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Abstract – This paper presents a framework and example of how fuzzy data 
fusion processes can support decision making for energy efficiency in historic 
buildings. Dempster-Shafer (DS) theory is a framework of reasoning that deals 
with uncertainty, allowing one to combine evidence from different sources. DS 
theory can handle conflicting information, with the aim to provide a representation 
of the appropriateness and uncertainty for each option. The theory starts with 
a set of possibilities: for example, a range of retrofit options or energy-use 
schemes. Each one is assigned a degree of belief depending on how many 
evidence inputs contains the proposition and the subjective probability. DS 
theory incorporates hard data, e.g. energy models and economic estimates, and 
opinion, e.g. disruption to activities and changes in aesthetics. It is proposed that 
DS Theory and hard-soft data fusion algorithms provide an approach that can 
incorporate value and socio-economic aspects into decision making.
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1. INTRODUCTION

Making decisions on aspects of energy efficiency in historic buildings is complex 
[1]. There are several considerations, including technological feasibility, economy, 
impact on the historic character, etc. Each consideration is perceived differently 
by stakeholders – including managers, consultants, practitioners, occupants, and 
members of the public – based on their understanding of the issues and ability to 
confidently express an opinion. Trying to balance these inputs during a decision 
making process is subjective. These processes can be supported by using data 
fusion techniques.

Data fusion, or information fusion, is a method of combining input from multiple 
sources to produce information that is more consistent, accurate, and/or useful. 
It emerged from the need to combine sensors to improve military target tracking 
manufacturing precision [2]. In traditional approaches, the ‘sensors’ used were 
providing ‘hard’ data, i.e. quantitative information with associated precision and 
accuracy. More recently, interest in data fusion techniques that can incorporate 
‘soft’ data has grown [3]. One technique capable of this is the Dempster-Shafer 
(DS) theory [4,5], also known as the theory of belief functions. It is a framework 
for combining evidence and dealing with uncertainty. The theory allows evidence 
from different sources to be combined resulting in a degree of belief that 
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considers all available evidence. Due to its power as a decision making tool, DS 
theory has been applied in a range of fields including artificial intelligence [6], 
environmental impact [7] and building risk assessment [8].

Bayesian methods are commonly applied in energy retrofit decision making 
processes [9]. Bayesian approaches aim to assign a probability to each potential 
outcome. In contrast, DS theory allows for a probability to be assigned to a set 
of outcomes [10], e.g. the probability of one outcome or another. In this way, DS 
theory allows for more flexibility when assigning probabilities from evidence, and 
can be considered a generalization of Bayesianism. Bayesian methods require 
more information a priori to ‘condition’ the probabilities; DS theory does not rely 
on prior knowledge, making it particularly suited to situations in which it is difficult 
to collect or hypothesise probabilities [11].

This paper outlines the framework of Dempster-Shafer theory and introduces 
some of the metrics that can be used to assess the uncertainty of the output. 
Following this, an example is given of how the theory might be used as part of 
selecting a proposal from many to improve energy efficiency in a historic built 
context.

2. THEORY AND DEFINITIONS

2.1 DEMPSTER-SHAFER THEORY

The classical definition of Dempster-Shafer theory is given, followed by additional 
metrics to incorporate the degree of conflict and subsequent developments in 
uncertainty measures.

Let  = {θ1, θ2, …, θN} be a finite nonempty set of mutually exclusive and 
exhaustive events, referred to as the frame of discernment (FOD). The power set 
of 2N elements represents all possible combinations of the elements of the FOD 
and is denoted as follows:

(1)

in which Ø represents the null set.

A mass function m is defined as a mapping from the power set 2Θ to the interval 
[0,1], which must meet the following criteria [4,5]:

If m(A) > 0, then A is a focal element for which there is supporting evidence. An 
m = 0 represents no evidence for an element, while m = 1 represents complete 
certainty.

The set of mass values associated with a single piece of evidence is called a 
body of evidence (BOE), often denoted m(-) [12]. Each BOE is a subset of the 
power set 2Θ meeting (2), in which each A  m(-) has an associated non-zero 
mass value m.

(2)



165

Energy Efficiency in Historic Buildings 2018

Two independent mass functions, m1 and m2, can be combined with Dempster’s 
rule of combination to produce a joint mass m1,2 defined as [4,5]:

where A, B, and C are non-unique elements of the BOE, and k is used to for the 
degree of conflict between m1 and m2, defined as:

Conflict occurs when elements B and C do not have any intersecting events. The 
normalisation process ensures that m1,2 meets the criteria in (2).

2.2 EVALUATING THE BELIEF INTERVAL

For each element of a set, the upper and lower bounds of a probability interval 
can be defined. This interval contains the precise probability of a set, and is 
bounded by two non-additive continuous associated measures for a set A called 
the belief function Bel(A) and plausibility Pl(A), defined respectively as [4,5]:

(3)

(4)

The belief Bel(A) is the sum of the masses mi…N that are subsets of set A, i.e. 
those that directly provide evidence for that set. The plausibility Pl(A) is the sum 
of the intersecting masses to set A, i.e. those that could provide evidence for 
that set but cannot be further subdivided into component scenarios. The size of 
the interval [Bel(A), Pl(A)] characterises the confidence of the probability, not the 
certainty of a claim. The Pignistic function [13] represents the extent to which we 
fail to disbelieve A, defined as:

(5)

(6)

3. FRAMEWORK FOR APPLYING THE DS-THEORY

A framework for applying DS theory in decision making is presented in Figure 1. 
The application of DS theory to decision making process first involves collecting 
evidence. This can take many forms, comprising both ‘hard’ data (e.g. models, 
experimental trials), and ‘soft’ data (e.g. testimonies, surveys). Other types of 
input are also possible.

These inputs are converted into bodies of evidence, each of which is a set of 
mass functions satisfying (2). It is not necessary that every element of 2Θ is 
addressed by each BOE. A unique feature of DS theory is the ability to analyse 

(7)
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incomplete information. More realistically, each BOE will address a small subset 
of the frame of discernment ( ). Once the BOEs have been formulated, they are 
combined in pairs through Dempster’s rule of combination. The order in which the 
BOEs are combined is irrelevant, as the final set of cumulative mass functions mf 
will be the same. mf can then be evaluated by comparing the mass, belief, plausi-
bility, and Pignistic functions.

4. EXAMPLE

4.1 INTRODUCTION

The utility of DS theory in supporting decision making processes is demonstrated 
with a simple scenario incorporating a hard and soft data input, which is worked 
through the framework given in Section 3. A third piece of evidence is provided to 
demonstrate the process for a multi-stage combination.

4.2 SCENARIO

An energy appraisal has been conducted for a museum that is housed in a 
historic building with protected status. Three options are considered to reduce the 
energy consumption of the building:

1)	 Retrofit with visible change to the historic fabric (option A);
2)	 Retrofit with minimal visible change to the historic fabric (option B);
3)	 Change environment conditions specifications to reduce HVAC load  

(option C)

4.3 COMPILE EVIDENCE

Two methods of evaluation are used to try and select the best option:

•	 A building surveyor with significant experience makes a detailed assessment 
of the building and its function (soft data);

•	 An energy consumption model is created by a consultant company and run 
under various stochastic scenarios (hard data).

The surveyor’s report specified that they are somewhat confident that a retrofit 
would be effective. They meet with the building management to discuss the 
survey results. During this, they mention a similar project they recently worked on 

Figure 1. Framework for applying Dempster-Shafer theory to decision making processes.
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where changing the environment only provided a small savings in energy. Due to 
this, they are quite sceptical of this being an effective technique.

The modelling exercise has the following outputs: to meet financial targets an 
energy consumption target of 40 % reduction is set. The model did not have the 
ability to estimate the savings in a scenario where a bespoke non-visible retrofit 
was undertaken. Under the various scenarios, 80 % of iterations met the target 
reduction in energy consumption.

4.4 FORMULATE BODIES OF EVIDENCE

In this scenario, we assume that one of the options explored will be more 
effective than the others (i.e. the null set is 0). Let m1 represent the surveyor’s 
body of evidence. To translate their evidence to a quantitative scale, let us map 
confidence to a numeric scale: absolutely confident (100 %), very confident  
(80 %), somewhat confident (60 %), not very confident (40 %), not confident at 
all (20 %), don’t know/not sure (0 %). Therefore, the surveyor is 60 % certain that 
a retrofit option would be effective. Unfortunately, their report did not break this 
down between the visible and non-visible options. Let us equate ‘sceptical’ with 
‘not confident at all’. The BOE m1 from the surveyor would be comprised of the 
following elements: visible or minimally visible change: m1{A,B} = 0.6; change 
environmental specifications: m1{C} = 0.2; any option: m1{A,B,C} = 0.2. The final 
element represents that no further preference was expressed in the surveyor’s 
evidence that distinguishes between the three options, and accounts for the 
remaining certainty to meet the criteria in (2). It is implied that all other possible 
outcomes (e.g. visible change only {A}, minimally visible change only {B}, etc.) 
have m = 0.

The modelling exercise provided information on option A. Based on the model 
output and the consumption reduction target of 40 %, the model predicts that 
this will be achieved in 80 % of scenarios. To this end, the model BOE m2 can 
be expressed as: visible change: m2{A} = 0.8; any option: m2{A,B,C} = 0.2. In a 
similar manner, the second element represents the unexpressed indifference 
between the three options when taking a modelling approach.

4.5 DEMPSTER’S RULE OF COMBINATION

It is useful to set up an ‘intersection tableau’ for computational purposes (Table 1) 
[14]. Let m3 denote the combination between the surveyor’s evidence m1 and  
the model output m2. In this case, there is one non-intersecting element, so  
k = m1{C}      m2{A} = (0.2)(0.8) = 0.16.

Table 1. Intersection tableau for Dempster’s rule of combination in the Scenario set out in 
Section 4.1

m2

m1

m1{A,B} = 0.6 m1{C} = 0.2 m1{A,B,C} = 0.2

m2{A} = 0.8

m2{A,B,C} = 0.2

m3{A} = (0.6)(0.8)/k = 0.571

m3{A,B} = (0.6)(0.2)/k = 0.143

Non-intersecting

m3{C} = (0.2)(0.2)/k = 0.048

m3{A} = (0.2)(0.8)/k = 0.190

m3{A,B,C} = (0.2)(0.2)/k = 
0.048
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4.6 EVALUATE CUMULATIVE EVIDENCE

From the cumulative evidence m3 calculated in Section 4.4, a summary of the 
functions can be compiled (Table 2).

m3 represents the combined mass functions from our two bodies of evidence: the 
surveyor and the model. In this section, all elements refer to m3. We can see that 
the ordered magnitudes are: m3{A} > m3{A,B} > m3{C} > m3{A,B,C}.

This demonstrates that the combined evidence supports the visible retrofit {A} 
most strongly, followed by one of the retrofit options {A,B}. There is no strong 
case for environment specifications {C}, since |m3{C}| = |m3{A,B,C}|, i.e. the 
cumulative evidence for changing environment specifications is equal to the 
evidence supporting any option.

It is important to note that Bel and Pl do not sum to 1. The belief represents the 
masses of evidence that directly supports an element, i.e. the minimum amount 
of confidence we have in it. As the visible option{A} is a component that supports 
belief that the set {A,B} (either retrofit option) has a higher Belief; Belief({A,B}) = 
0.143 + 0.761 = 0.952.

The plausibility represents the masses that could support an element. For 
example, the plausibility of any option having the strongest case is 1.00 since 
all other elements are subsets of it, therefore supporting it: Pl({A,B,C}) = 0.761 + 
0.048 + 0.143 + 0.048 = 1.00.

The Belief interval is the range of probabilities that an element is the ideal option 
according to the evidence provided. The size of the interval represents how 
certain we are of that probability. For example, the Belief interval for {A,B,C} is 0, 
since we defined that the null hypothesis = 0. It could have been allowed that a 
body of evidence does not support any of the options i.e. there is a non-zero null 
hypothesis.

Although there is less evidence directly supporting ‘either retrofit option’ A or 
B (m{A,B} < m{A}), they have the same plausibility. This means that they are 
equally plausible according to the full set of possibilities. The Belief interval for 
either retrofit {A,B} is smaller than a visible retrofit {A}, which means that we are 
more confident in one of the retrofit options being appropriate than we are that 
the visible option is appropriate. This is only because they have the same plausi-
bility; having identically-sized Belief intervals does not mean they are equally 

Scenario m3 Bel Pl Bel interval 
(probability 
range)

|Bel 
interval|

BetP

Visible change {A} 0.761 0.761 0.952 [0.761, 0.952] 0.191 0.849

Environmental specifications {C} 0.048 0.048 0.096 [0.048, 0.096] 0.048 0.064

Visible or minimally visible change {A,B} 0.143 0.904 0.952 [0.904, 0.952] 0.048 0.175

Any option {A,B,C} 0.048 1.00 1.00 [1.00, 1.00] 0 0.048

TOTAL - 1.00 2.71 3.00 - - 1.14

Table 2. Summary of cumulative functions
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plausible or confident. Based on the Pignistic functions, we most significantly fail 
to disbelieve in the visible option{A}.

From this assessment, it can be concluded that a retrofit with visible changes 
is most strongly directed supported by the surveyor and the models, but it is 
equally plausible that either of the retrofit options could be appropriate. We fail to 
disbelieve the former, but we have more confidence in stating the probability of 
the latter.

4.7 A MULTI-STEP COMBINATION EXTENSION

4.7.1 Scenario

A second opinion is sought from a curator of the museum. They are certain that 
the historic elements of the building are a reason that many people visit. They are 
concerned that a retrofit with visible changes will affect the visitor experience and 
ultimately income. The curator doesn’t have experience with changing environ-
mental specifications but heard from a colleague that it had been effective in 
many cases to reduce energy consumption.

4.7.2 Formulating bodies of evidence

We already have the combined evidence from the surveyor and the model  
m3: m3{A} = 0.761, m3{C} = 0.048, m3{A,B} = 0.143, m3{A,B,C} = 0.048. We can 
produce from the curator a third independent body of evidence m4: m4{C} =  
0.2, m4{A,B,C} = 0.8. Put another way, the curator thinks changing environmental 
specifications is a reasonable option to explore but is not confident that it will be 
appropriate. No opinions on retrofit options were provided.

4.7.3 Dempster’s rule of combination

Another intersection tableau is created for m5 = m3 ⊕ m4 (Table 3), which has a 
k = (0.8)*(0.761 + 0.143) = 0.723 [1-k = 0.277]. It is important to note that partially 
due to reduced evidence provided by the curator, there is more conflict.

Table 3. Intersection tableau for Dempster’s rule of combination combining the first two 
bodies of evidence with that representing the curator

m4

m3

m3{A} = 0.761 m3{C} = 0.048 m3{A,B} = 0.143 m3{A,B,C} = 
0.048

m4{C} = 0.8

m4{A,B,C} = 0.2

Non-intersecting

m5{A} = 0.549

m5{C} = 0.139

m5{C} = 0.035

Non-intersecting

m5{A,B} = 0.103

m5{C} = 0.139

m5{A,B,C} = 
0.035

The same metrics produced in the original scenario can be calculated for the new 
combined evidence (Table 4).
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Now, the mass of a visible retrofit {A} has been reduced by the curator’s support 
for changing environment conditions {C}. Since no evidence for options A or B 
was given {A,B}, the visual retriofit {A} still has the same (but reduced) plausibility 
as either retrofit option {A,B}. We are now almost equally confident in the proba-
bility that a visible retrofit and either of the retrofit options is most appropriate. As 
further evidence was given, the ambiguous mass supporting any of the options is 
reduced.

In contrast to quantitative evidence typically used to make retrofit decisions, the 
metrics used herein have specific benefits:

•	 a single piece of evidence can support multiple outcomes in a non-discrete 
manner;

•	 the Beliefs and Belief intervals represent the full range of potential probabili-
ties, providing additional discussion beyond averaged metrics;

•	 no knowledge on the probability of each option is needed, since the Belief 
functions are formulated directly from the evidence provided.

5. FUTURE WORK

The example scenario included a limited number of bodies of evidence. There is 
no limit to the number of steps in Dempster’s rule of combination, meaning that 
any number of evidences can be considered. With more bodies of evidence, it 
would become important to explore metrics that evaluate the degree of conflict 
between bodies. Future work will explore more complex scenarios (e.g. more 
bodies of evidence with a greater number of options and fuzziness) and conflict 
metrics.

6. CONCLUSION

Dempster-Shafer theory was applied to a simple decision making scenario, 
which demonstrated its ability to combine inputs from a variety of sources. This is 
especially pertinent for the historic environment in which complex issues must be 
addressed with a combination of quantitative and qualitative means. Data fusion 
techniques, such as Dempster-Shafer theory, are not meant to replace existing 
decision making processes. Hard-soft data fusion algorithms provide a tool that 
can support decision making by synthesising a diverse range of heritage conser-
vation considerations into a cohesive output.

Table 4. Summary of cumulative functions

Scenario m5 Bel Pl Bel interval 
(probability 
range)

|Bel 
interval|

BetP

Visible change {A} 0.549 0.549 0.687 [0.549, 0.687] 0.138 0.612

Environmental specifications {C} 0.313 0.313 0.348 [0.313, 0.348] 0.035 0.325

Visible or minimally visible change {A,B} 0.103 0.562 0.687 [0.562, 0.687] 0.125 0.126

Any option {A,B,C} 0.035 1.00 1.00 [1.00, 1.00] 0 0.035

TOTAL 1.00 2.42 2.72 - - 1.10
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