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Abstract— Burst suppression includes alternating patterns of
silent and fast spike activities in neuronal activities observable
(in micro or macro scale) electro-physiological recordings.
Biological models of burst suppression are given as dynamical
systems with slow and fast states. The aim of this paper is to give
a method to identify parameters of a mesoscopic model of burst
suppression that can provide insights into study underlying
generators of intracranial electroencephalogram (iEEG) data.
An optimisation technique based upon a genetic algorithm (GA)
is employed to find feasible model parameters to replicate burst
patterns in the iEEG data with paroxysmal transitions. Then,
a continuous-discrete unscented Kalman filter (CD-UKF) is
used to infer hidden states of the model and to enhance the
identification results from the GA. The results show promise in
finding the model parameters of a partially observed mesoscopic
model of burst suppression.

I. INTRODUCTION

Burst suppression is a pattern of quasi-silent and fast
spike-like activities that is ubiquitous in neuronal recordings,
from patch clamp recordings of single neuron dynamics to
iEEG data that capture mean collective behaviours of neurons
in a cortical column [1],[2]. A biologically-inspired model
of a burst suppression comprises slow states, θ(t), and fast
states, x(t), whose interaction is modelled as follows:

ẋ(t) = f (x(t),θ(t),λ1)

θ̇(t) = εg(x(t),θ(t),λ2)

yk = Hx(tk)+ rk, k = {1,2, ....,n}
(1)

where 0 < ε < 1 is constant to ensure the evolution of θ(t)
is slower than x(t), λ1,2 are constant model parameters, yk
relate time-sampled solutions of the system to the neuronal
recording (e.g. iEEG data) using operator H, and rk as
measurement noise, which is given by an additive random
IID process. The role of slow states in Equation (1) is
regulatory, which can cause fast states to traverse into quasi-
silent and bursting modes [1]. Mesoscopic models of burst
suppression can provide insights into underlying generators
of anaesthesia and epileptic seizures [2].

In this paper, identification of a bursting model is carried
out using a genetic algorithm (GA) [4] and a continuous-
discrete unscented Kalman filter (CD-UKF) [5]. By using
a GA for parameter estimation, the identification problem
is formulated as a nonlinear optimisation problem to find
a feasible set of parameters to capture a silent-bursting
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pattern in the observation data. This amounts to searching
for parameters for which the predicted output of the model
and observation data are approximately similar (i.e., their
accumulative similarity over all data samples is maximised).
Using the estimation results from the GA, the CD-UKF
algorithm is then employed to enhance results by refining the
values of the estimated parameters in the process of inferring
hidden states for the data. This amounts to local states
estimations of the model and modification of parameters
values if necessary.

In Section 2, a brief overview of the neural mass models
of burst suppression is given. In Section 3, the two-stage
identification method based upon the GA and CD-UKF is
explained.

II. METHODS

A. Neural Mass Model of Burst Suppression

In this paper, the mesoscopic burst suppression model
is the Jansen and Rit neural mass model (JNMM) [6],
with some of its internal parameters acting as slow states.
The JNMM comprises pyramidal neurons (p), inhibitory (i)
interneurons, excitatory (e) stellate neurons, and an external
input received by the excitatory neurons [6]. The dynamic
of mean activity of each neuronal population is mdoelled by
the mean potential-to-firing rate and firing rates-to-potential
operators. The mean potential-to-firing rate conversion is
given by a sigmoid function g(.) that transforms a membrane
potential x(t) into a firing rate as follows:

g(x(t),v0) =
2e0

(1+ eς(v0−x(t)))
, (2)

where v0 is the firing threshold (when the postsynaptic
potential (PSP) achieves 50% of the maximum firing rate), ς

is the slope at the firing threshold, and 2e0 is the maximum
firing rate of the neural population. The mean firing rate
is converted to potential by a linear low-pass filter with
impulse response h(t) = αζ te−ζ tH(t) (α is the static filter
gain proportional to maximum postsynaptic potential, ζ is
synaptic time constant, and H(t) is the Heaviside function).
For input firing rates g(xi(t),v0)+N(t) (N(t) is an external
input) into the synapse of population j, a post synaptic
potential, x j(t) is generated that can be calculated by the
convolution integral x j(t) = (g(xi(t),v0)+N(t))∗h(t), which
can also be written as follows:

ẍ j(t)+2ζ j ẋ j(t)+ζ
2
j x j(t) = αζ (g(xb(t),v0)+N(t)) (3)



Fig. 1. Neural Mass Model. Simulated iEEG data is the membrane
potential of the pyramidal population vp(t). The states are represented by
x j(t) ( j = p (pyramidal), e (excitatory), i (inhibitory)) as the potentials
that are generated at time t by the pyramidal, excitatory and inhibitory
populations, respectively. The postsynaptic potentials that are generated in
the pyramidal, excitatory and inhibitory populations are denoted by v j(t)
( j = p, e, and i), respectively. The nonlinear function g(.) is a sigmoid
function that converts the mean membrane potentials to the mean firing
rate. Each synaptic kernel, h j(t) ( j = e and i), is a second-order linear
operator that converts the firing rates to a synaptic potential. The model
has two excitatory populations, one is pyramidal cells in layer III and IV
and the other one models the spiny cells in layer IV. Impulse response
of the synaptic transmission of pyramidal and excitatory populations are
considered equal to he(t) in the JNMM. Mean connectivity constants are
denoted by c1, c2, c3 and c4.

which can be written in canonical state-space form:

(
ẋ j(t)
ẋ j1(t)

)
=

(
x j1(t)

α jζ j(g(xb(t)+N(t))−2ζ jx j1(t)−ζ 2
j x j(t)

)
(4)

Activity-dependent homeostasis, where fast dynamics of the
membrane potential and the firing rates of neurons are
regulated by slow ion currents, is known as a fundamental
characteristic of neuronal behaviours. For example, after
generation of action potentials, the firing rate drops because
of ionic recovery time due to spike-frequency adaptation
(SFA) mechanisms. SFA mechanisms can be modelled as
changes in the excitability level of a neuron population,
which can be represented as negative feedback from firing
rate levels to the level of firing threshold as follows:

v̇0(t) = ε(−γv0(t)+ψg(v(t),v0(t))) (5)

where γ is decay rate, ψ is the parameter that links fast
dynamics of the firing rate and slow states, and ε is ensures
that the rate of change parameters is slower than of firing
rates (for model identification aim, we merge the ε with
constant parameters γ and ψ). The mathematical model of
burst suppression (hereinafter called the slow-fast JNMM) is
given by augmenting the slow dynamics of firing thresholds
with the mathematical formulations of the JNMM. The full
equations of the slow-fast JNMM are:



ẋp
ẋp1
v̇p0
ẋe
ẋe1
v̇e0
ẋi
ẋi1
v̇i0


=



xp1
αeζeg(xe− xi)−2ζexp1−ζ 2

e xp
−γpvp0 +ψpg(xe− xi),vp0)

xe1
αec2ζeg(c1xp)−2ζexe1−ζ 2

e xe +αeζeu
−γeve0 +ψeg(xp,ve0)

xi1
αic4ζig(c3xp)−2ζixi1−ζ 2

i xi
−γevi0 +ψeg(xp,vi0)


yk = xe(tk)− xi(tk)+ rk, k = {1,2, ....,n} (6)

Equation (II-A) has typical form of slow-fast system in
equation (1) with xp,i,e(t) as the fast states, vp,e,i(t) as the
slow states, and yk as the iEEG data.

B. Parameter Estimation in Bursting Model

In this paper, model identification is performed for the
parameters of the slow states (i.e., γi,p,e and ψi,p,e in equation
(II-A) and λ in equation (1)). These parameters are respon-
sible for generation of paroxysmal transitions.

1) Genetic Algorithm Based Identification of Bursting
Model: The GA can be used to optimize high-dimensional
and complex cost functions [4]. Identification of a bursting
model can be carried out by searching the parameter space
λ using the GA to minimize the following cost function:

cost(λ ) = ‖Γ({yn}k
n=1),Γ({yλ

n }k
n=1)‖, (7)

where similarity of iEEG time series, yn, and the sampled
solution of slow-fast NMM, yλ

n , are evaluated using l2 norm
(shown by ‖.‖) between scaled (to [0,1]) envelope signals
(i.e. norm of Hilbert transform), which is denoted by Γ. The
scaled envelope highlights evolution patterns of spikes during
bursting mode as well as timing of the burst.

To evaluate the cost function for each candidate set of
parameters, the model needs to be simulated. Due to the
existence of slow and fast states in the model, the variable
step size Runge-Kutta method followed by re-sampling is
used to approximate the system dynamics. This is to ensure
the numerical error over parameter space does not affect the
search directions by GA and accordingly does not affect the
estimation results.

C. Continuous-Discrete Unscented Kalman Filter Based Pa-
rameter Tracking

Due to the nonlinear and multi-scale nature of the bursting
model, there are many parameters that may give rise to
similar observation data. Therefore, it might be the case
that GA finds parameters where the identified model has
generated data approximately similar to observation data, but
with different underlying generators. To eliminate this effect,
the identified model is augmented by correction states, γc(t)
and ψc(t), that are added to the estimated parameters by
the GA (i.e, γ̂ and ψ̂). The dynamics of correction states
is trivial (i.e., γ̇c(t) = 0 and ψ̇c(t) = 0) and they count as
model parameters. Therefore representation of the function
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Fig. 2. Simulated iEEG of slow-fast NMM with transition to and from a
seizure. (a) Simulated EEG data, y(t), generated using slow-fast NMM. (b)
Time series of firing thresholds of the pyramidal, v0p(t), excitatory, v0e(t),
and inhibitory, v0i(t), populations.

g(.) remains unchanged. The equation of the new model is:

ẋ(t) = f (x(t),θ(t))

θ̇(t) = εg(x(t),θ(t), γ̂ + γc(t), ψ̂ +ψc(t))

γ̇c(t) = 0 & ψ̇c(t) = 0
yk =Hx(tk)+ rk, k = {1,2, ....,n}

(8)

The CD-UKF, which is adapted for filtration of continuous-
discrete dynamical systems, is employed to infer the hidden
states in the model (8), given the observation data. Using
CD-UKF ensures state estimation accuracy of slow and fast
states in the model for a fixed sampling rate of observa-
tion data. The CD-UKF compensates for parameter errors,
differences between estimated model and dynamics of the
data in equation (8) by changing the values of the correction
states. CD-UKF tracks the model states and tries to keep the
evolution of the correction states at constant levels. However,
in cases where there is a mismatch between dynamics of
the model and data, the CD-UKF changes the values of the
correction states to capture the observation iEEG data.

III. RESULTS

A. Observation Data

To test the proposed approach, simulated iEEG data using
the slow-fast NMM in equation (1) is generated. The model
is simulated using the variable step size Runge-Kutta method
for 80 seconds. Then, the solution is re-sampled to generate
an observation signal for the identification task with 80×103

samples (this is equivalent to a sampling rate of 1000 Hz).
The simulated iEEG output of the model is given in Figure
2. The simulated data is also contaminated with low level
observation noise (as expected in iEEG recroding). All firing
thresholds are reduced before initiation of bursting modes
and increased during bursting activities toward the end.

B. Estimation Results Using GA

The parameters of the slow states were estimated using
the simulated data. Envelope distance is employed as the
cost function, the mutation rate is equal to 0.3, crossover
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Fig. 3. Comparison between slow-fast NMM and estimated model
using the GA. (a) Observation iEEG, y(t), and estimated EEG outputs of
the identified slow-fast NMM, ŷ(t), with parameters. An offset of 12 mV
added to the estimated iEEG for better visualisation. Estimated and actual
slow dynamics of firing thresholds of the (b) pyramidal population, (c) the
excitatory population, and (d) inhibitory population.

0.7, and the initial population is 200. The mutation value of
0.3 allows the GA to search in a wide range of search space
for several generations and not be trapped in local minima.
The criterion for which the GA terminates the estimation was
when the average change in fitness values for 20 generations
remained less than a tolerance of 10−6. The results in Figure
3(a) show that there is a slight difference between the time of
initiation of seizures in the estimated iEEG and observation
data. The dynamics of the estimated firing thresholds of
excitatory and inhibitory populations are relatively similar
to the actual slow dynamics of the generative model, as
shown in Figure 3(c) and (d). However, there is an offset
difference between the estimated and actual slow dynamics
of firing thresholds in the pyramidal population, as shown
in Figure 3(b). Observation of estimated slow states shows
that, in order to improve the estimation results, compensating
for these mismatches is essential for some applications, such
as finding optimal performance in the treatment of epileptic
seizures or monitoring the condition of the brain during
anaesthesia [3].

C. Estimation Enhancement Using CD-UKF

The CD-UKF is employed to infer hidden states of the
identified model which is augmented with correction states
for the observation data. As shown in Figure 3, before the
time 20 sec, both observation data and the slow-fast model
generate silent activity. Therefore, the CD-UKF can estimate
the states without too much error. During this period, the
dynamics of parameters are almost stationary, as shown
in Figure 4. However, at the time 20 sec, a large error
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Fig. 4. Parameter estimation enhancement using UKF. The enhanced
estimation of (a) γp, (b) γe, (c) γi,(d) ψp, (e) ψe, (f) ψi. Initial values for
parameters are taken from GA-based parameter estimation.

appears in all parameter values. The reason is that the
timing of seizures is different between the model and the
data. Therefore, the CD-UKF tries to compensate for this
inadequacy by changing the correction states. Therefore, we
see a relatively sharp jump in the value of the parameters
at time 20 sec. After the tracking error at the jump point,
CD-UKF synchronises data well, and the model and the
value of parameters remain unchanged. At the second jump
points in the data where data switch from bursting mode into
silent activity mode, CD-UKF does not change the values
of correction states as the values of parameters converge to
their actual values. The mean values of parameters in interval
[25,80] can be considered as the estimation outcome, which
is very close to the actual values of the parameters. The
enhanced estimation of parameter estimation is shown in
Figure 4, and the results from the tracking of the slow states
are shown in Figure 5.

IV. CONCLUSIONS

The hybrid estimation based on using GA and CD-UKF
is presented to capture underlying mechanisms of burst
suppression in the class of slow-fast NMM. By using the
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Fig. 5. The estimated Slow states. (a) Estimated, v̂0p, and actual, v0p,
slow evolution of firing thresholds in pyramidal cells. (b) Estimated, v̂0e,
and actual,v0e, slow evolution of firing thresholds in excitatory populations.
(c) Estimated, v̂0i, and actual, v0i, slow evolution of firing thresholds in
inhibitory populations.

GA, parameter estimation is reformulated as an optimisation
problem. Results show that the identified model using the
GA can generate data similar to observed data; however,
it is not guaranteed that estimated parameters converge to
actual parameters. This is because there are several feasible
parameters that give rise to similar data and in effect the GA
might converge to parameter sets that are not necessarily
the same as actual parameters. We showed that by using
the CD-UKF, the estimation results from the GA can be
enhanced. This is due to the fact that CD-UKF can infer
and modify estimation of model states sample by sample
and, therefore, by using new samples from observation data,
the CD-UKF can learn to synchronise data and the model by
changing the values of parameters. The proposed approach
can be applied to identify parameters of bursting models for
instance to investigate underlying distribution of inhibition
in post seizures burst suppression. The identified model can
potentially be tested to find optimal parameters of electrical
stimulation that suppress seizures.

REFERENCES

[1] S. Coombes and P.C. Bressloff, Bursting: the genesis of rhythm in the
nervous system, World Scientific, 2005.
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