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Abstract: The regime governing the growth of Mercury’s core is unknown, but the dynamics of 12 

core growth are vital to understanding the origin and properties of the planet’s weak magnetic 13 

field. Here, we use advanced first-principles methods, which include a magnetic entropy 14 

contribution, to investigate the magnetic and thermo-elastic properties of liquid Fe-S-Si and of 15 

pure liquid iron at the conditions of Mercury’s core. Our results support a ‘top-down’ evolution of 16 

the core, whereby solid iron-rich material crystallises at shallow depths and sinks. This process 17 

would likely result in a compositionally driven dynamo within a stably stratified uppermost liquid 18 

layer, providing an explanation for the observed properties of the weak magnetic field of Mercury. 19 
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Highlights: 25 

• Liquid Fe and Fe-S-Si adiabats are calculated using ab-initio methods. 26 

• Fe-S-Si material properties suggest a top-down evolution of Mercury’s core.  27 

• Atomic magnetic moments exist to higher pressures than previously suggested. 28 

Main Text:  29 

1. Introduction 30 

The MESSENGER mission revealed two surprising features of Mercury’s magnetic field: 1) it is 31 

anomalously weak compared to the field strength expected of an Earth-like dynamo process (1) 32 

and 2) it is strongly asymmetric with respect to the equator, with the strength of the field in the 33 

northern hemisphere three times that in the southern hemisphere (2). While the spatial scale of the 34 

field makes a dynamo origin likely, the origin of these unusual features is still unknown.   35 

 36 

An important source of uncertainty is the distribution of buoyancy in Mercury’s core: does 37 

buoyancy originate from a crystallizing inner core, as in Earth, or does crystallization occur from 38 

the top down (or in some more complex arrangement) (3)?  MESSENGER gravity data are 39 

compatible with partial solidification of the core (4), but do not require it and cannot constrain its 40 

location (5).  Recent models of Mercury’s magnetic field show that the location of the crystallizing 41 

layer is crucial: models with a crystallizing inner core do not explain the asymmetry of the field 42 



 
 

(6), and a crystallizing layer at the top may be important for weakening of the field due to magnetic 43 

shielding (7).   Recent work on the electrical and thermal properties of liquid Fe suggest a thermally 44 

stratified layer at the top of Mercury’s core (8), however, the effect of light alloying elements is 45 

unknown.    46 

 47 

Here, we use ab initio simulations of the material properties of Fe alloys to constrain the 48 

crystallization regime of Mercury’s core.  The key material property is the adiabatic gradient 49 

(dT/dP)S.  If this exceeds the slope of the liquidus, crystallization proceeds from the top down, 50 

whereas if the slope of the liquidus is greater, crystallization proceeds from the bottom up, as in 51 

the Earth (9).  The adiabatic gradient of Fe-S-Si alloys that likely compose Mercury’s core is 52 

unknown, and even those of simpler systems, such as Fe-S, are highly uncertain.   Here we 53 

determine the adiabatic gradient of Fe and Fe-S-Si liquid, providing important new constraints on 54 

the core dynamics of the innermost planet.  55 

 56 

2. Methods. 57 

Our ab initio molecular dynamics simulations are based on density functional theory (10-13).  We 58 

have chosen the system Fe80S10Si10 (atomic %) as representative of the reducing conditions 59 

characteristic of Mercury (14), and we also examine the pure Fe system for comparison.   60 

 61 

The Fe-S-Si composition used in this work, Fe80S10Si10, lies in the miscible region of the phase 62 

diagram above approximately 6 GPa (15) as found throughout the core pressure range of Mercury 63 

(core-mantle boundary of Mercury is approximately 5.5 GPa; (5)) and is consistent with Chabot 64 



 
 

et al. (2014) whose models of the core composition of Mercury suggest a range of possible S and 65 

Si relative abundances that are consistent with the surface measurements of sulphur and low 66 

surface abundance of iron.  67 

 68 

 We compute the adiabatic gradient as 69 
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 70 

where the Grüneisen parameter, 𝛾, and bulk modulus, 𝐾&, are determined from accurate fits to 71 

densely spaced simulation results across a pressure-temperature regime relevant to Mercury’s core 72 

and beyond (see supplementary information).   73 

 74 

To calculate the adiabatic gradient of pure liquid iron and liquid Fe80S10Si10 we performed first-75 

principles molecular dynamics (FPMD) calculations combined with the perturbative approach to 76 

thermodynamic integration. The FPMD calculations were performed using the Vienna Ab Initio 77 

Simulation Package (VASP) (10-13); we used the generalised gradient approximation with the 78 

PW91 enhancement factor (17, 18) to the solution of Density Functional Theory. We used super-79 

cell sizes of 125 atoms (Fe) and 150 atoms (Fe80S10Si10, 120 iron, 15 silicon and 15 sulphur with 80 

the site occupancies chosen at random), initiated in a simple cubic structure, and projector 81 

augmented wave pseudopotentials (19, 20) were used to describe the core electrons. A single k-82 

point located at (¼, ¼, ¼) (21) was used to sample the Brillouin zone, as this was found to better 83 

produce converged values of energy and pressure than simple gamma-point sampling of the 84 

Brillouin zone. We imposed a cut-off energy of 400 eV on the plane wave basis used to expand 85 

the electronic orbitals, giving total energies converged to within 5 meV/ atom. 86 

[1] 



 
 

 87 

The Helmholtz free energy of the liquid is given by;  88 

F	(V, T, f) = E(V, T, f) − T(	S56(V, T, f) + 	S89:(V, T, f) +	S;<=>(V, T, f) +	S?@A(V,T, f)	) 89 

where E, is the internal energy, V is the volume, f is the mean magnitude of the atomic 90 

moment, and T is the temperature, which is multiplied by a sum of the electronic, vibrational, 91 

configurational and magnetic entropies (Sel, Svib, Sconf and Smag), where the magnetic entropy is 92 

equal to 93 

S?@A(V, T, f) = 	 kCDln(µ9	 + 1) 94 

in which µi is the magnitude of the local atomic moment and kB is the Boltzmann constant. The 95 

magnetic entropy is critical to calculating the properties of a magnetic system as it acts negatively 96 

on the Helmholtz free energy and therefore may stabilise larger atomic magnetic moments to 97 

higher pressures. Hence this term impacts the behaviour of the material and affects the 98 

thermoelastic properties of magnetic liquid iron and Fe80S10Si10.  99 

 100 

We conducted first principles molecular dynamics (FPMD) calculations within the canonical NVT 101 

ensemble at a series of volumes at 2000, 3000 and 4000 K for both pure liquid iron and liquid 102 

Fe80S10Si10 and at two magnetic configurations each, one with no atomic magnetic moment (the 103 

reference state) and another with the iron atomic magnetic moment constrained to be equal to +3 104 

µB/atom (in the Fe80S10Si10 calculations the atomic magnetic moments of the silicon and sulphur 105 

atoms were equal to zero). At each temperature (2000, 3000 and 4000 K), the total pressures and 106 

volumes of both magnetic configurations were fitted to a third order Eulerian finite strain 107 

[2] 

[3] 



 
 

expression, the Birch-Murnaghan 3rd order equation of state, using the EoSFit code (22; see figure 108 

M1 in supplementary material) 109 

 110 

In addition, we conducted spin-polarised FPMD simulations with unconstrained moments, which 111 

produced, at each volume-temperature condition, results with magnetic moments intermediate to 112 

those of our constrained moment calculations.  We used these free-moment results to construct 113 

four further constant atomic magnetic moment equations of state at each temperature following 114 

the method of Holmström and Stixrude (2015).  115 

 116 

From the equations of state, the Helmholtz free energy of each state was calculated using the 117 

following equation; 118 

 119 

F	(V, T, f) = 	F	(V, T, 0) + 	ΔF	(V, T, f) − 	TS?@A(V, T, f) 120 

 121 

In which F is the Helmholtz free energy, and DF indicates the difference in free energy given by 122 

the thermodynamic integration, i.e., DF includes everything except the magnetic entropy. The 123 

change in Helmholtz free energy between the lowest and higher atomic magnetic moments was 124 

calculated using the Kirkwood coupling scheme (24) and thermodynamic integration following 125 

the method described in Holmström and Stixrude (2015). 126 

 127 

[4] 



 
 

The total Helmholtz free energy (eq. 4) was then used to calculate the Gibbs free energy, G, for 128 

each of the magnetic states; 129 

 130 

G	(P, T, f) = 	F	(V, T, f) + V	P	(V, T, f) 131 

 132 

The Gibbs free energies, G = G(f), of the five magnetic states were fitted to a parabola, and the 133 

equilibrium mean magnetic moment was found by minimizing this parabolic fit with respect to f 134 

(the atomic magnetic moment; see Figure M2 in supplementary material). This was repeated for a 135 

series of pressures and temperatures for both materials, thus giving the magnetic behaviour of pure 136 

liquid iron and liquid Fe80S10Si10 at 2000, 3000 and 4000 K up to pressures of 160 and ~ 60 GPa 137 

respectively. 138 

 139 

At a series of pressures (1 GPa intervals between the lowest and highest calculated values) the 140 

volumes corresponding to each spin state were collated to find a relationship between volume and 141 

magnetic moment. From the magnetic moment relationship with pressure described above, the 142 

magnitude of the magnetic moment could be found for each pressure and thus the corresponding 143 

volume found. The isothermal volume-pressure values were then fitted to a Eulerian finite strain 144 

expression (25) (Birch-Murnaghan 3rd order equations of state) the analytical derivative with 145 

respect to pressure of which determined the bulk modulus (26).  146 

 147 

The remaining properties required to calculate the adiabatic gradient are the Grüneisen parameter 148 

and the thermal expansivity (Results; Figure 3). To find the mean thermal expansivity between 149 

[5] 



 
 

2000 and 4000 K, the volumes at constant pressure across two temperatures (at 2000 and 4000 K) 150 

were used in the following expression; 151 

 152 

α = 	N
ln[V	(TP)/V(T)]

TP − T
S
T

 153 

 154 

in which V, T and P have their usual meaning and T' > T where T' and T are the two temperatures 155 

at which the volumes have been calculated (2000 and 4000 K in this work). 156 

 157 

The final property required to calculate the adiabatic gradient was the Grüneisen parameter which 158 

can be determined using the following relationship between pressure, P, and internal energy, E;  159 

 160 

γ = 	V !
dP
dE
%
W
 161 

 162 

Thus, to calculate the Grüneisen parameter required the pressure and internal energy at constant 163 

volume. At each volume, consistent across all calculated magnetic states (volumes ranged between 164 

13.544 - 10.835 Å3 for Fe and 14.142 - 11.314 Å3 for Fe-S-Si, see Table 2 in supplementary 165 

material), the internal energy of three simulated magnetic moment magnitudes (the highest, lowest 166 

and an intermediate spin state) were used to find a relationship between internal energy and 167 

magnetic moment. Using the fitted isothermal Birch-Murnaghan 3rd-order equations of state, the 168 

corresponding pressure could be calculated for each volume, and thus from the magnetic 169 

[6] 

[7] 



 
 

relationship with pressure, the predicted magnetic moment magnitude. From the pressure and 170 

internal energies at 2000 and 4000 K, the mean Grüneisen parameter between 2000 – 4000 K was 171 

calculated for both pure liquid iron and liquid Fe80S10Si10. 172 

 173 

3. Results 174 

We have found that local magnetic moments of the iron atoms are large over the entire pressure-175 

temperature range relevant to Mercury’s core (Figure. 1).  While they are not aligned, local 176 

magnetic moments are important because they influence physical properties including the 177 

adiabatic gradient.  For example, the magnitude of the moment is known to influence the density, 178 

providing a driving force for the pressure-induced high-spin to low-spin transition seen in many 179 

materials.  The local magnetic moments associated with the iron atoms decrease gradually 180 

throughout the core pressure range of Mercury and other small rocky bodies in the solar system.  181 

We find finite local magnetic moments in pure liquid iron up to at least 160 GPa, pressures at 182 

which liquid iron has been traditionally assumed to possess no local magnetic moments. A finite 183 

proportion of non-zero local magnetic moments are stabilized at high pressure and temperature by 184 

the magnetic entropy term (Eq. 4) 185 

 186 



 
 

 187 

Our calculated magnetic moments appear to be consistent with experiment, if we account for 188 

considerable experimental uncertainty.  Whereas we find a value of 2.0  𝜇Y at 2000 K and ambient 189 

pressure, two different experimental studies yield 1.2 and 1.9  𝜇Y, respectively (27, 28).  At 190 

conditions where experimental measurements are more secure (measurements of bcc iron at 191 

ambient conditions), the same exchange-correlation functional that we use finds perfect agreement 192 

with experiment (29).  Moreover, we find that the magnetic moment is slightly smaller in the alloy, 193 

consistent with trends found in Fe-Si alloys (30).   194 

Fig 1: The local magnetic moments of pure liquid iron (dashed lines) and liquid Fe80S10Si10 

(solid lines). The pressure range of Mercury’s core is from Hauck et al., 2013; Ganymede’s 

core pressure range is from Rückriemen et al., 2015; pressure range of the Moon and Mars’ 

core are from Antonangeli et al., 2015.  

 

 

  



 
 

 195 

Using the simulated magnetic moments of pure liquid iron and liquid Fe-S-Si, the pressure-volume 196 

relationship at 2000, 3000 and 4000 K were calculated and fitted to Eulerian finite strain expression 197 

(Birch Murnaghan 3rd order equations of state; 25, Figure 2; Table 1).  198 

 199 

Fig 2: The calculated densities of pure liquid iron (dashed lines) and liquid Fe80S10Si10 (solid 

lines). Also shown are the calculated liquid iron densities at 4000 K of Vočadlo et al. (2003) 

and Ichikawa et al. (2014) (circles and filled circles respectively). The pure iron results of 

Alfè et al. (2000), Williams (2009) and Komabayashi (2014) and the Fe-S results of Morard 

et al. (2018) of two different compositions are also shown Fe90S10 at% (blue diamonds) and 

Fe70.6S29.4 at% (green diamonds). 

 

 

  



 
 

 200 

The results calculated in this work using thermodynamic integration at 4000 K are consistent with 201 

the results of Vočadlo et al. (2003), Ichikawa et al. (2014) and Alfè et al., 2000, as well as the 202 

thermodynamic model prediction of Komabayashi (2014) (Fig. 2). However, ambient densities of 203 

liquid iron at 2000 K range from 6800 – 6900 kg/m3 (Williams, 2009 and references therein), 204 

which is lower than the calculated values shown here. The difference in density is of similar 205 

magnitude to the error in density of bcc iron calculated by Stixrude et al. (1994) (the PBE 206 

functional was found to overestimate the density by ~ 3%) which suggests a similar overestimation 207 

has been found here.  Our computed thermal expansivity is consistent with previous theory (31, 208 

32), Hugoniot data (34), and with the range of proposed values at 1 bar (9) (Fig. 3).  We find that 209 

the Grüneisen parameter increases on compression, as has been found in other studies of liquids 210 

(31, 35). 211 

 212 

 
T (K) Vo (Å3/atom) K0 (GPa) K' 

Fe 2000 12.97 55.31 8.41 
3000 14.51 38.66 7.54 
4000 15.63 36.31 6.25 

Fe-S-Si 2000 13.33 50.43 8.13 
3000 15.09 33.71 7.05 
4000 17.37 17.08 7.95 

Table 1: The fitted-parameters of the Birch-Murnaghan 3rd-order equation of state for 

pure liquid iron and Fe-S-Si (80:10:10 at%). 



 
 

 213 

The adiabatic gradient of Fe80S10Si10 is much greater than the slope of the liquidus, indicating top-214 

down crystallization (Fig. 4).   It is thought that the core of Mercury cannot be composed of pure 215 
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Fig 3: The mean thermal expansion of pure liquid iron (dashed line) and Fe80S10Si10 (solid 

line) between 2000 and 4000 K. With increasing pressure, the thermal expansivity of both 

materials decrease. Shown for comparison are the results of Vočadlo et al. (2003) and 

Ichikawa et al. (2014) (circles and filled circles respectively) who performed ab initio 

calculations on thermal expansion of pure liquid iron at higher temperatures, the ambient 

range of thermal expansivities from Williams (2009) (x), and the Hugoniot constrain of Duffy 

and Ahrens (1993) (+). The inset shows our calculated Grüneisen parameter as a function of 

pressure. 

 

 

  



 
 

iron because the melting point is too high to permit a liquid core as required by geodetic data.  For 216 

comparison, we note that while the adiabatic gradient of pure iron is similar to that of our iron 217 

alloy, the slope of the pure iron liquidus is much greater, producing a more complex crystallisation 218 

scenario in a hypothetical pure iron core.  The calculated adiabatic gradient of pure iron agrees 219 

well with the work of Williams (2009) as shown in Figure 4, in which an estimate for the 220 

uncertainties in the pressure dependent bulk modulus and thermal expansivity used in Williams 221 

(2009) are also shown.  222 

 223 

4. Discussion 224 

Our results support the ‘top-down’ crystallization scenario: upon cooling, the adiabat first crosses 225 

the solidus at or near the core-mantle boundary. Iron ‘snow’ forms at the top of the core and, due 226 

to gravity, sinks to greater depths (Figure 5). This results in the enrichment of the remaining liquid 227 

in silicon and sulphur, which is buoyantly upwelled as the iron-rich solid sinks. This process may 228 

explain the presence of Mercury's magnetic field, as chemical buoyancy associated with the iron 229 

‘snow’ regime may drive a dynamo deep within the planet (7). The rate of cooling at the top of the 230 

core decreases due to the latent heat of crystallisation, resulting in a sub-adiabatic and stratified 231 

upper boundary with both stable thermal and chemical gradients. At greater depths, the solid sinks 232 

into the super-liquidus region and re-melts, locally increasing the melting temperature and 233 

enriching the deep liquid core in iron. As the planet continues to cool, the temperature of the 234 

innermost region of Mercury's core (depleted in Si and S relative to the bulk composition) falls 235 

below the liquidus of this iron-enriched composition, such that a solid inner core will begin to 236 

grow outwards from the centre of the planet. The crystallising ‘snow' regions continue to extend 237 

deeper into the planet, eventually reaching the inner-core boundary. A ‘top-down’ crystallisation 238 



 
 

of the planet’s core has also been suggested by Dumberry and Rivoldini (2015) to best fit the 239 

geodetic observations of the planet; this is also the regime proposed to be governing the 240 

crystallisation of the cores of Ganymede (37) and Mars (38). 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

Fig 4: The adiabatic gradient of liquid Fe-S-Si (solid orange line, small dashed orange line is an 

extrapolation of the calculated results) and pure liquid iron (wide dashed orange line).  The blue 

shading is the region in which the adiabatic gradient must fall to produce bottom up crystallization 

and is bounded by experimental estimates of the melting slope in: Fe-18.5 wt % S–8 wt % Si 

(Sanloup and Fei, 2004, we fit the published data to a Simon-Glatzel equation with a 0 GPa melting 

temperature equal to 1800 K and differentiated to find the slope) and Fe80.1S12.7Si7.2 (Sakairi et al., 

2017, we fit the published curve to a straight line to obtain the slope.  Also shown is the melting 

slope of iron (Anzellini et al., 2013, obtained by differentiating the analytical expression provided 

by the authors) and estimates of the adiabatic gradient of liquid iron at one bar (orange symbol with 

error bar) (Williams, 2009). 

 

 



 
 

The top-down snowing state derived from our simulations may explain the weakness and 249 

asymmetry of Mercury’s field.  Field generated deep within the core must diffuse through the 250 

conducting stratified layer at the top of the core, reducing the measured field strength (5) and 251 

filtering out high-degree components of the field. Stable thermal stratification at the top of the 252 

core, and the sub-adiabatic gradient that it entails, is consistent with estimates of heat flow 253 

modelling at Mercury’s core-mantle boundary (36) and with MESSENGER observations of 254 

librations and gravity field (39).  Iron snow produces a volumetrically distributed source of 255 

buoyancy that can explain the observed asymmetry of the field (6). An iron snow layer at the top 256 

Mercury’s core may have laterally variable thickness, possibly contributing to the asymmetry of 257 

the field (40).  Variable thickness might arise from lateral variations in heat flow at the core-mantle 258 

boundary due to mantle convection, heterogeneous distribution of heat producing elements, or the 259 

after-effects of ancient giant impacts. Upcoming missions will provide further constraints on core 260 

size, the thickness of crystallizing layers and the nature of the magnetic field (41).  261 
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Pu
re
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id
 Ir

on
 

Temperature (K) Volume 
(Å3/atom) 

Total Pressure/ Error (GPa) 

µm = 3.0 µB µm = 0.0 µB µm = free* 

2000 K 

14.898 -2.712/0.001 - - 
13.544 7.107/0.001 -14.388/0.003 -5.0535/0.0012 (2.0751*) 
12.189 24.678/0.001 -6.860/0.002 2.9897/0.0007 (1.6924*) 
11.512 35.802/0.017 1.220/0.002 9.5396/0.0010 (1.4380*) 
10.835 55.602/0.016 13.113/0.004 17.3025/0.0042 (1.1738*) 
8.126 - 138.683/0.005 - 

3000 K 

14.898 3.261/0.002 - - 
13.544 13.582/0.002 -8.056/0.004 -0.7810/0.0015 (1.7290*) 
12.189 32.048/0.002 1.914/0.003 8.5269/0.0006 (1.3390*) 
11.512 46.418/0.004 11.024/0.007 16.2104/0.0007 (1.0790*) 
10.835 64.887/0.007 23.526/0.003 27.1836/0.0008 (0.7767*) 
8.126 - 154.638/0.004 - 

4000 K 

14.898 8.123/0.002 - - 
13.544 19.637/0.001 -1.558/0.005 3.1477/0.0010 (1.3542*) 
12.189 38.979/0.002 10.051/0.003 13.6133/0.0011 (0.9273*) 
11.512 53.857/0.004 19.471/0.003 22/0628/0.0012 (0.6744*) 
10.835 73.845/0.006 32.885/0.004 34.2985/0.0014 (0.4020*) 
8.126 - 162.235/0.033 163.5301/0.0023 (0.0300*) 

Li
qu

id
 F

e -
S-

Si
 

Temperature (K) Volume 
(Å3/atom) 

Total Pressure/ Error (GPa) 

µm = 3.0 µB µm = 0.0 µB µm = free* 

2000 K 

15.556 -2.050/0.006 - - 
14.142 4.705/0.002 -6.080/0.003 -3.2359/0.0024 (2.2627*) 
12.728 17.640/0.003 -3.517/0.005 3.2453/0.0028 (1.9448*) 
12.021 28.235/0.002 2.147/0.003 8.9577/0.0022 (1.6654*) 
11.314 43.489/0.003 10.634/0.003 16.6116/0.0033 (1.3989*) 
8.485 - 115.768/0.001 115.3095/0.0036 (0.0234*) 

3000 K 

15.556 2.602/0.010 - - 
14.142 10.403/0.002 -4.048/0.003 0.8375/0.0032 (1.8257*) 
12.728 24.795/0.001 3.411/0.003 8.1569/0.0035 (1.4567*) 
12.021 36.156/0.004 10.306/0.002 14.7794/0.0036 (1.2188*) 
11.314 52.087/0.005 19.843/0.004 23.3876/0.0022 (0.9496*) 
8.485 - 124.335/0.018 126.7441/0.0083 (0.0068*) 

4000 K 

15.556 7.196/0.005 - - 
14.142 16.186/0.002 0.789/0.002 4.3290/0.0022 (1.4218*) 
12.728 31.262/0.003 9.807/0.005 12.9805/0.0027 (1.0450*) 
12.021 43.020/0.003 17.619/0.003 19.8685/0.0029 (0.8017*) 
11.314 60.197/0.002 28.663/0.004 29.7271/0.0039 (0.5342*) 
8.485 - 139.194/0.003 139.6716/0.0053 (0.0026*) 

Table 2: The calculated pressures of pure liquid iron and iron-sulphur-silicon alloy with atomic magnetic moments 
equal to 0.0 and 3.0 µB at 2000, 3000 and 4000 K. Also included in Table 2 are the results of free-moment calculations 
in which the pressure, error and atomic moment are noted (atomic moment noted in brackets).  
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Temperature (K) Volume 
(Å3/atom) 

Helmholtz Free Energy (eV/atom) Internal Energy (eV/atom) 

µm = 3.0 µB µm = 0.0 
µB µm = free* µm = 3.0 µB µm = 0.0 µB µm = free* 

2000 K 

14.898 -0.2066 - - -7.233680635   

13.544 -0.2050 0.1055 - -7.306180635  -6.948020953 -7.08136127 
12.189 -0.0808 0.0113 -0.2810 -7.290880635 -7.156820953 -7.17246127 
11.512 0.0528 0.0006 -0.2218 -7.299580635 -7.230020953 -7.20346127 
10.835 0.2552 0.0294 -0.1709 7.647619365 -7.269020953 -7.25366127 
8.126 - 1.0519 -  -6.608720953  

3000 K 

14.898 -0.3193 - - -7.193180635   

13.544 -0.2517 0.0357 - -7.248780635 -7.016820953 -7.04496127 
12.189 -0.0635 0.0015 -0.2825 -7.199180635 -7.179220953 -7.13256127 
11.512 0.1009 0.0297 -0.1967 -7.106380635 -7.223820953 -7.14936127 
10.835 0.3332 0.1037 -0.0584 -6.988880635 -7.241520953 -7.13726127 
8.126 - 1.3557 -  -6.476320953  

4000 K 

14.898 -0.3555 - - -7.215180635   

13.544 -0.2398 0.0009 - -7.230780635 -7.143820953 -7.10426127 
12.189 0.0035 0.0336 -0.2241 -7.152080635 -7.260520953 -7.17196127 
11.512 0.1984 0.0955 -0.0970 -7.042380635 -7.293320953 -7.18266127 
10.835 0.4630 0.2032 0.0756 -6.878980635 -7.281920953 -7.16166127 
8.126 - 1.5924 -  -6.507320953  

Li
qu

id
 F

e -
S-

Si
 

Temperature (K) Volume 
(Å3/atom) 

Helmholtz Free Energy (eV/atom) Internal Energy (eV/atom) 

µm = 3.0 µB µm = 0.0 
µB µm = free* µm = 3.0 µB µm = 0.0 µB µm = free* 

2000 K 

15.556 -0.1833 - - -6.724380635   

14.142 -0.1751 0.0672 - -6.800980635 -6.609820953 -6.62076127 
12.728 -0.0834 0.0054 -0.2832 -6.822380635 -6.674220953 -6.70666127 
12.021 0.0167 0.0015 -0.2236 -6.773280635 -6.735820953 -6.71286127 
11.314 0.1732 0.0285 -0.1477 -6.676280635 -6.777920953 -6.72506127 
8.845 - 0.8970 -  -6.212420953 -6.08516127 

3000 K 

15.556 -0.2618 - - -6.689180635   

14.142 -0.2079 0.0122 - -6.737580635 -6.554420953 -6.56046127 
12.728 -0.0593 0.0060 -0.2429 -6.719480635 -6.671320953 -6.62476127 
12.021 0.0739 0.0362 -0.1688 -6.653180635 -6.716520953 -6.63596127 
11.314 0.2667 0.1011 -0.0797 -6.559880635 -6.739720953 -6.64066127 
8.845 - 1.1335 -  -6.188420953 -5.99526127 

4000 K 

15.556 -0.2962 - - -6.693380635   

14.142 -0.1973 0.0002 - -6.717180635 -6.640120953 -6.58426127 
12.728 0.0037 0.0431 -0.1886 -6.682280635 -6.740020953 -6.64566127 
12.021 0.1669 0.1038 -0.0743 -6.603280635 -6.760120953 -6.65706127 
11.314 0.3931 0.2043 0.0798 -6.470580635 -6.753620953 -6.64546127 
8.845 - 1.4506 -  -6.038220953 -5.89536127 

Table 3: The calculated internal energy (eV/atom) and calculated Helmholtz Free Energy (eV/atom) of pure liquid iron 
and iron-sulphur-silicon alloy with atomic magnetic moments equal to 0.0 and 3.0 µB at 2000, 3000 and 4000 K. Also 
included are the free moment calculations (see Table 2 for atomic magnetic moments). 
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LS

MS3

4000 K

Fig M1: The calculated pressures of the Fe-S-Si reference state LS (atomic moment is equal 

to zero) and the magnetic state with atomic moment equal to +3 µB/atom at 4000 K. The points 

represent the individual ab-initio calculations (error bars are also included but are smaller than 

the point size shown) and solid lines indicate the fit to the Birch Murnaghan 3rd order equation 

of state. Also shown are the results of free-spin polarized calculations (black crosses).   
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Fig M2: The calculated Gibbs free energy of five magnetic states of Fe-S-Si at 4000 K and 

10 GPa. The blue circle indicates the equilibrium mean magnetic moment; the blue dashed 

line represents a parabolic fit to the calculated Gibbs free energies of each magnetic state 

(blue squares).  
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