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ABSTRACT 

Location is a key filter for mobile services, including navigation 

or advertising. However, positioning and localization inside 

buildings and in indoor spaces, where users spend most of their 

time and where the signals of the most widely-used positioning 

system, i.e. Global Navigation Satellite Systems such as GPS 

(Global Positioning System), are not available, can be 

challenging. In this regard, Wireless Local Area Networks 

(WLAN), e.g. Wi-Fi, can be used for positioning purposes by 

using a WLAN-enabled device, e.g. a smartphone, to measure 

and match the Received Signal Strength (RSS) of a signal 

broadcast by an access point. The challenges of this approach 

are that accurate maps of RSS are required, and that measuring 

RSS can be affected by many factors, including the dynamics of 

the environment and the orientation and type of a device. This 

paper provides a path-loss model to produce RSS maps 

automatically from floor plans and introduces an agent-based 

simulation approach to investigate different positioning 

methods. This provides a pathway to reduce the time and effort 

associated with WLAN positioning research. 
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1 INTRODUCTION 

Many everyday services and applications, such as navigation, 

location-based advertising, and even emergency services, rely 

on location. While GPS, and generally Global Navigation 

Satellite Systems (GNSS), are the most widely used positioning 

technologies for outdoor use, the GNSS signals are not available 

or reliable for indoor use [14]. This is particularly important 

because we spend most of our time inside buildings. Studies in 

the US show that an average person spends over 80% of their 

time indoors [15]. Therefore, it is important to have a low-cost 

or ideally free, widely available and accessible technology that 

can provide an accurate and reliable Indoor Positioning System 

(IPS). Among many currently existing technologies, most of 

which use signals not initially designed for positioning, e.g. 

WLAN and Bluetooth Low Energy (BLE), Radio-Frequency 

Identification (RFID), Mobile Communication Networks, WLAN 

seems the best indoor positioning technology for a variety of 

applications and services such as indoor navigation, or 

emergency services [5].  

WLAN antennas are cheap and already embedded in the 

smartphones, and broadcasting beacons can be found in many 

buildings. This provides high coverage and low cost, which 

have been identified as two important factors for an IPS to be 

used by a majority of indoor applications and services [5]. 

WLAN-based positioning mainly uses the Received Signal 

Strength Indicator (RSSI). The RSSI is a measure of signal 

strength between a WLAN beacon or Access Point (AP), which 

broadcast the signals and provides wireless connectivity to a 

wider network, and the antenna embedded in a WLAN-enabled 

device. However, WLAN signals can be easily affected by 

building features, e.g. walls and furniture, interference due to 
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other signals [6], and the dynamic nature of their environment, 

e.g. people moving around.  

In order to convert the RSSI measurements to a location, it 

is normal to match the measured RSSI against a previously 

produced RSSI map.  There are two main approaches to 

producing an RSSI map (A) modelling the signal propagation, 

and (B) fingerprinting [8]. Fingerprinting currently seems to be 

more accurate but requires measurement on-site, which can be 

time-consuming and costly. If signal propagation modelling can 

be improved to handle measurement noise and the effects of 

the environment, it could facilitate automatic RSSI map 

creation.  

Understanding the effects of measurement noise and the 

environment on RSSI is highly empirical, requiring access to 

physical locations to undertake experiments. While some may 

share their fingerprinting data sets and position traces to help 

reproduce results and allow further research  (e.g. Mendoza-

Silva et al [19]), these do not directly help investigate 

fundamental variables of accuracy such as building layout, 

WLAN beacon locations, underlying environment dynamics, 

and measurement methodology.  

In this regard, this paper introduces an agent-based 

simulation approach for an IPS based on signal propagation 

modelling.  

Compared to other modelling approaches, Agent-Based 

Modelling (ABM) can have the potential to represent small-

scale processes in a more detailed and specific manner, 

allowing researchers to gain precise information on how a 

system functions [18]. Another strength of ABM is its ability to 

represent space and the relative locations of individuals 

accurately and explicitly. This feature can be of particular 

importance in situations where the characteristics of a 

particular spatial behavior could have a significant influence on 

global outcomes [21]. In this investigation, local spatial 

structure is of fundamental importance to model outcomes, so 

this advantage of ABM is especially relevant. 

One issue that has often been highlighted with respect to 

ABM research is the difficulty of verification and validation of a 

model and its results. ABMs typically require different 

approaches from other computational models [27] and while 

various authors have presented their own schemes for 

“verification” and “validation”, there is not universal agreement 

on what the terms mean in the context of ABM. For model 

verification, for example, some focus on good programming 

practice [10], others on whether a model replicates large scale 

patterns observed in the real world [21], while others have 

proposed narrower mathematical procedures, involving the 

representation of models in alternative forms (e.g. [11]. Since 

this paper serves to introduce a model as a foundation for 

future work, verification and validation are considered only in 

the sense of how well certain model behaviors match the 

findings of empirical research. Further work could include a 

deeper approach to these questions, along with considerations 

of sensitivity [10], and robustness [9]. 

The IPS produces maps of signal strength automatically 

from floor plans. Several experiments evaluate the effect on 

accuracy of the positioning solution of both map error and 

noise during signal strength measurement. A better 

understanding of error correction methods allows for faster, 

more robust data collection, including by crowdsourcing, 

which can further improve signal propagation models in a 

virtuous circle.  

The paper is structured as follows: section 2 explains the 

WLAN-based positioning techniques, map creation and the 

sources and the impacts of noises on RSSI. Then the simulation 

methodology is discussed in section 3. Finally, section 4 

discusses the experiments and the results, followed by a 

conclusion. 

2 WLAN-BASED POSITIONING 

There are several methods to convert RSSI measurements to a 

location [23]. The most straight-forward are geometric 

techniques, such as trilateration, however these are not 

generally used as they are based upon signal propagation in 

free space and are poorly suited to non-Line of Sight (LoS) 

readings typical of an indoor environment [23]. Instead, the 

main approaches match signal data to an RSSI map through 

deterministic and probabilistic methods. Deterministic 

methods associate each map location with a single set of RSSI 

values and find the best fit to the measured RSSI through 

minimizing a cost function such as a Euclidean distance [23]. A 

typical deterministic algorithm is k-nearest neighbor [4]. On 

the other hand, probabilistic methods consider each location to 

have a range of RSS values due to noise in RSS measurement. 

These may be described as histograms based on the results of 

fingerprinting [29] but are more compactly described as 

parametric distributions, e.g. Gaussian [12]. Probabilistic 

methods naturally lead to extended Bayesian approaches 

which maximize the probability over a set of measurements 

over time, such as conditional random fields [28], Kalman 

filters [1] and particle filters [20], or Hidden Markov Models 

[24].  

Fingerprinting is the most accurate and widely used 

approach for RSSI map creation[4]. Fingerprinting is based on 

measuring RSSI at known locations through site survey, with 

considerable time and effort [4]. This initial effort must be 

repeated to update the fingerprint as it will otherwise decrease 

in accuracy as the underlying environment changes. 

Approaches to lessen or eliminate the survey effort include 

improved mapping and localization algorithms which require 

less fingerprinting data [2], proposals to crowdsource the 

fingerprinting data [26], and improvements to signal 

propagation modelling [16]. Signal propagation models use 

simplified knowledge of how signal strength reduces with 

distance and presence of obstacles to estimate RSSI from some 

inputs, e.g. an internal plan of the building. 
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RSSI measurements are highly dependent on the 

measurement methodology. An RSSI value may be attenuated 

by several sources of systematic noise in the measurement: 

fading due to multiple signal paths [29]; device-based e.g. the 

choice of device used and device orientation [25]; user-based 

e.g. user orientation and the way a device is held [22]; and 

dynamic changes to the environment such as the presence of 

other people [22]. In a research setting, collection of testing 

data can be controlled to ensure the methodology is similar to 

the underlying fingerprint, however, any widely used IPS must 

allow for user heterogeneity. This requires methods to correct 

for this noise in measured RSSI data before comparison to an 

RSSI map. Additionally, the map itself needs to be as 

independent of measurement noise as possible. For 

fingerprinting, this is often obtained through additional effort 

e.g. multiple measurements are taken in different orientations 

at each location to account for this source of noise.  

3  METHODOLOGY 

Agent-Based Modelling typically involves the creation of a 

computer simulation in which entities in a real-world 

environment and their behaviors and interactions are 

represented explicitly, in order to study key features of a 

system [10]. The utility of this technique for the representation 

of human systems is well-established [3,7].   

The Netlogo package was used to build a model of a user 

being located by an IPS. This is not a traditional agent-based-

model – it has only a single agent, whose only action is to move 

randomly to create RSSI readings for an IPS – however Netlogo 

can readily implement this and has the ability to systematically 

test changes to inputs. 

3.1 Environment and Entities 

The environment of a building is represented by a two-

dimensional (2-D) floorplan of walls. In this instance, the 70m 

by 100m floor of a stylized shopping center. Three types of 

entities exist within the environment, however only the user is 

referred as an agent in this paper, albeit the other two are 

modeled as “turtles” in Netlogo. Beacons are a static entity with 

nothing more than a location. The user is the entity being 

localized and moves around the environment. The third type of 

entity is people, moving around the environment and 

potentially affecting the RSSI measurement. While the user is 

affected by interactions with them, people themselves are not 

affected by interactions, hence they are not referred to in this 

paper as agents. In this simple instance, movements of the user 

and other people are assumed to be random and unconstrained 

by walls or other entities. A typical configuration is shown in 

Figure 1.  

 

 
Figure 1: Simulation environment 

3.2 Map creation 

Creating synthetic RSSI values for the environment is achieved 

through signal propagation modelling. This will not be accurate 

to the real fingerprint for the reasons we are trying to improve 

signal propagation modelling. However, by producing a 

synthetic fingerprint with a detailed signal propagation model 

and then producing the map using a simplified signal 

propagation model with less floor plan information, it is 

believed that the spatially correlated errors are analogous to 

propagation modelling of real RSSI data, and that it is the 

relative error between RSSI value and the map which 

determines IPS accuracy.  

Each 1m2 cell has a synthetic fingerprint, generated by a 

standard signal propagation model known as the Wall 

Attenuation Factor (WAF) model [4] which takes the straight-

line distance between the user and a beacon along with the 

attenuation effect specific to any intervening walls. The model 

formula is: 

RSSI = 𝑃𝐿(1) − 10𝑛 log10 𝑑 − ∑𝑊𝐴𝐹  (1) 

Where PL(1) is RSSI at a distance of 1 meter, d is distance in 

meters, n represents the decrease in intensity with distance 

(depending on reflection and attenuation effects); and WAF is 

the loss of signal due to attenuation through a wall. 

Each cell also has a RSSI map approximation calculated with 

a simpler WAF model based on less information – not all walls 

are visible to the map model and the specific attenuation effect 

of each wall is unknown. 5 different map models were 

considered which provide a range of error against the 

fingerprint: the fingerprint itself can be used; two WAF models, 

one that has been fitted to the fingerprint data by linear 

regression and one with pre-determined parameters (based on 

the average wall attenuation); and two free space models 

which do not account for the presence of walls, again with one 

fitted to the data and one with pre-determined parameters. The 

simulation parameters controlling wall attenuation and 

visibility were modified so the fitted WAF had a typical Root 

Mean Square Error (RMSE) against the fingerprint of circa 3-5 

dBm, reflecting empirical results [4]. 
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3.3 Positioning  

To estimate their position, the user generates an RSSI scan for 

their current position, generated by the fingerprint plus noise 

during measurement, and compares it against the map using an 

algorithm. The IPS accuracy is measured as the distance 

between the estimate and actual location.  

There are 4 types of measurement noise considered in the 

model: fading, attenuation due to the movement of people 

across the signal paths, device heterogeneity and orientation. 

Parameters for each were chosen as follows: fading noise is 

represented as a Gaussian distribution with standard deviation 

2.5dBm to give a typical range of 10dBm [29]; each person in 

the direct signal path attenuated the signal 5dBm, scaling down 

a 10dBm effect noted in LoS situations [22]; device 

heterogeneity was represented by a change in RSSI 

measurements between model runs, uniformly distributed 

between -10dBm and 10dBm [25]; and orientation was 

represented by a bell–shaped attenuation with peak of 15dBm 

and width of 1.2 radians.  

Two well-known positioning algorithms were used: a k-

nearest-neighbor (k-NN) algorithm with k=3; and a Bayesian 

algorithm based on each cell having a Gaussian distribution 

with mean equal to the fingerprint and identical standard 

deviation.  

3.4 Experiments 

Two experiments are undertaken to analyze the effect on 

location error: 

 Investigating variance in the number of RSSI readings and 

algorithm, through changing the number of beacons and 

taking multiple scans for each position estimate (within a 

single second so with the user at the same location). The 

scenarios and observations are summarized in Table 1. 

For each of the 18 scenarios of interest, 80 permutations 

of path-loss and noise error were generated, with each 

permutation repeated five times, for a total of 7,200 

different model runs. Each model was run for 300 steps, 

with average errors measured across all steps.  

 Investigating the interaction of the errors in the path loss 

model and error due to noise effects. Beacon numbers and 

scans per estimate were held constant at moderate values. 

The k-NN algorithm was used as it had a shorter running 

time. The scenarios and observations are summarized in 

Table 2. There were 80 permutations of path-loss and 

noise error, as before, with each permutation repeated ten 

times for a total of 800 model runs. Each model was run 

for 300 steps, with average errors measured across all 

steps. 

 

 

 

Table 1: Setup of experiment 1: variance in number of 
RSSI readings 

Parameter Variation 

Number of beacons 3, 6, 12 

Scans per estimate 1, 4, 8 

Algorithms k-NN, Bayesian 

Path loss model Fingerprint, WAF, unfitted WAF, 

free space, unfitted free-space 

Noise effects  Device heterogeneity on / off 

Device directionality on / off 

Number of people 0 2 4 6 

Observation  Description 

Location error Mean average location error 

(metres) 

RSSI error RMSE of error between expected 

RSSI at user’s location and the 

actual RSSI caused by path loss 

errors and noise effects (dBm) 

 

Table 2: Setup of experiment 2: interaction of location 
and noise error  

Parameter Variation 

Number of beacons 6 

Scans per estimate 4 

Algorithms k-NN 

Path loss model Fingerprint, WAF, unfitted WAF, 

free space, unfitted free-space 

Noise effects  Device heterogeneity on / off 

Device directionality on / off 

Number of people 0 2 4 6 

Observation  Description 

Location error Mean average location error 

(metres) 

Path-loss error RMSE of error between expected 

RSSI at user’s location and the 

actual RSSI caused by path loss 

error (dBm) 

Noise error RMSE of error caused by noise 

effects (dBm) 

4 RESULTS 

For a constant number of beacons, increasing the number of 

scans decreased location error for a given level of RSSI error. 

The improvement is only material for low overall levels of RSSI 

error, in the order of 5dBm and below. This is as expected, as 

multiple scans at the same location generates multiple 

measurements of fading error but other errors are identical. 
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Hence, when fading error is a small contribution to overall 

error, additional scans do not improve accuracy.  

Increasing the number of beacons decreased the location 

error at all values of RSSI error. It is believed that this effect is 

due to having beacons closer to the user. This improves 

positioning as closer beacons have greater signal change 

between adjacent cells. 

The K-NN and Bayesian algorithms performed similarly. 

This is an artefact of the modelling process, as without 

knowledge of the RSSI variance at each location, maximizing 

the Gaussian probability is effectively identical to minimizing 

the Euclidean distance between signals, as per the k-NN 

algorithm.  

At high levels of RSSI error, the location error appeared to 

have an upper bound of around 45m, based on the relative 

performance of estimating position randomly. This upper 

bound has no significance beyond the model environment size 

and modelling of user movement. For all categorizations of 

results there was a breakpoint around 5dBm RSSI where the 

gradient of location error against RSSI error decreased.  

The combined effects of path-loss error and noise error (as 

calculated through an IDW interpolation) are shown in Figure 

2. Location error increases most quickly as path loss and noise 

errors increase to 5dBm. The change in location error is less 

pronounced thereafter, which confirms the results shown in 

Figure 3. Both error types have a similar effect on location 

error, except that the worst-performing path-loss models (i.e. 

the unfitted free-space model) have an exceptionally high 

location error, which is likely due to its bias to over-estimating 

distances.  

 

 
Figure 2: Effect of noise and path-loss errors on location 

error  

 

An interesting effect of the interaction between the two 

error types can be seen: location errors form two peaks with 

high path-loss error and low noise error, and vice versa. If error 

levels are already high, an increase in the other error type has 

little effect.  

 

 
Figure 3: Results for varying measurements and algorithm 

5 CONCLUSION AND FUTURE WORK 

This paper demonstrates the capability of a simulation to 

evaluate different aspects of indoor positioning services 

performance. Specifically, it reproduces expected phenomena 

of greater accuracy with increased numbers of scans and 

beacons and it explores the relationship of IPS accuracy against 

two underlying types of error, RSSI map quality and 

measurement noise. It identifies a rapid decrease in accuracy 

within the first 5dBm of error, highlighting the difficulty of 

creating a system that works robustly in real-world conditions. 

The proposed system can work with a wide range of sources of 

error: the ability to consider different RSSI map quality, the 

inclusion of noise from other people, the possibility of 

heterogeneous devices and a sophisticated model of device 

attenuation.  
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Using this framework to replicate existing empirical 

research fulfils a dual purpose of validating the model and 

generalizing empirical results from their specific environments 

and methodologies.  

Future work will hopefully include investigating the 

robustness and convergence conditions for recently proposed 

error correction methods based on crowdsourcing and 

unsupervised machine learning. This would require multiple 

agents with more sophisticated agent behavior e.g. movement. 

Also, comparing the results of models with real-world RSS data 

can give a better understanding of the replicability of the 

model. This will also help to recognize other potential sources 

of errors to be incorporated in an ultimately universal model.  

Such model needs a robust measure that can quantify the 

effects of the incorporated parameters. For this a variance-

based global sensitivity analysis [13,17] can be carried out. 
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