
manuscripta math. © The Author(s) 2019

Alex Torzewski

Functoriality of motivic lifts of the canonical
construction

Received: 18 June 2019 / Accepted: 10 September 2019

Abstract. Let (G,X) be a Shimura datum and K a neat open compact subgroup of G(A f ).
Under mild hypothesis on (G,X), the canonical construction associates a variation of Hodge
structure on ShK (G,X)(C) to a representation of G. It is conjectured that this should be
of motivic origin. Specifically, there should be a lift of the canonical construction which
takes values in relative Chow motives over ShK (G,X) and is functorial in (G,X). Using
the formalism of mixed Shimura varieties, we show that such a motivic lift exists on the
full subcategory of representations of Hodge type {(−1, 0), (0,−1)}. If (G,X) is equipped
with a choice of PEL-datum, Ancona has defined a motivic lift for all representations of G.
We show that this is independent of the choice of PEL-datum and give criteria for it to be
compatible with base change. Additionally, we provide a classification of Shimura data of
PEL-type and demonstrate that the canonical construction is applicable in this context.

1. Introduction

Let (G,X) be a Shimura datum. By design, there is a functor Rep(G) → VHS/X
which assigns a Q-valued variation of Hodge structures on X to a representation of
G. For any neat open compact K ≤ G(A f ), let S := ShK (G,X) denote the cor-
responding Shimura variety, defined over its reflex field via canonical models. For
well-behaved (G,X), the variations of Hodge structure constructed on X descend
to S(C). We call the resulting functor Rep(G) → VHS/S(C) the canonical con-
struction and denote it by μH

G .
The canonical construction should be of motivic origin. Specifically, there

should be a canonical ⊗-functor μmot
G : Rep(G) → CHM/S to the category of

relative Chow motives over S, such that

Rep(G) CHM/S

VHS/S(C)

μmot
G

μH
G

H•
B

�⇒

commutes up to canonical natural isomorphism. Here H•
B denotes the relative Betti

realisation enriched to take values in variations of Hodge structure. The functor
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μmot
G should also be well behaved under change of G etc. In particular, the canon-

ical construction should produce variations of Hodge structure which arise from
geometry.

As an example, for the usual modular curve datum (GL2,H), if V denotes the
standard representation of GL2, thenμH

G (V ) is isomorphic to H1
B(E → S)∨, where

E → S is the universal elliptic curve. The obvious choice for μmot
G (V ) is then the

relative Chow motive h1(E → S)∨ (in the notation of Theorem 2.8).
Let Rep(G)AV denote the full subcategory of Rep(G) whose objects are of

Hodge type {(−1, 0), (0,−1)}, i.e. for any (h : S → G) ∈ X, the restriction of
V to S is (z ⊕ z̄)-isotypical. Alternatively, the objects of Rep(G)AV are those for
which their image under μH

G is the dual of H1
B(A → S) for some abelian variety

A → S (see Lemma 5.5).
The first aim of this paper is to show that μmot

G can be defined on Rep(G)AV

with the desired properties:

Theorem 1.1. Let (G,X)be a Shimura datumand K ≤ G(A f )be a neat open com-
pact subgroup. Write S for the corresponding Shimura variety ShK (G,X). There
is a canonical ⊗-functor μmot

G : Rep(G)AV → CHM/S for which the following
diagram

Rep(G)AV CHM/S

VHS/S(C)

μmot
G

μH
G

H•
B

�⇒
commutes up to a canonical natural isomorphism. Now let f : (G ′,X′) → (G,X)

be amorphism of Shimura data and K ≤ G(A f ), K ′ ≤ G ′(A f ) neat open compact
subgroups with f (K ′) ≤ K. Let E ′ be the reflex field of S′, then we also denote by
f the induced map S′ := ShK ′(G,X′) → SE ′ := ShK (G,X)E ′ → S between the
corresponding Shimura varieties. Then there is a commutative prism:

Rep(G)AV CHM/S

VHS/S(C)

Rep(G ′)AV CHM/S′

VHS/S′(C)

f ∗ μH
G

μmot
G

f ∗
H•
B

μH
G′

μmot
G′

H•
B

f ∗

where the vertical maps are base change by f .

This is statedmore precisely asTheorem6.4.Note that the reflexfield of (G ′,X′)
is allowed to be strictly larger than that of (G,X). The method of proof is to use
the formalism provided by mixed Shimura varieties. Mixed Shimura varieties, as
defined by Pink, generalise the traditional definition by allowing for non-reductive
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algebraic groups. Crucially, objects such as universal elliptic curves fit into this
framework, i.e. they are mixed Shimura varieties and their structure maps are given
by functoriality of mixed Shimura data.

Canonical constructions exist more generally than just the Hodge case. For
example, the �-adic étale canonical construction associates a lisse �-adic sheaf on S
(considered as defined over its reflex field via canonical models) to a representation
of G. The functor μmot

G should lift every incarnation of the canonical construction.
In Sect. 10, we show this in the case of the étale canonical construction.

For PEL-type Shimura data much stronger results on lifting μH
G are known due

to work of Ancona [2]. For Shimura data with a fixed choice of PEL-datum, Ancona
has been able to define a functor AncG defined on all of Rep(G) (see Theorem 8.7).
Unfortunately, it is not directly clear that AncG commutes with pull back via a
morphism of Shimura data. Moreover, it is not clear that AncG is independent of
the choice of PEL-datum (recall that a Shimura variety may admit multiple distinct
PEL-data, see Example 7.8).

In the latter part of this paper, we show that AncG is independent of the choice
of PEL-datum (Lemma 9.3 and Theorem 9.7) and in many cases commutes with
morphisms of Shimura varieties. More precisely, call a morphism of Shimura data
each with chosen (possibly unrelated) PEL-data f : (G ′,X′) → (G,X) admissible
if

f ∗V is a summand of V ′⊕k for some k,

as G ′-representations, where V ′, V denote the representations given in the PEL-
data on the source and target respectively. The motivation for this definition is
that it ensures that we may use functoriality of mixed Shimura data to compare
f ∗AncG(V ) and AncG ′(V ′).

Theorem 1.2. Given f : (G ′,X′) → (G,X) an admissible morphism of PEL-type
Shimura varieties each with chosen PEL-data, then the following diagram com-
mutes:

Rep(G) CHM/S

Rep(G ′) CHM/S′
f ∗

AncG

�⇒

f ∗

AncG′

up to a specified natural isomorphism. Moreover, there is a prism analogous to
that of Theorem 1.1.

This is made precise in Theorem 9.7.
Not all morphisms f are admissible (see Example 11.1), but in Corollary 11.3

we show that every f for which the source only has factors of symplectic type (see
Lemma 7.5) is admissible. In any case, it is easy to decide if a given morphism is
admissible.

One application of results such as the above is in the theory of Euler systems.
In this context it is often required to pullback classes lying in the cohomology
of Shimura varieties under morphisms of Shimura data. It is also necessary to
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switch between various cohomology theories. For this reason it is desirable to be
able to perform such operations at the motivic level. There has been significant
recent progress in this direction due to Lemma’s construction of motivic classes on
Siegel threefolds [12]. If functoriality results are available Lemma’s classes have
the potential to yield Euler systems for a multitude of different Shimura varieties
(see for example [13], particularly Sect. 6).

One other observation from practical applications is that it is desirable to have
such results with F-coefficients for F/k a number field. For this reason all the
following is phrased to allow for coefficients.

Finally, in Sect. 7 we provide a self-contained classification of the groups aris-
ing from PEL-data (see Lemma 7.5), which as a consequence demonstrates that
PEL-type Shimura data are sufficiently well-behaved to apply the canonical con-
struction. This is something which is well-known, but for which we are not aware
of a reference for.

2. Relative motives

We now recall some background on relative motives.

Notation 2.1. Assume that k is a field of characteristic zero equipped with a fixed
embedding into C. Given a k-variety Z , we write Z(C) for its complex points
considered as a complex manifold.

In this section,wefix S to be a smoothquasi-projective k-scheme. For simplicity,
we shall assume that all components of S have the same dimension dS .

Definition 2.2. Following [7, Sec. 1], fix an adequate equivalence relation ∼ on all
k-varieties and let X,Y be smooth projective S-schemes. Assume for simplicity
that X,Y are equidimensional of dimensions dX , dY respectively. We define the
group of degree p correspondences from X to Y , up to equivalence by ∼, to be

CorrpS (X,Y ) = AdX−dS+p∼ (X ×S Y ),

where Ad∼(−)denotes theQ-vector space of codimensiond cycles up to equivalence
by ∼. Proceeding as in the classical case we obtain the categoryM∼/S of relative
motives over S with respect to∼, whose objects are triples (X, e, n) consisting of a
variety X , an idempotent e ∈ Corr0S(X, X) and an integer n ∈ Z corresponding to
Tate twists. The categoryM∼/S is aQ-linear⊗-category, with the tensor structure
being given by fibre product over S.

We are mostly concerned with the case when ∼ is taken to be rational equiva-
lence∼rat, inwhich casewe denoteM∼/S byCHM/S, or homological equivalence
∼hom with respect to singular cohomology (or equivalently any choice of �-adic
cohomology), in which case we denote the resulting category by HomM/S. These
categories are referred to as relative Chow motives over S and relative homological
motives over S respectively.1 Write Hi

B(Z(C), Q) for the singular cohomology of

1 It may be better to refer to HomM/S as “naive homological motives”. This is because,
unlike in the case of S = k, our homological motives admit non-trivial maps between objects
which should be considered to live in different cohomological degrees. As a result, they do
not coincide with what we may reasonably expect of “relative numerical motives”.
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a variety Z/k. Since homological equivalence is coarser than rational equivalence
we obtain a forgetful map

CHM/S → HomM/S,

which is full.
If SmProjVar/S denotes the category of (not necessarily irreducible) smooth

projective varieties over S, then there is a functor h : (SmProjVar/S)op → CHM/S
which assigns to a variety X/S its motive (X,�X , 0) where �X is the diagonal
cycle of X ×S X . The same is also true of homological motives.

For any adequate equivalence relation, the construction ofM∼/S is compatible
with change of S, i.e. given f : S′ → S, we obtain pullback functors f ∗ : M∼/S →
M∼/S′ by base changing triples in the obvious way.

Remark 2.3. This construction has been extended to the case when S → k is quasi-
projective but not necessarily smooth by Corti–Hanamura [3].

Definition 2.4. Let F/Q be a number field. We define (CHM/S)F to be the cat-
egory with the same objects as CHM/S but for which Hom(CHM/S)F/S(A, B) =
HomCHM/S(A, B)⊗Q F . We then define CHMF/S to be the pseudo-abelianisation
((CHM/S)F )� of (CHM/S)F and refer to it as the category of relativeChowmotives
over S with coefficients in F . We shall frequently use that it is equivalent to think
of a Chow motive with coefficients in F as an object M of ((CHM/S)F )� or as an
object of CHM/S together with an inclusion F ↪→ EndCHM/S(M) (see [5, Sec. 2]
or for more details [1, Sec. 5]). We define HomMF/S analogously.

Definition 2.5. Let AbVar/S denote the category of abelian varieties over S. We
denote byCHMab

F /S,HomMab
F /S the smallest rigid linear symmetric tensor subcat-

egories which contain the motives of abelian varieties and are closed under taking
subobjects and Tate twists.

Theorem 2.6. There is a unique section I of the projection N : CHMab
F /S →

HomMab
F /S which is a linear symmetric tensor functor, commutes with Tate twists

and is such that

h|AbVarop = I ◦ N ◦ h|AbVarop .
Proof. This follows from work of O’Sullivan [15, pf. of Thm. 6.1.1] (see also [2,
Thm. 7.1]). More precisely, O’Sullivan checks that any quotient of “Chow theory”
by a proper ideal has a right inverse which is unique subject to the above conditions.
But cycles which are homologically equivalent to zero form a proper ideal within
CHM/S. The same reasoning applies for motives with coefficients. ��
Remark 2.7. Morphisms in the image of I are symmetrically distinguished in the
sense of [15, Def. 6.2.1]. O’Sullivan checks that the pullback of a symmetrically
distinguished cycle is symmetrically distinguished [15, Thm. (iii) p2]. From this,
it is easy to see check that, given a morphism f : S′ → S, there is a natural
isomorphism f ∗ ◦ I �⇒ I ◦ f ∗ since both compositions yield a symmetrically
distinguished Chow cycle lying over a numerical cycle, but there is only one such
cycle (cf. [15, Thm. 6.2.5]).
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Theorem 2.8. [7, Thm. 3.1] Let A/S be an abelian variety of dimension n, then
within CHMF/S there is a decomposition

h(A) =
2n⊕

i=0

hi (A),

such that, if [n] : A → A denotes multiplication by n, then

h([n]) =
2n⊕

i=0

ni · idhi (A).

The analogous statement for homological motives also holds but is automatic.
The second condition ensures that the decomposition is compatible with change of
A and S as well as applying any of the standard realisations. Another consequence
is:

Theorem 2.9. (Künneth formula) The decomposition h(A) = ⊕
i h

i (A) respects
the Künneth formula, i.e.

hk(A × A′) =
⊕

i+ j=k

hi (A) ⊗ h j (A′).

Theorem 2.10. [10, Prop. 2.2.1] Given an abelian variety A/S, the map

End(A)op ⊗ F → EndCHMF/S(h
1(A))

is an isomorphism.

3. Realisations

Notation 3.1. Let S
t→ k be a smooth quasi-projective variety over a number field

and VHS/S(C) denote the category of Q-valued variations of Hodge structure on
S(C). For any finite field extension F/Q, we may define VHSF/S(C) analogously
to Definition 2.4 (note we do not require F ⊂ R).

Lemma 3.2. For any S/k a smooth quasi-projective variety. There are relative
Hodge realisation functors

H•
B : HomMF/S → VHSF/S(C),

which send h(X
p→ S)(i) to

⊕
j R

j p∗FX (C)(i). These are natural in S.

This construction is spelt out in [18, Cor. 4.5.7].
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Remark 3.3. In contrast to the case when S is a field, the relative Hodge realisa-
tion functors are not faithful in general. This is due to the presence of non-trivial
morphisms between objects which are pure of different weights. In their work,
Corti–Hanamura correct this by introducing a realisation functor taking values in
a derived category. This is not necessary for our purposes as we shall only require
faithfullness for elements of HomHomMF/S(hi (X), hi (Y )) with X,Y abelian vari-
eties, which is true of H•

B (cf. [18, Remark 4.5.8]). Note that for abelian varieties
Hi
B(X (C)) = H•

B(hi (X)), by Theorem 2.8.

Remark 3.4. In Lemma 3.2, by naturality in S we mean that given f : S′ → S,

there is a natural isomorphism ξ : f ∗ ◦ H•
B �⇒ H•

B ◦ f ∗. For an object X
p→ S

this is given by the proper base change map f ∗Ri p∗FX (C) → Ri pS′,∗ f ∗FX (C).

All the above also holds in the étale case, which we now record for use in
Sect. 10.

Notation 3.5. Let � be any prime and λ a prime of F dividing �. Given a scheme X ,
we write Étλ/S for the category of lisse Fλ-sheaves on X and Fλ,X for the constant
Fλ-sheaf on a scheme X with coefficient group Fλ.

Lemma 3.6. There are relative étale realisation functors

H•
λ : HomMF/S → Étλ/S,

which send X
p→ S to

⊕
i R

i p∗Fλ,X . These are natural in S.

4. The canonical construction

Notation 4.1. For an algebraic group G/Q and a field F of characteristic zero let
RepF (G) denote the category of representations of GF over F . We shall usually
consider an object V ∈ RepF (G) as a representation V of G over Q together with
a map F ↪→ EndG(V ). We also set Rep(G) := RepQ(G).

Notation 4.2. Throughout (G,X) will denote a Shimura datum (which we often
interchange with (G, h) for h ∈ X). We shall always assume that our Shimura data
are such that the identity connected component of the centre of G is an almost-
direct product of a Q-split torus and an R-anisotropic torus. This ensures that all
real cocharacters of the centre are in fact defined over Q.

Upon fixing a choice of neat open compact K ≤ G(A f ), we denote ShK (G,X)

by S, always considered to be defined over the reflex field. We follow a similar
convention for (G ′,X′) with K ′ ≤ G ′(A f ) etc. If f : (G ′,X′) → (G,X) is a
morphism of Shimura data for which f (K ′) ≤ K , then we also denote by f the
induced map f : S′ → S, even when the reflex fields may decrease.

Construction 4.3. [16, Ch. 1] Given an element (ρ : GF → GL(V )) ∈ RepF (G),
we may define a variation of Hodge structure on S(C) as follows: consider V as
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Q-representation of G together with an action of F . Then the underlying local
system corresponds to the cover

G(Q)\(X × (G(A f )/K ) × V ) → G(Q)\(X × (G(A f )/K )),

where g ∈ G(Q) acts by (hx , t, v) �→ (ghxg−1, gt, ρ(g)v). The stalk at a point
(hx , t) is identified with corresponding fibre {(hx , t, v) | v ∈ V } ∼= V and as such
may be given the Q-Hodge structure defined by the map ρ ◦ hx : S → GR →
GL(VR). This is independent of the choice of representative and can be checked to
define a variation of Hodge structure (this uses the almost-direct product condition
on the centre of G, for more details see [16, Ch. 1]).

This extends to a functor μH
G : RepF (G) → VHSF/S(C) referred to as the

canonical construction (where H stands for Hodge).

Construction 4.4. Let V ∈ RepF (G) and f be as above. There is a canonical
isomorphism of local systems κV : f ∗μH

G (V ) → μH
G ′( f ∗V ) and this is also a

morphism of variations of Hodge structure as it respects the Hodge structure on
each fibre. The collection κ := (κV )V then defines a natural isomorphism:

RepF (G) VHSF/S(C)

RepF (G ′) VHSF/S′(C)

f ∗

μH
G

�⇒

f ∗

μH
G′

5. Mixed Shimura varieties

Mixed Shimura data, as defined by Pink [16], extend the traditional definition to
not necessarily reductive algebraic groups. We briefly recall the basic properties of
mixed Shimura data, but in the restricted setting of where the homogeneous space
is a conjugacy class of morphisms from the Deligne torus (as opposed to a finite
cover of such a space) as this is true of all the data we shall consider.

A mixed Shimura datum consists of a pair (P, X̃) with P/Q a connected alge-
braic group and a subspace X̃ ⊆ Hom(SC, PC) satisfying the requirements of [16,
Sec. 2.1]. In the case that P is reductive, i.e. that P has trivial unipotent radical,
we recover the classical definition of Shimura data, which we shall refer to as the
pure case.

For any neat open compact K ≤ P(A f ), there is an associated mixed Shimura
variety ShK (P, X̃), which is algebraic over its reflex field [16, Thm. 11.18]. A
morphism of mixed Shimura data f : (P ′, X̃′) → (P, X̃) is a map P ′ → P for
which f (X̃′) ⊆ X̃. Pairs of neat open compact subgroups K ≤ P(A f ) and K ′ ≤
P ′(A f ) with f (K ′) ≤ K give rise to algebraic maps ShK ′(P ′, X̃′) → ShK (P, X̃)

[16, Sec. 3.4].
Any mixed Shimura datum (P, X̃) admits a map to the pure Shimura datum

(G,X) where G is the quotient of P by its unipotent radical and X is given by
postcomposing elements of X̃ with π : P → G (cf. [16, Prop. 2.9]).
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We shall always assume that our mixed Shimura varieties satisfy the stronger
condition that: the centre of G = P/Ru(P) is an almost-direct product of a Q-
split torus and a torus which is R-anisotropic (so the weight cocharacter π ◦ h ◦
w : Gm,R → GR is rational for h ∈ X̃). These ensure that there is a canonical
construction for mixed Shimura varieties associating variations of mixed Hodge
structure on ShK (P, X̃) to representations of Rep(P) (see [16, Sec. 1.18]).

Universal abelian varieties can be seen as instances of mixed Shimura varieties
(see Example 5.6). In this section,we shall observe that the theory ofmixed Shimura
varieties automates the creation of certain abelian varieties over pure Shimura vari-
eties in a functorial way.

Definition 5.1. Let (G,X) be a (pure) Shimura datum and V ∈ RepF (G). We
consider V as a Q-representation together with an F-structure F ↪→ EndG(V ).
For any choice of hx ∈ X, V ⊗Q C decomposes as a direct sum of one dimen-
sional C-subrepesentations upon each of which z ∈ S(R) = C

× acts as multi-
plication by z−pi z̄−qi for some pi , qi . We say that V has Hodge type given by
set {(p1, q1), (p2, q2), . . . , (pn, qn)} of (pi , qi ) occurring in the above decompo-
sition. Since different choices of hx define isomorphic R-Hodge structures, this is
independent of the choice of hx .

The Hodge type of a representation V ∈ Rep(G) coincides with the Hodge
type of μH

G (V ) as a variation of Hodge structure on S(C).

Notation 5.2. Let RepF (G)AV denote the full subcategory of RepF (G) whose
objects have Hodge type contained in {(−1, 0), (0,−1)}.

Given V ∈ RepF (G)AV, considering V as a representation overQ, wemay form
the semi-direct product V � G as an algebraic group over Q. Let p : V � G → G
denote the projection map and X̃ consist of the elements t ∈ Hom(SC, (V � G)C)

for which p ◦ t ∈ XC.

Lemma 5.3. Let (G,X) be a (pure) Shimura datum V ∈ RepF (G)AV, then (V �

G, X̃) is a mixed Shimura datum.

Proof. The unipotent radical of V � G is V . If, in the notation of [16, Sec. 2.1],
we set U = V , then it is easy to check the conditions directly. Alternatively,
use that (V � G, X̃) is an instance of a unipotent extension in the sense of [16,
Prop. 2.17]. Note that we are assuming (G,X) has rational weight and the centre is
an almost-direct product of aQ-split andR-anisotropic torus. The datum (V�G, X̃)

then also satisfies the corresponding strengthened condition of a mixed Shimura
variety. ��

Mixed Shimura data of the form (V � G, X̃) are the only non-pure data we
shall need to consider.

Lemma 5.4. Let (G,X) be a Shimura datum, K ≤ G(A f ) a neat open compact

subgroup and V ∈ Rep(G). Then for any choice of K -stable full rank Ẑ-lattice
L ≤ V (A f ), L � K is a neat open compact subgroup of V � G.

Proof. This is an easy exercise, for example see [18, pf. of Lem. 4.7.4]. ��
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Lemma 5.5. For any Shimura datum (G,X) and V, K , L as above, the map
ShL�K (V � G, X̃) → ShK (G,X) has the structure of an abelian variety.

Proof. This is [16, 3.22 a)] (the zero section is given by the Levi section ι : G →
V � G). ��

Moreover, this is functorial in the sense that given a homomorphismof represen-
tations f : V → V ′ with L ≤ V (A f ) and L ′ ≤ V ′(A f ) and f (L) ≤ L ′, then the
inducedmap ofmixed Shimura varieties ShL�K (V �G, X̃) → ShL�K (V �G, X̃′)
respects the group structure. The existence of the projection and identity section
maps force (V � G, X̃) to have the same reflex field as (G,X) [16, Sec. 11.2(b)].

Example 5.6. If a Shimura datum (G,X) has a PEL-datum with standard rep-
resentation V (see Definition 7.2), then for any neat open compact K and K -
stable Ẑ-lattice L of V (A f ) (we shall always take our lattices to be of full rank),
ShL�K (V � G, X̃) → ShK (G,X) is isogeneous to the universal abelian variety
defined by the PEL-datum.

Lemma 5.7. (i) Let (G, h) be a Shimura datum and K a neat open compact sub-
group. Given V,W ∈ RepF (G)AV and K-stable Ẑ-lattices LV , LW of V (A f ),

W (A f ), then as abelian varieties over S, there is a canonical isomorphism

Sh(LV ⊕LW )�K ((V ⊕ W ) � G, X̃V⊕W )

∼= ShLV �K (V � G, X̃V ) ×S ShLW�K (W � G, X̃W ),

where X̃V , X̃V , X̃V⊕W are as in Notation 5.2.
(ii) Given a morphism of pure Shimura data f : (G ′, h′) → (G, h), neat open

compact subgroups K ′ ≤ G ′(A f ), K ≤ G(A f ) with f (K ′) ≤ K, and V ∈
RepF (G)AV together with a K -stable Ẑ-lattice L, then there is a canonical
isomorphism of abelian S′-schemes

ShL�K (V � G, X̃)ShK ′ (G ′,X′) ∼= Sh f ∗L�K ′( f ∗V � G ′, X̃′),

where f ∗L is the lattice L considered as a K ′-stable Ẑ-lattice.

Proof. Both statements follow immediately from the characterisation of fibre prod-
ucts for mixed Shimura data given in [16, Sec. 3.10]. ��
Construction 5.8. We now define a functor μmot

G : RepF (G)AV → CHMF/S as

follows: given V ∈ RepF (G)AV, let L be a full rank Ẑ-lattice of V (A f )which is sta-
ble under K .We then setμmot

G (V ) = h1(ShL�K (V�K , X̃))∨ as amotivewith ratio-
nal coefficients which we equip with an F-structure F ↪→ EndCHM/S(μ

mot
G (V )) in

the following way. Let

T := {α ∈ EndG(V ) | α(L) ⊆ L}.
For any α ∈ EndG(V ), α(L) is a Ẑ-lattice and so there exists an n ∈ N such
that n · α(L) ≤ L . In other words, T ⊗Z Q = EndG(V ). Thus, we may act on
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h1(ShL�K (V � K , X̃))∨ by F = (T ∩ F) ⊗Z Q with the first factor acting via
functoriality of mixed Shimura varieties and the second by Q-linearity of CHM/S.
This uses that the actions ofZ as subring of T ∩F (i.e. addition via the group law as
an abelian variety) and as a subring ofQ coincide, which follows fromTheorem 2.8.
In contrast, this would not be true for h(SK ,V )∨ and this does not define an element
of CHMF/S.

Given a morphism f : V → V ′, let n ∈ N be large enough to ensure that
f (nL) ≤ L ′. We obtain maps

(π∨
n )∗ : h1(ShL�K (V � G, X̃))∨ → h1(ShnL�K (V � G, X̃))∨,

f∗ : h1(ShnL�K (V � G, X̃))∨ → h1(ShL ′�K (V ′
� G, X̃′))∨,

where the first map is obtained by applying h1(−)∨ to the dual of the map of
abelian varieties πn : ShnL�K (V �G, X̃) → ShL�K (V �G, X̃)which is given by
functoriality of mixed Shimura varieties, whilst the second is h1(−)∨ of the map
of mixed Shimura varieties induced by f . We then set μmot

G ( f ) to be 1/n times
the composite f∗ ◦ (π∨

m )∗. By construction the morphisms μmot
G ( f ) will respect the

F-action.

Proposition 5.9. Given a choice of Ẑ-lattice for each V ∈ RepF (G)AV as above,
then the correspondingμmot

G is a well-defined⊗-functor RepF (G)AV → CHMF/S.
The functor μmot

G is independent of the choice of lattice for each V , up to canonical
natural isomorphism.

Proof. We first remark thatμmot
G ( f ) is independent of the choice of n. This follows

as the constructions for n and for nm differ by 1/m · (π∨
m )∗ ◦ πm,∗ = 1/m ·

[m]∗, but, for an abelian variety A/S, [m] acts on h1(A)∨ by multiplication by m
(Theorem 2.8).

Thatμmot
G respects composition follows from the commutativity of the following

diagram, for any f : V → V ′, m ∈ N and n s.t. f (nL) ≤ L ′

ShnL�K (V � G, X̃) ShmnL�K (V � K , X̃)

ShL ′�K (V ′
� G, X̃′) ShmL ′�K (V ′

� G, X̃′)

π∨
m

f f

π∨
m

and thus it is clear that μmot
G defines a functor.

Given choices L1, L2 for each V and corresponding functors μmot
G,1, μ

mot
G,2, we

define a natural transformation ψ : μmot
G,1 → μmot

G,2 by setting ψV to be 1/n times
the map

h1(ShL1�K (V � G, X̃))∨
(π∨

n )∗→ h1(ShnL1�K (V � G, X̃))∨

id∗→ h1(ShL2�K (V � G, X̃))∨
(1)

for any n such that nL1 ≤ L2. That this defines a natural transformation again
follows from the commutativity of the above square.Moreover, as isogenies become
invertible after applying h1(−)∨, we find that ψ defines a natural isomorphism. ��
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Remark 5.10. If f : V → W is a non-zero homomorphism of representations of
G over Q and we fix a neat open compact subgroup K of G and K -stable Ẑ-
lattices LV ≤ V , LW ≤ W such that f (LV ) ≤ LW , then ShLV �K (V �G, X̃V ) →
ShLW�K (W �G, X̃W ) is non-zero as a morphism of abelian varieties (for example,
using the explicit description of the points over C). Together with Theorem 2.10
this demonstrates that μmot

G is faithful.

Notation 5.11. Given V ∈ RepF (G)AV, we shall denote themixed Shimura variety
ShL�K (V � G, X̃) simply by SK ,V . We use p : SK ,V → S and ι : S → SK ,V to
denote the maps induced by the projection and Levi section as well as the induced
maps on their analytifications. We continue accordingly for (G ′, h′).

Lemma 5.12. Given a morphism of Shimura data f : (G ′,X′) → (G,X), a neat
open compact K ≤ G(A f ), K ′ ≤ G ′(A f ) with f (K ′) ≤ K, and a choice of stable

Ẑ-lattices for all elements of RepF (G), RepF (G ′), then the following diagram
commutes:

RepF (G)AV CHMF/S

RepF (G ′)AV CHMF/S′
f ∗

μmot
G

�⇒

f ∗

μmot
G′

up to a natural isomorphism ψ : f ∗ ◦ μmot
G �⇒ μmot

G ′ ◦ f ∗.

Proof. From Lemma 5.7 (ii) and that the canonical projectors defining hi commute
with pullback, we obtain isomorphisms

(h1(SK ,V )∨)S′ ∼= h1(S′
K ′, f ∗V )∨.

Thenatural isomorphism is then givenby taking thesemaps andpossibly composing
the maps defined in the proof of Proposition 5.9 if the lattice chosen for f ∗V is not
f ∗L . ��

6. Direct images for mixed Shimura varieties

In this section, we check thatμmot
G lifts the canonical construction and is compatible

with base change.

Lemma 6.1. Given a Shimura datum (G,X) and V ∈ RepF (G)AV, then there is a
canonical identification ofμH

G (V ) and the dual of H1
B(SK ,V (C)) = R1 p∗FSK ,V (C),

where p : SK ,V (C) → S(C) denotes the usual projection.

Proof. The canonical construction can be extended to mixed Shimura varieties as
we now recall. Let (P, X̃) be a mixed Shimura datum and Q ≤ P(A f ) a neat
open compact subgroup. A representation W ∈ RepF (P), which we consider as
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a Q-representation ρ : P → GL(W ) together with an F-structure, defines a local
system

μH
P (W ) := P(Q)\(X̃ × (P(A f )/Q) × W )

on ShQ(P, X̃)(C) = P(Q)\(X̃×(P(A f )/Q)). Similarly to Construction 4.3, each
fibre {(x, k, v) | v ∈ W } ∼= W has a well-defined mixed Hodge structure given
by ρ ◦ hx and μH

P (W ) has the structure of a graded-polarisable variation of Hodge
structure. This extends to a ⊗-functor

μH
P : RepF (P) → VHSF/ShQ(P, X̃)(C).

This is functorial in the sense that, given f : (P ′,X′) → (P,X) and Q ≤
P(A f ), Q′ ≤ P ′(A f ) with f (Q′) ≤ Q, then there is a canonical isomorphism

f ∗μH
P (W ) = μH

P ′( f ∗W ).

For the purposes of the lemma, the key fact is that pushforwards of sheaves arising
via the canonical construction correspond to group cohomology. More specifically,
in the notation of the lemma, the following diagram commutes:

Rep(V � G) VHS/SK ,V (C)

Rep(G) VHS/S(C)

Hi (V,−)

μH
V�G

Ri p∗

μH
G

where the left verticalmap is group cohomology (see [19,Thm. II.2.3, Prop. I.1.6c)]).
In the case of the one dimensional trivial representation, this yields identifications

μH
G (H1(V, F)) = R1 p∗FSK ,V (C).

But, H1(V, F) = V∨ as desired. ��

Notation 6.2. Write ϕV for the isomorphism H1
B((SK ,V )(C))∨ ∼→ μH

G (V ) and
ϕ = (ϕV )V for the collection as V ranges over V ∈ RepF (G)AV.

Lemma 6.3. (i) Let (G, h) be a Shimura datum and α : V1 → V2 a morphism
in RepF (G)AV. Fix a neat open compact subgroup K ≤ G(A f ) and let α

also denote the map (SK ,V1)(C) → (SK ,V2)(C). Then the following diagram
commutes:

H1
B((SK ,V1)(C))∨ μH

G (V1)

H1
B((SK ,V2)(C))∨ μH

G (V2)

ϕV1

(α∗)∨ μH
G (α)

ϕV2
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ii) Let f : (G ′, h′) → (G, h) be a morphism of Shimura data and K ≤
G(A f ), K ′ ≤ G ′(A f ) neat open compact subgroups with f (K ′) ≤ K. For
any V ∈ RepF (G)AV, the following diagram commutes:

f ∗H1
B(SK ,V (C))∨ f ∗μH

G (V )

H1
B((S′

K ′, f ∗V )(C))∨ μH
G ′( f ∗V )

f ∗(ϕV )

H1
B (ψV ) κV

ϕ f ∗V

Proof. We prove the first case, the other is similar. The strategy is to reduce to a
group theoretic context via a Tannakian argument using work of Wildeshaus. Fix
a connected component S0 of S(C) and let S0K ,Vi

denote the connected component

p−1
i (S0). In [19, Thm. II.2.2] it is checked that the canonical construction produces

variations of Hodge structure which are admissible in the sense of [9]. Since the Vi
are unipotent, objects in the image of μH

Vi�G (in the notation used in the proof of

Lemma 6.1) admit a filtration by objects pulled back from S0. Let VHS′/S0 denote
the category of admissible variations of Hodge structure on S0 and pi -UVar/S0K ,Vi
denote the full subcategory of VHS′/S0K ,Vi

whose objects admit a filtration for

which the graded objects are pulled back from elements of VHS′/S0. The functors
μH
G , μH

Vi�G take values in these categories.

Fix y ∈ S0 and for i = 1, 2 set xi = ιi (y), where ιi denotes the canonical
Levi section. For i = 1, 2, let Pi,xi denote the Tannaka dual of pi -UVar/S0K ,Vi
and Gy the Tannaka dual of VHS′/S0 all with the obvious fibre functors. The
map Pi,xi → Gy induced by p∗

i is surjective (e.g. [6, Prop. 2.21a)]). Lastly, set
Vi,xi = ker(Pi,xi → Gy).

Consider the diagram:

p1-UVar/S0K ,V1
p2-UVar/S0K ,V2

VHS′/S0
R j p1,∗

α∗

R j p2,∗

This does not commute, but there is an obvious natural transformation R j p2,∗ �⇒
R j p1,∗α∗. The calculation of higher direct images in pi -UVar/SK ,Vi coincideswith
the usual higher direct image as elements of VHSF/S0K ,Vi

(cf. [19, Sec. I.4]). The

maps R j pi,∗ are not ⊗-functors, but we claim that when viewed in the Tannakian
setting, the above triangle becomes:

Rep(P1,x1) Rep(P2,x2)

Rep(Gy)
H j (V1,x1 ,−)

α∗

H j (V2,x2 ,−)

and the natural transformation becomes the usual map

H j (V2,x2 ,−) �⇒ H j (V1,x1 , α
∗(−)).
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To see this, note that p∗
i corresponds to inflation fromGy and has right adjoint pi,∗,

whilst (−)Vi,xi is right adjoint to inflation.
Since the canonical construction is a ⊗-functor, after taking duals we obtain a

diagram of short exact sequences:

0 Vi,xi Pi,xi Gy 1

0 Vi Pi G 1

ti r (2)

where ti is the dual ofμH
Vi�G and r the dual ofμH

G . Moreover, the left vertical map
Vi,xi → Vi is an isomorphism [19, p. 96] (this would not be true without restricting
to admissible variations of Hodge structure). This shows that the following square
commutes:

Rep(Pi ) Rep(Pi,x )

Rep(G) Rep(Gy)

t∗i

H1(Vi ,−) H1(Vi,xi ,−)

r∗

(3)

as in the proof of Lemma 6.1. In the case of the trivial representation Q, this yields
maps r∗H1(Vi , Q) → H1(Vi,xi , Q) which are dual to ϕVi . Since the diagrams of
(2) are compatible with α∗, the squares of (3) form a prism:

Rep(P2) Rep(P2,x2)

Rep(P1) Rep(P1,x )

Rep(G) Rep(Gy)

α∗ α∗

A purely group theoretic argument now checks that, consequently, there is a com-
mutative square:

H1(V1,x1 , Q) r∗H1(V1, Q)

H1(V2,x2 , Q) r∗H1(V2, Q)

α∗ r∗α∗

Taking Tannaka and linear duals we now obtain the square in (i). ��
We are now able to prove Theorem 1.1 of the introduction.

Theorem 6.4. Let (G, h) be an arbitrary Shimura datum and K ≤ G(A f ) neat
open compact. Denote by S the Shimura variety ShK (G, h). Then the following
diagram commutes,

RepF (G)AV CHMF/S

VHSF/S(C)

μmot
G

μH
G

H•
B

�⇒
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up to natural isomorphism given by ϕ : H•
B ◦ μmot

G �⇒ μH
G (where ϕ is as in

Notation 6.2). Moreover, under pullback by f : (G ′,X′) → (G,X), the triangles
for (G,X), (G ′,X′) form a commutative prism:

RepF (G)AV CHMF/S

VHSF/S(C)

RepF (G ′)AV CHMF/S′

VHSF/S′(C)

f ∗ μH
G

μmot
G

f ∗
H•
B

μH
G′

μmot
G′

H•
B

f ∗

for which each face has a given natural transformation, all of which are compatible.

Proof. That ϕV defines a natural isomorphism for the first triangle is Lemma 6.3
(i). The commutativity of the other individual faces in the prism is given by the
natural isomorphisms: ψ of Lemma 5.12 for the rear face, κ of Construction 4.4
for the front left face, and ξ of Remark 3.4 for the front right.

Due to O’Sullivan’s Theorem 2.6 (cf. Remark 2.7), we need only prove the
compatibility statement for homological motives. As a result, we reduce to showing
that the two natural isomorphisms H•

B ◦ f ∗ ◦ μmot
G �⇒ H•

B ◦ μmot
G ′ ◦ f ∗ (which

are functors from RepF (G) → VHSF/S′(C)) defined by

f ∗H1
B(SK ,V (C))∨

H1
B (ψV )→ H1

B((S′
K ′, f ∗V )(C))∨,

f ∗H1
B(SK ,V (C))∨ f ∗ϕV→ μH

G (V )S′(C)

κ−1
V→ μH

G ′( f ∗V )
ϕ−1
f ∗V→ H1

B((S′
K ′, f ∗V )(C))∨,

coincide, here κ is as defined inConstruction 4.4 andψ is as defined in Lemma 5.12.
This follows from Lemma 6.3 (ii). ��

7. Classification of PEL-data

In the case of PEL-type Shimura data, significantly stronger results than Theo-
rem6.4 are possible. In this section,weprovide a classificationofPEL-typeShimura
data after base change to R.

Notation 7.1. Given an algebra B/Q, we write BF for B ⊗Q F . Similarly if W is
a B-module, then WF denotes W ⊗Q F .

Definition 7.2. A PEL-datum is a tuple (B, ∗, V, 〈 〉, h) consisting of: a semi-
simple Q-algebra B with a positive (anti-)involution ∗ on B, that is an anti-
commutative involution such that trBR/R(bb∗) > 0 for all 0 �= b ∈ BR, together
with a finite dimensional B-module V equipped with an alternating non-degenerate
Q-valued pairing 〈 〉 on V such that, for b ∈ B, u, v ∈ V

〈bu, v〉 = 〈u, b∗v〉,
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and finally a choice of R-algebra homomorphism h : C → EndBR
(VR) such that

〈h(z)u, v〉 = 〈u, h(z̄)v〉 ∀z ∈ C, u, v ∈ V
〈u, h(i)u〉 is positive definite ,

(the first condition ensures that 〈u, h(i)v〉 is symmetric).
Let G be the algebraic group whose R-points, for any Q-algebra R, are defined

by

G(R) =
{
g ∈ AutBR (VR)

∣∣∣∣
∃ μ(g) ∈ R× such that 〈gu, gv〉 = μ(g)〈u, v〉
for all u, v ∈ V ⊗ R

}
.

Note G is connected if and only if G has no factors of “orthogonal type” (see
Lemma 7.5). For z ∈ C

×, we automatically have that h(z) ∈ G(R). We also denote
by h the induced map S → GR.

Notation 7.3. AnysemisimpleR-algebrawith positive involution splits as a product
of simple factors each of which is of one of the following types (see for example
[11, p. 386]):

• symplectic: (Mn(R), A �→ At )

• linear: (Mn(C), A �→ Āt ), where (−̄) denotes coefficientwise complex conju-
gation.

• orthogonal: (Mn(H), A �→ Āt ), where (−̄) denotes the (anti-)involution a +
bi + cj + di j �→ a − bi − cj − di j coefficientwise.

In particular, all symplectic BR-modules split as an orthogonal direct sum of sub-
modules only acted on non-trivially by a single simple factor of one of the above
types, and G1,R splits accordingly.

Notation 7.4. Given an algebraic group G, we denote by G◦ the connected com-
ponent of the identity. We define the following algebraic groups over R:

• Let Ua,b be the indefinite unitary group whose R-points consist of elements
of Ma+b(C) which preserve a Hermitian form of signature (a, b). There is an
obvious isomorphism Ua,b ∼= Ub,a and (Ua,b)C

∼= GLa+b,C.

• Set J =
(
0 −1
1 0

)
and let O∗

2n be the algebraic group defined by

O∗
2n(A) =

⎧
⎪⎨

⎪⎩
g ∈ O2n(A ⊗ C)

∣∣∣∣∣∣∣
ḡt

⎛

⎜⎝
J

. . .

J

⎞

⎟⎠ g =
⎛

⎜⎝
J

. . .

J

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
,

for an R-algebra A. Note that (O∗
2n)C

∼= O2n .

The following is well-known, but we have been unable to reference explicitly
in the literature.

Lemma 7.5. Let (B, ∗, V, 〈 〉, h) be a PEL-datum.
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(i) Fix a decomposition of (BR, ∗) into factors of symplectic, linear and orthogonal
types respectively, as in Definition 7.3, then

G1,R ∼=
∏

i

Sp2gi ×
∏

j

Ua j ,b j ×
∏

k

O∗
2rk ,

with each factor acting on the factor of VR for which the action of BR factors
through the corresponding Mn(R), Mn(C) or Mn(H).

(ii) If G1,R has no factors isomorphic to Un,0 for n ≥ 2, then (G◦, h) defines a
Shimura datum. In particular, if G1,R additionally has no factors of orthogonal
type, then (G, h) is a Shimura datum.

(iii) In any case, the identity connected component of the centre of G◦ is an almost-
direct product of a Q-split torus and an R-anisotropic torus.

Proof. These properties are well-known, but we provide proofs of the statements
we have been unable to find references for. In [11, Lem. 4.1] it is shown that (G, h)

satifies (1.5.1), (1.5.2) and (1.5.3) of [4], even without the assumption of (ii). To
show (ii) it remains to show that Gad has no factors of compact type under the
above assumption. This and (iii) will be easy to deduce from (i).

In order to classify the factors of G1,R which may arise it suffices to assume
that BR is simple of each type appearing in Definition 7.3. Moreover, we are able
to reduce to the case of BR isomorphic to R, C or H by an easy Morita equivalence
argument.

We shall make repeated use of the following result of Kottwitz: Let (C, ∗) be
an R-algebra with positive involution and (W, 〈 〉, h), (W ′, 〈 〉′, h′) be two triples
that together with (C, ∗) satisfy the conditions of Definition 7.2 with R in place
of Q. Then if W and W ′ are isomorphic as C ⊗R C-modules, with C acting via
h and h′ respectively, then (W, 〈 〉) and (W ′〈 〉′) are isomorphic as symplectic
(C, ∗)-modules [11, Lemma 4.2].

First assume that (BR, ∗) = (R, ∗ = id). Then
(
W = R

⊕2, 〈 , 〉 =
(

0 1
−1 0

)
, h(i) =

(
0 −1
1 0

))

is a triple as abovewith corresponding BR⊗RC-moduleC. As a result, any symplec-
tic (BR, ∗)-module VR must split as an orthogonal direct sum of terms isomorphic
to W . By definition, G1(R) for W⊕n is Sp2n .

Now assume that (BR, ∗) = (C, ∗ = z �→ z̄). In this case, BR ⊗R C ∼= C × C

has two irreducible modules. The triple given by (C, trC/R(xi ȳ), h(i) = i) (resp.
(C,−trC/R(xi ȳ), h(i) = −i)) corresponds to the C ⊗R C-summand on which
the C actions agree (resp. disagree). So if we denote these modules by A and B
respectively, then any (BR, ∗)-module is isomorphic to A⊕a ⊕ B⊕b. For such a
module, G1(R) consists of elements of GLn(C) which also preserve a pairing of
signature (b, a). In other words, G1,R is the indefinite unitary group Ub,a .

Finally, in the quaternion case we shall assume that (BR, ∗) = (Hop, ∗) (with
H

op an expositional choice). Then BR ⊗R C ∼= M2(C) has a unique non-trivial
irreducible module, which is of R-dimension 4. This is realised by the triple
(H, trH/R(x j ỹ), h(i) = j) where H

op acts by right multiplication and y �→ ỹ
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is the (anti-)involution given by y = a + bi + cj + di j �→ a + bi − cj + di j .
As such, all symplectic (Hop, ∗)-modules are isomorphic to H

⊕n for some n. In
this case, EndHop(H⊕n) ∼= Mn(H), with H acting by left multiplication and tak-
ing adjoints with respect to the pairing coincides with A �→ Ãt . If we embed

H ↪→ M2(C) by i �→
(
i 0
0 −i

)
and j �→

(
0 1

−1 0

)
and extend this to an embedding

Mn(H) ↪→ M2n(C), then matrix transposition restricts, on the image of Mn(H), to
taking adjoints. As a result, wemay viewG1 as the algebraic group whoseR-points
consists of elements of O2n(C) which lie in the image of Mn(H). Since the image
of Mn(H) consists of matrices g for which ḡdiag(J, . . . , J ) = diag(J, . . . , J )g,
these are precisely elements of O∗

2n(R).

To deduce (ii), note that Gad
1

∼= Gad (indeed, the cokernel of Gad
1 ↪→ Gad is a

proper quotient of Gm). From the above calculations we find that the only possible
factors of Gad

1 of compact type are Un,0 ∼= U0,n for n ≥ 2. For (iii), first note that
the largest anisotropic subtorus of Z(G◦) must be contained in Z(G◦

1). But from
the above calculation (Z(G◦

1)
◦)R is always anisotropic. Indeed, Z(Sp2g) is finite

whilst Z(Ua,b), Z(SO∗
2n)

∼= Z(SO∗
2) are both isomorphic to U1. ��

The factorisation of Lemma 7.5 (i) justifies the naming convention of Defini-
tion 7.3.

Remark 7.6. In [11] Kottwitz, allows Shimura data to have (not necessarily con-
nected) reductive groupsG of the form considered in Lemma 7.5 whenG1,R has no
factors isomorphic to Un,0 for n ≥ 2. Ancona’s results also hold in this generality
and so ours will as well.

Definition 7.7. A Shimura datum (G, h) which arises as in Lemma 7.5 is said to
be of PEL-type and the corresponding (B, ∗, V, 〈 , 〉, h) is said to be a PEL-datum
for (G, h).

If we fix such a PEL-datum for (G, h), then we say that V ∈ Rep(G) is the
standard representation ofG. Shimura data with a fixed choice of PEL-datum have
an explicit moduli interpretation (see for example [14, Sec. 8]).

Example 7.8. From the proof of Lemma 7.5, it is easy to see that a Shimura datum
may admit multiple distinct PEL-data due to Morita equivalence. As an explicit

example, consider thePEL-datum

(
Q, ∗, Q

⊕2,

(
0 1

−1 0

)
, h(a + bi) =

(
a −b
b a

))
,

which corresponds to the usual modular curves Shimura datum (GL2,H).

There is also aPEL-datum

(
M2(Q), ∗ = (−)t , Q

⊕4,

(
0 I2

−I2 0

)
, h(a + bi) =

(
aI2 −bI2
bI2 aI2

))
, where M2(Q) acts diagonally on Q

⊕4 = Q
⊕2 ⊕ Q

⊕2. Then G is

isomorphic to GL2 embedded within GL4(Q) via

(
a b
c d

)
�→

(
aI2 bI2
cI2 d I2

)
, so that

the associated Shimura datum is again (GL2,H).
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8. Ancona’s construction

In the case of PEL-type Shimura data, Ancona has described a lift ofμH
G defined on

all of RepF (G) [2]. But, as defined, it is not immediately clear that it is well behaved
with respect to pullbacks or is even independent of the choice of PEL-datum (cf.
Example 7.8). In this section we briefly recall Ancona’s construction, but in the
language of mixed Shimura varieties.

Lemma 8.1. Given a Shimura datum (G, h) with a choice of PEL-datum
(B, ∗, V, 〈 , 〉, h), then for all fields F/Q, all objects of RepF (G) are, up to iso-
morphism, direct summands of some space of the form

⊕k
i=1 V

⊗ak
F ⊗ V⊗bk

F (with
VF = V ⊗Q F).

Proof. As V is a faithful G-representation, this follows from the proof of [6,
Prop. 2.20]. ��
Theorem 8.2. [2, Prop. 8.5] Given a Shimura datum (G, h) with a PEL-datum
(B, ∗, V, 〈 , 〉, h), let K be a neat open compact subgroup of G(A f ) and

L a Ẑ-lattice of VF (considered as a representation over Q). Then for any
n ∈ N, there is a canonical inclusion of rings a : EndRepF (G)(V

⊗n
F ) ↪→

EndHomMF/S(h1(SVF ,K )∨⊗n) such that the diagram

EndRepF (G)(V
⊗n
F ) EndHomM/S(h1(SVF ,K )∨⊗n)

EndVHS/S(C)(μ
H
G (VF )⊗n)

μH
G

a

H•
B

commutes. Here, we have used the isomorphism ϕVF : H1
B((SVF ,K )(C))∨ →

μH
G (VF ) of Lemma 6.1 to identify End(μH

G (VF )⊗n) and End(H1((SVF ,K )(C))⊗n).

Remark 8.3. Ancona’s strategy is to lift endomorphisms of VF itself (in our presen-
tation, this is via functoriality of mixed Shimura varieties) and permutations of V⊗n

F
in the obvious way, and then additionally lift cycles arising from the polarisation
via Poincaré duality and Hard Lefschetz (both of which have a motivic interpre-
tation). Ancona then shows that endomorphisms of the above kinds generate all
of EndRepF (G)(V

⊗n
F ) in the case of PEL-type Shimura varieties. Whilst Ancona’s

result allows for Shimura data corresponding to orthogonal groups, the analogous
statement does not hold for special orthogonal groups, which would require lifting
additional cycles.

Construction 8.4. [2, pf. of Thm. 8.6] There is a ⊗-functor AncG : RepF (G) →
HomMF/S defined as follows: set AncG(V⊗n

F ) = h1(SVF ,K )∨⊗n and let AncG(α)

for α ∈ End(V⊗n
F ) be defined via the map of Theorem 8.2. By Hom-tensor adjunc-

tion, Theorem 8.2 also defines a motivic lift of the map 1 → V ⊗ V∨. More
generally, to define the image of elements of Hom(V⊗a

F ⊗ V∨⊗b
F , V⊗c

F ⊗ V∨⊗d
F ) it

suffices to fix the image of Hom(V⊗(a+d)
F , V⊗(b+c)

F ), but for weight reasons this is
zero unless a − b = c − d, in which case it is covered by Theorem 8.2.
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This also allows us to define, for any choice of idempotent e, the image of a
direct summand e · (

⊕
V⊗an
F ⊗ V∨⊗bn

F ). Since every element of W ∈ RepF (G)

is of this form by Lemma 8.1, if we pick a fixed isomorphism θW : W ∼→ eW ·
(
⊕

V
⊗aW,n
F ⊗ V

∨⊗bW,n
F ) for each W , then we can compatibly extend AncG to all

of RepF (G). Finally, by composition with the section of Theorem 2.6, we obtain a
functor RepF (G) → CHMF/S, which we also denote AncG .

Lemma 8.5. The construction of AncG is, up to natural isomorphism, independent
of all choices made.

Proof. FixW ∈ RepF (G) and two summands of tensor spaces, e ·⊕ V ak
F ⊗V∨⊗bk

F ,

e′ · ⊕
V

⊗a′
k

F ⊗ V
∨⊗b′

k
F , which are both isomorphic to W . We must provide an

isomorphism

e ·
⊕

h1(SVF ,K )∨ak ⊗ h1(SVF ,K )⊗bk → e′ ·
⊕

h1(SVF ,K )∨a′
k ⊗ h1(SVF ,K )⊗b′

k .

Given the compatibility of the Künneth formula with mixed Shimura varieties,
we may assume that W is irreducible and there is a corresponding isomorphism
e · (V⊗a

F ⊗ V∨⊗b
F ) → e · (V⊗a′

F ⊗ V∨⊗b′
F ).

As before, it suffices to assume that b = b′ = 0. For weight reasons, we
must then have that a = a′. Finally, since Lemma 8.2 lifts all elements of
EndRepF (G)(V

⊗a
F ), we obtain a motivic lift of the isomorphism between the two

tensor space representatives ofW . For varyingW , this yields a natural isomorphism
and so the desired independence. ��
Remark 8.6. Let (G,X) be a Shimura datum with a chosen PEL-datum for which
all objects of Rep(G)AV are direct summands of V⊕n for varying n. Then the
argument given above can be adapted to show that AncG extendsμmot

G up to natural
isomorphism. If the PEL-datum only has factors of symplectic type in the sense of
Definition 7.3, then this always holds (see Lemma 11.2). This can also be checked
to hold much more generally.

Theorem 8.7. [2, Thm. 8.6]Let (G, h) be a Shimura datum of PEL-typewith a fixed
PEL-datum (B, ∗, V, 〈 , 〉, h). Fix also a choice of neat open compact subgroup
K ≤ G(A f ) and denote by S the Shimura variety ShK (G, h). Then the following
diagram commutes,

RepF (G) CHMF/S

VHSF/S(C)

AncG

μH
G

H•
B

�⇒

up to canonical natural isomorphism.

Proof. The natural isomorphism necessarily depends on the choice of AncG .
Explicitly, in the notation of Construction 8.4, write ηG,V for

μH
G (θ−1

W ) ◦ (eW ·
⊕

(ϕ
⊗aW,n
VF

⊗ ϕ
∨⊗bW,n
VF

)),

where ϕVF is as defined in Notation 6.2. That ηG := (ηG,V )V defines a natural
isomorphism now follows from Lemma 6.3 (i). ��
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9. Compatibility with base change

In this section,we give conditions to ensureAncona’s construction andTheorem8.7
are compatible with base change, i.e. there is a commutative prism analogous to
that of Theorem 6.4.

Let f : (G ′, h′) → (G, h) be a morphism of Shimura data each with a cho-
sen PEL-datum. Denote their standard representations by V ′, V respectively. By
Lemma 8.1, f ∗V ∼= e · (

⊕
n(V

⊗an ⊗ V∨⊗bn )). In order to show that Anc(−) is
compatible with f , we would need to construct an isomorphism

f ∗(h1(SK ,V )∨)
∼−→ e ·

(⊕
h1(SK ′,V ′)∨⊗an ⊗ h1(SK ′,V ′)⊗bn

)
.

Unfortunately, such a morphism cannot be constructed using just functoriality of
mixed Shimura varieties. For this reason we make the following restriction:

Definition 9.1. Let f : (G ′, h′) → (G, h) be a morphism of PEL-type Shimura
data each with a choice of PEL-datum with standard representations V ′, V . If

(�) f ∗V ∼= e · V ′⊕n for some n ∈ N and idempotent e ∈ EndRep(G ′)(V
′⊕n),

then we say that f is an admissiblemorphism of Shimura varieties with PEL-data.
Note that if f is admissible, then f ∗VF ∼= eF · V ′⊕n

F for any F . Admissibility
implies that there is exists a map (SK ,V )S′ → ∏n

i=1 S
′
K ′,V ′ as abelian varieties over

S′.

Example 9.2. Given a PEL-datum (B, ∗, V, 〈 , 〉, h) and B ⊆ B ′ a Q-subalgebra,
then (B ′, ∗, V, 〈 , 〉, h) is also a PEL-datum. If (G, h), (G ′, h) denote the respective
Shimura data, then the induced map (G ′, h) ↪→ (G, h) with the above choices is
an admissible morphism.

Lemma 9.3. The identity map (G,X) → (G,X) is admissible for any choice of
PEL-data for the source and target.

Proof. Let V ′, V be the standard representations of the source and target respec-
tively and B ′, B the chosen Q-algebras. It suffices to show that VR is a summand
of some V ′⊕n

R
. It is a consequence of Lemma 7.5 (i) that the pairs (BR, VR) and

(B ′
R
, V ′

R
) may only differ up to Morita equivalence (given that they both corre-

spond to G1,R). To be more explicit, say BR has a factor Ma(H) with correspond-
ing factor (H⊕a)⊕n of VR, then B ′

R
has a factor Mb(H) with corresponding factor

(H⊕b)⊕n of V ′
R
. The corresponding factor ofG1,R is then O∗

2n acting in the obvious
way. It is then clear that VR is a summand of some number of copies of V ′

R
as

GR-modules. ��
Example 9.4. In Example 7.8, we described two PEL-data for (GL2,H), one with
standard representation V ′ = Q

⊕2 and the other with standard representation V =
Q

⊕2 ⊕ Q
⊕2. The identity map (GL2,H) → (GL2,H) is admissible for each of

the two ways of assigning each (GL2,H) a distinct choice of the two PEL-data.
Indeed, id∗V ′ ∼= (i1 ◦ π1) · V and id∗V ∼= V ′⊕2.
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Not all morphisms of Shimura data with chosen PEL-data are admissible (see
Example 11.1), but in Sect. 11 we show that if the PEL-datum on the source has
only factors of symplectic type then it is admissible. In any case, it is easy to check
if a given morphism is admissible.

We now assume f : (G ′, h′) → (G, h) is admissible and fix one such isomor-
phism as in (�).

Construction 9.5. We now have canonical isomorphisms:

f ∗AncG(V ) = h1(SK ,V )∨S′

= h1((SK ,V )S′)∨,

using that the canonical projectors hi commute with pullbacks [7, Thm. 3.1],

Lem. 5.7= h1(S′
K ′, f ∗V )∨

(�)= h1(S′
K ′,e·V ′⊕n )

∨

= e · (h1(S′
K ′,V ′)⊕n)∨

= AncG ′ f ∗V .

by Lemma 5.7 (i) and the Künneth formula 2.9. Write λV for this composite. For
VF , there is an analogous λVF .

Notation 9.6. As functors on RepF (G), we extend this to a putative natural isomor-
phism λ : f ∗ ◦ AncG �⇒ AncG ′ ◦ f ∗ as follows: Let W ∈ RepF (G). Since the
construction of AncG ′ is independent of the choice of the θ ′

W ′ (Lemma 8.5), we are

free to assume that, for W ∈ RepF (G) with θW : W ∼→ eW · (⊕ V⊗an
F ⊗ V∨⊗bn

F ),
then θ ′

f ∗W is obtained from f ∗θW by taking the tensor products and direct sums of
(the base change of) the isomorphism of (�). So we have,

f ∗AncG(W ) = eW · (
⊕

h1(SK ,VF )
∨⊗ak
S′ ⊗ h1(SK ,VF )

⊗bk
S′ ),

AncG ′ f ∗(W ) = eW · (
⊕

(e ·
⊕

h1(S′
K ′,V ′

F
))∨⊗ak ⊗ (e ·

⊕
h1(S′

K ′,V ′
F
))⊗bk )).

There is now an obvious choice for λW given by taking sums and products of λVF

and its dual.

Theorem 9.7. Let f : (G ′, h′) → (G, h) be an admissible morphism of PEL-type
Shimura data with fixed PEL-data. Then

(i) the following diagram commutes:

RepF (G) CHMF/S

RepF (G ′) CHMF/S′
f ∗

AncG

�⇒

f ∗

AncG′

up to natural isomorphism given by λ : f ∗ ◦ AncG ′ �⇒ AncG ′ ◦ f ∗.
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(ii) there is a commutative prism

RepF (G) CHMF/S

VHSF/S(C)

RepF (G ′) CHMF/S′

VHSF/S′(C)

f ∗ μH
G

AncG

f ∗
H•
B

μH
G′

AncG′

H•
B

f ∗

for which the prescribed natural isomorphisms on each face are compatible.

Proof. For (i), we must check that λ is a natural isomorphism. In view of The-
orem 2.6 (whose section is used in Construction 8.4 to define AncG), it suf-
fices to check commutativity after projection to homological motives. More-
over, since the functor H•

B(−) is injective on HomHomMF/S′(hi (A1), hi (A2)) for
A1, A2 abelian varieties over S′ (see Remark 3.3), it is enough to check that
H•
B(λ) : H•

B ◦ f ∗ ◦ AncG �⇒ H•
B ◦ AncG ′ ◦ f ∗ is a natural isomorphism. But

we already have a natural isomorphism H•
B ◦ f ∗ ◦ AncG �⇒ H•

B ◦ AncG ′ ◦ f ∗,
namely by composing the realisations of the natural isomorphisms of the other
faces appearing the prism of (ii) (this doesn’t use the compatibility statement of
(ii)). So it suffices to check that H•

B(λ) coincides with the one already constructed.
We need only check this for VF itself, i.e. that

H•
B(λVF ) = η−1

S′, f ∗VF
◦ κVF ◦ f ∗(ηS,VF ) ◦ ξ−1

h1(SK ,VF )
.

Here ηS,VF is as defined in the proof of Theorem 8.7, κ is as defined in Construc-
tion 4.4 and ξ is as defined in Remark 3.4.

Applying ξh1(SK ,VF ) to both sides, this means checking the equality of:

f ∗H1
B((SK ,VF )(C))→H1((SK ′, f ∗VF )(C))

(�)→ e · H1
B((S′

K ′,V ′
F
)(C)),

f ∗H1
B((SK ,VF )(C))

f ∗ϕVF→ f ∗μH
G (VF )

κV→ μH
G ′( f ∗VF )

ϕ−1
f ∗VF→ H1

B((SK , f VF
)(C))

(�)→ e ·
⊕

H1
B((S′

K ′,V ′
F
)(C)),

where, in the second line the composite of the last two maps is η−1
S′, f ∗VF

, as defined
in Theorem 8.7. The equality now follows from the commutativity of:

f ∗H1
B((SK ,VF )(C)) f ∗μH

G (VF )

H1
B((S′

K ′, f ∗VF
)(C)) μH

G ′( f ∗VF )

f ∗(ϕVF )

H1(λVF ) κVF

ϕ f ∗VF

as shown in Lemma 6.3 (ii).
In proving (i) we, in fact, verified the compatibility statement of (ii). ��
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Note that the statement of Theorem 9.7 (i) is independent of the choice of
realisation. Since the identity map is always admissible (Lemma 9.3), this shows
that Ancona’s construction is independent of the choice of PEL-datum.

10. Étale canonical construction

Canonical constructions arise more generally than just the Hodge realisation, and
both μmot

G and Ancona’s construction should also be lifts of any such construction.
We sketch this for the étale realisation following [19, Sec. II.4]. We use the notation
of the étale realisation described in Lemma 3.6.

Notation 10.1. Let (G,X) be a Shimura datum and K be a neat open compact
subgroup of G(A f ). We consider S := ShK (G,X) to be defined over its reflex
field E/Q via canonical models. Let V ∈ RepF (G) and L be a K -stable full
rank Ẑ-sublattice of V (A f ). Recall from Sect. 5 that there is a mixed Shimura
variety SK ,V := ShL�K (V �G, X̃) whose reflex field is the same as that of S. The
projection and Levi section then define regular maps p : SK ,V → S, ι : S → SK ,V .

Construction 10.2. Let (G,X) be a Shimura datum and K ≤ G(A f ) neat open
compact. If K ′ ≤ K is an open normal subgroup, then there is a right action of
K/K ′ on ShK ′(G,X). Since we are assuming that the centre of G is an almost-
direct product of a Q-split and R-anisotropic torus, the action of K/K ′ is free on
C-points and

ShK ′(G,X) −→ ShK (G,X)

is an étale cover of smooth algebraic varieties with Galois group K/K ′ (see [17,
Prop. 3.3.3. and (3.4.1)]).

Taking the inverse limit over K ′ ≤ K we obtain a pro-Galois covering of
ShK (G,X) with Galois group K . Then, in the notation of Sect. 3, any Fλ-linear
continuous representation of K will define a lisse Fλ-sheaf on ShK (G,X).

Given (GF
ρ→ GL(V )) ∈ RepF (G), we obtain such a representation via

K ↪→ G(A f ) � G(Q�) ↪→ G(Fλ) = GF (Fλ)
ρ(Fλ)→ GL(V )(Fλ).

This defines a functor

μét
G : RepF (G) → ÉtFλ/S,

which we refer to as the étale canonical construction.

Lemma 10.3. Given a Shimura datum (G,X) and V ∈ RepF (G)AV, then there is

a canonical identification ϕV,λ : H1
λ (SK ,V )∨ ∼→ μét

G(V ).
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Proof. The étale canonical construction extends verbatim to mixed Shimura vari-
eties. As in the Hodge case, the diagram

RepF (V � G) ÉtFλ/SK ,V

RepF (G) ÉtFλ/S

Hi (V,−)

μét
V�G

Ri p∗

μét
G

commutes [19, Thm. II.4.7, Thm. I.4.3]. The dual of the desired isomorphism is
given by commutativity in the case of the trivial representation F . ��
Lemma 10.4. (i) Let (G,X) be a Shimura datum and α : V1 → V2 a morphism

in RepF (G)AV. Fix a neat open compact subgroup K ≤ G(A f ) and let α also
denote the map SK ,V1 → SK ,V2 . Then the following diagram commutes:

H1
λ (SK ,V1)

∨ μét
G(V1)

H1
λ (SK ,V2)

∨ μét
G(V2)

ϕV1,λ

(α∗)∨ μH
G (α)

ϕV2,λ

(ii) Let f : (G ′,X′) → (G,X) be a morphism of Shimura data and K ≤
G(A f ), K ′ ≤ G ′(A f ) neat open compact subgroups for which f (K ′) ≤ K.
Write E ′ for the reflex field of (G ′,X′) (so E ′ ⊇ E). For any V ∈ RepF (G)AV,
the following diagram commutes:

f ∗(H1
λ (SK ,V )∨)E ′ f ∗μét

G(V )E ′

H1
λ (S′

K ′, f ∗V )∨ μét
G ′( f ∗V )

f ∗(ϕV,λ)

ϕ f ∗V,λ

Here, on the top row, f ∗ denotes pullback via the map SK ′, f ∗V → (SK ,V )E ′
and (−)E ′ pullback via (SK ,V )E ′ → SK ,V .

Proof. As for Lemma 6.3, but using [19, Cor. I.3.2 i)]. ��
We now obtain results analogous to Theorem 6.4 and Lemmas 8.7, 9.7, whose

proofs are near enough identical.

Lemma 10.5. Let (G,X) be an arbitrary Shimura datum and K ≤ G(A f ) neat
open compact. Denote by S the Shimura variety ShK (G,X). Then the following
diagram commutes,

RepF (G)AV CHMF/S

ÉtFλ/S

μmot
G

μét
G

H•
λ

�⇒
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up to natural isomorphism given by ϕ : H•
λ ◦ μmot

G �⇒ μH
G . Moreover, under

pullback by f : (G ′,X′) → (G,X), the triangles for (G,X), (G ′,X′) form a com-
mutative prism for which the given natural transformations on each face are com-
patible.

Lemma 10.6. (i) Let (G, h) be a Shimura datum of PEL-type with a fixed PEL
datum (B, ∗, V, 〈 〉, h). Fix also a choice of neat open compact subgroup K ≤
G(A f ) and denote by S the Shimura variety ShK (G, h). Then the following
diagram commutes,

RepF (G) CHMF/S

ÉtFλ/S

AncG

μét
G

H•
λ

�⇒

up to canonical natural isomorphism.
(ii) Given a morphism of Shimura data f : (G ′, h′) → (G, h), each of PEL-type

with a fixed datum, which is admissible in the sense of Definition 9.1, then
the triangles for (G, h) and for (G ′, h′) together with base change form a
commutative prism as in Theorem 9.7. Each face has a prescribed natural
isomorphism which altogether are compatible.

11. Results on admissibility

In this section, we give additional results on the admissibility of morphisms of
Shimura data with chosen PEL-data. Firstly, not all suchmorphisms are admissible:

Example 11.1. Let (G ′, h′) be defined by the PEL-datum

(Q(i), ∗, Q(i)⊕2, (−trQ(i)/Q(xi ȳ) ⊕ trQ(i)/Q(xi ȳ)), h′)

where h′ : C → EndR(C⊕2) is the map which sends z to multiplication by (z, z̄).
Wewrite GU1,1 forG ′. Then (GU1,1)R coincides with the usual generalised unitary
group of complex matrices preserving, up to scaling, a Hermitian form of signature
(1,−1).

Let χ denote the two dimensional representation of GU1,1 given by the com-
position

χ : GU1,1
det−→ ResQ(i)/QGm

z/z̄−→ U1 −→ GL(Q(i)).

Here, the determinant is given by considering GU1,1 ⊂ AutQ(i)(Q(i)⊕2) whilstU1
denotes the norm one elements of Q(i) and the final map is given by the action of
U1 on Q(i) by multiplication. Note that the image of χ preserves the symmetric
non-degenerate pairing trQ(i)/Q(ab̄) and that, after base change to R, χ is trivial on
the image of h′.

Now let V ′ denote the standard representation of GU1,1 and consider the rep-
resentation

GU1,1 −→ GSp(V ′) × GO(Q(i))
⊗−→ GSp(V ′ ⊗Q Q(i)).
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Sinceχ is trivial on imh′, this is amorphismofShimura datawhenGSp(V ′⊗QQ(i))
is given the PEL-datum

(Q, ∗ = id, V ′ ⊗Q Q(i), 〈 〉V ′ ⊗ Q(i), h(z) =
(
z 0
0 z̄

)
⊗ id).

It can be checked that f ∗(V ′ ⊗Q Q(i)) ∼= V ′ ⊗ χ is not isomorphic to V ′⊕2, for
example by base changing to C where GU1,1 becomes isomorphic to Gm × GL2.
As a result, f is not admissible.

In contrast, in the symplectic case there are no non-admissible morphisms. In
particular, there do not exist non-trivial representations χ which are trivial on the
image of h in the symplectic case.

Lemma 11.2. Let (G,X) be a Shimura datum with a choice of PEL-datum
(B, ∗, V, 〈 〉, h) for which BR only has factors of symplectic type (in the sense
of Definition 7.3). Then all objects of Rep(G)AV are direct summands of V⊕k for
some k.

Proof. It suffices to show the analogous statement after base change to C. Let W
be a C-representation of GC of Hodge type {(−1, 0), (0,−1)}. By Lemma 7.5,
G1,C ∼= ∏

i Sp2mi
. Accordingly, W |G1,C splits as a direct sum of irreducibles on

which G1,C acts via projection to some simple factor.

Claim. Let T be an irreducible representation of Sp2n that upon restriction to the
subspace

S ⊃ U1 ∼=
{(

aIg −bIg
bIg a Ig

) ∣∣∣ a2 + b2 = 1

}

(z ⊕ z̄)-isotypical. Then T is isomorphic to the standard representation.

Proof of Claim. Since Sp2n is simply connected, it is equivalent to show the anal-
ogous statement for irreducible representations of sp2n that upon restriction to

(
0 −bIg
bIg 0

)

haveweights {1,−1}. In the notation of [8, Sec. 17.2], these are precisely irreducible
representations with highest weight λ1L1 + · · · + λnLm , for λi integers with λ1 ≥
λ2 ≥ · · · ≥ λn ≥ 0 and for which

∑
λi = 1. As such, the only possible highest

weight is L1, which does indeed correspond to the standard representation. ��
From the proof of Lemma 7.5, the image of U1 under h can be assumed to

have the form given in the claim on each simple factor and since W is of Hodge
type {(−1, 0), (0,−1)},W |h(U1) is (z⊕ z̄)-isotypical. By the claim, the irreducible
factors of W |G1,C must be summands of the standard representations of the corre-
sponding factor of G1,C, and therefore also of VC.

Since the action of scalar matrices onW is determined by its weight, the functor
Rep(GC)AV → Rep(G1,C) is faithful. In particular, there is at most one representa-
tion, up to isomorphism, of G ′

C
of Hodge type {(−1, 0), (0,−1)} restricting to any
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representation of G1,C. Since all irreducible representations of W |G1,C are sum-
mands of the standard representation of G ′

1,C and the standard representation of
GC is one representation restricting to the standard representation ofG1,C, wemust
have the all irreducible objects of Rep(GC)AV are direct summands of VC. ��

Lemma 11.2 does not hold in the orthogonal case, but is true upon restriction
to G◦.

Under the assumptions of the lemma AncG extends μmot
G up to natural isomor-

phism (see Remark 8.6). We also find:

Corollary 11.3. Let (G ′,X′) be a Shimura datum with a choice of PEL-datum
(B ′, ∗′, V ′, 〈 〉′, h′) for which BR only has factors of symplectic type (in the sense
of Definition 7.3). Then for any Shimura datum (G, h)with a choice of PEL-datum,
any map f : (G ′, h′) → (G, h) is admissible (i.e. satisfies (�) of Definition 9.1).
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