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Abstract
The process of entry into a host cell is a key step in the life cycle of most
viruses. In recent years, there has been a significant increase in our
understanding of the routes and mechanisms of entry for a number of these
viruses. This has led to the development of novel broad-spectrum antiviral
approaches that target host cell proteins and pathways, in addition to
strategies focused on individual viruses or virus families. Here we consider
a number of these approaches and their broad-spectrum potential.
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Introduction
Although not a guarantee of successful infection, entry into 
a host cell is a critical stage in the life of a virus1,2. Once 
inside a cell, a virus still needs to overcome a hostile environ-
ment, evade immune responses, and subvert a range of cellular  
proteins and pathways to facilitate its replication. However,  
finding a permissive cell and delivering genetic information into  
its cytoplasm, and in some cases nucleus, is the first neces-
sary step for viral infection. This has at least two important 
implications from a prophylactic and/or therapeutic perspec-
tive. The first is that blocking viral entry stops infection early on,  
preventing viral replication. The second is that because many 
viruses exploit cellular endocytic mechanisms to initiate  
internalization and infection, and cells have just a few such 
mechanisms, inhibiting these pathways may affect many dif-
ferent viruses, greatly expanding our currently limited antiviral  
portfolio.

It is now well established that, after initial attachment to the 
cell surface, many viruses, both enveloped and non-enveloped, 
exploit changes in environmental conditions, such as pH, inter-
action with a cellular receptor, or the activity of proteolytic 
enzymes, to trigger conformational changes in key proteins that  
mediate cell membrane penetration1–3. For enveloped viruses, 
the virus lipid bilayer needs to fuse with the cellular limit-
ing membrane (either the plasma membrane or the membrane 
of endocytic organelles) to release the viral genome, and this  
is mediated by viral envelope proteins. For non-enveloped 
viruses, genome release is affected by viral capsid proteins that  
trigger cell membrane penetration and genome release.

While some viruses fuse directly at the plasma membrane, 
the majority use endocytic mechanisms to reach intracellular  
compartments, with clathrin-mediated endocytosis (CME),  
caveolin-mediated endocytosis, macropinocytosis, and phago-
cytosis currently being the best characterized of these path-
ways. CME in particular is exploited by numerous viruses, 
including alphaviruses, flaviviruses, orthomyxoviruses, and  
rhabdoviruses1,2, while macropinocytosis is linked to the uptake 
of larger viruses, such as poxviruses and filoviruses, that do not 
fit into clathrin-coated vesicles4–6. Thus, inhibiting these pathways  
might be expected to impact on a range of different viruses.

In this review, we summarize the main therapeutic approaches 
that target different stages of viral entry (Figure 1), either by 
inhibiting virus-specific interactions or by blocking conserved 
cellular mechanisms that viruses exploit to enter cells.  
This latter tactic is indicative of a change of focus for viral 
therapeutics, combining more traditional approaches directed 
at specific viruses with novel cell-targeted strategies with  
broad-spectrum potential.

Inhibition of cell adhesion
The first step in viral entry is virus adhesion to the cell sur-
face. Regardless of the requirement to engage specific recep-
tors, viruses often use non-specific electrostatic interactions with  
negatively charged sugars to attach to a cell surface until they 
encounter a specific entry receptor. Negatively charged heparan 

sulfate proteoglycans (HSPGs) are expressed on the surface 
of most eukaryotic cells and have been shown to be required 
for the binding of many viruses, including human immuno-
deficiency virus (HIV), herpes simplex virus (HSV), human 
cytomegalovirus (HCMV), human papilloma virus (HPV),  
respiratory syncytial virus (RSV), and flaviviruses7–10. Inhibi-
tion of these interactions through the development of “decoy” 
particles mimicking these molecules (heparin, sulfated polysac-
charides, or sulfonic acid-coated nanoparticle) can effectively 
prevent infection in vitro. However, limited efficacy is seen  
in vivo, possibly owing to the poor bioavailability of these for-
mulations. While high-molecular-weight molecules with a high  
degree of sulfation have the highest antiviral activity in vitro, 
these compounds tend to bind to plasma proteins and have poor  
bioavailability11,12. Conversely, low-molecular-weight compounds 
have better bioavailability and are more effective in vivo13  
but are also associated with higher cytotoxicity, possibly owing  
to detergent effects on cellular membranes.

Virucidal activity may also be required to increase in vivo 
efficacy. Cagno et al. have shown that nanoparticles carry-
ing long, flexible linkers mimicking HSPGs can simultane-
ously bind multiple sites on a virus and cause permanent 
distortion of the virion structure. This virucidal activity was suf-
ficient to inhibit RSV infection in mice, suggesting that particles  
mimicking the negatively charged cellular surfaces to which 
viruses bind have the potential to be effective antivirals, as  
long as they include the capacity to inactivate viral infectivity14.

It is important to note that sulfated polysaccharides are also known 
to have anticoagulant activity, but derivatives exist that do not 
show these properties in vivo at therapeutic doses (e.g. fucoidan,  
galactan, and xylomannan)12.

Other molecules that target common cellular components also 
have the potential to interfere with attachment and to have broad-
spectrum antiviral activity. Cyanovirin-N is a naturally occur-
ring lectin that has been shown to inhibit the attachment of  
HIV15 and Ebola virus (EBOV) to cells16, most likely by bind-
ing to high-mannose oligosaccharides on the viral glyco-
proteins. The same mode of action may prevent infection by  
other viruses, though this remains to be tested, as does in vivo  
efficacy.

Inhibition of receptor binding
Cell surface receptors
While often involved in virus adhesion to cell surfaces, nega-
tively charged sugars associated with cell surface glycopro-
teins and glycolipids can also act as virus receptors (e.g. sialic 
acid for influenza) or enable an interaction of sufficient strength 
to allow internalization of a virus by endocytosis, as may  
be the case for flaviviruses and filoviruses17,18. Both virus- and 
cell-targeted approaches have been studied to prevent the inter-
action between influenza hemagglutinin (HA) and sialic acids 
(SA) on glycoprotein and glycolipid receptors. Virus-targeted 
strategies include the use of protease inhibitors that block the 
processing of HA and peptides or small molecules that interfere  
with HA binding to SA. The most promising cell-targeted  
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Figure 1. Schematic representing the main stages of viral entry. Processes inhibited by the antivirals described (attachment, receptor 
binding, endocytosis, trafficking, endosomal acidification, and fusion) are indicated.

strategy is the attachment inhibitor DAS181, a recombinant pro-
tein made of a sialidase catalytic domain (which removes SA 
from influenza receptors) and a mucosal cell-surface anchor-
ing sequence. This compound, highly potent in vitro (IC

50
 

between 0.04 and 0.9 nM), has been shown to be non-toxic to 
cells and to be effective in vivo when administered pre- and  
post-exposure19. A phase II trial showed reduction of viral load 
over 5 days’ administration at 10 mg/kg/day20, and phase III  
trials are ongoing. A comprehensive overview of inhibitors of  
HA–SA interaction is presented by12,21.

For other cell-surface virus receptors, maraviroc (FDA approved 
in 2007) is currently the only drug that inhibits viral entry. 
Its target is CCR5, the major co-receptor required for HIV 
infection of CD4-positive cells22. Maraviroc was developed  
by Pfizer through screening of their compound library and sub-
sequent additional screens to improve activity and pharmaco-
logical properties of the initial hit compound. In combination 
with at least two additional anti-retroviral drugs, maraviroc is 

currently used in HIV-infected patients showing resistance to 
other compounds23. While some limited development of resist-
ance has been observed, the frequency of this is not clear22 and  
is usually associated with multiple mutations in the HIV enve-
lope protein that generally cause a significant decrease in 
viral fitness24. This notion, that viral adaptations to overcome 
inhibitors acting through cellular targets can weaken the virus,  
is a potentially significant and interesting advantage of  
host-targeted antiviral strategies.

An alternative tactic is to inhibit the synthesis of cellular mem-
brane glycoproteins that function as receptors for specific 
viruses. Cyclotriazadisulfonamide (CADA), a small-molecule 
inhibitor of HIV replication, has been found to specifically 
inhibit the synthesis of the HIV receptor CD4 by binding to 
the protein signal sequence in the Sec61 translocon during the  
co-translational insertion of the nascent protein into the  
ER membrane25. Decreased levels of CD4 render potential 
host cells refractory to HIV-1 infection and presumably  
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HIV-2, HHV6, and any other viruses that use CD4 as a recep-
tor. Whether this approach is effective in vivo and whether it  
can be developed to inhibit the synthesis of a broader range 
of virus receptors remains to be seen (see 25 for a discussion 
of evidence for other compounds that inhibit the synthesis of  
specific cell-surface proteins).

Inhibiting the interaction of a virus with target cells is also 
one of the main modes of action of antibodies, and the identifi-
cation and generation of such antibodies remain major strate-
gies for antiviral immunotherapies. The development of small 
molecules that mimic the effect of antibodies and can be 
administered orally also has potential. Scientists from Janssen  
developed such an approach starting from the identifica-
tion of a broadly neutralizing antibody, bnAbCR6261, that  
targets a conserved region in the stem of influenza HA. They 
then used a displacement screening strategy to identify small  
molecules that could bind to the same region as the antibody.  
Further medicinal chemistry on the most promising hit led  
to compound JNJ4796, a benzylpiperazine derivative able to 
inhibit influenza infection in 3D cultures of human bronchial 
epithelial cells and in a mouse model. Encouragingly, protec-
tion from lethal challenge was seen after oral administration in  
this latter model26.

Intracellular receptors
While most virus receptors are found at the cell surface, some 
viruses also interact with receptors inside endo-lysosomal 
compartments following their endocytosis. For example, EBOV 
uses the lysosomal protein Niemann Pick C-1 (NPC-1)18,  
while Lassa fever virus has been shown to interact with  
LAMP1, another lysosomal protein27. Antibody targeting of 
these interactions is complicated by the intracellular localization 
of the receptors. However, an exciting technology that has  
recently been expanded to viral infection is the development 
of bispecific antibodies. By linking the variable regions of an  
antibody recognizing the EBOV glycoprotein (GP) glycan cap  
(FV-M09) with the variable regions of antibodies recognizing  
either NPC-1 (mAb-548) or the NPC-1 binding region on  
GP (MR72), Wec et al. showed that this bispecific antibody  
bound to EBOV is internalized into endo-lysosomal com-
partments where it potently blocks Ebola interaction with its  
intracellular receptor28. This strategy, already tested for HIV29, 
has been shown to protect mice, even when administered 2 days  
after challenge with EBOV28.

Small-molecule inhibitors of NPC-1 that accumulate in endo-
somal compartments like U18666A18 and the piperazine-derivative  
3.4730 also effectively block EBOV infection in vitro, the first 
by inducing cholesterol accumulation in the lysosomes and the  
latter by directly interacting with NPC-1.

Non-enveloped viruses
Compounds also have been developed that selectively bind to 
non-enveloped virus capsid proteins to prevent interaction with 
cellular receptors or uncoating. One example is the enterovi-
rus capsid inhibitor pocapavir31, which has been tested as an 
investigational drug to treat neonatal viral sepsis32 and has also 
been trialed against the spread of attenuated poliovirus from 

vaccinated individuals11. Pocapavir and other capsid bind-
ers fit into a hydrophobic pocket in the viral particle, preventing  
conformational changes required for uncoating33, but have the 
disadvantage of selecting for drug-resistant mutants. More 
recently, a conserved VP1–VP3 interprotomer interface in the 
viral capsid, critical for the conformational changes neces-
sary for RNA release, has been proposed as an alternative drug-
gable target. Compounds binding to this interface have been 
shown to be active against a larger number of enteroviruses and  
also against rhinoviruses, though their ability to induce  
resistant variants has yet to be investigated34. Tryptophan  
dendrimers that target the 5-fold-axis of the enterovirus-A71 
capsid have also been shown to have antiviral potential in vitro  
by preventing virus interaction with the (co-)receptors PSGL1  
and heparan sulfate35.

Inhibition of internalization
For viruses that do not penetrate directly at the plasma mem-
brane, endocytosis is an essential step in the entry process. 
Endocytosis can be blocked by compounds that interfere with 
signaling cascades necessary to activate endocytosis or that 
inhibit the endocytosis machinery directly. The PI3K-AKT  
signaling pathway, for instance, has been shown to be required 
by a variety of viruses36,37, and its inhibition can prevent infec-
tion in vitro6. Similarly, vaccinia virus (VV) entry requires  
signaling through epidermal growth factor receptors (EGFR), 
serine/threonine kinases, protein kinase C, and p21-activated  
kinase 1 in addition to PI3K, and entry of at least some VV strains 
is sensitive to the tyrosine kinase inhibitor Genistein38. However, 
studies of their effectiveness in vivo are limited. While there  
is evidence that preventing PI3K/AKT activation reduces patho-
genesis in mice infected with the alphavirus Ross River, this 
is likely to be due to post-entry effects on virus replication  
and cellular metabolism37.

A number of research compounds exist that block endocyto-
sis directly, including PitStop, which inhibits the formation of 
clathrin-coated pits39, as well as Dynasore40 and the more potent 
derivative Dyngo-4a41, which interfere with dynamin. While 
these compounds have been shown to inhibit the entry of vari-
ous viruses in vitro, they have not been used therapeutically as  
antivirals. A study by Harper et al. showed that Dyngo-4a 
can inhibit botulinum neurotoxin type A endocytosis in neu-
rons in vitro; however, in vivo administration only delayed 
the onset of symptoms by ~3 hours in 60% of infected mice. 
Encouragingly, animals treated with Dyngo-4a did not  
show signs of toxicity at the concentrations tested42. Whether 
higher concentrations are required to see a stronger effect in 
vivo, whether these have higher toxicity (because of either  
inhibition of endocytosis or off-target effects), and whether 
virus infection is affected requires further investigation. Several  
other compounds including chlorpromazine, chloroquine, 
and Arbidol have also been shown to inhibit endocytosis and 
have an antiviral effect in vitro43,44, but efficacy in vivo has not  
yet been reported.

In a recent study, starting from phenotypic screening with  
representatives of different virus families, we identified two  
compounds, niclosamide and Tyrphostin A9, with very  
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broad-spectrum antiviral activity, affecting different stages of 
virus replication, including endocytosis45. The most likely mode 
of action is through dissipation of proton gradients and inhibi-
tion of ATP synthesis46–48, which impact on multiple cellular 
pathways. However, using endocytosis assays, we were able 
to show that CME of the alphavirus Semliki Forest virus and of 
fluorescently labeled transferrin was significantly reduced by both  
compounds45. While the pharmacokinetic properties of niclosa-
mide prevent its accumulation in the blood49, Tyrphostin A9 
had a better profile and showed some ability to inhibit Zika 
virus infection in a mouse model45. Tyrphostin A9 is also a  
general tyrosine kinase inhibitor and is likely to affect a variety  
of kinases involved in viral life cycles. Interestingly,  
Tyrphostin A23 has also been shown to inhibit CME by prevent-
ing the interaction between receptor tyrosine-based endocytic 
signals and the mu2 subunit of the AP-2 adaptor complex46.  
Although the chemical properties of Tyrphostin A9 make it  
unlikely to become a drug, this work provided proof of con-
cept that entry inhibitors with broad-spectrum antiviral activity  
in vitro can also exhibit antiviral activity in vivo.

Inhibition of fusion
For enveloped viruses, fusion is the next necessary step that 
allows a virus to release its genome into the cytoplasm. Fusion 
is mediated by virally encoded envelope glycoproteins displayed 
on the virion surface. Viruses require cellular cues to induce 
conformational changes in these envelope glycoproteins to initi-
ate fusion with cellular membranes, in some cases the plasma 
membrane, and, for many viruses, endosomal membranes. 
For some viruses that fuse at the cell surface, such as HIV,  
receptor engagement provides the cue that initiates the enve-
lope glycoprotein conformational changes and fusion50. But 
for many viruses a common cue is the acidic pH of endo-
somal environments1,3,51. Weak bases, including the antimalarial  
drug chloroquine, and carboxylic ionophores such as mon-
ensin, can inhibit endosomal acidification and block infection 
by a wide range of viruses in vitro1,52,53, but, with the exception 
of amantadine, few studies have tested their efficacy in vivo. The 
weak base amantadine and some amantadine analogues have  
been used against influenza virus infection54, but their activ-
ity is directed through inhibition of the viral M2 protein, 
rather than inhibition of endosomal acidification, and viruses  
rapidly evolve resistance55.

An alternative cue to low pH is proteolytic cleavage of enve-
lope proteins by endosomal proteases, as used by filoviruses, 
such as EBOV, and coronaviruses. For EBOV, proteolytic 
cleavage by endo-lysosomal cathepsins is essential to generate 
a form of the envelope glycoprotein that can bind NPC-156,  
and inhibitors of these proteases can effectively abrogate EBOV 
infection, although none of these compounds is currently 
approved for use in humans and selectivity remains an issue. 
Recently, a role for the two-pore calcium channel 2 (TPC2) 
in EBOV infection was shown. While the exact role of TPC2 is 
not yet clear, it is likely to control cues in the endo-lysosomal 
environment necessary for EBOV fusion57. Interestingly, small  
molecules that target TPC2 inhibit EBOV infection both in vitro  
and in vivo57–59. These TPC2 antagonists, including tetran-

drine, also inhibit MERS coronaviruses60. Similarly, apilimod, 
a compound that targets a phosphatidylinositol-3-phosphate  
5-kinase (PIKfyve) involved in endosomal trafficking, also 
inhibits EBOV infection by blocking the transport of Ebola par-
ticles into NPC-1-containing endo-lysosomes61. Whether these 
compounds act on other viruses that penetrate from late endo-
somes remains unclear. Elevation of endosomal potassium 
may also provide cues that activate the fusion proteins of some  
bunyaviruses and influenza viruses, and infection can be restricted 
by compounds that inhibit endosomal potassium channels62. 
Together, these studies indicate that combining perturbants 
of the endocytic system might offer an effective approach to  
inhibiting a range of different viruses.

Some virus-specific fusion inhibitors also exist. Enfuvirtide, used 
in combination with other anti-retroviral therapies for the treat-
ment of HIV, is a peptide that binds the heptad repeat region 2  
in the gp41 subunit of the HIV envelope glycoprotein and prevents 
formation of the so-called stable six-helix bundle that is crucial 
for membrane fusion63. Fusion inhibitors that stabilize metast-
able conformations of the RSV fusion protein have also been  
developed64,65. Though none of these is currently approved for 
use, a number are in clinical trials. Peptides that block the fusion 
of other paramyxoviruses, including measles, Nipah, and Hen-
dra viruses, by interfering with the viral envelope proteins 
have also been developed and shown to have antiviral activity  
in vivo57,66,67. A similar approach using peptides or small  
molecules has also shown promise against flaviviruses (West Nile  
and dengue viruses)68,69.

An alternative approach to inhibiting fusion is to interfere with 
the biophysical properties of membranes through compounds 
that intercalate into cellular membranes and in so doing alter 
their rigidity or curvature. This can be achieved with certain  
lipids in tissue culture systems70,71. A similar effect may under-
lie the action of cellular proteins called interferon-inducible  
transmembrane proteins (IFITMs). Although the exact mode 
of action of these proteins (three in humans, IFITM 1–3)  
remains unclear, their effectiveness against an extraordi-
nary variety of viruses suggests that interfering with the  
composition/biophysical properties of cellular membranes 
involved in virus entry can be a potent broad-spectrum antivi-
ral strategy64,72,73. However, recent work by Buchrieser et al. 
indicates that IFITM expression can interfere with placental  
development by inhibiting syncytin-mediated syncytiotro-
phoblast formation, indicating that these proteins can inter-
fere in cellular fusion reactions74. Whether they impact on other  
cell–cell fusion events or intracellular membrane fusion  
processes remains to be established.

Using phenotypic screens, we and others have identified 
a number of compounds that, because of their biophysical  
properties, are likely to intercalate into the endosomal mem-
branes and prevent fusion45,75. This is possibly the mode of 
action of selective estrogen receptor modulators (SERMs) and  
similar amphipathic compounds, including amiodarone76,77 and  
amodiaquine78, although it is possible that these compounds 
may also alter endosomal pH. However, the concentrations 
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required to achieve similar antiviral effects in vivo are likely to be  
high, and the risk of side effects significant.

Interfering with viral rather than cellular membranes is also 
a promising broad-spectrum antiviral approach for enveloped 
viruses. LJ001 is a small molecule which oxidizes the unsatu-
rated phospholipids of both cellular and viral membranes79.  
This is likely to alter membrane curvature and fluidity, pre-
venting fusion. Interestingly, while affecting both cellular and 
viral membranes, only the latter are significantly affected, most 
likely because the cellular membrane can rapidly replace dam-
aged lipids, a property that viruses do not share80. This makes  
LJ001 effective in vitro against a wide variety of viruses includ-
ing influenza, and with very limited toxicity. Unfortunately,  
little effectiveness was seen in vivo, owing to a short half-life  
(~4 hours) and low concentration of the compound in serum.  
Furthermore, LJ001 needs light to activate, which limits its  
application in vivo. Nevertheless, analogues with improved  
stability and pharmacokinetics are being developed79.

Conclusions and future outlook
Host cell entry is a crucial step for most viruses, and prevent-
ing entry provides a clear early opportunity to control infec-
tion. As viruses use just a few conserved cellular pathways 
for entry, targeting cellular proteins rather than viral proteins 
has emerged as a promising antiviral strategy. Indeed, many 
of the approaches that have been investigated in the past few 
years target host rather than viral components, even when the  
target is highly selective for one specific virus, as is the case for  
maraviroc22. This is in line with a recent trend in the develop-
ment of antiviral strategies51,81. To date, small-molecule interfer-
ence with viral infection has tended to focus on specific viruses 
and viral proteins. For a few viruses, HIV, HCV, and herpes,  
for example, this approach has been very effective. In the 
case of HIV at least, combinations of compounds target-
ing key viral enzymes essential for completion of the viral 
life cycle (e.g. HIV Pol-encoded reverse transcriptase,  
integrase, and protease) control virus replication in infected 
patients, substantially improve longevity and life quality, and 
are now being adopted as pre- and post-exposure prophylac-
tics to prevent virus infection82,83. Similarly, nucleoside ana-
logues and protease inhibitors active against HCV have the  
potential to cure what would otherwise be a lifelong chronic 
infection often resulting in cirrhosis and liver cancer and only 
treatable by liver transplantation84. Though highly success-
ful, these drugs are limited to the treatment of single viruses 
and are prone to viral resistance mutations rendering them  
ineffective.

Conversely, very few drugs are available for use against the 
majority of other viruses. This is a major concern given the 
increased emergence (or re-emergence) of new pathogens, 
often from zoonotic infections (e.g. SARS and MERS), and the 
enlarged geographical distribution of insect-vectored viruses 
caused by environmental changes (e.g. Zika and dengue85).  
Under these circumstances, targeting host cell pathways as 

opposed to viral proteins is a viable option for controlling 
infection. One argument against this approach is the poten-
tial toxicity of targeting host cell pathways. Toxicity could be 
due to the inhibition of critical cellular pathways as well as to 
off-target effects. However, most of the virus infections that  
might benefit from this approach establish acute infections 
for which drug administration could be as short as a few days. 
Moreover, most drugs currently on the market against a range 
of diseases target host cell pathways with limited, or accept-
able, side effects. Another argument is that virus-targeted anti-
virals seem to be more potent than cell-targeted ones. This  
concern is counter-balanced by the potential for broad-spectrum  
effectiveness of many cell-targeted approaches, which may 
be critical to rapidly contain emerging viruses. Because of 
lower potency, these compounds might not stop virus infection 
completely, but several studies indicate that, in general, any 
capacity to reduce the viral load gives patients a better chance  
of establishing effective immune control86–89.

As with the application of anti-retroviral therapies, compounds  
targeting entry and replication could be used in combina-
tion; for example, compounds that inhibit CME could be 
administered together with compounds that inhibit macropi-
nocytosis and/or endosomal acidification in order to broaden 
the range of viruses affected and/or increase the effectiveness  
of the treatment. Although we have focused on virus entry, 
targeting other cellular pathways, such as ER-associated  
glycoprotein synthesis, also offers exciting potential for broad-
spectrum antiviral development that could broaden potential  
combination therapies90. This strategy could also reduce  
toxicity by allowing the use of lower concentrations of each  
component in complex formulations.

While many successful approaches have been described in 
vitro, an outstanding question is whether they are also effec-
tive in vivo. In particular for host-targeted approaches, it will be 
important to determine safe thresholds that separate an effec-
tive decrease in viral load from toxicity. The limited in vivo  
efficacy of many treatments to date may be due to the phar-
macokinetics and bioavailability of the compounds, or pos-
sibly to the limited range of conditions that are generally tested 
in vivo due to the costs, logistics, and restrictions on animal 
studies. Limited availability of adequate small models that  
recapitulate disease also contributes to the problem. While 
more work remains to be done, the approval of drugs like mara-
viroc and enfuvirtide suggests that targeting viral entry is a 
promising antiviral strategy warranting further investigation 
and the integration of different disciplines, from virology to  
medicinal chemistry.
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