>CH=CH<sub>2</sub>), 132.5 (Ar*C*), 130.8 (Ar<sub>PMB</sub>C), 129.9 (Ar<sub>PMB</sub>CH x 2), 127.6 (ArCH), 122.8 (ArCH x 2), 118.2 (CH<sub>2</sub>CH=CH<sub>2</sub>), 115.5 (ArCH), 113.6 (Ar<sub>PMB</sub>CH x 2), 69.5 (*C*-CH<sub>2</sub>CH=CH<sub>2</sub>), 62.0 (PMP-CH<sub>2</sub>), 58.4 (N-CH<sub>2</sub>-C), 55.3 (OCH<sub>3</sub>), 52.2 (NCO<sub>2</sub>CH<sub>3</sub>), 49.4 (N-CH<sub>2</sub>CH<sub>2</sub>), 41.2 (ArC-CH), 39.2 (CH<sub>2</sub>CH=CH<sub>2</sub>), 24.3 (N-CH<sub>2</sub>CH<sub>2</sub>).

#### **Compound 19**



**Procedure (D):** To a cooled (0 °C) and stirred solution of **18** (2.20 g, 5.60 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (100 mL) was added TFA (1.30 mL, 16.8 mmol) and the resulting solution was stirred at this temperature for 10 min before it was cooled to -78 °C. Then ozone/oxygen flow was bubbled into the solution until a light blue colour appeared and persisted (TLC indicated all consumption of starting material). Ozone generator was stopped, and oxygen was bubbled until the blue colour disappeared and then dimethyl sulfide (4.00 mL, 56.0 mmol) was added. The mixture was stirred for 1.5 hour and triethylamine (4.00 mL, 28.0 mmol) was added to neutralise the acid. The mixture was concentrated by rotary evaporation and chromatography of the residue on silica gel, using 30% EtOAc/hexane, gave intermediate **D** as a colourless oil (1.95 g, 90%).

**Compound D**:  $R_f$  (30% EtOAc/hexane) 0.2;  $[\alpha]_D^{25}$ -104.4 (c 0.12, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2948, 2803, 1697, 1509, 1478, 1439, 1364, 1241; HRMS (ESI-TOF, m/z) calcd. for  $C_{23}H_{27}N_2O_4$  [M+H]<sup>+</sup> 395.1971, found 395.1957; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  9.80 (1H, t, *J* = 2.6 Hz, *CHO*), 7.66 (1H, brs, Ar*H*), 7.21 (1H, t, *J* = 7.8 Hz, Ar*H*), 7.17 (2H, d, *J* = 8.4 Hz, Ar<sub>PMB</sub>*H*), 7.13 (1H, dt, *J* = 7.4, 1.4 Hz, Ar*H*), 7.04 (1H, td, *J* = 7.4, 1.0 Hz, Ar*H*), 6.85 (2H, d, *J* = 8.6 Hz, Ar<sub>PMB</sub>*H*), 3.81 (6H, s, CO<sub>2</sub>CH<sub>3</sub> and OCH<sub>3</sub>), 3.43–3.31 (3H, m, ArC-CH and CH<sub>2</sub>-PMP), 3.25–3.09 (3H, m, C-HCH-N and CH<sub>2</sub>CHO), 2.72–2.64 (1H, m, CH<sub>2</sub>-HCH-N), 2.25 (1H, d, *J* = 11.8 Hz, C-HCH-N), 2.13–2.02 (3H, m, CH<sub>2</sub>-CH<sub>2</sub>-N and CH<sub>2</sub>-HCH-N); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  200.7 (CHO), 158.9 (Ar<sub>PMB</sub>C), 153.9 (NCO<sub>2</sub>Me), 141.8 (ArC), 131.6 (ArC), 130.2 (Ar<sub>PMB</sub>C), 130.1 (Ar<sub>PMB</sub>CH x 2), 128.1 (ArCH), 123.4 (ArCH), 123.3 (ArCH), 115.9 (ArCH), 113.8 (Ar<sub>PMB</sub>CH x 2), 67.8 (C-CH<sub>2</sub>-N), 61.9 (CH<sub>2</sub>-PMP), 57.4 (C-CH<sub>2</sub>-N),

55.4 (O*C*H<sub>3</sub>), 52.7 (NCO<sub>2</sub>*C*H<sub>3</sub>), 49.2 (CH<sub>2</sub>-*C*H<sub>2</sub>-N), 48.7 (*C*H<sub>2</sub>CHO), 43.7 (ArC-*C*H), 24.4 (*C*H<sub>2</sub>-CH<sub>2</sub>-N);

**Procedure (19):** To a solution of intermediate **D** (1.95 g, 4.95 mmol) in 1,2dichloroethane (10.0 mL) was added allylchloroformate (5.3 mL, 49.5 mmol). The resulting solution was stirred at 65 °C for 24h and then warmed to reflux for another 24h. The reaction mixture was cooled to room temperature and concentrated by rotary evaporation. Chromatography of the residue on silica gel, using 30% EtOAc/hexane, gave **19** as a colourless oil (1.00 g, 56% yield, 77% yield brsm).

**Compound 19**: R<sub>f</sub> (30% EtOAc/hexane): 0.12;  $[\alpha]_D^{25}$  -73.3 (c 0.69, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2953, 1697, 1649, 1551, 1461, 1365, 1116, 1076; HRMS (EI, m/z) calcd. for C<sub>19</sub>H<sub>22</sub>N<sub>2</sub>O<sub>5</sub> [M]<sup>+</sup>. 358.1523233, found 358.1522814; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  9.70 – 9.64 (1H, m, CHO), 8.08–7.33 (1H, m, Ar*H*), 7.23–7.18 (1H, m, Ar*H*), 7.12 (1H, d, *J* = 7.4 Hz, Ar*H*), 7.02 (1H, t, *J* = 7.4 Hz, Ar*H*), 5.95–5.80 (1H, m, CH<sub>2</sub>-CH=CH<sub>2</sub>), 5.35–5.10 (2H, m, CH<sub>2</sub>-CH=CH<sub>2</sub>), 4.45 (2H, brs, OCH<sub>2</sub>-CH=CH<sub>2</sub>), 4.13–3.74 (5H, m, N-C-CH<sub>2</sub>-N and NCO<sub>2</sub>*Me*), 3.49 (1H, dt, *J* = 2.1, 5.9 Hz, N-*H*CHCH<sub>2</sub>), 3.46 – 3.37 (1H, m, ArC-CH), 3.34 – 2.79 (3H, N-HCH-CH<sub>2</sub> and CH<sub>2</sub>CHO), 2.28–2.11 (1H, m, N-CH<sub>2</sub>-HCH), 2.05–1.87 (1H, m, N-CH<sub>2</sub>-HC*H*); <sup>13</sup>C NMR (175 MHz, CDCl<sub>3</sub>)  $\delta$  199.5 (CHO), 156.1 (NCO<sub>2</sub>), 153.5 (NCO<sub>2</sub>), 141.1 (ArCH), 133.0 (CH<sub>2</sub>CH=CH<sub>2</sub>), 130.4 (Ar*C*), 128.7 (Ar*C*H), 124.0 (Ar*C*H), 123.8 (Ar*C*H), 117.7 (CH<sub>2</sub>CH=CH<sub>2</sub>), 115.5 (Ar*C*H); 67.4 (N-C-CH<sub>2</sub>N), 66.3 (CO<sub>2</sub>CH<sub>2</sub>CH=CH<sub>2</sub>), 53.0 (CO<sub>2</sub>CH<sub>3</sub>), 49.9 (CH<sub>2</sub>CHO), 45.0 (N-CH<sub>2</sub>-C), 44.6 (ArC-CH), 40.2 (NCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 25.1 (NCH<sub>2</sub>CH<sub>2</sub>);

11



**Procedure (E):** To a solution of **11** (5.10 g, 12.6 mmol) in acetone/water (10:1, 110 mL) was added NMO (2.20 g, 18.8 mmol), 2,6-lutidine (3.00 mL, 25.1 mmol) and  $OsO_4$  (4% w/w in water, 1.60 mL, 0.25 mmol). The resulting solution was stirred at room temperature for 24 h (TLC indicated all consumption of alkene) and PhI(OAc)<sub>2</sub> (6.0 g, 18.8 mmol) was added and the mixture was stirred for 0.5 h. Acetone was removed by rotary evaporation and the residue was added EtOAc (150 mL) and quenched with sat. Na<sub>2</sub>SO<sub>3</sub> aq. (150 mL). The aqueous layer was separated and extracted with EtOAc (150 mL x 2). Combined organic layers were washed with brine (150 mL), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated. Chromatography of the crude product on silica gel, using 3:2 to 4:1 EtOAc/hexane, gave aldehyde **E** as a colourless oil (4.01 g, 78%).

**Compound E**: R<sub>f</sub> (100% EtOAc): 0.38; [α]<sub>D</sub><sup>25</sup> -14.4 (c 1.22, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2951, 2833, 1690, 1655, 1608, 1510, 1483, 1438, 1241, 751, 727; HRMS (ESI-TOF, m/z) calcd. for C<sub>23</sub>H<sub>25</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup> 409.1764, found 409.1748; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) δ 9.59 (1H, s, CHO), 7.30 (1H, brs, Ar*H*), 7.18 (1H, brs, Ar*H*), 7.15 (1H, d, *J* = 7.5 Hz, Ar*H*), 7.02 (1H, t, *J* = 7.4 Hz, Ar*H*), 6.93 (2H, d, *J* = 8.2 Hz, Ar<sub>PMB</sub>*H*), 6.78 - 6.77 (2H, m, Ar<sub>PMB</sub>*H*), 4.78 (1H, brs, *H*CH-PMP), 4.10 (1H, brs, C(O)N-*H*CH), 3.90 (1H, brs HC*H*-PMP), 3.80 (3H, s, OC*H*<sub>3</sub>), 3.70 (1H, t, *J* = 4.3 Hz, ArC-CH), 3.66 – 3.60 (4H, m, OC*H*<sub>3</sub> and C(O)N-HC*H*), 3.25 (1H, brs, *H*CH-CHO), 3.05 (1H, brs, HC*H*-CHO), 2.98 (1H, dd, *J* = 15.2, 6.1 Hz, NC(O)-*H*CH), 2.70 (1H, dd, *J* = 15.2, 4.5 Hz, NC(O)-HC*H*); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 199.0 (*C*HO), 170.5 (N*C*=O), 159.1 (Ar<sub>PMB</sub>*C*), 153.3 (NCO<sub>2</sub>Me), 141.5 (Ar*C*), 130.3 (Ar*C*), 130.0 (Ar<sub>PMB</sub>*C*H X 2), 67.6 (*C*-CH<sub>2</sub>CHO), 55.4 (OCH<sub>3</sub>), 52.6 (OCH<sub>3</sub>), 50.1 (NCO<sub>2</sub>CH<sub>3</sub>), 49.5 (C(O)NCH<sub>2</sub>), 48.9 (CH<sub>2</sub>-PMP), 45.5 (ArC-CH), 37.0 (CH<sub>2</sub>CHO).

**Procedure (F):** To a cooled (-78 °C) and nitrogen filled round bottom flask charged with aldehyde **E** (1.755 g, 4.30 mmol) in  $CH_2Cl_2$  (40.0 mL) was added  $(CH_2OTMS)_2$  (1.10 mL, 4.5 mmol) and TMSOTf (0.08 mL, 0.43 mmol). The resulting solution was stirred at -78 °C for 10 min and then warmed to room temperature and stirred for 1 hour. Saturated NaHCO<sub>3</sub> aq (40 mL) was added to quench the reaction and the mixture was extracted with  $CH_2Cl_2$  (10 mL x 2). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation to give compound **F** as a colourless oil (1.95 g, quant.) which was pure to go to next step without further purification. A small amount of sample was purified by column chromatography (silica gel, 80% EtOAc in hexane) for data collection.

**Compound F**: R<sub>f</sub> (80% EtOAc in hexane): 0.29;  $[\alpha]_{0}^{25}$  -22.5 (c 0.63, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2995, 2885, 1696, 1662, 1510, 1483, 1440, 1357, 1243, 751; HRMS (ESI-TOF, m/z) calcd. for C<sub>25</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 453.2026, found 453.2031; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.94—7.27 (1H, brs x 2, ArH), 7.23 – 7.10 (2H, m, ArH), 6.99 (1H, t, *J* = 7.3 Hz, ArH), 6.95 (2H, d, *J* = 8.8 Hz, Ar<sub>PMB</sub>H), 6.77 (2H, brs, Ar<sub>PMB</sub>H), 4.78 (2H, brs, *H*C(O,O) and *H*CH-PMP), 4.14 (1H, brs, (O)N-HCH-C), 4.04 – 3.88 (1H, m, HCH-PMP), 3.98 (1H, t, *J* = 5.4 Hz, Ar-CH), 3.86 – 3.69 (5H, m, OCH<sub>3</sub> and OCH<sub>2</sub>CH<sub>2</sub>O), 3.69 – 3.56 (5H, OCH<sub>3</sub> and OCH<sub>2</sub>CH<sub>2</sub>O), 3.56 – 3.34 (1H, m, (O)N-HCH-C), 2.76 (1H, dd, *J* = 15.0, 6.3 Hz, *H*CHC(O)N), 2.66 (1H, dd, *J* = 15.1, 4.9, HCHC(O)N), 2.43 (1H, brs, *H*CH-CH(O,O)), 1.95 (1H, dd, *J* = 14.5, 4.5 Hz, HCH-CH(O,O)); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  170.7 (*C*(O)N), 159.0 (Ar<sub>PMB</sub>C), 153.3 (NCO<sub>2</sub>Me), 142.2 (ArC), 131.0 (ArC), 129.9 (Ar<sub>PMB</sub>CH X 2), 129.3 (ArC), 128.3 (ArCH), 124.3 (ArCH), 123.5 (ArCH), 115.4 (ArCH), 113.9 (Ar<sub>PMB</sub>CH X 2), 101.6 (HC(O,O)), 68.2 ((O)N-CH<sub>2</sub>-C), 64.8 (OCH<sub>2</sub>CH<sub>2</sub>O), 64.6 (OCH<sub>2</sub>CH<sub>2</sub>O), 55.4 (OCH<sub>3</sub>), 52.4 (NCO<sub>2</sub>CH<sub>3</sub>), 51.5 (C(O)NCH<sub>2</sub>), 49.0 (CH<sub>2</sub>-PMP), 44.4 (ArC-CH), 39.2 (CH<sub>2</sub>CH(O,O)), 37.0 (CH<sub>2</sub>C(O)N);

**Procedure (21):** To a solution of lactam **F** (364 mg, 0.80 mmol) in THF (3.00 mL) under nitrogen was added  $Mo(CO)_6$  (21.0 mg, 0.08 mmol) and phenylsilane (0.26 mL, 2.08 mmol) and the resulting mixture was heated to 75 °C and stirred for 6 to 8 h. The reaction solution was cooled to 0 °C and quenched with 1 M NaOH aq. slowly until gas evolution ceased. Water (10.0 mL) and EtOAc (10.0 mL) were added and the aqueous layer was separated and extracted with EtOAc (10.0 mL). Combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated. Chromatography of the residue on silica gel, using 30% EtOAc in hexane, gave the compound **21** as a colourless oil (267 mg, 76%).

13

**Compound 21:** R<sub>f</sub> (80% EtOAc in hxane): 0.63;  $[α]_{D}^{25}$  -42.8 (c 0.72, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2948, 2881, 2798, 1699, 1509, 1477, 1439, 1476, 1359, 1242, 1125; HRMS (ESI-TOF, m/z) cald. for C<sub>25</sub>H<sub>31</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup> 439.2233, found 439.2221; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) δ 7.75 (1H, brs, Ar*H*), 7.18 (1H, t, *J* = 7.8 Hz, Ar*H*), 7.15 (2H, d, *J* = 8.5 Hz, Ar*H*), 7.09 (1H, *J* = 7.3 Hz, Ar*H*), 6.99 (1H, *J* = 7.1 Hz, Ar*H*), 6.82 (2H, d, *J* = 8.6 Hz, Ar*H*), 4.98 (1H, dd, *J* = 6.0, 3.1 Hz, *H*C(O,O)), 3.96 – 3.88 (2H, m, OC*H*<sub>2</sub>CH<sub>2</sub>O), 3.80 (3H, s, OC*H*<sub>3</sub>), 3.77 (3H, brs, OCH<sub>3</sub>), 3.76 – 3.73 (2H, m, OCH<sub>2</sub>CH<sub>2</sub>O), 3.68 (1H, t, *J* = 4.0 Hz, Ar-C*H*), 3.37 (1H, d, *J* = 13.1 Hz, N-*H*CH-C), 3.30 (1H, d, *J* = 13.2 Hz, N-HCH-C), 2.98 (1H, d, *J* = 10.0 Hz, N-*H*CH-C), 2.74 (1H, brs, C-*H*CH-CH(O,O)), 2.63 – 2.59 (1H, m, N-*H*CH-CH<sub>2</sub>), 2.52 (1H, dd, *J* = 15.2, 6.0 Hz, C-HCH-CH(O,O)), 2.24 (1H, d, *J* = 11.4, N-HCH-C), 2.11 – 2.00 (3H, m, N-HCH-CH<sub>2</sub> and N-CH-C*H*<sub>2</sub>); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 158.7 (Ar<sub>PMB</sub>C), 154.4 (NCO<sub>2</sub>Me), 142.7 (Ar*C*), 132.4 (Ar*C*), 130.9 (Ar<sub>PMB</sub>C), 129.9 (Ar<sub>PMB</sub>CH x 2), 127.7 (Ar*C*H), 122.9 (Ar*C*H), 122.8 (Ar*C*H), 115.6 (Ar*C*H), 113.7 (Ar<sub>PMB</sub>CH x 2), 102.5 (CH(O,O)), 68.0 (N-CH<sub>2</sub>-C), 65.0 (OCH<sub>2</sub>CH<sub>2</sub>O), 64.4 (OCH<sub>2</sub>CH<sub>2</sub>O), 62.1 (N-CH<sub>2</sub>-PMP), 58.8 (N-CH<sub>2</sub>-C), 55.4 (OCH<sub>3</sub>), 52.4 (OCH<sub>3</sub>), 49.3 (N-CH<sub>2</sub>CH<sub>2</sub>), 41.8 (ArC-CH), 38.4 (C-CH<sub>2</sub>CH(O,O)), 24.2 (N-CH<sub>2</sub>CH<sub>2</sub>).

#### **Compound 19**



**Procedure:** To a stirred solution of **21** (4.78 g, 10.9 mmol) in ClCH<sub>2</sub>CH<sub>2</sub>Cl (55.0 mL) under N<sub>2</sub> atmosphere was added allyl chloroformate (5.60 mL, 54.6 mmol), and NaHCO<sub>3</sub> (4.6 g, 54.6 mmol) and the resulting mixture was heated to 80 °C for 1 h. After cooling to room temperature, the NaHCO<sub>3</sub> was filtered and filtrate was concentrated by rotary evaporation and dried on high vacuum for 6 h. This crude dioxolane product **G** was then dissolved in THF (7.00 mL), followed by addition of acetic acid AcOH (14.0 mL) and H<sub>2</sub>O (7.00 mL). The resulting

mixture was the stirred at 90 °C until full consumption of dioxolane (24 h). The reaction mixture was cooled to room temperature, diluted with EtOAc (100 mL) and washed successfully with H<sub>2</sub>O (100 mL x 2) and sat. NaHCO<sub>3</sub> aq. solution (100 mL x 3). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation. Chromatography of the residue on silica gel, using 30% EtOAc in hexane, gave aldehyde **19** as a colourless oil (2.82 g, 72% over two steps).

**Compound 20** 



**Procedure:** To a solution of **19** (3.06 g, 8.54 mmol) in dichloromethane (80.0 mL) under N<sub>2</sub> atmosphere was added Pd(PPh<sub>3</sub>)<sub>4</sub> (246 mg, 2.50 mol%) and the resulting yellow solution was stirred at room temperature for 1 hour. The solution was then concentrated by rotary evaporation and flash chromatography of the residue on silica gel, using 30% EtOAc/hexane, gave **20** as a yellow oil (2.47 g, 92% yield).

R<sub>f</sub> (3:7 EtOAc/hexane): 0.28; [α]<sub>D</sub><sup>25</sup> -36.7 (c 0.15, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2914, 2853, 2806, 1711, 1479, 1462, 1154, 1074; HRMS (ESI-TOF, m/z) calcd. for C<sub>18</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 315.1703, found 315.1707; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) δ 9.86 (1H, brs, CHO), 7.68 (1H, brs, ArH), 7.21 (1H, t, *J* = 7.8 Hz, Ar*H*), 7.13 (1H, d, *J* = 7.4 Hz, Ar*H*), 7.03 (1H, t, *J* = 7.5 Hz, Ar*H*), 5.77 (1H, ddd, *J* = 14.7, 11.0, 7.0 Hz, CH<sub>2</sub>-CH=CH<sub>2</sub>), 5.15 – 5.09 (2H, m, CH<sub>2</sub>-CH=CH<sub>2</sub>), 3.85 (3H, s, NCO<sub>2</sub>*Me*), 3.38 (1H, brs, ArC-CH), 3.29 – 3.10 (3H, m, CH<sub>2</sub>CHO and N-C-HCH-N), 2.96 (1H, dd, *J* = 13.7, 6.3 Hz, HCH-CH=CH<sub>2</sub>), 2.90 (1H, dd, *J* = 13.7, 6.6 Hz, *H*CH-CH=CH<sub>2</sub>), 2.75–2.69 (1H, m, N-HCH-CH<sub>2</sub>), 2.21 (1H, d, J = 11.9 Hz, N-C-HCH-N), 2.13–2.02 (3H, m, N-HCH-CH<sub>2</sub> and N-CH<sub>2</sub>-CH<sub>2</sub>); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 200.4 (CHO), 154.0 (NCO<sub>2</sub>Me), 141.9 (ArC), 134.9 (CH<sub>2</sub>-CH=CH<sub>2</sub>), 131.6 (Ar*C*), 128.2 (Ar*C*H), 123.5 (Ar*C*H), 123.3 (Ar*C*H), 118.1 (CH<sub>2</sub>-CH=CH<sub>2</sub>), 115.9 (Ar*C*H), 67.8 (N-C-CH<sub>2</sub>N), 61.2 (N-CH<sub>2</sub>CH=CH<sub>2</sub>), 57.3 (N-C-CH<sub>2</sub>N), 52.7 (NCO<sub>2</sub>CH<sub>3</sub>), 49.4 (NCH<sub>2</sub>CH<sub>2</sub>), 48.7 (CH<sub>2</sub>CHO), 43.6 (ArC-CH), 24.5 (NCH<sub>2</sub>CH<sub>2</sub>).



**Procedure:** To a solution of aldehyde **20** (2.47 g, 7.87 mmol) in DMSO (80.0 mL) was added dimethyl malonate (2.69 mL, 23.6 mmol) and *L*-proline (1.36 g, 11.8 mmol). The resulting mixture was stirred at room temperature overnight. Water (200 mL) was added and the mixture was extracted with EtOAc (150 mL x 3). Combined organic layers were washed with brine (500 mL x 3), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation. Flash chromatography of the residue on silica gel, using 30% EtOAc in hexane, gave **10** as a colourless oil (3.24 g, 96% yield).

R<sub>f</sub> (30% EtOAc/hexane) 0.12;  $[α]_D^{25}$ -54.2 (c 0.12, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2952, 1707, 1481, 1439, 1363, 1249; HRMS (ESI-TOF, m/z) calcd. for C<sub>23</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 429.2020, found 429.2017; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) δ 7.72 (1H, brs, Ar*H*), 7.19 (1H, t, *J* = 7.8 Hz, Ar*H*), 7.13–7.10 (2H, m, CH=C(CO<sub>2</sub>Me)<sub>2</sub> and Ar*H*), 7.02 (1H, t, *J* = 7.4 Hz, Ar*H*), 5.78 (1H, ddt, *J* = 16.7, 10.2, 6.3 Hz, CH<sub>2</sub>CH=CH<sub>2</sub>), 5.14–5.06 (2H, m, CH<sub>2</sub>CH=CH<sub>2</sub>), 3.85 (6H, brs, CO<sub>2</sub>CH<sub>3</sub> and N-CO<sub>2</sub>CH<sub>3</sub>), 3.73 (3H, s, CO<sub>2</sub>CH<sub>3</sub>), 3.34 – 3.15 (3H, m, ArC-C*H* and CH<sub>2</sub>-CH=C(CO<sub>2</sub>Me)<sub>2</sub>), 3.09 (1H, d, *J* = 11.1 Hz, N-HCH-C), 2.94–2.86 (2H, m, CH<sub>2</sub>-CH=CH<sub>2</sub>), 2.69–2.66 (1H, m, N-HCHCH<sub>2</sub>), 2.19 (1H, d, *J* = 11.7, N-HCH-C), 2.09–1.97 (3H, m, N-HCH-CH<sub>2</sub> and N-CH<sub>2</sub>CH<sub>2</sub>C); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 166.0 (CO<sub>2</sub>Me), 164.2 (CO<sub>2</sub>Me), 154.2 (N-CO<sub>2</sub>Me), 145.5 (CH=C(CO<sub>2</sub>Me)<sub>2</sub>), 142.3 (ArC), 135.3 (CH<sub>2</sub>CH=CH<sub>2</sub>), 131.9 (ArC), 129.8 (CH=C(CO<sub>2</sub>Me)<sub>2</sub>), 61.4 (N-CH<sub>2</sub>CH=CH<sub>2</sub>), 58.2 (N-CCH<sub>2</sub>N), 52.7, 52.53 and 52.48 (CO<sub>2</sub>Me x 2 and N-CO<sub>2</sub>Me), 49.6 (N-CH<sub>2</sub>CH<sub>2</sub>), 42.2 (ArC-CH), 35.2 (CH<sub>2</sub>CH=C(CO<sub>2</sub>Me)<sub>2</sub>), 24.3 (N-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>).



**Procedure:** To a solution of **10** (3.24 g, 7.57 mmol) in anhydrous toluene (150 mL) under  $N_2$  atmosphere was added Yb(OTf)<sub>3</sub> (469 mg, 0.76 mmol) and the resulting mixture was heated to 110 °C and stirred for 4 h. The reaction mixture was cooled to room temperature and concentrated by rotary evaporation. Flash chromatography of the crude material on silica gel, using 30% EtOAc in hexane, gave **9** as a colourless oil (2.59 g, 80% yield).

R<sub>f</sub> (30% EtOAc/hexane) 0.39;  $[α]_{2}^{25}$  +34.4 (c 0.1, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2951, 1730, 1705, 1484, 1438, 1370, 1260; HRMS (ESI-TOF, m/z) calcd. for C<sub>23</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 429.2020, found 429.2018; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) δ 7.78 (1H, s, Ar*H*), 7.18 (1H, td, *J* = 7.9, 0.8 Hz, Ar*H*), 7.11 (1H, d, *J* = 7.4 Hz, Ar*H*), 6.99 (1H, td, *J* = 7.4, 1.0 Hz, Ar*H*), 5.63 (1H, dddd, *J* = 17.2, 10.1, 7.2, 5.8 Hz, NCH<sub>2</sub>CH=CH<sub>2</sub>), 5.42 (1H, s, N-C-CH-C), 5.09 – 4.99 (2H, m, NCH<sub>2</sub>CH=CH<sub>2</sub>), 3.86 (3H, s, CO<sub>2</sub>CH<sub>3</sub>), 3.78 (3H, s, CO<sub>2</sub>CH<sub>3</sub>), 3.72 (3H, s, CO<sub>2</sub>CH<sub>3</sub>), 3.30 – 3.24 (2H, m, NCH<sub>2</sub>CH=CH<sub>2</sub>), 3.21 (1H, dd, *J* = 6.6, 3.3 Hz, ArC-CH), 2.69 (1H, td, *J* = 13.6, 6.4 Hz, C-HCHCH<sub>2</sub>C), 2.52 (1H, ddd, *J* = 11.1, 5.4, 3.5 Hz, N-HCHCH<sub>2</sub>), 2.40 (1H, td, *J* = 12.8, 6.6 Hz, C-HCHCH<sub>2</sub>C), 2.27 – 2.18 (2H, m, C-CH<sub>2</sub>-HCH-C and N-HCHCH<sub>2</sub>), 2.16 – 2.07 (1H, m, N-CH<sub>2</sub>-HCH), 1.68 (1H, ddt, *J* = 13.7, 5.6, 2.9 Hz, N-CH<sub>2</sub>-HCH), 1.61 (1H, ddd, *J* = 12.6, 6.4, 1.9 Hz, C-CH<sub>2</sub>-HCH-C); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 173.0 (CO<sub>2</sub>Me), 171.1 (CO<sub>2</sub>Me), 153.7 (NCO<sub>2</sub>Me), 142.4 (ArC), 135.4 (NCH<sub>2</sub>CH=CH<sub>2</sub>), 133.4 (ArC), 127.9 (ArCH), 124.0 (ArCH), 123.1 (ArCH), 117.3 (NCH<sub>2</sub>CH=CH<sub>2</sub>), 53.0 (CO<sub>2</sub>CH<sub>3</sub>), 52.6 (CO<sub>2</sub>CH<sub>3</sub>), 52.4 (CO<sub>2</sub>CH<sub>3</sub>), 45.5 (ArC-CH), 42.1 (N-CH<sub>2</sub>CH<sub>2</sub>), 35.0 (N-CH<sub>2</sub>CH<sub>2</sub>), 30.0 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 29.9 (C-CH<sub>2</sub>CH<sub>2</sub>-C);



**Procedure (J):** To a cooled (0 °C) and stirred solution of **9** (216 mg, 0.59 mmol) in THF (10.0 mL) was added LiAlH<sub>4</sub> (1.0 M in THF, 2.40 mmol, 2.40 mmol) under N<sub>2</sub>. Cooling bath was then removed, and the solution was stirred at room temperature (22 °C) for 15 min. The reaction solution was cooled back to 0 °C and quenched by dropwise addition of H<sub>2</sub>O (0.30 mL) and 15% NaOH aq. (0.30 mL). EtOAc(15.0 mL) was added and the resulting mixture was stirred at room temperature for 15 min. Anhydrous Na<sub>2</sub>SO<sub>4</sub> was then added and stirring was continued for another 30 min before the precipitates were filtered through a pad of celite. The resulting filtrate was concentrated, and the residue was simply purified by a short silica column (5 cm), eluted by 80% EtOAc in hexane, to remove any non-polar side products. The diol **H** obtained (178 mg, 61% yield), with acceptable purity, was put into next step directly without further purification.

To a cooled (0 °C) and stirred solution of diol **H** (160 mg, 0.43 mmol) in  $CH_2Cl_2$  (4.00 mL) was added  $Et_3N$  (0.13 mL, 0.86 mmol), DMAP (16.0 mg) and TBDPSCI (0.13 mL, 0.47 mmol). The resulting mixture was stirred at 0 °C for 10 min and then warmed to room temperature and stirred until all consumption of starting material. The reaction solution was diluted with  $CH_2Cl_2$  (15.0 mL) and washed with water (10.0 mL x 2). The organic layer was dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation. Chromatography of the residue on silica gel, using 20% EtOAc in hexane, gave intermediate J (220 mg, 84%, 51% over 2 steps) as a white foam.

**Compound J**: R<sub>f</sub> (20% EtOAc in hexane): 0.29;  $[\alpha]_D^{25}$  +45.2 (c 0.87, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 3485, 2928, 2853, 1698, 1480, 1439, 1360, 1108, 1063, 751, 702; HRMS (ESI-TOF, m/z) calcd. for C<sub>37</sub>H<sub>47</sub>N<sub>2</sub>O<sub>4</sub>Si [M+H]<sup>+</sup> 611.3300, found 611.3310; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.74—7.71 (4H, m, Si*Ph*<sub>2</sub>-t-Bu), 7.66 (1H, brs, Ar*H*), 7.47—7.39 (6H, m, Si*Ph*<sub>2</sub>-t-Bu), 7.15 (1H, td, *J* = 7.4,

1.3 Hz, ArH), 7.04 (1H, d, J = 7.3 Hz, ArH), 6.96 (1H, td, J = 7.4, 0.8 Hz, ArH), 5.69 (1H, ddt, J = 16.9, 10.2, 6.7 Hz, NCH<sub>2</sub>-CH=CH<sub>2</sub>), 5.05 (1H, dd, J = 10.0, 1.3 Hz, NCH<sub>2</sub>-CH=HCH), 4.99 (1H, dd,  $J = 17.1, 1.4 \text{ Hz}, \text{NCH}_2\text{-CH}=\text{HC}H), 4.39 (1H, s, \text{N-CH-C-N}), 4.08 (1H, d, J = 10.1 \text{ Hz}, HCH-OTBDPS),$ 3.97 (1H, d, J = 10.3 Hz, HCH-OH), 3.86 (3H, s, NCO<sub>2</sub>CH<sub>3</sub>), 3.80 (1H, d, J = 10.2 Hz, HCH-OH), 3.61 (1H, d, J = 10.0 Hz, HCH-OTBDPS), 3.21 (1H, ddt, J = 13.9, 6.5, 1.3 Hz, N-HCH-CH=CH<sub>2</sub>), 3.10 (1H, ddt, J = 14.0, 6.7, 1.3 Hz, N-HCH-CH=CH<sub>2</sub>), 2.67 (1H, t, J = 6.9 Hz, Ar-CH), 2.42–2.31 (2H, m, N-CH<sub>2</sub>-CH<sub>2</sub>), 2.19 (1H, dt, J = 14.5, 7.9 Hz, C-HCH-CH<sub>2</sub>-C), 1.75 (1H, dt, J = 13.4, 7.0 Hz, C-CH<sub>2</sub>-HCH-C), 1.63 (1H, dt, J = 13.0, 7.6 Hz, C-CH<sub>2</sub>-HCH-C), 1.46 (1H, dt, J = 13.3, 6.7 Hz, C-HCH-CH<sub>2</sub>-C), 1.42–1.34 (2H, m, N-CH<sub>2</sub>-CH<sub>2</sub>); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 154.3 (NCO<sub>2</sub>Me), 141.8 (ArC, weak signal, confirmed by HMBC), 136.1 (NCH<sub>2</sub>-CH=CH<sub>2</sub>), 136.0 (ArCH, TBDPS), 135.9 (ArCH, TBDPS), 134.2 (ArC), 133.5 (ArC, TBDPS), 133.4 (ArC, TBDPS), 123.0 (ArCH, TBDPS), 129.9 (ArCH, TBDPS), 127.9 (ArCH, TBDPS), 127.9 (ArCH, TBDPS), 127.7 (ArCH), 123.8 (ArCH), 123.1 (ArCH), 117.7 (NCH<sub>2</sub>-CH=CH<sub>2</sub>), 115.6 (ArCH), 72.8 (N-C-CH-N), 70.3 (CH<sub>2</sub>OH), 66.8 (CH2OTBDPS), 64.1 (N-C-CH-N), 60.4 (N-CH2-CH=CH2), 52.4 (NCO2CH3), 50.9 (C(CH2O)), 47.6 (ArC-CH), 44.6 (N-CH<sub>2</sub>CH<sub>2</sub>), 36.4 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 27.8 (N-CH<sub>2</sub>CH<sub>2</sub>), 27.6 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 27.1 (C(CH<sub>3</sub>)<sub>3</sub>, TBDPS), 19.4 (C(CH<sub>3</sub>)<sub>3</sub>, TBDPS).

**Procedure (22):** To a stirred solution of alcohol J (327 mg, 0.54 mmol) in EtOAc (10.0 mL) was added IBX (450 mg, 1.61 mmol) and the resulting mixture was stirred at 80 °C for 2 h. After cooling to room temperature, solids were filtered, and filtrate was concentrated by rotary evaporation. The residue was dissolved in  $CH_2Cl_2$  (10.0 mL), followed by addition of silica gel (3.00 g) and the mixture was stirred at room temperature for 2 h. Silica gel was filtered, and the filtrate was concentrated by rotary evaporation to give **22** (296 mg, 92%, 93:7 *dr* by <sup>1</sup>H NMR) as a colourless oil which was used directly without purification.

**Compound 22**:  $R_f$  (20% EtOAc in hexane): 0.63; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) **major**  $\delta$  9.69 (1H, s, CHO), 7.70—7.61 (5H, m, Si*Ph*<sub>2</sub>-t-Bu), 7.48—7.35 (6H, m, Si*Ph*<sub>2</sub>-t-Bu and Ar*H*), 7.21—7.05 (2H, m, Ar*H*), 6.98 (1H, td, *J* = 7.3, 1.0 Hz, Ar*H*), 5.68—5.51 (1H, m, NCH<sub>2</sub>-C*H*=CH<sub>2</sub>), 5.04—4.87 (2H, m, NCH<sub>2</sub>-CH=CH<sub>2</sub>), 4.34 (1H, brs, N-CH-C-N), 4.23 (1H, d, *J* = 10.2 Hz, *H*CH-OTBDPS), 3.73 (1H, d, *J* = 10.6 Hz, HCH-OTBDPS), 3.63 (3H, s, NCO<sub>2</sub>CH<sub>3</sub>), 3.13 (1H, dd, *J* = 13.9, 6.7 Hz, N-HCH-CH=CH<sub>2</sub>), 3.09—3.02 (2H, m, N-HCH-CH=CH<sub>2</sub> and ArC-C*H*), 2.53 (1H, ddd, *J* = 12.2, 8.9, 2.8 Hz, N-HCH-CH<sub>2</sub>), 2.32—2.24 (2H, m, N-HCH-CH<sub>2</sub> and C-HCH-CH<sub>2</sub>-C), 2.12—1.98 (1H, m, C-HCH-CH<sub>2</sub>), 2.32—2.24 (2H, m, N-HCH-CH<sub>2</sub> and C-HCH-CH<sub>2</sub>-C), 2.12—1.98 (1H, m, C-HCH-CH<sub>2</sub>-C), 2.12-1.98 (1H, m, C-HCH-CH<sub>2</sub>-C), 2

CH<sub>2</sub>-C), 1.75—1.60 (2H, m, C-CH<sub>2</sub>-HCH-C and N-CH<sub>2</sub>-HCH), 1.58—1.46 (2H, m, C-CH<sub>2</sub>-HCH-C and N-CH<sub>2</sub>-HCH), 1.04 (9H, s, SiPh<sub>2</sub>-t-Bu);

**Procedure (23):** To a round bottom flask charged with aldehyde **22** (915 mg, 1.50 mmol) under N<sub>2</sub> atmosphere was added Petasis reagent (13.5% w/w, 12.0 mL) and the resulting solution was stirred at 80 °C in dark until full consumption of starting material (checked by TLC). After cooling to 60 °C, aq. MeOH (MeOH:H<sub>2</sub>O 9:1, 5.00 mL) was added the resulting mixture stirred at 60 °C for 2 h to decompose excess Petasis reagent. The brown precipitates were filtered through a pad of silica gel and then washed with EtOAc (30.0 mL x 2). The filtrate was concentrated by rotary evaporation and the crude alkene product was put into next step directly.

A solution of TBAF (1.0 M, 15.0 mL) was added to above crude alkene and the resulting solution was stirred at 70 °C for 3 h. After cooling to room temperature, THF was removed by rotary evaporation and the residue was added NaClO<sub>4</sub> aq. and stirred for 5 min before extraction with EtOAc. The combined organic layers were washed with brine, dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated to ~10 mL. Then 20% EtOAc in hexane (100 mL) was added and the resulting precipitates (*n*-Bu4N<sup>+</sup>X<sup>-</sup>) was filtered and the filtrate was concentrated. Chromatography of the residue on silica gel, using 20% EtOAc in hexane, gave alcohol **23** as a yellow oil (361 mg, 65%). <sup>1</sup>H NMR indicated a mixture of epimers (*dr* 94:6).

**Compound 23**: R<sub>f</sub> (20% EtOAc in hexane) 0.22; FTIR (neat, cm<sup>-1</sup>) 3465, 2947, 2867, 1699, 1481, 1440, 1361, 1060, 915; HRMS (ESI-TOF, m/z) calcd. for  $C_{22}H_{29}N_2O_3$  [M+H]<sup>+</sup> 369.2173, found 369.2172; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>): mixture of diastereomers, dr 94:6; **major isomer**:  $\delta$  7.70 (1H, brs, Ar*H*), 7.18 (1H, td, *J* = 7.8, 1.4 Hz, Ar*H*), 7.12 (1H, dt, *J* = 7.4, 0.7 Hz, Ar*H*), 6.99 (1H, td, *J* = 7.3, 1.0 Hz, Ar*H*), 6.33 (1H, dd, *J* = 17.9, 11.0 Hz, C-CH=CH<sub>2</sub>), 5.76 (1H, dddd, *J* = 17.0, 10.1, 6.8, 6.1 Hz, NCH<sub>2</sub>-CH=CH<sub>2</sub>), 5.28 (1H, dd, *J* = 10.9, 1.6 Hz, C-CH=HCH), 5.17 (1H, dd, *J* = 17.9, 1.7 Hz, C-CH=HCH), 5.13—4.98 (2H, m, NCH<sub>2</sub>-CH=CH<sub>2</sub>), 4.34 (1H, s, N-CH-C-N), 3.87 (3H, s, OCH<sub>3</sub>), 3.61 (1H, d, *J* = 10.4 Hz, C-HCH-OH), 3.45 (1H, dd, *J* = 10.4 Hz, C-HCH-OH), 3.32 (1H, ddt, *J* = 13.8, 6.8, 1.3 Hz, N-HCH-CH=CH<sub>2</sub>), 3.19 (1H, ddt, *J* = 13.8, 6.1, 1.5 Hz, N-HCH-CH=CH<sub>2</sub>), 3.01 (1H, ddd, *J* = 12.9, 6.3, 3.5 Hz, N-HCH-CH<sub>2</sub>), 2.35—2.25 (1H, m, C-HCH-CH<sub>2</sub>-C), 1.93 (1H, ddd, *J* = 12.0, 7.6, 3.3 Hz, C-CH<sub>2</sub>-HCH-C), 1.74—1.61 (3H, m, C-HCH-CH<sub>2</sub>-C, C-CH<sub>2</sub>-C)

HC*H*-C and N-CH<sub>2</sub>-*H*CH), 1.51 (1H, dddd, *J* = 13.8, 9.9, 8.6, 3.5 Hz, N-CH<sub>2</sub>-HC*H*); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  154.3 (N*C*O<sub>2</sub>Me), 142.8 (C-*C*H=CH<sub>2</sub>), 142.0 (Ar*C*), 137.0 (NCH<sub>2</sub>-*C*H=CH<sub>2</sub>), 134.3 (Ar*C*), 127.7 (Ar*C*H), 123.9 (Ar*C*H), 123.1 (Ar*C*H), 117.2 (NCH<sub>2</sub>-CH=CH<sub>2</sub>), 115.7 (Ar*C*H), 114.5 (C-CH=CH<sub>2</sub>), 72.4 (N-C-CH-N), 69.3 (C-CH<sub>2</sub>OH), 64.2 (N-CH-C-N), 59.7 (N-CH<sub>2</sub>CH=CH<sub>2</sub>), 52.5 (*C*-CH<sub>2</sub>OH), 52.1 (NCO<sub>2</sub>CH<sub>3</sub>), 46.4 (ArC-*C*H), 44.4 (N-CH<sub>2</sub>CH<sub>2</sub>), 34.1 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 27.6 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 26.4 (NCH<sub>2</sub>CH<sub>2</sub>).

**Compound 8** 



**Procedure:** To a cooled (-78 °C) and stirred solution of DMSO (0.25 mL, 3.58 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5.00 mL) was added (COCl)<sub>2</sub> (0.15 mL, 1.79 mmol) dropwise and the resulting solution was stirred -78 °C for 30 min. Then a solution of **23** (150 mg, 0.407 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3.00 mL) was added dropwise and the mixture was stirred at -78 °C for 30 min before Et<sub>3</sub>N (0.60 mL, 14.07 mmol) was added dropwise and the mixture was slowly warmed to 0 °C during which time the TLC indicated full consumption of starting material. The reaction mixture was quenched with sat. NH<sub>4</sub>Cl aq. (20.0 mL) and aqueous layer was separated and extracted with CH<sub>2</sub>Cl<sub>2</sub> (15.0 mL). Combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated to give aldehyde **K** as a mixture of epimers (2.5:1, checked by <sup>1</sup>H NMR) which was put into next step directly.

To a cooled (-78 °C) and stirred suspension of  $Ph_3PCH_3Br$  (2.00 g, 5.60 mmol) in THF (7.50 mL) under  $N_2$  atmosphere was added NaHMDS (2.0 M in THF, 2.50 mL) and the resulting yellow mixture was stirred at -78 °C for 1.5 h and the solution of crude aldehyde **K** in THF (2.50 mL) was then added. The mixture was slowly warmed to room temperature and stirred for

another 1 h. Saturated NH<sub>4</sub>Cl aq. solution (20.0 mL) was added to quench the reaction at 0  $^{\circ}$ C and the mixture was extracted with EtOAc (15.0 mL x 3). Combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation. Chromatography of residue on silica gel, using 10% EtOAc in hexane, gave **8** (112 mg, 76% over 2 steps) as a pale-yellow oil.

 $R_{f}$  (10% EtOAc in hexane): 0.43;  $[\alpha]_{D}^{25}$  +112 (c 0.10, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 3068, 2947, 2926, 1699, 1480, 1438, 1359, 1108, 749, 702; HRMS (ESI-TOF, m/z) calcd. for C<sub>23</sub>H<sub>29</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 365.2229, found 365.2231; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) δ 7.70 (1H, brs, ArH), 7.17 (1H, td, J = 7.7, 1.4 Hz, ArH), 7.10 (1H, d, J = 7.9 Hz, ArH), 6.98 (1H, td, J = 7.4, 1.0 Hz, ArH), 6.32 (1H, dd, J = 17.9, 10.9 Hz, C-CH=CH<sub>2</sub>), 6.08 (1H, dd, J = 17.0, 10.9 Hz, C-CH=CH<sub>2</sub>), 5.72 (1H, ddt, J = 16.8, 10.5, 6.4 Hz, NCH<sub>2</sub>-CH=CH<sub>2</sub>), 5.20 (1H, dd, J = 10.9, 1.5 Hz, C-CH=HCH), 5.09 (1H, dd, J = 17.9, 1.5 Hz, C-CH=HCH), 5.05–4.97 (4H, m, C-CH=CH<sub>2</sub> and NCH<sub>2</sub>-CH=CH<sub>2</sub>), 4.47 (1H, s, N-CH-C-N), 3.86 (3H, s, NCO<sub>2</sub>CH<sub>3</sub>), 3.29 (1H,dd, J = 14.2, 6.3 Hz, N-HCH-CH=CH<sub>2</sub>), 3.20 (1H, dd, J = 14.0, 6.5 Hz, N-HCH-CH=CH<sub>2</sub>), 3.05 (1H, t, J = 6.5 Hz, ArC-CH), 2.83 (1H, ddd, J = 11.8, 8.1, 3.3 Hz, N-HCH-CH<sub>2</sub>), 2.40 (1H, ddd, J = 11.9, 8.1, 3.3 Hz, N-HCH-CH<sub>2</sub>), 2.36–2.27 (1H, m, C-HCH-CH<sub>2</sub>-C), 2.06—1.98 (1H, m, C-HCH-CH<sub>2</sub>-C), 1.96—1.85 (2H, m, C-CH<sub>2</sub>-HCH-C and NCH<sub>2</sub>-HCH), 1.78 (1H, dt, J = 13.1, 7.2 Hz, C-CH<sub>2</sub>-HCH-C), 1.53 (1H, dddd, J = 13.9, 8.1, 6.8, 3.4 Hz, NCH<sub>2</sub>-HCH); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 154.3 (NCO<sub>2</sub>Me), 146.8 (C-CH=CH<sub>2</sub>), 142.5 (C-CH=CH<sub>2</sub>), 142.1 (ArC), 136.9 (NCH<sub>2</sub>-CH=CH<sub>2</sub>), 134.4 (ArC), 127.6 (ArCH), 123.80 (ArCH), 123.0 (ArCH), 116.7 (C-CH=CH<sub>2</sub>), 115.5 (ArCH), 112.5 (C-CH=CH<sub>2</sub>), 111.6 (NCH<sub>2</sub>-CH=CH<sub>2</sub>), 73.4 (N-C-CH-N)), 68.7 (N-C-CH-N), 60.7 (NCH<sub>2</sub>-CH=CH<sub>2</sub>), 54.5 (C(CH=CH<sub>2</sub>)<sub>2</sub>), 52.3 (NCO<sub>2</sub>CH<sub>3</sub>), 47.7 (ArC-CH), 44.1 (NCH<sub>2</sub>CH<sub>2</sub>), 36.9 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 30.6 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 28.1 (NCH<sub>2</sub>CH<sub>2</sub>).

Compound 7



**Procedure:** To a stirred solution of **8** (100 mg, 0.27 mmol) in PhMe (5.00 mL) under  $N_2$  was added Hoveyda-Grubbs catalyst (17.0 mg, 0.027 mmol). The resulting solution was degassed

and backed filled with N<sub>2</sub> and then stirred at 80 °C for 1 h. After cooling to 35~40 °C, DMSO (50 eq. to catalyst, 0.10 mL) was added and the mixture was stirred at this temperature for 4 h. The solvent was removed by rotary evaporation and chromatography of the residue on silica gel, using 30% EtOAc in hexane, gave **7** as a colourless oil (70.0 mg, 76%).

 $R_{f}$  (20% EtOAc in hexane) 0.20;  $[\alpha]_{D}^{25}$  +174 (c 0.07, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2932, 2847, 1705, 1477, 1459, 1437, 1367, 1356, 1321, 1229, 1116, 754; HRMS (ESI-TOF, m/z) calcd. for  $C_{21}H_{25}N_2O_2$  [M+H]<sup>+</sup> 337.1916, found 337.1913; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (H, d, J = 8.0 Hz, ArH), 7.19 (1H, tt, J = 8.2, 1.1 Hz, ArH), 7.13-7.10 (1H, m, ArH), 7.06 (1H, td, J = 7.4, 1.0 Hz, ArH), 5.95 (1H, dd, J = 17.6, 10.7 Hz, C-CH=CH<sub>2</sub>), 5.58 (1H, ddd, J = 9.8, 5.5, 1.6 Hz, NCH<sub>2</sub>-CH=CH-C), 5.54—5.50 (1H, m, NCH<sub>2</sub>-CH=CH-C), 4.97 (1H, dd, J = 17.9, 0.9 Hz, C-CH=HCH), 4.93 (1H, dd, J = 10.7, 0.9 Hz, C-CH=HCH), 3.73 (3H, s, NCO<sub>2</sub>CH<sub>3</sub>), 3.34 (1H, t, J = 4.4 Hz, ArC-CH), 3.02 (1H, dd, J = 16.0, 5.6 Hz, N-HCH-CH=CH), 2.79 (1H, ddd, J = 13.3, 8.3, 3.4 Hz, C-HCH-CH<sub>2</sub>-C), 2.70 — 2.56 (3H, m, N-CH-C-N, N-HCH-CH=CH and N-HCH-CH<sub>2</sub>), 2.50 (1H, dt, J = 12.8, 7.9 Hz, C-CH<sub>2</sub>-HCH-C), 2.42 (1H, ddd, J = 13.5, 10.6, 6.8 Hz, C-HCH-CH<sub>2</sub>-C), 2.28-2.21 (1H, m, NCH<sub>2</sub>-HCH), 2.19–2.14 (1H, m, N-HCH-CH<sub>2</sub>), 2.12–2.08 (1H, m, NCH<sub>2</sub>-HCH), 1.98 (1H, ddd, J = 12.7, 10.7, 3.8 Hz, C-CH<sub>2</sub>-HCH-C); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 153.5 (NCO<sub>2</sub>Me), 146.4 (C-CH=CH<sub>2</sub>), 143.5 (ArC), 134.6 (ArC), 134.5 (NCH<sub>2</sub>-CH=CH-C), 127.3 (ArCH), 123.7 (ArCH), 122.5 (ArCH), 120.1 (NCH<sub>2</sub>-CH=CH-C), 118.7 (ArCH), 111.4 (C-CH=CH<sub>2</sub>), 80.5 (N-CH-C-N), 72.4 (N-CH-C-N), 52.9 (N-CH<sub>2</sub>-CH=CH-C), 52.1 (NCO<sub>2</sub>CH<sub>3</sub>), 50.4 (C-CH=CH<sub>2</sub>), 49.0 (N-CH<sub>2</sub>CH<sub>2</sub>), 44.2 (ArC-CH), 36.5 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 29.9 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 24.0 (NCH<sub>2</sub>CH<sub>2</sub>).

#### **Compound 24**



**Procedure:** To a cooled (0 °C) and stirred solution of **7** (15.0 mg, 0.045 mmol) in THF (1.00 mL) was added LiALH<sub>4</sub> (1.0 M in THF, 0.13 mL) and the mixture was heated to 65 °C for 30 min. After cooling back to 0 °C, the reaction mixture was quenched with water (3 drops) and 15% NaOH aq. (3 drops). Stirring was continued for 10 min and EtOAc (5.00 mL) and Na<sub>2</sub>SO<sub>4</sub> were

added with another 10 min stirring. Precipitates were filtered and the filtrate was concentrated by rotary evaporation and chromatography (pipet) of the residue on silica gel, using 20% EtOAc in hexane, gave compound **24** (10.2 mg, 80%) as a colourless oil.

Mol. Formula:  $C_{20}H_{24}N_2$ ;  $R_f$  (20% EtOAc/hexane): 0.2;  $[\alpha]_D^{25}$  +130.8 (c 0.13, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2954, 2922, 2851, 1668, 1483, 1462; HRMS (ESI-TOF, m/z) calcd. for  $C_{20}H_{25}N_2$ [M+H]<sup>+</sup> 293.2012, found 293.2008; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.07 (1H, td, *J* = 7.6, 1.3 Hz, Ar*H*) 7.02 (1H, d, *J* = 7.1 Hz, Ar*H*), 6.67 (1H, td, *J* = 7.3, 1.0 Hz, Ar*H*), 6.42 (1H, d, *J* = 7.7 Hz, Ar*H*), 5.89 (1H, dd, *J* = 17.5, 10.6 Hz, CH=CH<sub>2</sub>), 5.76 (1H, ddd, *J* = 9.9, 5.8, 2.0 Hz, CH<sub>2</sub>CH=CH), 5.56 (1H, ddd, *J* = 9.9, 2.7, 0.8 Hz, N-CH<sub>2</sub>CH=CH), 5.12 (1H, dd, *J* = 17.5, 0.9 Hz, CH=HCH), 5.09 (1H, dd, *J* = 10.6, 0.9 Hz, CH=HCH), 3.13 (1H, ddd, *J* = 16.5, 5.8, 0.8 Hz, N-HCH-CH=CH), 3.00 (1H, t, *J* = 8.0 Hz, ArC-C*H*), 2.87 – 2.0 (2H, m, HCH-CH=CH<sub>2</sub>), 2.06 (1H, dq, *J* = 14.1, 7.1 Hz, NCH<sub>2</sub>-HCH), 2.00 (1H, dddd, *J* = 12.6, 6.7, 3.0, 1.2 Hz, C-HCHCH<sub>2</sub>-C), 1.88 (1H, ddd, *J* = 12.6, 10.6, 6.5, C-CH<sub>2</sub>-HCH-C), 1.81 (1H, ddd, *J* = 12.6, 10.6, 7.3 C-HCHCH<sub>2</sub>-C), 1.72–1.65 (2H, m, NCH<sub>2</sub>-HCH and C-CH<sub>2</sub>-HCH-C); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  152.0 (Ar*C*), 145.6 (CH=CH<sub>2</sub>), 134.6 (Ar*C*), 133.5 (CH<sub>2</sub>CH=CH), 127.5 (ArCH), 122.9 (ArCH), 122.9 (CH<sub>2</sub>CH=CH), 117.8 (ArCH), 112.6 (CH=CH<sub>2</sub>), 108.0 (ArCH), 77.9 (N-C-CH-N), 72.1 (N-C-CH-N), 52.9 (CH<sub>2</sub>CH=CH), 49.8 (*C*-CH=CH<sub>2</sub>), 49.7 (N-CH<sub>2</sub>CH<sub>2</sub>), 44.6 (ArC-CH), 33.4 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 31.3 (N-CH<sub>3</sub>), 28.2 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 27.3 (N-CH<sub>2</sub>CH<sub>2</sub>-C).

#### (+)-vallesamidine 1



**Procedure:** To a round bottom flask charged with **24** (8.00 mg, 0.027 mmol) was added Pd/C (10% w/w, 5.00 mg) and methanol (4.00 mL) under N<sub>2</sub>. The system was degassed and back-filled with H<sub>2</sub> (balloon) and the mixture was stirred in H<sub>2</sub> atmosphere for 3 hours. The Pd/C was filtered through a pad of celite and the filtrate was concentrated by rotary evaporation. Chromatography of the residue on silica gel, eluted with acetone, to give (+)-vallesamidine (1) as a slightly yellow oil (6.20 mg, 77%).

R<sub>f</sub> (50% EtOAc/hexane): 0.18;  $[α]_{0}^{25}$  +72.7 (c 0.22, CHCl<sub>3</sub>), Literature data for (-)-vallesamidine:  $[α]_{0}^{20} = -81.5$  (c 0.33, CHCl<sub>3</sub>)<sup>4</sup>;  $[α]_{0}^{20} -76.6$  (c 0.25, CHCl<sub>3</sub>)<sup>5</sup>; FTIR (neat, cm<sup>-1</sup>) 2936, 2855, 2796, 2750 (Bohlman-Wenkert bands), 1607, 1481; HRMS (ESI-TOF, m/z) calcd. for C<sub>20</sub>H<sub>29</sub>N<sub>2</sub> [M+H]<sup>+</sup> 297.2325, found 297.2325; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) δ 7.06 (1H, t, *J* = 7.6 Hz, ArH), 7.02 (1H, d, *J* = 7.1 Hz, ArH), 6.65 (1H, t, *J* = 7.3 Hz, ArH), 6.42 (1H, d, *J* = 7.7 Hz, ArH), 2.91–2.84 (2H, m, ArC-CH and N-HCHCH<sub>2</sub>), 2.83–2.76 (4H, m, NMe and N-HCHCH<sub>2</sub>CH<sub>2</sub>), 2.29–2.17 (3H, m, N-CH, N-HCHCH<sub>2</sub> and N-HCHCH<sub>2</sub>CH<sub>2</sub>), 1.93–1.86 (1H, m, N-CH<sub>2</sub>-HCH), 1.84–1.74 (2H, m, N-CH<sub>2</sub>-HCH-CH<sub>2</sub> and C-HCHCH<sub>2</sub>-C), 1.67–1.59 (3H, m, C-HCHCH<sub>2</sub>-C, C-CH<sub>2</sub>-HCH-C and HCH-CH<sub>3</sub>), 1.58–1.44 (5H, m, N-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, N-CH<sub>2</sub>-HCHCH<sub>2</sub> and N-CH<sub>2</sub>-HCH and HCHCH<sub>3</sub>), 1.43–1.38 (1H, m, C-CH<sub>2</sub>-HCH-C), 0.89 (3H, t, *J* = 7.4 Hz, CH<sub>2</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 151.5 (ArC), 135.0 (ArC), 127.3 (ArCH), 123.0 (ArCH), 117.7 (ArCH), 107.7 (ArCH), 79.1 (N-C-CH-N), 73.2 (N-C-CH-C), 50.6 (N-CH<sub>2</sub>CH<sub>2</sub>), 50.0 (N-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 44.6 (C-CH<sub>2</sub>CH<sub>3</sub>), 44.4 (ArC-CH), 35.6 (C-CH<sub>2</sub>-CH<sub>2</sub>-C), 31.4 (N-CH<sub>3</sub>), 31.2 (CH<sub>2</sub>CH<sub>3</sub>), 30.4 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 27.7 (N-CH<sub>2</sub>CH<sub>2</sub>), 26.6 (N-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 18.5 (N-CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>), 9.3 (CH<sub>2</sub>CH<sub>3</sub>).

| Lit. data 1 (600 MHz, | Lit. data 2 (600 MHz,            | Our data (700 MHz,   | Error $\Delta \delta$ /ppm |
|-----------------------|----------------------------------|----------------------|----------------------------|
| CDCl₃) <sup>5</sup>   | CDCl <sub>3</sub> ) <sup>4</sup> | CDCl₃)               | (1/2)                      |
| 7.07 (1H, t, 7.3)     | 7.07 (1H, t, 7.2)                | 7.06 (1H, t, 7.6)    | -0.01/-0.01                |
| 7.03 (1H, d, 7.3)     | 7.02 (1H, d, 7.2)                | 7.02 (1H, d, 7.1)    | -0.01/0                    |
| 6.67 (1H, t, 7.3)     | 6.66 (1H, t, 7.2)                | 6.65 (1H, t, 7.3)    | -0.02/-0.01                |
| 6.44 (1H, d, 7.3)     | 6.42 (1H, d, 7.8)                | 6.42 (1H, d, 7.7)    | -0.02/0                    |
| 3.00 – 2.70 (3H, m)   | 2.94 – 2.78 (3H, m)              | 2.91 – 2.76 (3H, m)  | -                          |
| 2.78 (3H, s)          | 2.78 (3H, s)                     | 2.78 (3H, s)         | 0                          |
| 2.50 – 2.25 (3H, m)   | 2.32 -2.24 (3H, m)               | 2.29 – 2.17 (3H, m)  | -                          |
| 2.15 – 1.35 (12H, m)  | 1.95 – 1.38 (12H, m)             | 1.93 – 1.38 (12H, m) | -                          |
| 0.90 (3H, t, 7.3)     | 0.90(3H, t, 7.8)                 | 0.89 (3H, t, 7.4)    | -0.01/-0.01                |

**Table 1** Comparison of <sup>1</sup>H NMR data of (+)-1 with literatures

Table 2 Comparison of <sup>13</sup>C NMR data of (+)-1 with literature

| Lit. data 1 (150 MHz, | Lit. data 2 (150                      | Our data (176 MHz, | Error $\Delta \delta$ /ppm (1/2) |
|-----------------------|---------------------------------------|--------------------|----------------------------------|
| CDCl₃) <sup>5</sup>   | MHz, CDCl <sub>3</sub> ) <sup>4</sup> | CDCl₃)             |                                  |
| 151.3                 | 151.3                                 | 151.5              | 0.2/0.2                          |

| 134.6 | 134.8 | 135.0 | 0.4/0.2 |
|-------|-------|-------|---------|
| 127.3 | 127.1 | 127.3 | 0/0.2   |
| 122.9 | 122.8 | 123.0 | 0.1/0.2 |
| 117.7 | 117.5 | 117.7 | 0/0.2   |
| 107.6 | 107.5 | 107.7 | 0.1/0.2 |
| 78.6  | 78.9  | 79.1  | 0.5/0.2 |
| 72.6  | 72.9  | 73.2  | 0.6/0.3 |
| 50.1  | 50.3  | 50.6  | 0.5/0.3 |
| 49.6  | 49.8  | 50.0  | 0.4/0.2 |
| 44.4  | 44.4  | 44.6  | 0.2/0.2 |
| 44.0  | 44.2  | 44.4  | 0.4/0.2 |
| 35.4  | 35.4  | 35.6  | 0.2/0.2 |
| 31.2  | 31.2  | 31.4  | 0.2/0.2 |
| 31.0  | 31.1  | 31.2  | 0.2/0.1 |
| 30.1  | 30.2  | 30.4  | 0.3/0.2 |
| 27.3  | 27.4  | 27.7  | 0.4/0.3 |
| 26.4  | 26.5  | 26.6  | 0.2/0.1 |
| 18.1  | 18.3  | 18.5  | 0.4/0.2 |
| 9.1   | 9.1   | 9.3   | 0.2/0.2 |

### (+)-14,15-dehydrostrempeliopine (6)



**Preparation of c-Hex<sub>2</sub>BH:** To a round bottom flask charged with anhydrous THF (5.50 mL) under N<sub>2</sub> was added BH<sub>3</sub>·Me<sub>2</sub>S (5.0 M in Et<sub>2</sub>O, 0.38 mL) and cooled to 0°C. Cyclohexene (0.42 mL) was added slowly and the resulting mixture was stirred at 0 °C for 15 min and then 1 h at room temperature to give c-Hex<sub>2</sub>BH as a white suspension which was ready to use (ca. 0.3 M).

**Hydroboration/oxidation (25):** To a cooled (0°C) and stirred solution of **7** (10.0 mg, 0.03 mmol) in anhydrous THF (0.50 mL) was added freshly prepared c-Hex<sub>2</sub>BH solution (0.3 M, 0.50 mL, 0.15 mmol) dropwise. The mixture was slowly warmed to room temperature and stirred for 30 min. Solid NaBO<sub>3</sub>:H<sub>2</sub>O (60.0 mg, 0.60 mmol) and water (0.50 mL) was added and the resulting mixture was stirred at room temperature for 2.5 h. Water (10.0 mL) was added and the mixture was extracted with  $CH_2Cl_2$  (5.00 mL x 3). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation. Chromatography of the residue on 20 x 20 TLC plate, gave compound **25** (8.00 mg, 75%) as a colourless oil with acceptable purity (*due to the high polarity, the obtained compound 25 contained some impurities which was difficult to purify. Further purification was not performed, and this intermediate was put into next step directly).* 

**Compound 25**:  $R_f$  (5% MeOH in CH<sub>2</sub>Cl<sub>2</sub>): 0.14; FTIR (neat, cm<sup>-1</sup>) 3362, 2934, 1697, 1478, 1459, 1438, 1354, 1321, 1228, 1042, 727; HRMS (ESI-TOF, m/z) calcd for.  $C_{21}H_{27}N_2O_3$  [M+H]<sup>+</sup> 355.2022, found 355.2010; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (1H, d, *J* = 8.2 Hz, Ar*H*), 7.19—7.15 (1H, m, Ar*H*), 7.15—7.11 (1H, m, Ar*H*), 7.01 (1H, td, *J* = 7.4, 1.0 Hz, Ar*H*), 5.82 (1H, dt, *J* = 10.0, 3.6 Hz, NCH<sub>2</sub>-CH=CH-C), 5.54 (1H, d, *J* = 10.1 Hz, NCH<sub>2</sub>-CH=CH-C), 3.84 (3H, s, NCO<sub>2</sub>*Me*), 3.72 (1H, ddd, *J* = 11.3, 9.2, 4.9 Hz, CH<sub>2</sub>-HCH-OH), 3.65 (1H, ddd, *J* = 11.3, 5.8, 4.4 Hz, CH<sub>2</sub>-HCH-OH), 3.16 (1H, d, *J* = 16.5 Hz, N-HCH-CH=CH-C), 3.07—2.98 (2H, m, N-HCH-CH=CH-C and ArC-CH), 2.90—2.80 (1H, m, N-HCH-CH<sub>2</sub>), 2.61 (1H, s, N-CH-C-N), 2.55—2.48 (1H, m, N-HCH-CH<sub>2</sub>), 2.30—1.50 (8H, m, CH<sub>2</sub>-CH<sub>2</sub>OH, NCH<sub>2</sub>CH<sub>2</sub>, C-CH<sub>2</sub>CH<sub>2</sub>-C).

**Hydrolysis (L):** To a solution of **25** (8.00 mg, 22.6  $\mu$ mol) in MeOH was added 3M KOH aq. solution and the resulting mixture was stirred at 100 °C for 16 h. After cooling to room temperature, the mixture was added water (5.00 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (10.0 mL x 3). Combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated to give crude **L** (5.30 mg, 79% crude yield) which was put into next step directly.

**Oxidative cyclisation:** To a solution to **L** (3.00 mg, 10 mmol) in  $CH_2Cl_2$  (0.50 mL) was added NMO (0.2M in  $CH_2Cl_2$ , 0.1 mL) and TPAP (0.01M in  $CH_2Cl_2$ , 0.1 mL) and the resulting solution was stirred at room temperature for 1 h. The reaction mixture was passed through a short pad of silica gel and the filtrated was concentrated and preparative TLC on the residue, using 40% EtOAc in hxane, gave **6** (1.87 mg, 60% yield, 36% overall yield from **7**) as a colourless oil.

(+)-14,15-dehydrostrempeliopine:  $R_f$  (40% EtOAc in hexane) 0.2;  $[\alpha]_D^{25}$  +19.3 (c 0.09, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2922, 2851, 1656, 1597, 1476, 1459, 1387, 1370, 1260, 754; HRMS (ESI-TOF, m/z) calcd. for C<sub>19</sub>H<sub>21</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 293.1654, found 293.1649; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (1H, dt, *J* = 8.1, 0.5 Hz, Ar*H*), 7.24—7.21 (1H, m, Ar*H*), 7.18 (1H, dt, 7.5, 1.3 Hz, Ar*H*), 7.07 (1H, td, *J* = 7.4, 1.1 Hz, Ar*H*), 5.74 (1H, ddd, *J* = 10.0, 2.9, 1.9 Hz, NCH<sub>2</sub>-CH=CH-C), 5.58 (1H, ddd, *J* = 10.0, 4.5, 1.9 Hz, NCH<sub>2</sub>-CH=CH-C), 3.40 (1H, ddd, *J* = 16.8, 4.4, 1.9 Hz, N-HCH-CH=CH), 3.31 (1H, t, *J* = 6.6 Hz, ArC-C*H*), 3.06 (1H, ddd, *J* = 11.5, 7.2, 5.2 Hz, N-HCH-CH<sub>2</sub>), 2.80 (1H, ddd, *J* = 16.7, 2.9, 2.0 Hz, N-HCH-CH=CH), 2.70 (1H, d, *J* = 18.0 Hz, NC(O)-HCH-C), 2.54 (1H, dd, *J* = 18.0, 2.8 Hz, NC(O)-HCH-C), 2.37—2.34 (2H, m, C-CH<sub>2</sub>-CH<sub>2</sub>-C), 2.29 (1H, ddd, *J* = 12.0, 7.1, 4.8 Hz, N-HCH-CH<sub>2</sub>), 2.27 (1H, s, N-CH-C-N), 2.16—2.06 (3H, m, N-CH<sub>2</sub>-CH<sub>2</sub> and C-CH<sub>2</sub>-HCH-C), 1.90 (1H, ddd, *J* = 13.0, 8.5, 5.6 Hz, C-CH<sub>2</sub>-HCH-C); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  169.8 (N-*C*=O), 142.7 (Ar*C*), 132.6 (Ar*C*), 130.2 (N-CH<sub>2</sub>-CH=CH-C), 128.3 (Ar*C*H), 124.0 (Ar*C*H), 123.8 (NCH<sub>2</sub>-CH=CH-C), 123.6 (Ar*C*H), 115.9 (Ar*C*H), 71.9 (N-CH-*C*-N), 68.5 (N-*C*H-C-N), 53.5 (N-*C*H<sub>2</sub>-CH=CH-C), 50.3 (N-*C*H<sub>2</sub>CH<sub>2</sub>), 47.2 (NC(O)-*C*H<sub>2</sub>-C), 44.7 (N-CH<sub>2</sub>-CH=CH-C), 42.1 (ArC-*C*H), 38.5 (C-CH<sub>2</sub>-CH<sub>2</sub>-C), 37.7 (C-CH<sub>2</sub>-CH<sub>2</sub>-C), 25.5 (NCH<sub>2</sub>-CH<sub>2</sub>).

| <sup>1</sup> H NMR comparison  | $\begin{array}{c} H \\ H $ | $ \begin{array}{c} H \\ N \\ N \\ H^2 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19 \\ 19$ |
|--------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| H-19                           | 2.70 (d, 18.0)                                                     | 2.61 (d, 18.0)                                                                         |
| H-19'                          | 2.54 (dd, 18.0, 2.8)                                               | 2.45 (dd, 18.0, 2.8)                                                                   |
| H-21                           | 2.27 (s)                                                           | 2.25 (s)                                                                               |
| H-14                           | 5.57 (ddd, 10.0, 4.5, 2.0)                                         | 5.57 (ddd, 10.0, 4.4, 2.0)                                                             |
| H-15                           | 5.73 (dt, 9.8, 2.2)                                                | 5.73 (dt, 9.9, 2.2)                                                                    |
| H-7                            | 3.31 (t, 6.6)                                                      | 3.20 (t <i>,</i> 6.6)                                                                  |
| H5                             | 2.29 (ddd, 12.0, 7.1, 4.8),                                        | 2.27 (m)                                                                               |
| H5′                            | 3.06 (ddd, 11.5, 7.2, 5.2)                                         | 3.03 (brs)                                                                             |
| H6/6'/17'                      | 2.16—2.06 (m)                                                      | 2.04 (m)                                                                               |
| H-17                           | 1.90 (ddd, 13.0, 8.5, 5.6)                                         | 1.86 (ddd, 12.8, 8.6, 5.3)                                                             |
| <sup>13</sup> C NMR comparison |                                                                    |                                                                                        |
| C3                             | 53.5                                                               | 53.5                                                                                   |
| C5                             | 50.3                                                               | 50.1                                                                                   |
| C6                             | 25.5                                                               | 25.8                                                                                   |
|                                |                                                                    |                                                                                        |

Table 3. Spectra data comparison of (+)-6 with schizozygine

| С7  | 42.1  | 42.1  |
|-----|-------|-------|
| C2  | 71.9  | 72.6  |
| C21 | 68.5  | 68.0  |
| C20 | 44.7  | 44.7  |
| C19 | 47.2  | 46.9  |
| C18 | 169.8 | 168.9 |
| C14 | 123.8 | 123.8 |
| C15 | 130.2 | 130.2 |
| C16 | 38.5  | 38.6  |
| C17 | 37.7  | 37.6  |



To a cooled (0 °C) and stirred solution of alcohol **23** (100 mg, 0.27 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10.0 mL) under N<sub>2</sub> atmosphere was added Et<sub>3</sub>N (41 mL, 0.40 mmol) and MsCl (37 mL, 0.40 mmol). Cooling bath was left but not recharged and the stirring was continued until full consumption of starting material (1.5 h, checked by TLC). Saturated NH<sub>4</sub>Cl aq. Solution (10 mL) was added and organic layer was separated, dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation to give **26** (122 mg, quant.) which was pure enough to go to next step. A small amount of crude product from initial attempt was purified by chromatography (silica gel, 20% EtOAc in hexane) for data collection.

R<sub>f</sub> (100% CH<sub>2</sub>Cl<sub>2</sub>) 0.4;  $[\alpha]_D^{25}$  +52.0 (c 0.2, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2952, 2932, 1699, 1481, 1442, 1357, 1329, 1174, 954, 757; HRMS (ESI-TOF, m/z) calcd. for C<sub>23</sub>H<sub>31</sub>N<sub>2</sub>O5<sub>S</sub> [M+H]<sup>+</sup> 447.1954, found 447.1947; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (1H, brs, Ar*H*), 7.18 (1H, t, *J* = 7.8 Hz, Ar*H*), 7.11 (1H, d, *J* = 6.7 Hz, Ar*H*), 6.99 (1H, td, *J* = 7.4, 1.0 Hz, Ar*H*), 6.26 (1H, dd, *J* = 17.8, 11.0 Hz, C-CH=CH<sub>2</sub>), 5.73 (1H, ddt, *J* = 16.8, 10.6, 6.4 Hz, NCH<sub>2</sub>-CH=CH<sub>2</sub>), 5.27 (1H, dd, *J* = 10.9, 1.2 Hz, C-CH=HCH), 5.16 (1H, dd, *J* = 17.9, 1.3 Hz, C-CH=HCH), 5.09—5.00 (2H, m, NCH<sub>2</sub>-CH=CH<sub>2</sub>), 4.39 (1H, s, N-CH-C-N), 4.18 (1H, d, *J* = 9.2 Hz, C-HCH-OMs), 4.14 (1H, d, *J* = 9.1 Hz, C-HCH-OMs), 3.87 (3H, s, NCO<sub>2</sub>Me), 3.28 (1H, dd, *J* = 14.1, 6.6 Hz, N-HCH-CH=CH<sub>2</sub>), 3.19 (1H, dd, *J* = 13.9,

6.4 Hz, N-HCH-CH=CH<sub>2</sub>) 3.03 (3H, s, CH<sub>2</sub>OSO<sub>2</sub>*Me*), 3.00 (1H, t, *J* = 6.8 Hz, ArC-C*H*), 2.80 (1H, dd, *J* = 12.2, 8.8, 3.2 Hz, N-*H*CH-CH<sub>2</sub>), 2.45—2.33 (2H, m, N-HC*H*-CH<sub>2</sub> and C-*H*CH-CH<sub>2</sub>-C), 1.90 (1H, dd, *J* = 9.1, 5.2 Hz, C-CH<sub>2</sub>-*H*CH-C), 1.81—1.49 (4H, m, N-CH<sub>2</sub>-C*H*<sub>2</sub>, C-HC*H*-CH<sub>2</sub>-C and C-CH<sub>2</sub>-HC*H*-C); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  154.1 (NCO<sub>2</sub>Me), 141.9 (C-*C*H=CH<sub>2</sub>), 141.1 (Ar*C*), 136.7 (NCH<sub>2</sub>-CH=CH<sub>2</sub>), 133.9 (Ar*C*), 127.8 (Ar*C*H), 123.9 (Ar*C*H), 123.1 (Ar*C*H), 117.1 (NCH<sub>2</sub>-CH=CH<sub>2</sub>), 115.6 (Ar*C*H), 115.0 (C-CH=CH<sub>2</sub>), 75.2 (N-C-CH-N), 72.9 (C-CH<sub>2</sub>OMs), 63.2 (N-CH-C-N), 60.0 (N-CH<sub>2</sub>CH=CH<sub>2</sub>), 52.7 (*C*-CH<sub>2</sub>OMs), 52.5 (NCO<sub>2</sub>*C*H<sub>3</sub>), 50.4 (C-CH<sub>2</sub>OSO<sub>2</sub>*Me*), 46.5 (Ar*C*-CH), 44.2 (N-CH<sub>2</sub>CH<sub>2</sub>), 37.5 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 27.7 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 27.0 (NCH<sub>2</sub>*C*H<sub>2</sub>).

Compound 27



**Procedure:** To a solution of **26** (122 mg, 0.24 mmol) in PhMe (12.0 mL) under N<sub>2</sub> atmosphere was added Hoveyda-Grubbs 2<sup>nd</sup> generation catalyst (7.7 mg, 0.024 mmol). The mixture was then stirred at 60 °C for 4 h. After cooling to room temperature, solvent was removed by rotary evaporation and chromatography of residue on silica gel, using pure Et<sub>2</sub>O gave **27** as a light brown oil (80 mg, 80%).

R<sub>f</sub> (100% Et<sub>2</sub>O) 0.16;  $[α]_D^{25}$  +50.5 (c 0.19, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2929, 2851, 1701, 1481, 1462, 1441, 1354, 1328, 1175, 955; HRMS (ESI-TOF, m/z) calcd. for C<sub>21</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub>S 419.1641, found 419.1649; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) δ 7.44 (1H, d, *J* = 8.1 Hz, Ar*H*), 7.20 (1H, t, *J* = 7.4 Hz, Ar*H*), 7.13 (1H, d, *J* = 7.5 Hz, Ar*H*, 7.08 (td, *J* = 7.4, 1.0 Hz, Ar*H*), 5.83 (1H, ddd, *J* = 10.1, 5.7, 1.8 Hz, NCH<sub>2</sub>-CH=CH-C), 5.74 (1H, dd, *J* = 10.1, 2.5 Hz, NCH<sub>2</sub>-CH=CH-C), 4.32 (1H, d, *J* = 9.4 Hz, HCH-OMs), 4.17 (1H, d, *J* = 9.5 Hz, HCH-OMs), 3.80 (3H, s, NCO<sub>2</sub>*Me*), 3.28 (1H, brs, ArC-C*H*), 3.03 (1H, dd, *J* = 16.1, 5.8 Hz, N-HCH-CH=CH-C), 2.66—2.58 (2H, m, N-HCH-CH<sub>2</sub> and C-HCH-CH<sub>2</sub>-C), 2.37—2.14 (4H, m, N-HCH-CH<sub>2</sub>, C-HCH-CH<sub>2</sub>-C, C-CH<sub>2</sub>-HCH-C, N-CH<sub>2</sub>-HCH), 2.02—1.95 (1H, m, NCH<sub>2</sub>-HC*H*), 1.85—1.76 (1H, m, C-CH<sub>2</sub>-HC*H*-C); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 154.1

(NCO<sub>2</sub>Me), 142.6 (Ar*C*), 134.8 (Ar*C*), 131.7 (NCH<sub>2</sub>-CH=*C*H-C), 127.4 (Ar*C*H), 124.8 (NCH<sub>2</sub>-CH=CH-C), 124.2 (Ar*C*H), 122.8 (Ar*C*H), 119.4 (Ar*C*H), 79.9 (N-CH-*C*-N) 74.9 (*C*H<sub>2</sub>OMs), 67.1 (N-CH-C-N), 52.7 (NCO<sub>2</sub>*Me*), 52.5 (N-*C*H<sub>2</sub>CH=CH-C), 48.3 (N-*C*H<sub>2</sub>CH<sub>2</sub>), 47.6 (*C*-CH<sub>2</sub>OMs) 45.3 (Ar*C*-CH), 37.4 (CH<sub>2</sub>OSO<sub>2</sub>*Me*), 32.7 (C-CH<sub>2</sub>-CH<sub>2</sub>-C), 30.4 (C-*C*H<sub>2</sub>-CH<sub>2</sub>-C), 25.7 (N-CH<sub>2</sub>*C*H<sub>2</sub>).

Compound 28 and 29



**Procedure:** To a stirred solution of **27** (50.0 mg, 0.12 mmol) in DMSO (2.50 mL) was added KCN (65.0 mg) and the resulting mixture was stirred at 100 °C for 24 h. After cooling to room temperature, the reaction mixture was added EtOAc (15.0 mL) and water (15.0 mL). Aqueous layer was extracted with EtOAc (15.0 mL x 2) and combined organic layers were washed with brine (20.0 mL x 2), dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated by rotary evaporation. <sup>1</sup>H NMR indicated a 1:1 mixture of two compounds. Chromatography of crude material on silica gel, using 10% acetone in hexane, gave **28** (12.0 mg, 32%) and **29** (10.0 mg, 31%) as colourless oil.

**Compound 28**: R<sub>f</sub> (30% EtOAc in hexane): 0.3;  $[\alpha]_D^{25}$  -24.5 (c 0.22, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 3024, 2931, 1701, 1478, 1459, 1396, 1358, 1221, 1061, 1025, 752; HRMS (ESI-TOF, m/z) clacd. For C<sub>19</sub>H<sub>21</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 309.15976, found 309.15975; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>) δ 7.77 (1H, d, J = 8.1 Hz, Ar*H*), 7.25—7.22 (1H, m, Ar*H*), 7.15 (1H, dt, J = 7.3, 1.5 Hz, Ar*H*), 7.07 (1H, td, J = 7.4, 1.0 Hz, Ar*H*), 5.74 (1H, ddd, J = 10.0, 4.9, 1.8 Hz, NCH<sub>2</sub>-CH=CH-C), 5.43 (1H, ddd, J = 10.0, 2.9, 1.6 Hz, NCH<sub>2</sub>-CH=CH-C), 4.02 (1H, d, J = 12.1 Hz, NCO<sub>2</sub>-HCH-C), 3.88 (1H, dd, J = 12.1, 1.5 Hz, NCO<sub>2</sub>-HCH-C), 3.46 (1H, d, J = 6.0 Hz, ArC-CH), 3.24 (1H, ddd, J = 16.7, 4.9, 1.6 Hz, N-HCH-CH=CH-C), 2.70—2.63 (2H, m, N-HCH-CH=CH-C and N-HCH-CH<sub>2</sub>), 2.55 (1H, ddd, J = 14.8, 9.8, 7.0 Hz, C-HCH-CH<sub>2</sub>-C), 2.40 (1H, ddd, J = 15.1, 12.0, 3.3 Hz, C-HCH-CH<sub>2</sub>-C), 2.32—2.28 (1H, m, NCH<sub>2</sub>-HCH), 2.25—2.15 (2H, m, C-CH<sub>2</sub>-HCH and NCH<sub>2</sub>-HCH), 2.10—1.99 (3H, m, N-CH-C-N, C-CH<sub>2</sub>-HCH-C and N-HCH-CH<sub>2</sub>); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>) δ 154.7 (NCO<sub>2</sub>), 142.3 (ArC), 131.5 (ArC), 128.3 (ArCH), 127.1 (NCH<sub>2</sub>-CH=CH-C), 127.0 (NCH<sub>2</sub>-CH=CH-C), 123.8 (ArCH), 122.4 (ArCH), 115.4 (ArCH), 77.8 (NCO<sub>2</sub>CH<sub>2</sub>), 75.6 (N-CH-C-N), 73.7 (N-CH-C-N), 53.6 (N-CH<sub>2</sub>-CH=CH-C)

C), 50.3 (NCO<sub>2</sub>-CH<sub>2</sub>-C), 48.7 (N-CH<sub>2</sub>CH<sub>2</sub>), 43.4 (ArC-CH), 36.5 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 34.4 (C-CH<sub>2</sub>CH<sub>2</sub>-C), 23.1 (NCH<sub>2</sub>CH<sub>2</sub>).

**Compound 29**: R<sub>f</sub> (30% EtOAc in hexane): 0.4;  $[\alpha]_D^{25}$ -9.7 (c 0.10, CHCl<sub>3</sub>); FTIR (neat, cm<sup>-1</sup>) 2925, 2853, 1698, 1669, 1602, 1449, 1285, 1239, 1099, 756, 746; HRMS (ESI-TOF, m/z) calcd. for C<sub>18</sub>H<sub>21</sub>N<sub>2</sub> [M+H]<sup>+</sup> 265.1699, found 265.1701; <sup>1</sup>H NMR (700 MHz, CDCl<sub>3</sub>)  $\delta$  7.13—7.07 (2H, m, Ar*H*), 6.82 (1H, td, *J* = 7.4, 1.0 Hz, Ar*H*), 6.59 (1H, dt, *J* = 7.4, 1.0 Hz, Ar*H*), 5.96 (1H, ddd, *J* = 9.9, 3.1, 1.9 Hz, NCH<sub>2</sub>-CH=CH-C), 5.47 (1H, ddd, *J* = 9.9, 4.0, 2.1 Hz, NCH<sub>2</sub>-CH=CH-C), 3.55 (1H, d, *J* = 9.1 Hz, N-HCH-C), 3.48 (1H, ddd, *J* = 16.9, 4.1, 1.9, N-HCH-CH=CH-C), 3.20 (1H, dd, *J* = 5.2, 1.9 Hz, ArC-C*H*), 2.94 (1H, ddd, *J* = 11.3, 5.1, 2.2 Hz, N-HCH-CH<sub>2</sub>), 2.90 (1H, dd, *J* = 9.1, 3.0 Hz, N-HCH-C), 2.43 (1H, ddd, *J* = 16.8, 3.1, 2.2, N-HCH-CH=CH-C), 2.36 (1H, td, *J* = 12.2, 4.5 Hz, C-HCH-CH<sub>2</sub>-C), 2.29—2.15 (2H, m, NCH<sub>2</sub>CH<sub>2</sub>), 2.04—1.97 (1H, m, C-CH<sub>2</sub>-HCH-C), 1.94—1.79 (3H, m, N-HCH-CH<sub>2</sub>, C-HCH-CH<sub>2</sub>-C and C-CH<sub>2</sub>-HCH-C), 1.60 (1H, s, N-CH-C-N); <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  157.8 (Ar*C*), 134.5 (Ar*C*), 128.1 (NCH<sub>2</sub>-*C*H=CH-C), 127.9 (Ar*C*H), 126.1, (NCH<sub>2</sub>-CH=CH-C), 54.2 (N-CH<sub>2</sub>-CH=CH-C), 53.5 (N-CH<sub>2</sub>CH<sub>2</sub>), 49.0 (N-CH<sub>2</sub>-*C*), 37.8 (ArC-CH), 36.3 (C-CH<sub>2</sub>-CH<sub>2</sub>-C), 29.0 (C-CH<sub>2</sub>-CH<sub>2</sub>-C), 25.1 (NCH<sub>2</sub>CH<sub>2</sub>).



32

| Signa | al 1• vw | ב ור | Wavelen | rth=215 nm    |           |        | Peak  | RetTime | Туре | Width  | Area      | Height     | Area    |
|-------|----------|------|---------|---------------|-----------|--------|-------|---------|------|--------|-----------|------------|---------|
| orgin |          | - n, | naveren | Join 210 Illi |           |        | #     | [min]   |      | [min]  | mau *s    | [mau]      | 5       |
|       |          |      |         |               |           |        |       |         |      |        |           | · !        |         |
| Peak  | RetTime  | Type | Width   | Area          | Height    | Area   | 8     | 4.746   | VV   | 0.2521 | 212.96925 | 11.83874   | 0.5443  |
| #     | [min]    |      | [min]   | mAU *s        | [mAU ]    | 8      | 9     | 5.439   | VV   | 0.5738 | 179.82901 | 3.95790    | 0.4596  |
|       |          |      |         |               |           | I      | 10    | 6.502   | VV   | 0.3245 | 71.86116  | 3.00128    | 0.1837  |
| 1     | 1.832    | BV   | 0.1586  | 217.26871     | 18.14535  | 0.5553 | 11    | 6.989   | VV   | 0.3098 | 1.80113e4 | 886.71130  | 46.0353 |
| 2     | 2.113    | VV   | 0.1778  | 109.09632     | 8.01330   | 0.2788 | 12    | 8.020   | VB   | 0.3973 | 82.05363  | 2.95011    | 0.2097  |
| 3     | 2.955    | VV   | 0.1852  | 362.41397     | 27.35223  | 0.9263 | 13    | 12.345  | BB   | 0.5649 | 1.80503e4 | 491.99304  | 46.1350 |
| 4     | 3.220    | VV   | 0.1602  | 399.82538     | 37.22874  | 1.0219 |       |         |      |        |           |            |         |
| 5     | 3.527    | VV   | 0,2134  | 147,43463     | 9.18994   | 0.3768 | Total | s:      |      |        | 3.91250e4 | 1615.02747 |         |
| 6     | 4.005    | vv   | 0.1656  | 1160.18066    | 104.73870 | 2.9653 |       |         |      |        |           |            |         |

Figure 1 Chiral HPCL of racemic 14



Signal 1: VWD1 A, Wavelength=215 nm

| Peak<br># | RetTime<br>[min] | Туре | Width<br>[min] | Are<br>mAU | *s   | Hei<br>[mAU | ght<br>] | Area<br>% |
|-----------|------------------|------|----------------|------------|------|-------------|----------|-----------|
|           |                  |      |                |            |      |             |          |           |
| 1         | 7.009            | MM   | 0.3601         | 3.8026     | 5e4  | 1760.       | 21899    | 94.9528   |
| 2         | 12.654           | MM   | 0.5807         | 2021.2     | 7979 | 58.         | 01327    | 5.0472    |
| Total     | s :              |      |                | 4.0047     | 8e4  | 1818.       | 23226    |           |

### Figure 2 Chiral HPCL of enantioenriched 14

# Crystallographic analyses of 11



**Figure 3** Asymmetric unit of the crystal structure of compound **11**. The thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms and atom labels are omitted for clarity. Colour scheme: carbon – grey, nitrogen – blue, oxygen – red.

All diffraction data for compound **11** were collected on a four-circle *Agilent SuperNova* (Dual Source) single crystal X-ray diffractometer using a micro-focus CuK $\alpha$  X-ray beam ( $\lambda = 1.54184$  Å) and an *Atlas* CCD detector. The crystal temperature was controlled with an *Oxford Instruments* cryojet. Unit cell determination, data reduction and analytical numeric absorption correction were carried out using the *CrysAlis*<sup>Pro</sup> programme.<sup>1</sup> The crystal structures were solved with the *ShelXT* programme<sup>2</sup> and refined by least squares on the basis of *F*<sup>2</sup> with the *ShelXL* programme.<sup>3</sup> All non-hydrogen atoms were refined anisotropically by the full-matrix least-squares method. Hydrogen atoms associated with carbon and oxygen atoms were refined isotropically [ $U_{iso}(H) = 1.2 U_{eq}(C)$ ] in geometrically constrained positions. The crystallographic and refinement parameters for compound **11** are shown in Table **3**.

| Compound <b>11</b> |                      |  |  |  |
|--------------------|----------------------|--|--|--|
| Empirical formula  | $C_{24}H_{26}N_2O_4$ |  |  |  |
| Formula weight     | 406.47               |  |  |  |
| Temperature/K      | 151(2)               |  |  |  |

 Table 3. Crystallographic and refinement parameters of 11.

| Crystal system                                | orthorhombic                |
|-----------------------------------------------|-----------------------------|
| Space group                                   | P212121                     |
| <i>a</i> / Å                                  | 8.0488(1)                   |
| b / Å                                         | 9.8870(1)                   |
| c / Å                                         | 25.9184(3)                  |
| α/°                                           | 90                          |
| в / °                                         | 90                          |
| γ/°                                           | 90                          |
| V / Å <sup>3</sup>                            | 2062.55(4)                  |
| Ζ                                             | 4                           |
| $ ho_{calc}$ / g cm <sup>-3</sup>             | 1.309                       |
| μ / mm <sup>-1</sup>                          | 0.725                       |
| F(000)                                        | 864.0                       |
| Crystal size / mm <sup>3</sup>                | 0.272 × 0.134 × 0.104       |
| Radiation                                     | CuKα (λ = 1.54184)          |
| 2 $\varTheta$ range for data collection / °   | 6.82 to 133.184             |
| Index ranges                                  | $-9 \le h \le 9$            |
|                                               | $-11 \le k \le 11$          |
|                                               | <i>−</i> 30 ≤ <i>l</i> ≤ 30 |
| Number of collected reflections               | 68536                       |
| Number of unique reflections                  | 3650 [l > 2σ(l)]            |
| Data/Restraints/"arameters                    | 3650/0/284                  |
| Goodness-of-fit on F <sup>2</sup>             | 1.057                       |
| R <sub>int</sub>                              | 0.0446                      |
| $R(F), F > 2\sigma(F)$                        | 0.0280                      |
| wR ( $F^{2}$ ), F > 2 $\sigma(F)$             | 0.0690                      |
| R (F), all data                               | 0.0289                      |
| wR ( $F^2$ ), all data                        | 0.0698                      |
| ⊿ <sub>r</sub> (max., min.) e Å <sup>−3</sup> | 0.15/-0.18                  |
| Flack parameter                               | -0.08(4)                    |
| CCDC number                                   | 1904992                     |

References: 1) *CrysAllisPro. Agilent Technologies*, Inc. (2014). 2) Sheldrick, G. M. A short history of *SHELX. Acta Crystallogr.*, 2008, **A64**, 112–122. DOI: 10.1107/S0108767307043930. 3) Sheldrick, G. M. Crystal structure refinement with *SHELXL. Acta Crystallogr.*, 2015, **C71**, 3–8. DOI:1107/S2053229614024218

# $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for all compounds















































































































Literature spectra of vallesamidine (1)<sup>4</sup>



Literature spectra of vallesamidine (1)<sup>4</sup>



























## References:

- [1] C.-F. Chang, C.-Y. Huang, Y.-C. Huang, K.-Y. Lin, Y.-J. Lee, C.-Y. Wang, Syn. Commun. **2010**, 40, 3452-3466.
- [2] D. A. Evans, D. Seidel, J. Am. Chem. Soc. 2005, 127, 9958-9959. The catalyst was synthesised in lab following the protocol therein.
- [3] H. Zhang, Q. Cai, D. Ma, J. Org. Chem. **2005**, 70, 5164–5173.
- [4] X. Wang, D. Xia, W. Qin, R. Zhou, X. Zhou, Q. Zhou, W. Liu, X. Dai, H. Wang, S. Wang, L. Tan, D. Zhang, H. Song, X. Liu, Y. Qin, *Chem* **2017**, *2*, 803–816.
- [5] H. Tanino, K. Fukuishi, M. Ushiyama, K. Okada, *Tetrahedron* **2004**, *60*, 3273–3282.