
HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS 1

Compact Neural Networks based on the
Multiscale Entanglement Renormalization
Ansatz

Andrew Hallam1

andrew.hallam.10@ucl.ac.uk
1. Department of Physics Astronomy,
University College London

Edward Grant2

andrew.hallam.10@ucl.ac.uk
2. Department of Computer Science,
University College London

Vid Stojevic1,3

andrew.hallam.10@ucl.ac.uk
3. GTN Ltd.

Simone Severini2,4

andrew.hallam.10@ucl.ac.uk
4. Institute of Natural Sciences,
Shanghai Jiao Tong University

Andrew G. Green5

andrew.hallam.10@ucl.ac.uk
5. London Centre for Nanotechnology,
University College London

Abstract

This paper demonstrates a method for tensorizing neural networks based upon an
efficient way of approximating scale invariant quantum states, the Multi-scale Entan-
glement Renormalization Ansatz (MERA). We employ MERA as a replacement for the
fully connected layers in a convolutional neural network and test this implementation on
the CIFAR-10 and CIFAR-100 datasets. The proposed method outperforms factorization
using tensor trains, providing greater compression for the same level of accuracy and
greater accuracy for the same level of compression. We demonstrate MERA layers with
14000 times fewer parameters and a reduction in accuracy of less than 1% compared to
the equivalent fully connected layers, scaling like O(N).

1 Introduction

The curse of dimensionality is a major bottleneck in machine learning, stemming from the
exponential growth of variables with the number of modes in a data set (Cichocki et al. [1]).
Typically state-of-the-art convolutional neural networks have millions or billions of param-
eters. However, previous work has demonstrated that representations stored in the network
parameters can be highly compressed without significant reduction in network performance
(Novikov et al. [16], Garipov et al. [4], Hinton et al. [6]). Determining the best network
architecture for a given task remains an open problem.

Descriptions of quantum mechanical systems raise a similar challenge; representing n
d-dimensional particles requires a rank-n tensor whose memory cost scales as dn. Indeed, it
was the promise of harnessing this that led Richard Feynman (Feynman [3]) to suggest the

c© 2018. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{{Cichocki}, {Lee}, {Oseledets}, {Phan}, {Zhao}, and {Mandic}} 2016

Citation
Citation
{Novikov, Podoprikhin, Osokin, and Vetrov} 2015

Citation
Citation
{Garipov, Podoprikhin, Novikov, and Vetrov} 2016

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Feynman} 1982



2 HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS

possibility of quantum computation. In the absence of a quantum computer, however, one
must use compressed representations of quantum states.

A level of compression can be achieved by factorizing the tensorial description of the
quantum wavefunction. Many such factorizations are possible, the optimal structure of the
factorization being determined by the structure of correlations in the quantum system being
studied. A revolution in quantum mechanics was made by realizing that the best way to
characterize the distribution of correlations and information in a state is by a quantity known
as entanglement – loosely the mutual quantum information between partitions of a quantum
system (Eisert et al. [2]).

This has led to many successful applications of tensorial approaches to problems in solid
state physics and quantum chemistry over the past 25 years (Orús [17], Kin-Lic Chan et al.
[8]). Intriguing ideas have also emerged over the past few years attempting to bridge the
successes of neural networks in machine learning with those of tensorial methods in quan-
tum physics, both at a fundamental level (Lin et al. [11], Mehta and Schwab [14]), and as
a practical tool for network design (Levine et al. [10]). Recent work has suggested that en-
tanglement itself is a useful quantifier of the performance of neural networks (Levine et al.
[10], Liu et al. [12])

The simplest factorization employed in quantum systems is known as the matrix product
state (Orús [17]). In essence, it expresses the locality of information in certain quantum
states. It has already been adopted to replace expensive linear layers in neural networks –
in which context it has been independently termed tensor trains (Oseledets [18]). This led
to substantial compression of neural networks with only a small reduction in the accuracy
(Novikov et al. [16], Garipov et al. [4]).

Here we use a different tensor factorization – known as the Multi-scale Entanglement
Renormalization Ansatz (MERA) – that encodes information in a hierarchical manner (Vidal
[25]). MERA works through a process of coarse graining or renormalization. There have
been a number of papers looking at the relationship between renormalization and deep learn-
ing. MERA is a concrete realization of such a renormalization procedure (Vidal [26]) and
so possesses a multi-scale structure that one might anticipate in complex data. A number of
works have utilized tree tensor network models that possess a similar hierarchical structure.
However, they do not include the disentangler tensors that are essential if each layer of the
MERA is to capture correlations on different length scales (Liu et al. [12]).

In this work we employ MERA as a replacement for linear layers in a neural network
used to classify the CIFAR-10 and CIFAR-100 datasets. Our results show that this performs
better than the tensor train decomposition of the same linear layer, and gives better accuracy
for the same level of compression and better compression for the same level of accuracy. In
Section 2 we introduce factorizations of fully connected linear layers, starting with the tensor
train factorization followed by a tree-like factorization and finally the MERA factorization.
In Section 3 we discuss how this is employed as a replacement for a fully connected linear
layer in deep learning networks. Section 4 gives our main results and we note connections
with the existing literature in Section 5. Finally, in Section 6 we discuss some potential
developments of the work.

2 Tensor Factorization of Linear Layers
In this report we have replaced the linear layers of the standard neural network with tensorial
MERA layers. The first step in achieving this involves expressing a linear layer as a tensor.

Citation
Citation
{{Eisert}, {Cramer}, and {Plenio}} 2010

Citation
Citation
{Or{ú}s} 2014

Citation
Citation
{{Kin-Lic Chan}, {Dorando}, {Ghosh}, {Hachmann}, {Neuscamman}, {Wang}, and {Yanai}} 2007

Citation
Citation
{{Lin}, {Tegmark}, and {Rolnick}} 2017

Citation
Citation
{{Mehta} and {Schwab}} 2014

Citation
Citation
{Levine, Yakira, Cohen, and Shashua} 2017

Citation
Citation
{Levine, Yakira, Cohen, and Shashua} 2017

Citation
Citation
{{Liu}, {Ran}, {Wittek}, {Peng}, {Bl{á}zquez Garc{í}a}, {Su}, and {Lewenstein}} 2017

Citation
Citation
{Or{ú}s} 2014

Citation
Citation
{Oseledets} 2011

Citation
Citation
{Novikov, Podoprikhin, Osokin, and Vetrov} 2015

Citation
Citation
{Garipov, Podoprikhin, Novikov, and Vetrov} 2016

Citation
Citation
{Vidal} 2008

Citation
Citation
{Vidal} 2009

Citation
Citation
{{Liu}, {Ran}, {Wittek}, {Peng}, {Bl{á}zquez Garc{í}a}, {Su}, and {Lewenstein}} 2017



HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS 3

i1 i2

j2

iN

jN

j2

iN

jN

α1 α2 αN

j1

j1

i2i1

j1
j2
j3
j4
j5
j6
j7
j8

i1
i2i3
i4
i5
i6i7
i8

a)

b)

c)

j1
j2
j3
j4
j5
j6
j7
j8

i1
i2i3
i4i5
i6
i7
i8

d)

Figure 1: Schematic diagrams of various tensor factorizations of linear layers. a) a general
linear layer, b) its tensor train factorization. The squares represent smaller tensors. Connec-
tions represent contractions as indicated in Eq.(1). c) Tree network factorization. d) MERA
factorization.

This can be accomplished by taking a matrixW and reshaping it to be a higher dimensional
array. For example, suppose W is dn by dn dimensional with components WAB. It can
be transformed into a rank 2n tensor by mapping A to n elements A→ i1, i2, ..., in and B to
another n elements B→ j1, j2, ..., jn. In this case each of the elements of the new tensor will
be of size d.

Figure 1a gives a graphical representation of this rank 2n tensorW i1,i2,...,in
j1, j2,..., jn

. It is impor-
tant to note that in this representation, the lines represent the indices of the tensors rather
than weights. Figure 1b illustrates the tensor train decomposition of W . This consists of
writing the larger tensor as the contraction of a train of smaller tensors:

W i1,i2,...,in
j1, j2,..., jn

= ∑
α1,α2,...,αn−1

Ai1
j1,α1

Aα1,i1
j1,α2

· · · Aαn−1,in
jn . (1)

In the tensor graphical notation, closed legs represent indices being summed over and free
legs represent indices that aren’t being summed over. For example, in equation 1 the αi
indices are being summed over and in Figure 1b the αi lines are connected to tensors at both
ends.

If each index runs over values from 1 to d, this represents an exponential reduction from
d2n parameters to n(Dd)2, where the indices α run over values from 1 to D (known as the
bond order or Schmidt rank in the quantum context). As noted above, this type of tensor fac-
torization works well in physics when the information has a local structure (Eisert et al. [2],
Verstraete and Cirac [24]); tensor trains capture correlations effectively up to length scales
of order logD (Schollwöck [20]). This means that while useful for many tasks, the learned

Citation
Citation
{{Eisert}, {Cramer}, and {Plenio}} 2010

Citation
Citation
{{Verstraete} and {Cirac}} 2006

Citation
Citation
{Schollw{ö}ck} 2011



4 HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS

representations will be highly local. Tensors at either end of a tensor train decomposition of
a linear layer will not be strongly correlated with one another.

A hierarchically structured tensor network can better represent correlations across the
linear layer. The tree tensor network shown in Figure 1c represents one possible hierarchical
factorization. Each element of this network is a rank 4 tensor. The two tensors on the top
left would have the formM j1,α1

i1,i2
and N j2,α2

i3,i4
. The in elements being represented by the lines

on the left of the figure, the jn elements represented by the dotted lines on the right of the
figure and the αn lines being those connected with the tensor immediately to the right ofM
and N .

Reading from left to right Figure 1c can be interpreted as follows: the tree-like con-
nectivity imbues the network with a causal structure whereby a given linear element and its
outputs are influenced by inputs in a region determined by its height in the tree.

For example, the rightmost element in Figure 1c is influenced by all of the inputs,
whereas the top element in the middle column is influenced by inputs i1 to i4. Elements
other than the rightmost tensor have one dashed output (that connects directly to the overall
output) and one solid output (that ties it to the branching tree structure). These dashed lines
are controlled by representations occurring on a particular scale in the data.

Notice that removing these dashed lines, the network has a true tree structure and repre-
sents a coarse graining or renormalization of the network. In this case, the linear elements
are the isometries of the original MERA’s definition (Vidal [25, 26]).

The simple tree network, which has been studied before in the context of neural net-
works, has a major deficiency. At each branching, it partitions the system in two, so that in
extremis, the correlations between neighbouring inputs – for example i4 and i5 in Figure 1c
– are only controlled by the element at the end of the network. Requiring the higher ele-
ments in the tree-structure to capture correlations between neighbouring inputs restricts their
ability to describe the longer length scale correlations you would hope to capture by using a
hierarchical structure.

The MERA (Vidal [26]) factorization was introduced in order to solve this problem. As
can be seen in Figure 1d it adds an additional set of rank 4 tensors called disentanglers. The
MERA is constructed by taking a tree network and placing one of these rank 4 tensorsDβ1,β2

γ1,γ2
such that its right-going legs β1 and β2 connect to two adjacent tensors of the tree network.
For example, if we consider the top left-most disentangler in Figure 1d it has elementsDβ1,β2

i2,i3
and connects to the tree elementsM′ j1,α1

i1,β1
and N ′ j2,α2

β2,i4
with β1 and β2 then being summed

over.
The role of the disentanglers is to cause all correlations on the same length scale to be

treated similarly. For example, correlations between any two neighbouring input indices in
and in+1 will be captured by either the first row of tree elements or the disentanglers. This
allows the later elements in the network to work at capturing longer range correlations.

In summary, a rank-N MERA layer can be constructed in the following manner:

1. Create a tree tensor layer. For example, an N = 2τ tree can be constructed from 2τ−1

rank-4 tree tensorsMβ1,β2
γ1,γ2 in the first layer, followed by 2τ−2 tree tensors in the second

layer until after τ layers there is only a single tree tensor.

2. A set of disentanglers are introduced. These are rank-4 tensorsDβ1,β2
γ1,γ2 which are placed

such that every disentangler is contracted with two neighbouring tree tensors in an
upcoming layer of the tree tensor.

Citation
Citation
{Vidal} 2008

Citation
Citation
{Vidal} 2009

Citation
Citation
{Vidal} 2009



HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS 5

3 Experiments & network structure

We have considered the performance of a neural network with the two penultimate fully
connected layers of the model replaced with MERA layers, similar to the Novikov et al. [16]
study of compression of fully connected layers using tensor trains. We have quantified the
performance of the MERA layer through comparisons with two other classes of networks:
fully connected layers with varying numbers of nodes and tensor train layers with varying
internal dimension. The three types of network are otherwise identical.

The networks consisted of three sets of two convolutional layers each followed by max
pooling layers with 3×3 kernels and stride 2. The convolutional kernels were 3×3. There
were 64 channels in all of the convolutional layers except for the input, which had three
channels, and the last convolutional layer, which had 256 channels. The final convolutional
layer was followed by two more hidden layers, these were either fully connected, MERA
layers or TT-layers depending upon the network. The first of these layers was of size 4096×
x, the second is of size x× 64. For the MERA and TT networks, these layers were 4096×
4096 and 4096×64.

The final layer had 10 or 100 nodes corresponding to the image classes in CIFAR-10 and
CIFAR-100. Leaky rectified linear units (LReLU) were used on all layers except the final
layer, with leak = 0.2 (Maas et al. [13]).

During training, nodes in the final convolutional layer and the two first fully connected
layers were dropped with probability 0.5. The penultimate convolutional layer nodes were
dropped with probability 0.2 (Srivastava et al. [21]). Batch-normalization was used on all
layers after dropout and max pooling (Ioffe and Szegedy [7]). We did not use bias units.

Gaussian weight initialization was employed in the fully connected models with standard
deviation equal to 1√

nin
, where nin was the number of inputs (He et al. [5]).

In this report we considered networks with two varieties of fully-connected layers. The
first of these networks had a 4096×4096 fully connected layer followed by one which was
4096×64; this network was used as a benchmark against which the other models could be
compared. The second network instead had a 4096×n fully connected layer followed by a
n×64 layer where n = 5 for the CIFAR-10 network and n = 10 for the CIFAR-100 network.
We trained these network to compare the MERA and tensor train layers to a fully connected
model with a comparable number of parameters, in order to evaluate how detrimental naive
compression is to accuracy. A schematic of the two MERA layers can be found in Figure 2.
The input to the first MERA layer was reshaped in to a rank-12 tensor with each index being
dimension 2, as described in Section 2. The MERA layer was then constructed from a set of
rank-4 tensors using the method described in Section 2.

The first MERA layer works as follows: It contains a column of 6 rank-4 tree elements,
followed by 3 tree elements and finally a single tree element. 5 disentanglers are placed
before the first column of tree elements and 2 more disentanglers are placed before the second
column of tree elements.

The second MERA layer has an identical structure to the first MERA layer, one of the
outputs of the first set of tree elements is fixed. As a result the output of the second MERA
layer is 64 nodes.

MERA weights were initialized using elements of randomized orthogonal matrices (Saxe
et al. [19]). The tensors themselves were constructed by reshaping these matrices, as de-
scribed in Section 2. The random orthogonal matrix was constructed using the method of
Stewart (Stewart [22], Mezzadri [15]). Starting from a random n− 1× n− 1 dimensional

Citation
Citation
{Novikov, Podoprikhin, Osokin, and Vetrov} 2015

Citation
Citation
{Maas, Hannun, and Ng} 2013

Citation
Citation
{Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov} 2014

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{{Saxe}, {McClelland}, and {Ganguli}} 2013

Citation
Citation
{Stewart} 1980

Citation
Citation
{Mezzadri} 2007



6 HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS

C
O

N
V

 O
U

T

PREDICTION

Figure 2: A schematic of the MERA layers of the model. The small rectangles represent
linear elements to factorize a general linear layer. White rectangles represent disentanglers.
Red rectangles represent tree elements. Solid black lines connecting nodes represent tensor
contraction and dashed lines with arrow heads represent the nonlinearities being applied.
Dashed lines ending in a circle represent fixed outputs.

orthogonal matrix, a random n× n dimensional orthogonal matrix can be constructed by
taking a randomly distributed n-dimensional vector, constructing its Householder transfor-
mation, and then applying the n−1 dimensional matrix to this vector.

Finally, a network with its fully connected layers replaced with a tensor train decompo-
sition was trained in order to provide a comparison with the MERA layers. The tensor train
layers were constructed as described in Section 2 with the internal dimension being fixed at
D = 3. In the second tensor train layer, half of the output indices were fixed to match the
second MERA layer.

We tested performance on the CIFAR-10 and CIFAR-100 datasets. We used 45,000 im-
ages for training, 5,000 for validation and 10,000 for testing. Each training batch consisted
of 50 images. Training data was augmented by randomly flipping and translating the in-
put images by up to 4 pixels. Translated images were padded with zeros. All images were
normalized by dividing by 255 and subtracting the mean pixels value from the training set.

Validation and test set accuracy was recorded every 500 iterations and training was
stopped when validation accuracy did not improve for 10 successive tests. The network was
trained using backpropagation and the Adam optimizer, with initial learning rate 0.001 (Kingma
and Ba [9]) and a softmax-cross-entropy objective. The test set accuracy for the model with
the highest validation set accuracy was recorded. Each network was trained 10 times with a
different random weight initialization.

The networks were implemented in Tensorflow r1.3 and trained on NVIDIA Titan Xp
and 1080ti GPUs.

4 Experimental results
In Table 1 we compare the different models described in section 3 trained on the CIFAR-10
dataset. The compression rate stated is with respect to the number of parameters used in the
fully-connected benchmark model, FC-1.

When comparing the MERA network to the fully connected model, FC-1 we see a con-
siderable drop in the number of parameters required with only a modest drop in the accuracy

Citation
Citation
{Kingma and Ba} 2014



HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS 7

Table 1: The CIFAR-10 experimental results for the different models. FC1 was the fully-
connected model and FC2 was the fully-connected model with severely reduced number
of parameters in the fully-connected layers. MERA are the result for the MERA inspired
network. Finally TT is the tensor train model with the internal dimension being 3.

Network Parameters
(FC Layer)

Parameters
(Total)

Compression
(FC layer)

Compression
(Total)

Accuracy Standard
Deviation

FC-1 17,040,000 17,336,640 1 1 88.9 0.2

FC-2 21,440 318,080 795 54.5 86.5 0.8

MERA 1192 297,832 14,295 58.21 88.5 0.1

TT 1312 297,952 12,987 58.19 87.9 0.2

of the network. MERA compresses the fully connected layers by a factor of 14,000 with a
drop in the accuracy of only 0.4%. We do not attempt to compress the convolutional layers
in this work so in the MERA network the vast majority of the parameters are used in the
convolutional layers which are identical to the fully connected model.

How significant is the MERA network structure we have chosen to the results obtained?
To test this we compare the MERA results obtained to the fully connected model with many
fewer parameters in the fully connected layers, FC-2. Despite having around 20 times more
parameters in the fully connected layer than the MERA model, the MERA model signifi-
cantly out performs FC-2, with a 1.2% drop in the accuracy of FC-2 compared to MERA.

The MERA network also compares favourably to a tensor train network. In this case, the
two networks have a comparable number of parameters but the MERA appears to achieve a
higher accuracy than the tensor train network in this case.

Results for the CIFAR-100 model can be seen in Table 2. While none of the networks are
as accurate as the benchmark case, the MERA network continues to outperform the tensor
train and ablated fully connected network. However, the reduction in accuracy compared to
the fully connected network is larger than for the CIFAR-10 dataset.

In addition to the degree of compression achieved by these networks, we also address
the time to optimize. There is evidently a degree of compromise required here: the number
of multiplications required to apply a MERA layer scales with the input size N and bond
order D as Nlog2 D. The equivalent scaling for a tensor train and fully connected layer are
ND2 and N2, respectively. This is reflected in the times taken to optimize these networks.
Note however, that MERA can accommodate correlations at all scales of its input even at
low bond order, whereas tensor trains require a bond order that scales exponentially with the
length scale of correlation (Orús [17]). MERA is, therefore, expected to scale better for very
large data sets than either tensor trains or fully connected layers.

5 Related Work
Given how memory intensive deep neural networks typically are, substantial effort has been
made to reduce number of parameters these networks require without significantly reducing
their accuracy. Some of these have taken a similar approach to the MERA network described
above, using tensor decompositions of the fully connected layers.

These include the tensor train models of Novikov et al. [16] and Garipov et al. [4]. Here

Citation
Citation
{Or{ú}s} 2014

Citation
Citation
{Novikov, Podoprikhin, Osokin, and Vetrov} 2015

Citation
Citation
{Garipov, Podoprikhin, Novikov, and Vetrov} 2016



8 HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS

Table 2: The CIFAR-100 experimental results for the different models. FC1 was the fully-
connected model and FC2 was the fully-connected model with severely reduced number
of parameters in the fully-connected layers. MERA are the result for the MERA inspired
network. Finally TT is the tensor train model with the internal dimension being 3.

Network Parameters
(FC Layer)

Parameters
(Total)

Compression
(FC Layer)

Compression
(Total)

Accuracy Standard
Deviation

FC-1 17,045,760 17,342,400 1 1 61.8 0.7

FC-2 48,000 344,640 355 50.3 53.4 0.6

MERA 6952 303,592 2451 57.12 58.4 0.6

TT 7072 303,712 2410 57.10 57.9 0.6

we have found replacing a fully connected linear layer with a MERA factorization resulted
in superior accuracy for a comparable number of parameters.

More directly related to this MERA model are a number of tree tensor network models
(Liu et al. [12], Levine et al. [10]). As Section 2 explained, tree tensor networks inconsis-
tently capture correlations on the same length scale, this is the reason for the introduction of
disentanglers. Tree tensors do not possess these and we expect them to struggle to capture
long range correlations as effectively as MERA.

A MERA works through a process of coarse graining or renormalization. There have
been a number of other papers looking at the relationship between renormalization and deep
learning. Lin et al. [11] argue that the effectiveness of deep neural networks should be
thought of in terms of renormalization and Mehta and Schwab [14] demonstrate an exact
mapping between the variational renormalization group and restricted Boltzmann machines.
In this report we have taken a different approach: only the fully connected layers of the
network were replaced with MERA layers.

6 Discussion

We have shown that replacing the fully connected layers of a deep neural network with layers
based upon the multi-scale entanglement renormalization ansatz can generate significant ef-
ficiency gains with only small reduction in accuracy. When applied to the CIFAR-10 data we
found the fully connected layers can be replaced with MERA layers with 14,000 times less
parameters with a reduction in the accuracy of less than 1%. The model significantly outper-
formed compact fully connected layers with 70−100 times as many parameters. Moreover,
it outperformed a similar replacement of the fully connected layers with tensor trains, both in
terms of accuracy for a given compression and compression for a given accuracy. While the
MERA layer resulted in a larger accuracy drop in the CIFAR-100 case, it still outperformed
a comparable tensor train network.

An added advantage — not explored here — is that a factorized layer can potentially
handle much larger input data sets, thus enabling entirely new types of computation. Cor-
relations across these large inputs can be handled much more efficiently by MERA than
by tensor trains. Moreover, a compressed network may provide a convenient way to avoid
over-fitting of large data sets. The compression achieved by networks with these factorized
layers comes at a cost. They can take longer to train than networks containing the large fully

Citation
Citation
{{Liu}, {Ran}, {Wittek}, {Peng}, {Bl{á}zquez Garc{í}a}, {Su}, and {Lewenstein}} 2017

Citation
Citation
{Levine, Yakira, Cohen, and Shashua} 2017

Citation
Citation
{{Lin}, {Tegmark}, and {Rolnick}} 2017

Citation
Citation
{{Mehta} and {Schwab}} 2014



HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS 9

connected layers due to the number of tensor contractions required to apply the factorized
layer.

Our results suggest several immediate directions for future inquiry. Firstly, there are
some questions about how to improve the existing model. For example, before the MERA
layer is used the input is reshaped into a rank-12 tensor. There isn’t a well defined method
for how to perform this reshaping optimally and some experimentation is necessary. The
best way to initialize the MERA layers is also still an open question.

The results presented here are a promising first step for using MERA in a more funda-
mental way. Since MERA can be viewed as a coarse graining procedure (as explained in
Section 2), and image data is often well represented in a hierarchical manner, one possibility
would be to simply train a two-dimensional MERA directly on an image dataset, with no
reference to a neural network. In Stoudenmire and Schwab [23] a similar idea was explored
with matrix product states being trained directly on MNIST. An alternative possibility would
be the replacement of just the convolutional layers of the network with a two-dimensional
MERA. Both of these approaches would be closer in spirit to the fundamental ideas about
the relationships between quantum physics and machine learning proposed in Lin et al. [11]
and Mehta and Schwab [14].

Additionally, there has been some work using entanglement measures to explore how
correlations are distributed in deep neural networks, and then utilizing these in order to
optimize the design of networks (Liu et al. [12], Levine et al. [10]). It would be intriguing to
explore such ideas using MERA, for example by using the concrete MERA model explored
in this paper, or one of the more ambitious possibilities mentioned above.

We end by noting two facts: any variational approximation to a quantum wavefunction
can be used to construct a replacement for linear layers of a network. There are many ex-
amples and each may have its sphere of useful application. Moreover, quantum computers
of the type being developed currently by several groups are precisely described by a type
of tensor network (a finite-depth circuit - and one that may very soon be too large to ma-
nipulate classically) and could be used as direct replacement for linear layers in a hybrid
quantum/classical neural computation scheme.

References
[1] A. Cichocki, N. Lee, I. V. Oseledets, A.-H. Phan, Q. Zhao, and D. Mandic. Low-

Rank Tensor Networks for Dimensionality Reduction and Large-Scale Optimization
Problems: Perspectives and Challenges PART 1. ArXiv e-prints arXiv:1609.00893,
September 2016.

[2] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the entan-
glement entropy. Reviews of Modern Physics, 82:277–306, January 2010. doi:
10.1103/RevModPhys.82.277.

[3] R. P. Feynman. Simulating physics with computers. International Journal of Theoret-
ical Physics, 21(6):467–488, 1982.

[4] Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry P. Vetrov.
Ultimate tensorization: compressing convolutional and FC layers alike. CoRR,
abs/1611.03214, 2016. URL http://arxiv.org/abs/1611.03214.

Citation
Citation
{{Stoudenmire} and {Schwab}} 2016

Citation
Citation
{{Lin}, {Tegmark}, and {Rolnick}} 2017

Citation
Citation
{{Mehta} and {Schwab}} 2014

Citation
Citation
{{Liu}, {Ran}, {Wittek}, {Peng}, {Bl{á}zquez Garc{í}a}, {Su}, and {Lewenstein}} 2017

Citation
Citation
{Levine, Yakira, Cohen, and Shashua} 2017

http://arxiv.org/abs/1611.03214


10 HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[6] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, pages 448–456, 2015.

[8] G. Kin-Lic Chan, J. J. Dorando, D. Ghosh, J. Hachmann, E. Neuscamman, H. Wang,
and T. Yanai. An Introduction to the Density Matrix Renormalization Group Ansatz in
Quantum Chemistry. ArXiv e-prints arXiv:0711.1398, November 2007.

[9] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[10] Yoav Levine, David Yakira, Nadav Cohen, and Amnon Shashua. Deep learning and
quantum entanglement: Fundamental connections with implications to network design.
CoRR, abs/1704.01552, 2017. URL http://arxiv.org/abs/1704.01552.

[11] H. W. Lin, M. Tegmark, and D. Rolnick. Why Does Deep and Cheap Learning Work
So Well? Journal of Statistical Physics, 168:1223–1247, September 2017. doi: 10.
1007/s10955-017-1836-5.

[12] D. Liu, S.-J. Ran, P. Wittek, C. Peng, R. Blázquez García, G. Su, and M. Lewen-
stein. Machine Learning by Two-Dimensional Hierarchical Tensor Networks: A
Quantum Information Theoretic Perspective on Deep Architectures. ArXiv e-prints
arXiv:1710.04833, October 2017.

[13] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve
neural network acoustic models. In Proc. ICML, volume 30, 2013.

[14] P. Mehta and D. J. Schwab. An exact mapping between the Variational Renormalization
Group and Deep Learning. ArXiv e-prints arXiv:1410.3831, October 2014.

[15] Francesco Mezzadri. How to generate random matrices from the classical compact
groups. Notices of the American Mathematical Society, 54(5):592 – 604, 5 2007. ISSN
0002-9920.

[16] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry P. Vetrov. Ten-
sorizing neural networks. CoRR, abs/1509.06569, 2015. URL http://arxiv.
org/abs/1509.06569.

[17] R. Orús. A practical introduction to tensor networks: Matrix product states and pro-
jected entangled pair states. Annals of Physics, 349:117–158, October 2014. doi:
10.1016/j.aop.2014.06.013.

[18] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–2317,
September 2011. ISSN 1064-8275. doi: 10.1137/090752286. URL http://dx.
doi.org/10.1137/090752286.

http://arxiv.org/abs/1704.01552
http://arxiv.org/abs/1509.06569
http://arxiv.org/abs/1509.06569
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090752286


HALLAM, GRANT, STOJEVIC, SEVERINI, GREEN: COMPACT NEURAL NETWORKS 11

[19] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks. ArXiv e-prints arXiv:1312.6120,
December 2013.

[20] U. Schollwöck. The density-matrix renormalization group in the age of matrix product
states. Annals of Physics, 326:96–192, January 2011. doi: 10.1016/j.aop.2010.09.012.

[21] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of machine learning research, 15(1):1929–1958, 2014.

[22] G. W. Stewart. The efficient generation of random orthogonal matrices with an appli-
cation to condition estimators. SIAM Journal on Numerical Analysis, 17(3):403–409,
1980. doi: 10.1137/0717034. URL https://doi.org/10.1137/0717034.

[23] Miles Stoudenmire and D. J. Schwab. Supervised Learning with Quantum-Inspired
Tensor Networks. ArXiv e-prints arXiv:1605.05775, May 2016.

[24] F. Verstraete and J. I. Cirac. Matrix product states represent ground states faithfully. ,
73(9):094423, March 2006. doi: 10.1103/PhysRevB.73.094423.

[25] G. Vidal. Class of Quantum Many-Body States That Can Be Efficiently Simulated.
Physical Review Letters, 101(11):110501, September 2008. doi: 10.1103/PhysRevLett.
101.110501.

[26] G. Vidal. Entanglement Renormalization: an introduction. ArXiv e-prints
arXiv:0912.1651, December 2009.

https://doi.org/10.1137/0717034

