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Abstract 

The hydrodynamic problem of a two dimensional wedge tank filled with liquid entering a calm 

water surface is analysed based on the incompressible velocity potential theory. The motion effect 

of inner liquid on the entry process is investigated through comparison with the result containing 

equivalent solid mass or the liquid being frozen. The problem is solved through the boundary 

element method in the time domain. Two separated computational regions are constructed. One is 

the inner domain for the internal liquid, and the other is the outer open domain for the open water. 

The former is solved in the physical coordinate system, and the latter is solved in a stretched 

coordinate system. The solutions of two separated domains are connected through the motion of the 

body. The auxiliary function method is extended to decouple the nonlinear mutual dependence 

between fluid loads from two separated domains and the body motion. Detailed results for wedge 

motion, external impact pressure and free surface, and for internal pressure, free surface deformation 

and liquid motion are provided. Through comparison with the results of a wedge tank with frozen 

ice, in-depth discussion on the effect of the inner liquid is provided.  

Key words: Water entry of a wedge tank; Fully nonlinear boundary conditions; Boundary element 

method; Dual domain problem; Free fall motion in three degrees of freedom. 

1. Introduction  

 Fluid/structure impact is always a major concern in naval architecture and ocean engineering. It 

usually occurs when the structure penetrates liquid surface at a large relative speed. Examples 

include green water on deck, ship slamming, and overturning and breaking wave impact on offshore 

and coastal structures. Severe danger can be posed to marine structures by violent waves from the 

sea, and damage or even destruction can be caused. The impact usually lasts for a very short period 

of time, during which the physical parameters such as pressure and fluid particle acceleration are 

very high and change rapidly. The process is highly complex. This is further completed when a ship 

contains a liquid cargo, such as a LNG, or a ship is loaded with ballast. 

One of the methods for water entry is based on the Wagner theory together with some asymptotic 

analysis. The wave elevation is obtained through the integration of fluid particle velocity on the free 

surface with respect to time, the wetted body surface is altered accordingly. The velocity potential 

on this previously dry surface of the body, which was not accounted for initially, should then be 

included. This means that there will be some implicit coupling between the potential and the area 

of the wetted body surface. Based on this procedure, Howison et al. [1] gave an explicit solution for 

a body with small deadrise angle. Korobkin et al. [2] adopted a numerical scheme for a body with 
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elastic deformation. Later Korobkin [3] investigated the wave impact with the second order Wagner 

theory. The water entry problem has also been solved based on the fully nonlinear velocity potential 

theory in which the nonlinear boundary conditions are imposed on the instantaneous positions of 

the body surface and the free surface. The typical work includes those by Dobrovol’skaya [4] and 

Zhao & Faltinsen [5] for the vertical entry of a symmetric wedge, Semenov & Iafarati [6] for an 

asymmetric wedge, Xu et al.[7] for the oblique entry of an asymmetric wedge, and by Wu [8] for 

the problem of twin wedges. While all these are based on the constant entry speed, Wu et al. [9] 

considered vertical entry of a wedge in free fall motion with a single degree of freedom, and Xu et 

al. [10] considered the free fall with three degrees of freedom, in which the vertical motion is 

coupled with the horizontal and rotational motions. More recently, the body entering into a wave 

field instead of calm water was considered by Sun et al. [11, 12], and the flow detachment by Bao 

et al. [13, 14] for a finite wedge and cavity effect by Sun et al. [15] for a semi-circle. Other relevant 

work includes those by Wang and Faltinsen [16, 17] and Barjasteh et al. [18]. 

The present work considers the problem of a solid tank filled with liquid entering the water 

surface, which differs from those problems considered above. It may seem that the liquids inside 

and outside the tank are completely separated and their motions are therefore decoupled. However, 

when the tank is in the free motion, its motions will be affected by both internal and external fluid 

flows, which will in turn be affected by the body motion. Therefore all these three are fully coupled. 

It is well known that the liquid inside a tank may experience sloshing motion, which itself is a highly 

complex problem [19] and there have been extensive studies on this subject [20-24]. The sloshing 

motion is significantly affected by its natural modes. During water entry, however, the time scale of 

interest is usually much smaller than the natural periods of the tank. Therefore it is normally unlikely 

that it will be affected by the resonance modes of the internal fluid. It then may appear that within 

such a short time duration, the liquid motion is small and it can be treated stationary, or treated even 

as a solid mass like frozen ice. However, it can be shown that the motion characters of a tank with 

a liquid and with a solid mass are different. This is the main motivation of the present work.  

As flow crosses the tip of wedge, a vortex sheet will be generated and be shed from the tip of the 

wedge. However, its effect is usually very localized and it may not significantly affect the overall 

hydrodynamic force and fluid flow. It is shown in Barjasteh et al. [25] that the numerical results 

without vortex shedding by Xu et al. [7] are in good agreement with the experimental data for the 

water entry of asymmetric wedges. Semenov and Wu [26] did include the vortex sheet from the tip 

of a wedge in their mathematical model. It was found that the effect of vortex was confined in a 

small local region, and the overall pressure distribution in other places is not significantly affected 

and the effect on the free surface is hardly visible. The analysis in this paper is based on the 

incompressible velocity potential flow theory without vortex sheet. The boundary element method 

(BEM) is used at each time step to solve the governing Laplace equation. Two separated 

computational domains are constructed, one is the inner domain, and the other is the outer open 

domain. The former is solved in the physical coordinate system, and the latter is solved in a stretched 

coordinate system [9]. The solutions of two separated domains are connected through the motion of 

the body. The auxiliary function method [27] is extended to decouple the nonlinear mutual 

dependence between fluid loads from two separated domains and the body motion. The effect of the 

inner liquid of the wedge tank on its water entry of is investigated. A typical feature is that the liquid 

seems be ‘lighter’ than the equivalent solid mass, in the sense that wedge will be more responsive 

to the external impact load. In other words, the acceleration of the tank with liquid is usually larger 
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and more oscillatory. Extensive simulations are undertaken for different depths and densities of 

internal liquid, as well as the initial velocity of the wedge tank. The results are analysed and the 

implications in physics are discussed. 

2. Mathematical model and numerical procedure  

2.1. The physical parameters and Cartesian coordinate system   

 

Fig. 1. The sketch of problem.  

The sketch of the 2-D problem considered here is given in Fig. 1 which shows a wedge shaped 

tank entering into calm water in free motion with an initial velocity. A Cartesian system O xy  

moving translationally with the body is defined, in which the origin O  is fixed at the wedge tip, 

x  -axis points horizontally and y  -axis points vertically upwards. The horizontal and vertical 

velocities of O  which is taken as the rotational centre are denoted as U  and W , respectively, 

and W  is positive when the body moves downwards. The angular velocity about O  is denoted 

as  . At 0t  , 0U , 0V  and 0  are used to denote the initial velocities.   is the heel angle 

measured from the symmetry line of the wedge to y   axis, and 0   is its initial value at the 

moment of water entry. 0  is half of the inner angle of the wedge.  

Based on the these definitions, the deadrise angles 1  and 2  on right and left hand sides can 

respectively be obtained from the following relationships  

 1 0 2 0,
2 2

 
             (1) 

The vertical distance s  and horizontal distance l  that the wedge has travelled, and the heel angle 

  can respectively be obtained through  

 ( ) ( ) ( ) ( ) ( ) ( )s t W t l t U t t t  ， ，   (2) 

2.2. Mathematical model  

The fluid domain contains two separate ones. One of these domains, the inner one, is the fluid 

inside the tank, and the other one, the outer one, is the open water. When the fluid is assumed to be 

incompressible and inviscid, and the flow to be irrotational, the velocity potential i   whose 
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gradient is equal to the fluid velocity can be introduced, which satisfies the Laplace equation in the 

whole fluid domain 

 
2 =0, ( 1,2)i i    (3) 

in which the subscripts 1 and 2 correspond to the inner and outer domains respectively. In the 

coordinate system O xy , the dynamic and kinematic boundary conditions on the instantaneous 

free surface FS  in Lagrangian form can respectively be written as 

 
21

( )
2

i
i

D
g y s

Dt


      (4) 

 ,i iDx Dy
U W

Dt x Dt y

  
   
 

  (5) 

where /D Dt   is the full derivative following the fluid particle, and ( , , )x y    for the fluid 

particle can then be tracked through a time integration scheme. U  and W  in Eq. (5) are due to 

the fact that O xy  is a moving system. On the wetted surface of body 0S , the impermeable 

boundary condition takes the form as   

 ( ) ( )i
x yU y n W x n

n


    


  (6) 

where ( , )x yn nn  is the normal vector on the body surface pointing out of the corresponding 

fluid domain, and ( , )x yx   is the position vector relative to the rotational centre O  . The 

negative sign before W  is due to the fact that W  is positive when it is downwards. Far away 

from the body, the disturbance is assumed to have sufficiently diminished, and the far field boundary 

condition for open water can therefore be written as  

 2 =0   (7) 

At 0t  , the initial condition can be written as   

 ( , 0) , ( , , 0) 0i i i iy x t H x H t      (8) 

where 1H  is the depth of water inside the wedge at 0t  , and 2 0H   reflects the calm water 

surface in the open domain.  

At the initial stage of water entry, there is only a tiny part of body in water. In order to ensure 

sufficient numerical accuracy for the solution in the outer domain, we adopt the method in Wu et al. 

[9] and Sun et al. [11]. A stretched coordinate system O   is defined as  

 2 ( , , ) ( , , ), / , /x y t s t x s y s          (9) 

in which s  is given in Eq. (2). The body surface boundary condition for   retains the same form 

as that in Eq. (6) 

 ( ) ( )U s n W s n
n

 


 


      


   (10) 

The free surface boundary conditions can be written as  

 
2 2( ) 1

( ) ( )
2

D s
g s s

Dt
 


        (11) 
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( ) ( )D s D s

U W
Dt Dt

 

 
    ，  (12) 

2.3. The boundary element method 

The Laplace equation in the fluid domain can be converted into the integral equation over the 

whole boundary 

 
pq

pq q

q q

ln ( )
( ) ( ) ( ( ) ln )

r q
A p p q r dl

n n


 

 
 

    (13) 

where ( )A p  is the solid angle of boundaries at the point p  and pqr  is the distance from the 

field point p  to the source point q .   in the equation stands for either 1  or 2 . Straight line 

elements, with variables being assumed to vary linearly within each element, are distributed along 

the boundary  

(a)

 

Fig. 2. The discretization of boundary for (a) the inner domain in ( , )x y  and (b) outer domain in 

( , )   near the wedge at the initial moment of computation. 

Fig. 2 provides a typical discretization of the boundaries for both inner and outer domains. These 

two domains are fully separated. Their elements on the body surface do not coincide and are 

distributed for the consideration of their corresponding domains. To perform integration over each 

element in Eq. (13), we define  

 

2 2

1 1

( ) , ( )i i i i

i i

x y h u h u 
 

      r i j r   (14) 

in which r  is the position vector from the origin with i  and j  being the unit vectors in the x  

and y  directions. When the stretched system is used, x  and y  will be replaced by   and   

respectively. Linear shape functions ( )ih u  are used, which can be written in the following form  

 
1 2( ) 1 , ( )h u u h u u     (15) 

where 0 1u  , when point q  moves from one end of the element to the other. Substituting Eqs. 

(14) and (15) into (13), we have 

 
e e2 21 1 pq

pq
0 0

1 1 1 1

( ) ln
( ) ( ) ln ( ) ( ) ( )

n

iN N
ji i i

j

j i j i

q r
A p p r h u ldu h u q ldu

n


 

   

 
 

 
       (16) 

where eN  is the total number of elements. The integrations within each element can be obtained 

through the analytical solution from Lu, He & Wu [28]. Writing Eq. (16) in the matrix form, we 

have 



 

6 
 

      
d d d d d

d

N N N N N
N

H G
n




 

 
   

  (17) 

where dN  is the total number of nodes over the whole boundary, and the matrixes of  H  and 

 G  have the coefficients obtained from the integrations of 
pqln

n

r


 and pqln r  respectively. 

Based on the boundary conditions, the normal derivative of the potential on the solid surface and 

the potential on the free surface are known at each time step. They can both be moved to the right 

hand side, while the unknowns are moved to the left. Eq. (17) can then be transformed as 

 
bb bf b bb bf nb

fb ff nf fb ff f

H G G H

H G G H

 

 

        
         

        
  (18) 

where the subscript b  denotes the boundary including the solid surface and the far field surface 

while f  denotes the free surface. When Eq. (18) is used in the inner domain, there will be only 

the wedge surface and the free surface.    

2.4. The pressure 

Based on the Bernoulli equation, and assuming that the pressures on the free surface both inside 

and outside the tank are atmospheric, which can be taken as zero without loss of generality, the 

pressure in both fluid domains can be written as 

 
21

( )
2

i i it ip g y s  
 

      
 

 (19) 

where ( 1,2)i i   are the liquid densities inside and outside the tank respectively. The velocity 

potential i  can be solved at each time step through the numerical scheme in the previous section, 

from which its gradient i  can be obtained. However the temporal derivative of potential it  

is still unknown explicitly. To deal with this problem, the auxiliary function method [27] is adopted 

here. We notice that it   also satisfies the Laplace’s function in the fluid domain. The normal 

derivative of it  on the body surface can be written as [29] 

    it i
i

n n n

 


  
            

U Ω x n U Ω x U+   (20) 

where U W U i j  ,  Ω i j  , and the over dot means the temporal derivative. A particular 

attention should be paid to accelerations in Eq. (20), which are unknown before the force is found. 

To decouple their mutual dependence, we define  

  0 1 2 3it i i i i i iU W                 U Ω x U   (21)

Here ( 1,2; 0 3)ij i j    satisfy the Laplace’s equation. The body surface boundary conditions 

for the auxiliary functions can be written as 
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0 1 2 3, 0, , , ( ),( 1,2, 0, 3)

ij

j x y y xn n n n n n n xn yn i j
n


       


  (22) 

Considering zero pressure on the free surface in Eq. (19), we have  

  
2

0

1
( ) ( ) ( )

2
i i ix iy iy ixg y s U W x W y U     

 
               

 
  (23) 

 0,( 1,2, 1,2,3)ij i j     (24) 

At the far field of the outer domain, the disturbance to the fluid is assumed to have sufficiently 

diminished, and thus =0 , =0t . We have from Eq. (20) 

 20 ( )x yn W n U
n


  


  (25) 

 2 0 ( 1,2,3)i i
n


 


,   (26) 

Here ( , )x yn nn   in Eq. (25) is the normal of the far filed boundary. The solution of above 

auxiliary functions can be found through the boundary element method in Sec. 2.3. Based on Eqs. 

(19) and (20), we can find that only the accelerations are unknown in it , which will be solved 

through the following coupled equation of motion. Particularly, different from previous water entry 

problems, the fluid load comes not only from the outer domain, but also from the fluid within the 

liquid tank, which may have some major effects.  

2.5 Equation of motion 

The equation of motion for a wedge tank filled with liquid entering water can be written as  

         0 1 2 G  M A F F F   (27) 

where 

  
0 0 0

0 0 0 0

0 0 0 0 0

0 cos

0 sin

cos sin

c

c

c c

m m l

m m l

m l m l I





 

 
 

 
 
   

M   (28) 

is the mass matrix for the wedge shell with 0m  being the mass, and 0I  being the rotational inertia 

and , and 0cl  is the distance between the mass centre on the symmetry line and the rotational centre. 

 A  in Eq. (28) is a column of accelerations, which can be solved through Gaussian elimination 

method for Eq. (27).  1F  ,  2F   and  GF   in the equations are the internal and external 

hydrodynamic forces, and the gravitational force of the body, respectively. The first two forces can 

be obtained through the integration of pressures along the inner and outer wetted surfaces, 1S  and 

2S , of the body, respectively. Thus we have 
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 
2

0 1 2 3

1
( )

2i
i i i i i i i i i

S
U W g y s ds       

 
                 

 
F U Ω x U n  (29) 

Substituting Eq. (29) into (27), and moving the acceleration terms to the left hand side, we obtain 

              0 1 2 1 2 G( )      M C C A F F F   (30) 

in which  

i

ijk i ij k

S

C n ds    

are the added masses corresponding to internal and external fluids respectively, and  

 
2

0

1
( )

2i
i i i i i i

S
g y s ds    

 
               

 
F U Ω x U n  

Eq. (30) shows that while the potentials inside and outside the wedge can be solved independently, 

the fluid flows are still coupled through the body motion. Therefore the flows in the two subdomains 

are not entirely independent.  

An approximation is to treat inner fluid stationary if its motion is small. 1  can be taken as zero 

and  1
F  contains only the hydrostatic force which is due to the weight of the stationary liquid. It 

may be interesting to compare this with the case in which the inner liquid has become a solid mass 

such as a frozen ice block. In such a case,  1
F  is due to the ice block weight, which is the same 

as that of the stationary liquid. However  1C  should be replaced by mass matrix  1M  of the 

ice block. Similar to  0M , the mass matrix for  1M  can be written as 

 
1 1 1 0 1

1 1 1 1 0 1

1 1 0 1 0 1 1

0 cos( - + )

0 sin( - + )

cos( - + ) sin( - + )

c

c

c i ci

m m l

m m l

m l m l I

  

  

     

 
 

 
 
   

M  

in which 1m  and 1I  denote the mass and rotational inertia of the ice block respectively, and 1cl  

denotes the distance between the mass centre and rotational centre O . It should be noted that the 

angle 1 , which is the angle between the line linking the mass centre of the ice block to O  and 

y  axis, is different from 0 . Intuitively, stationary liquid may seem to be the same as a frozen ice 

block. However, Eq. (30) shows that the difference is between  1C  and  1M . In fact the former 

is due to the fact that the acceleration at each point inside the stationary liquid is different, while in 

the latter, the acceleration at each point can be decomposed into two translational accelerations and 

one rotational acceleration, as common in the rigid body problem. Therefore these two cases are not 

identical. An exceptional case is when there is vertical motion only, in which the free surface will 

remain stationary relative to the tank. In such a case, 12 1=y H   and 122 1c m . The motions 

with the liquid and ice will be the same.  

3. Numerical results and discussions  
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3.1 Convergence study and comparison  

In order to test the numerical stability and accuracy of the methodology in the paper, we first 

consider the case of the wedge tank entering into water freely with a given initial velocity, 0U  , 

15W ms , and 1=1s . 0  and 0  are set as / 4  and 0 respectively, the depth of water 

inside the tank is set as 1 0.5H m , and the water densities are set as 3

1 2= =1025kgm   . The 

mass and rotational inertia of wedge shell are both set as zero, or  0 0M  in Eq. (30). To start 

the simulation, a tiny part of body is put into water at initial time step and the distance from the tip 

of the body to the still water surface in the physical system is denoted as 0s , or the initial value of 

s . It should be noted that no matter how small 0s  is, the vertical distance between the tip and the 

outer still water surface is always unit in the stretched system. In this simulation, 0s  is set as 

1 / 500H . The length and the depth of the outer computational domain are respectively set as 

50    and 50    in the stretched system. Unequal elements are distributed along the fluid 

boundary. The smallest elements of length ml  are used on the body surface and the part of the 

outer free surface, or from the intersection with the body surface to a point Q  whose perpendicular 

distance in the stretched system to the surface of wedge is 1. Beyond the point Q , the size of the 

element increases gradually at a fixed ratio  , but is limited by a maximum. For convergence study, 

we now set ml  as 0.02 and 0.03 respectively, and   as 1.02. It should be noted that ml  is 

nondimensional in the stretched system of the outer domain. In the inner domain, the elements of 

equal size are distributed both on internal free surface and body surface, and 1ml H  is used in the 

dimensional sense. The time histories of accelerations with these two different meshes are shown in 

Fig. 3. A good agreement can be seen in the figure, which means that the results are mesh 

independent. The time step is set as 0 / ( )dt s W , with an upper limit of max2 / ( )mdt l V , in 

which   is a coefficient, and maxV  is the largest magnitude of velocity on the free surface. The 

advancement of s  can be well controlled through the first equation, and the requirement that the 

fluid particle cannot travel more than one element size within each time step is achieved by the 

second equation. Fig. 4 gives the comparison of velocity histories of the wedge between 10   

and 20  . It can be seen that the two curves are virtually coincident, which shows that the results 

have converged with the time step. Unless it is specified, in the following simulations, the minimal 

element length 0.03ml  , the element size increase ratio 1.02  , time step coefficient 10  , 

and the mass of the wedge shell is neglected. 
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Fig. 3. Mesh convergence study: (a) vertical, (b) horizontal and (c) rotational accelerations. 
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Fig. 4. Time step convergence study: (a) vertical, (b) horizontal and (c) rotational accelerations. 

Fig. 5 gives the comparison between the results from the present simulation and those from the 

experiment and numerical computation of Wu et al. [9]. The water inside the tank is treated as an 

ice block with mass 1

1 13.522m kgm  and 
130.188kgm

 respectively, in two different 

simulations. The density distribution of the ice block is assumed to non-uniform to match the 

rotational inertia 2

1 45I kgm  in Wu et al. [9]. eg  is the real acceleration of body before 

touching water, which is smaller than the gravity acceleration g  due to the effect of frictional 

force in the experiment. In the numerical simulation, the gravity effect for free surface, or the last 

term in Eqs. (4) and (11), is neglected, as in the numerical simulation of Wu et al. [9]. Good 

agreement is clearly evident. This proves the rational of the present model and the accuracy of the 

numerical procedure. 
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Fig. 5. The vertical acceleration at 0 / 4  , 0 1=0   and 
2

1 45I kgm : (a)

28.0062eg ms , 
1

1 13.522m kgm , 10.95623W ms , (b)
28.9716eg ms , 

1

1 30.188m kgm , 
1

0 1.69673W ms . 
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3.2 Water entry of a wedge tank with internal water of different depth 1H   

For the liquid contained in a container, there will be usually sloshing motion. The sloshing motion 

is very much affected by the natural frequencies of the container, at which the fluid will have an 

oscillatory motion once it has some initial disturbance. This motion will not diminish when the 

viscosity of the liquid has been ignored. For a wedge with 0 / 4  , Table 1 gives the natural 

periods NT  of the sloshing motion inside the wedge tank in terms of 
1g/NT H  based on the 

equation in Lamb [30], which is independent of 1H  itself.  

Order

1g/NT H  
1st  2nd  3rd  4th 5th 

Symmetric modes 4.12 2.68 2.14 1.83 1.63 

Asymmetric modes  3.17 2.36 1.96 1.72 1.55 

Table 1. Natural periods of sloshing motion inside the wedge tank with 0 / 4      

When a wedge tank filled with liquid enters into water, the liquid motion in the tank may exert 

noticeable effect on the motion of body, and then the motion of the body will further affect the 

slamming pressure along the outer surface of the wedge. They are therefore entirely coupled. To 

study the mutual dependence among all these three, the wedge tank with water of depth 1H  is 

released into calm water with a given initial velocity and subsequently in free motion. In this and 

following sections, the initial vertical velocity of the wedge 0W , the acceleration due to gravity g , 

the external water density 2  are used for nondimensionalisation, and the superscript '  is used 

for the nondimensionalized parameters.  

Fig. 6 provides the time histories of velocities of the wedge tank with 1H   equal to 0.196, 0.392 

and 0.784 respectively, and 1  is set as 1, assuming that the internal liquid is the same as the 

external one. The initial velocities are set as 0 0U    , 0 1W     and 0 =1.02  . The results are 

compared with those of ice of the same weight to see the effect of the liquid motion. In the latter 

case, the added mass matrix  1C  of the liquid is replaced by the mass matrix of ice block  1M , 

and the fluid force is changed to the force due to ice weight. It ought to be noticed that there are two 

time scales corresponding to water entry and sloshing motion inside the tank respectively. In the 

former it is measured in the form of 0/t tg W  . In this time scale the wedge of constant speed 

0W   will travel the same nondimenisonal distance at the same nondimensional time. In the latter 

time scale for sloshing, the oscillation is measured by 
2 1 1/ ' 1/t t g H t H   . The period 2T   

measured in 2t  is the same for all water depth 1H , as shown in Table 1. Thus for large 1H  , to 

reach the same period of 2T  , t  has to be larger. In other words, at larger 1H  , it requires a larger 

impact time to excite the resonant motion of the internal fluid. Before that, the effect of the liquid is 

mainly due to its initial motion rather than the full oscillatory sloshing motion, especially at larger 
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1H  . Also the effect of 1H   is not just through the natural frequency, but also though the weight. 

The vertical velocity in Fig. 6(a) increases initially, and then it reaches a peak. This is mainly 

attributed to the mutual dependence between the fluid load and body motion. At the initial stage, the 

wetted area and impact force need time to increase, and W   increases because of acceleration due 

to the inner fluid mass. For the larger 1H   with larger inner fluid mass, the acceleration period will 

be longer and the peak of W   will be larger. As time increases, the external fluid load will balance 

with the fluid load inside the tank. After that, acceleration changes to deceleration, and the vertical 

velocity decreases. For the case of 1 0.784H   , as its W  reaches a larger peak, it generates a 

larger impact force. It then has a larger deceleration. As W   decreases rapidly, so does the impact 

force. W   then reaches a trough around 0.32t  . Beyond that W   increases again. From the 

result in Table 1, the lowest sloshing period is much larger than the whole duration of water entry, 

and this implies that the oscillation of vertical velocity in Fig. 6(a) is mainly due to the variation of 

impact force rather than the sloshing motion of the internal water.  

At a given anticlockwise angular velocity 0
 ,   increases initially, mainly due to that the 

additional anticlockwise rotational moment as the mass centre of internal water moves leftwards. 

During this process, the impact force on the left hand side increases, because the deadrise angle on 

the left hand side becomes smaller. This will increase the clockwise moment and make the rate of 

the increase of   decline. When the impact moment balances the moment due to internal one, 

the angular velocity curve reaches a peak, which occurs at 0.32t    for 1 0.784H    . It is 

interesting to see that the time is close to that of the trough in Fig. 6(a) for the vertical velocity. After 

the peak, the acceleration changes to deceleration, and eventually the tank begins to rotate in the 

opposite direction. The horizontal velocity in Fig. 6(b) increases initially and then decreases. This 

is mainly due to the increase of impact pressure on the left hand side at the earlier stage. As the 

anticlockwise motion continues, the deadrise angle on the left hand side becomes smaller and the 

one on the right becomes larger. The horizontal component of the force on the left becomes much 

smaller than its vertical component, while it is opposite on the right. As a result, the total horizontal 

force changes its direction and the horizontal velocity begins to decline.  

  As the fluid inside the tank moves, different fluid particles would move with different 

accelerations, which may lead to that the total inertial force becomes different from that of a solid 

ice with the same weight. It is then possible that the inertia force of water in the vertical direction is 

smaller than that of ice, and the liquid wedge tank is therefore easier to decelerate and accelerate. 

Thus in Fig. 6(a), the vertical velocity of the tank with water varies more rapidly than that with the 

ice during either the deceleration period or the acceleration period. Similarly in horizontal direction 

or rotational direction, the motion of fluid inside the tank makes the tanks far more responsive to 

the impact force.  
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Fig. 6. Velocities versus time 't  for water entry of a wedge tank ( 0 / 4  , 0 0  ) with water 

or ice of different depth: (a) vertical, (b) horizontal and (c) rotational.  

3.3 Water entry of a wedge tank with internal water of different densities 1   

The fluid inside the wedge tank may have different densities. A typical example on a ship is the 

liquefied natural gas, or a ship container with a mixture of water and sand, whose physical 

characteristics are similar to fluid, but the density is much larger. Fig. 7 shows the time histories of 

velocities of the wedge tank with 1  equal to 1, 2 and 3 respectively, in which 1H   is set as 0.392 

and the initial velocities as 0 0U    , 0 1W     and 0 =1.02  . As discussed above, the vertical 

velocity of the tank increases due to gravitational acceleration at the initial stage of impact. When 

1  is larger, the weight is larger relative to the impact force. The duration of acceleration is longer, 

and the first peak point of the vertical velocity moves rightwards in the time history curve. After the 

peak, the velocity decreases due to the increased impact pressure and wetted area. It will increase 

again due to the decrease of impact pressure, and then reach the second peak. The prominent 

difference between the cases of water and ice block is the much more obvious trough in the former 

in Fig. 7(a), which is due to the fact that the tank with fluid is more responsive to the change of 

impact force. For the same reason, the peaks and troughs of the horizontal and rotational velocities 

in the case of tank with liquid are much larger. It is interesting to see that as time increases the results 

of the cases of both liquid and ice tend to be very close. As it can be seen from the results, the 

accelerations tend to constant as time increases. The accelerations of most fluid particles inside the 

tank also tend to the same in such a case, except that within the small area near the intersection point 

between free surface and body surface, where the fluid particle may move with different 

accelerations. Accordingly, the free surface tends to move upwards along the tank wall. It is of 
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interest to see that the troughs at different 1   occur almost at the same time, and it is similar in 

the subsequent peaks. Similar patterns can be seen in Fig. 7(b) and (c). This is because when the 

fluid depth inside the tank is the same, the natural periods at different densities are the same and the 

internal liquid motion follows a similar time scale. Also at larger 1  the magnitude of vertical 

velocity is larger because of larger weight, while the magnitudes of horizontal velocity and rotational 

velocity become smaller due to larger mass. 
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Fig. 7. Velocities versus time 't   for the water entry of a wedge tank ( 0 / 4   , 0 0   , 

1 0.392H   ) with internal liquid of different densities: (a) vertical, (b) horizontal and (c) rotational.  

3.4 Water entry of a wedge tank with different initial angular velocities 

Fig. 8 provides the time histories of accelerations and velocities of the wedge tank with 

1 0.196H     and 1 1   . The initial rotating velocities 0
   are set as 0, 0.51 and 1.02 

respectively, with 0 0U   . In Fig. 8(a), it can be seen that the accelerations at different 0
  all 

decrease and become deceleration very rapidly, and the rate of change is larger at larger 0
 . They 

reach a different trough around the same time 't , which is not too much affected by 0
 . After the 

trough, the acceleration increases rapidly again initially and then the rate of increase declines. In 

fact, the vertical acceleration is mainly attributed to the fluid force exerted on the outer surface of 

the wedge. The forces increase both with fluid pressure which mainly depends on the entry speed, 

and the wetted area which increases with s . At very small t , the velocity W   increases because 
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of the acceleration motion. Very rapidly, the hydrodynamic force will increase, which will reduce 

the acceleration. As the force increases further, the body motion enters deceleration. All these 

happen in a very short period of time, as shown in Figs. 8(a) and 8(b). As t  further increases, the 

wetted surface increases while W   tends to zero. It is expected that the body may bounce upwards 

eventually. This is however beyond the scope of the current study as the focus of the work is on 

water entry. For the case of 0 0  , the inner liquid is stationary and the results coincide with 

those corresponding to ice block. As discussed at the last paragraph of Sec. 3.2, generally the 

motions with the liquid and ice will be different, even when the liquid is stationary, but an exception 

is when =0  and 0U   , which is reflected in the results here. As 0
  increases, the trough 

of the acceleration curve becomes lower, which is even much lower for the case with water, as 

shown in Figs. 8(c) and (e). However, the difference between the acceleration curves is mainly in a 

small region near the trough. As a result the curves for W   are all very close. This indicates that 

the external vertical forces are similar in these cases. Figs. 8(e) and (f) show a larger 0
  leads to 

a larger rotational acceleration in the same direction at the initial stage. This is because the rotational 

moment due to external impact force is small at the initial stage and the difference in the angular 

acceleration is principally caused by the motion of the inner liquid.  
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Fig. 8. Water entry of a wedge tank ( 0 / 4  , 0 0  , 1 0.196H   ) at different initial angular 

velocity ( 0 0U   , 0 1W   ) with water and ice block respectively, accelerations: (a) vertical, (b) 

horizontal and (c) rotational; velocities: (d) vertical, (e) horizontal and (f) rotational.  

We may also investigate the rationality of the assumption which treats the inner liquid stationary. 

Fig.8 shows that in terms of velocity the effect of the inner liquid is mainly on the horizontal and 

rotational motions, and they are replotted in Fig. 9 with the results of stationary water assumption. 

For a positive 0
 , the wedge rotates in the anticlockwise direction. The pressure on the left hand 

side of the wedge is larger, and therefore it pushes the body in the x  direction. The stationary 

liquid seems to be ‘lighter’ than the frozen ice block, and the horizontal velocity increases faster. 

When the liquid is in motion, its motion effect makes velocity increase even faster. The result 

strongly suggests that the movement of the inner liquid has major effect on the body motion and it 

has to be accounted for properly. Similar pattern can be observed in rotational motion. When the 

wedge rotates in the anticlockwise direction, the inner liquid will move to the left hand. This will 

further increase the rotational motion as can be observed in Fig. 9(b). 
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Fig. 9. Water entry as in Fig. 8: (a) The horizontal velocity and (b) rotational velocity 

Fig. 10 shows the pressure distribution on the outer surface of the wedge tank for the cases in Fig. 

8. They are given when the vertical distance the wedge has travelled reached at 0.02s  , 0.04, 

0.08, 0.12 and 0.27 respectively. When 0 =0 , the external pressure distributions on the tanks with 

water and ice are the same, as in such case the vertical velocity is same, as discussed in Fig. 8. When 
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0 0  , based on the discussion in Fig. 8, we can find that the tank containing water has a larger 

anticlockwise rotational velocity and acceleration. This would make the relative velocity between 

the wedge and water on the left hand side become larger, and correspondingly the deadrise angle on 

the left hand side becomes smaller. All these could make the impact pressure on the left hand side 

become larger. Intuitively, one might expect that on the left hand side, the pressure would be larger 

when the deadrise angle is smaller. However the pressure for the tank containing ice is larger, which 

in fact corresponds to larger deadrise angle. Here in addition to the rotation, the body simultaneously 

moves in the +x  direction. The tank with water moves faster than that with ice. This would lead 

the pressure on left hand side with water to decrease, and become even smaller than that with ice. 

That indicates that in some cases the movement of the inner liquid may increase the motion of the 

tank, but it may not increase the impact pressure. As the velocity magnitude of tank decreases at the 

later stage, the hydrostatic pressure becomes more important, and thus the pressure distributes 

approximately linearly. Also the rotational angles in the cases with water and ice tend to the same, 

and the pressures in Fig. 10(e) are therefore similar. Rapid variation can be observed in Fig. 10(e), 

especially inside the thin layer liquid along the wedge surface. Finer mesh and smaller time step for 

0 0   have been used to investigate specifically this oscillation, and results are shown in Fig. 

10(f, g), which corresponds to 0.458W   . It can be seen that smaller time step or finer mesh does 

not affect the oscillation of pressure in the thin layer at the jet root, and this implies that the 

oscillation is not because of non-convergence.  
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Fig. 10. The outer pressure distribution for the wedge surface at 0 1W     and 0 0U     and 

different initial angular velocities 0
 : (a) 0.02s  , (b) 0.04s  , (c) 0.08s  , (d) 0.12s  , 

(e) 0.27s  , (f) finer mesh for 0 =0  in (e), (g) smaller time step for 0 =0  in (e).  

Figs. 11 depicts the free surface profile inside the wedge tank. Free surface deformation becomes 

significant as the body rotates. In Fig. 11(a), the inner free surface remains approximately stationary 

relative to the tank. However, in Fig. 11(c), the free surface deformation becomes evident and there 

is a wave moving from the right hand side to the left. When the tank changes its rotational direction, 

the leftward motion of the free surface is suddenly blocked. As a result, the free surface moves 

upwards along the tank wall and a relatively thin layer of the fluid has formed in Fig. 11(d). The 

leftward motion of free surface can also be used to explain the phenomenon in Fig. 8, which shows 

the wedge containing water has a larger motion response. 
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Fig. 11. The inner free surface profile for wedge tank at 0 1W    and 0 0U    and different initial 

angular velocities 0
  : (a) 0.02s   , (b) 0.04s   , (c) 0.08s   , (d) 0.12s   , (e) 0.27s   , 

(solid line: 0 =0 , dashed line: 0 =0.51 , dash dotted line: 0 =1.02 ). 

Fig. 12 shows the pressure distribution on the inner liquid wedge surface. At 0 0   , the 

pressure is linearly distributed along the wedge surface, due to the fact that the internal water is 

stationary relative to the tank. When 0 0  , the pressure on the left hand side becomes larger 

than that at 0 0  , which is due to the leftward motion of inner water, while the pressure on the 

right hand side becomes smaller than that at 0 0  , except in a small area near the water surface, 

where the mutual interaction between the static water and suddenly moving body at 0t   makes 

the pressure become larger, as can be seen in Fig. 12(a, b). When t  is not small, the larger pressure 

near the water surface disappears, as can be seen in Fig. 12(c~ e). With the water rising up along the 

left tank wall, a thin layer of liquid forms. The pressure along the thin layer is close to atmospheric 

one, as can be seen in Figs. 12(d) and (e).  
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Fig. 12. The pressure distribution along the inner wedge wall at 0 1W     and 0 0U     and 

different initial angular velocities 0
 : (a) 0.02s  , (b) 0.04s  , (c) 0.08s  , (d) 0.12s  , 

(e) 0.27s  , (solid line: 0 =0 , dashed line: 0 =0.51 , dash dotted line: 0 =1.02 ) 

4. Conclusions 

The problem of water entry of a wedge tank filled with liquid in free fall motion has been solved 

using the boundary element method, based on velocity potential theory with fully nonlinear 

boundary conditions. Extensive simulations have been undertaken for a wedge tank with liquids of 

different densities and depth, as well as frozen ice respectively, from which the following 

conclusions can be drawn. 

(1) There are two time scales corresponding to water entry and sloshing motion inside the tank 

respectively. The sloshing period is usually much larger than the duration of interest in water entry.  

This implies that the effect of the liquid is mainly due to its initial motion rather than the full 
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oscillatory sloshing motion, especially at a larger 1H  .  

(2) The oscillation of vertical velocity is mainly due to the variation of impact force rather than the 

oscillation of internal water. In contrast to the case with ice, the motion of the inner liquid can make 

the tank far more responsive to the impact force, especially in horizontal and rotational motions. An 

exception is that when there is vertical motion only, in which the free surface will remain stationary 

relative to the tank, and the motion with the liquid is the same as that with ice. In general, while the 

earlier results may be different, as time increases, the results of both velocities and accelerations 

with liquid tend to those with ice.  

(3) At different 1 , the trough of vertical velocity and the subsequent peak both occur almost at 

the same time. Similar patterns can be seen in horizontal and rotational velocities. This is because 

the natural periods at different densities with the same fluid depth are the same and the internal 

liquid motion follows a similar time scale. As 1  increases, the magnitude of maximal vertical 

velocity becomes larger because of larger weight, while the magnitudes of maximal horizontal 

velocity and rotational velocity become smaller due to larger mass. 

(4) The impact pressure depends on the deadrise angle and relative velocity between wedge surface 

and fluid, as in general water entry problems. The relative velocity is affected by motions in three 

degrees of freedom. The internal liquid has different effect on each of these three modes, which 

makes its overall effect on the impact pressure more complex. It is possible at smaller deadrise angle 

the impact pressure may be smaller. 

(5) As the duration of impact is short, the motion of the inner liquid is mainly towards one side. It 

is expected for a longer duration, the oscillatory sloshing motion of the liquid will have a major 

effect and the velocity of the wedge may reverse its direction. These will be investigated in the 

future work.  
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