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Abstract— Epileptic seizures may be initiated by random
neuronal fluctuations and/or by pathological slow regulatory
dynamics of ion currents. This paper presents extensions to
the Jansen and Rit neural mass model (JRNMM) to replicate
paroxysmal transitions in intracranial electroencephalogram
(iEEG) recordings. First, the Duffing NMM (DNMM) is in-
troduced to emulate stochastic generators of seizures. The
DNMM is constructed by applying perturbations to linear
models of synaptic transmission in each neural population of
the JRNMM. Then, the slow-fast DNMM is introduced by
considering slow dynamics (relative to membrane potential
and firing rate) of some internal parameters of the DNMM
to replicate pathological evolution of ion currents. Through
simulation, it is illustrated that the slow-fast DNMM exhibits
transitions to and from seizures with etiologies that are linked
either to random input fluctuations or pathological evolution
of slow states. Estimation and optimization of a log likelihood
function (LLF) using a continuous-discrete unscented Kalman
filter (CD-UKF) and a genetic algorithm (GA) are performed
to capture dynamics of iEEG data with paroxysmal transitions.

[. INTRODUCTION

Epilepsy is the second most common brain disease, char-
acterized by recurring seizures as a result of abnormal hyper-
synchronous neuronal activity. At the onset of an epileptic
seizure, only a localized region of the brain may be affected
(called focal seizures) or all brain regions simultaneously
(called generalized seizures). Initiation and termination of
epileptic seizures may be caused by random neural fluctua-
tions and/or by pathological slow dynamics of ion currents
[1], [6]. Models that provide insights into these etiologies
have the potential to enhance treatment and monitoring of
patients with epilepsy.

Neural mass models (NMMs) are lumped, biologically
informed model of a cortical column that can simulate iEEG
recordings [2], [11]. Because epilepsy is a disease associated
with pathological large-scale neural activity, NMMs are ex-
tensively used to provide insights into underlying generators
of this brain pathology. NMMs emulate iEEG data via inter-
actions between mean electrical activities of two or more
neuronal populations, each of which is characterized by the
dynamics of its mean membrane potential and firing rate
[2]. In particular, NMMs have been introduced to replicate
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spontaneous initiation and termination of seizures. For ex-
ample, random generators of absence seizures were given
by a noise driven thalamocortical NMM [3]. Kalitzin et al.
[4] also developed a mathematical model that can replicate
stochastic mechanisms of focal seizures. Recently, NMMs
have been constructed that link the causation of paroxysmal
activities to pathological slow dynamics of internal model
parameters [5], [6].

In this paper, slow-fast Duffing NMMs are proposed to
replicate both stochastic and quasi-deterministic mechanisms
of seizures in iEEG data. These models can provide insights
into the pathological dynamics of an isolated cortical col-
umn in developing epileptic seizures. The Duffing NMM
(DNMM) is constructed by extending the model of synap-
tic transmission in the JRNMM using Duffing equations.
Duffing equations have been used to replicate mean col-
lective dynamics of neuronal populations when they exhibit
synchronize activities [7], [8]. Here, we will illustrate that
the DNMM can emulate stochastic generators of seizure-
like activities. Mathematically, the Duffing equations can
be approximated by a linear time-varying system [9], [10].
Therefore, the DNMM can be understood approximately as a
JRNMM with time-varying parameters. Finally, the slow-fast
Duffing NMM is developed by considering slow dynamics
for some internal parameters of the DNMM to replicate
seizures that are caused either by random input fluctuation
and/or pathological slow state dynamics.

In order to be useful for diagnosis, management, and
treatment of seizures, a model of epileptic seizures must be
able to be assimilated with patient-specific data. In this paper,
model identification based on estimation and optimization
of a log-likelihood function (LLF) with respect to unknown
parameters of the DNMM is used to investigate underlying
generators of iEEG with paroxysmal transitions. Optimiza-
tion of the LLF is performed using a genetic algorithm (GA).
Calculation of the LLF (for given model parameters) requires
the estimation of hidden states, which is carried out using a
continuous-discrete unscented Kalman filter (CD-UKF) [15].
The CD-UKEF is used to estimate hidden states of the model
because it does not requires model linearization (e.g.,[11])
and also is not sensitive to sampling rate of recorded iEEG
data [15].

This paper has four sections. Section II (Methods) de-
scribes the slow-fast Duffing NMM and model identification.
In Section III, model simulations and identification results
are presented. Finally, the conclusions are given in Section
Iv.
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Fig. 1. Duffing Neural Mass Model (DNMM). A post-synaptic potential,
v«(t) (* = p,i,e), received by each population is converted to mean firing
rate by sigmoid function g(.). The ensuing firing rate is then converted
to post-synaptic potential by a Duffing equation as a model of synaptic
transmission. Connectivity constants are denoted by ox; (k # j = p,i,e).
Simulated output iEEG is the membrane potential of the pyramidal popu-
lation.

II. MATERIAL & METHOD
A. Duffing Neural Mass Model

The Duffing Neural Mass Model (DNMM) is introduced
as a generalized JRNMM. The JRNMM models interactions
between pyramidal (p) neurons, excitatory stellate (e) and
inhibitory (i) interneurons [2]. The DNMM is constructed by
applying perturbations to linear models of synaptic transmis-
sion in the JRNMM, as shown in Figure 1. In each neuronal
population of the DNMM, a postsynaptic potential, v;,(t),
is converted to a firing rate by the sigmoid transformation,
8 (Vim VO) :

g(vin(1),v0) = ( 2¢0 (1)

where vg is the firing threshold (at which the postsynap-
tic potential (PSP) achieves 50% of the maximum firing
rate), ¢ is the slope at the firing threshold, and 2e is
the maximum firing rate of the neural population. In the
DNMM, the dynamics of synaptic transmission is governed
by a Duffing equation. The input-to-output conversion of
presynaptic firing rates, g(vi,(¢),vo) to postsynaptic potential,
vo(t) (0 = p,e,i) obeys the differential equation:

V0 (1) + 280, (1) + 82 (vo (1) £ v, (1)) = alg(vin(t),v0) (2)

where 0 < € < 1 is the Duffing stiffness [7], { is synaptic
time constant, and « is the gain. By setting € = 0, the linear
model of synaptic transmission, as defined by Jansen and Rit
[2] can be recovered. Equation (2) can be written in state-
space canonical form by defining intermediate states, v}f (r)
(x=p,i,e), as:

Vo(t) = vi(t)

Vi(t) = —28v5(r) — é’z(vo(t) + svo(t)3) +alg(vin(t),vo).
3

For € > 0, equation (3) is called a “hard Duffing equation”;
and for € < 0, it is called a “soft Duffing equation” [7].

In response to external inputs changes, the hard/soft Duffing
equation shows progressive stiffness/weakness, which is used
to emulate changes in properties of synaptic transmissions in
the DNMM.

B. Slow-fast Duffing Neural Mass Model

In the brain, slow dynamics of ion currents regulate fast
activity of membrane potentials and firing rates (activity-
depended homeostasis). Pathological dynamics of ion cur-
rents may give rise to initiation and termination of seizures
[13], [12]. To emulate this effect using mesoscopic models,
slow dynamics have been defined for some model parameters
in a NMM [5], where a model of spike-frequency adaptation
changed of the excitability level of a neuron population using
negative feedback from firing rate levels to the value of firing
threshold. In the current work, the slow-fast Duffing NMM
is developed by considering slow dynamics for vy to model
spike-frequency adaptation mechanisms as follows:

vo(t) = —1vo(t) + A8 (Vin(t), v0(1)) +1(2). @)

where n(r) is white noise that models random fluctuations in
ion currents [14], ¥ is decay rate and A links firing rate to
slow state. Thus the dynamics of vg is influenced by firing
rates that in turn cause changes in excitability of the neural
population, which may initiate seizures.

C. Simulated iEEG

Simulated iEEG using the (slow-fast) DNMM, y; (con-
taminated by measurement noise with Gaussian distribution,
rg, with zero mean and variance, o) is obtained by sampling
mean membrane potential of the pyramidal population

yk:ve(tk)—vi(tk)+rk, k:{l,Z,....,n} 5

where 7 is the number of samples. The DNMM in Figure 1
can be written as a continuous-discrete dynamical system:

¥(t) = fo(v(t)) +n(t) ©)
ye=y(tx) =Hv+ry, k={1,2,....,n},

where v = [ve,vi,vp, V% V6, vi] T is states vector, f is a non-
linear function denotes concatenated equations for dynamics
of all neuronal populations, 0 is a vector of constant model
parameters (e.g, o, vo, ), H=[1,—1,0,0,0,0] " is a constant
vector, yy is a discrete observation, and n(¢) and r; are mutu-
ally uncorrelated endogenous (random neuronal fluctuations)
and recording noise, respectively. In this paper, one of the
aim is to infer parameter 0, given time series of iEEG data,

ie., k-

D. Model Identification

A genetic algorithm (GA) is employed to find DNMM pa-
rameters that minimize a log likelihood function (LLF) of the
model fitting a given iEEG data with paroxysmal transitions
as illustrated in Figure 2. The GA creates parameters for
which the cost function (i.e., LLF) is evaluated and ranked.
Biologically inspired operations elite, crossover and mutation
are then used to create new parameter sets (children) from
better performing sets (parents). The LLF is the logarithm of
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Fig. 2. DNMM parameter estimation method. A genetic algorithm is used
to search parameter space and create instances of parameters. CD-UKF is
employed to estimate hidden model states. The estimated states are in turn
being used to calculate a log likelihood function (LLF). LLF acts as the
cost function of GA to refine parameters until optimisation criteria is met
and optimal parameters to model the data are found.

the product of conditional probability density functions(mean
field approximation) for all recording samples in iEEG data,
(1:d), as follows:

LLF (8|y1.4) = —log(p(y1.410))

d
= —log(([ T pOxlyi-1,6))p(3116)).
k=2

)

Due to multi scale nature of the DNMM, the continuous-
discrete unscented Kalman filter (CD-UKF) is used for state
estimation and approximation of the LLF. The (discrete)
UKEF is derivative-free Kalman filtering that approximates
probability density functions for discrete states and observa-
tions by Gaussian distributions through unscented transforms
[15]. The CD-UKF extends the discrete unscented Kalman
filter (UKF) for continuous dynamical systems [15]. Using
the CD-UKEF algorithm, Eq. (8) can be written in terms of a
product of Gaussian functions [16] as follows:

Ste(0)7S, ! (0)e(9))
V/det(S,(6))(27)

where &(0) =y — W(0) (U (0) is the mean estimation of
yi), and S;(0) is the estimation covariance.

d_ex
LLF(6]y1.0) =~ log(] ] 22
k=2

). (8

ITI. RESULTS
A. Duffing Neural Mass Simulation

The DNMM is simulated using the stochastic Runge-
Kutta algorithm [17] on desktop computer and a result is
shown in Figure 3. The model exhibits transitions to and
from seizures resulting from random input to the model
(i.e., if the model integrates with constant input it does not
show switching dynamics). In particular, the model exhibits
recurrent seizures, which is one of the features of epilepsy.
Bifurcation analysis with respect to model input is carried
out to study and compare the DNMM and JRNMM, shown
in Figure 4. The DNMM has a wider range of unstable
fixed points compared to the JRNMM due to the effect of

Time (s)

Fig. 3. Simulation of Duffing Neural Mass Model. The model exhibits
apparently normal activity followed by transitions to and from seizure-like
activity. The model is excited by random input with a Gaussian distribution.
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Fig. 4. Bifurcation Diagrams of the (a) Jansen-Rit NMM and (b) Duffing
NMM. Comparing the two bifurcation diagrams shows that the DNMM has
wide range of unstable fixed points compared to the JRNMM. Also, the
JRNMM has a Hopf point (around input 50 s~!) that does not exist in the
DNMM.

perturbation to the JRNMM that makes the synaptic trans-
mission mechanisms sensitive to variations of their inputs.
Continuation starting from limit point (LP) in the DNMM
shows a wide range of spike-like limit cycles as well as
fold bifurcation, shown in Figure 5. The co-existence of two
dynamical regimes (seizure-like limit cycles and background
states) in the model, together with contributions of the level
of noise in the DNMM, makes this system prone to emulate
transitions into and out of seizures.

B. Slow-fast Duffing Neural Mass Model Simulation

The slow-fast DNMM is simulated as shown in Figure
6, with firing threshold of the inhibitory population as
the slow state. The simulated iEEG shows two types of
seizures. The occurrence of the first seizure is due to random

(0

Fig. 5. Continuation of limit point (LP) in Duffing NMM with respect to
input. There are limit cycles as well as folded bifurcation (limit point of
cycle-LPC) points that co-exist with fixed points in the system. In addition,
at LPC point, Homoclinic bifurcation is detected in Duffing NMM. The
bifurcation properties in Duffing NMM make the system prone to switch
back and forth between normal and seizures in the presence of noise.
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Fig. 6. Simulation of Slow-Fast Duffing NMM. (a) iEEG with paroxysmal
transitions where the first seizure is due to Duffing terms in the model
and the second seizure is due to slow dynamics of firing thresholds. (b)
Spectrogram of iEEG shows frequency patterns seizures-like spikes and
apparently normal activity.

TABLE I
PARAMETER ESTIMATION RESULTS.

Parameter Actual Estimated
o (Connectivity) 136 135.60
m (Mean of Input) 191 189.50
v (Variance of Input) 1.20 1.24

input to the model and of second one is related to slow
dynamics of firing thresholds (this is verified by simulating
the model with and without the Duffing terms in the model).
A comparison between the post-ictal iEEG (in the second
course of seizures) and pre-ictal activity may resemble lack
of neuronal energy after seizures, which is observable in
iEEG data from epileptic patients.

C. Model Identification

To illustrate the efficacy of the proposed identification
method, iEEG data with paroxysmal transitions is generated
using the DNMM. Then, three parameters (connectivity
constants and input mean and variance) of the DNMM
are considered as unknown and the GA-based identification
method employed to recover these parameters. For each
instance for parameters, the LLF is approximated by using
the CD-UKF. Then optimization of the LLF is performed
using a population size of 200 and the GA with mutation
rate 0.3 and crossover rate 0.7. The mutation rate 0.3 allows
the GA to search in a wide range of search space for several
generations and not become trapped in local minima. The
criterion for which the GA terminates was when the average
change in fitness values for 20 generations remained less
than a tolerance 107°. The results of applying the algorithm
are promising and are given in Table 1 for an example run.

IV. CONCLUSIONS

This paper introduced the DNMM, which can replicate
stochastic generation of seizures. It also illustrated, by
augmenting slow dynamics with this model, a complex
pattern (either caused by slow dynamics of parameters

and/or stochastic mechanisms) of transitions to and from
paroxysmal activity similar to iEEG data. The dynamics of
the slow-fast Duffing model suggests that underlying causes
of seizures may change over time (as shown in Figure 6),
which in turn may provide insights into why seizure predic-
tion should be patient-specific. In general, using CD-UKF
and GA for parameter estimation is time consuming. This
is because, first, for each candidate parameters, CD-UKF
should estimate the model states for all data points (which
accordingly be used to calculate log likelihood function) and
second, GA based optimisation, in general, requires many
generation to find parameters that govern dynamics of data.
However, the parameter identification based on optimization
of the likelihood function showed promising performance,
which can be applied to patient-specific modelling of iEEG
recordings from epilepsy patients.
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