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Abstract 

We have studied in detail the transition from gas-like to rigid liquid-like behaviour in supercritical N2 

at 300 K (2.4 TC).  Our study combines neutron diffraction and Raman spectroscopy with ab-initio 

molecular dynamics simulations.  We observe a narrow transition from gas-like to rigid liquid-like 

behaviour at ca. 150 MPa, which we associate with the Frenkel line.  Our findings allow us to reliably 

characterize the Frenkel line using both diffraction and spectroscopy methods, backed up by 

simulation, for the same substance.  We clearly lay out what parameters change, and what 

parameters do not change, when the Frenkel line is crossed. 

 

The traditional textbook view of liquids is that matter does not exist in a liquid, or liquid-like state, 

above the critical temperature 𝑇𝐶.  However, in recent years two separate ideas have been proposed 

that both contradict this viewpoint.  On the one hand, rapid fluctuations in certain thermodynamic 

properties roughly following the critical isochore close to the critical point, the Widom lines, have 

been proposed to extend much further beyond 𝑇𝐶  than previously believed on the basis of the 

fundamental equation of state (EOS) (1) and to mark a transition to a liquid-like state (1-3).  Another 

transition emanating from the critical point has been proposed very recently (4).  These transitions 

are essentially thermodynamic continuations of the vapour pressure curve. 



On the other hand, it is argued that our theoretical understanding of liquids relies excessively on 

comparison to gases.  For instance, a variety of cubic 𝑃𝑉𝑇 EOS are widely used to model fluid 

properties – Patel-Teja, Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson, etc.  All these EOS are 

empirical improvements to the Van der Waals EOS which was, in turn, an adaptation of the ideal gas 

EOS by introducing terms to account for the finite volume of the gas particles and attraction 

between gas particles.  These equations are fundamentally different from the EOS commonly utilized 

to describe the properties of solids. 

Adoption of the alternate approach of understanding the liquid state by comparison to solids at 𝑃, 𝑇 

conditions close to crystallization has led to the proposal that the liquid state can be divided into 

regions where the liquid behaviour is gas-like (we can use the term non-rigid liquid) and where the 

liquid behaviour is solidlike (rigid liquid).  The proposed narrow (but not first order) dividing line 

between these regions is called the Frenkel line (5).  The Frenkel line is proposed to continue beyond 

𝑇𝐶  so, in the Frenkel line vision whilst the non-rigid liquid state does not exist beyond 𝑇𝐶  the rigid 

liquid state can exist at arbitrarily high temperature if the density is kept high enough.  The Frenkel 

line was originally proposed as a transition in certain dynamic properties, for instance speed of 

sound and heat capacity (5), rather than static properties.  Later, however, it was pointed out (6) 

that one cannot separate consideration of static and dynamic properties in this manner.  The two 

are intrinsically linked for all matter, for instance through the energy equation (equation 1) (7) for 

fluids linking the internal energy 𝑈 to the pair distribution function 𝑔(𝑟) via the pair potential 𝑉(𝑟).  

Here, 𝑈𝐾 refers to the kinetic component of 𝑈 (3𝑘𝐵𝑇/2 for a monatomic fluid) and the integral gives 

the potential energy component. 

𝑈 = 𝑈𝐾 + 2𝜋𝜌∫ 𝑉(𝑟)𝑔(𝑟)𝑟2𝑑𝑟
∞

0
      (1) 

Thus, there is now a consensus that a liquid, or liquid-like state, can exist beyond 𝑇𝐶  but 

fundamental disagreement about the density required, and mechanism, for a transition into a liquid-

like state.  The Frenkel line is expected at pressures an order of magnitude higher than the Widom 

lines.  The Widom lines unquestionably exist, yet their utility in defining a liquid-like state has been 

questioned due to the rapid divergence of different Widom lines and the smearing out of these 

transitions as 𝑃, 𝑇 is increased significantly beyond the critical point(8,9).  In contrast, experimental 

studies claiming to observe the Frenkel line are scarce(6,10,11) and have been disputed(12,13).  Bryk 

et al. claimed to “critically undermine” the concept of the Frenkel line (13). 

Experimental work to date has been hampered by the adoption of erratic 𝑃, 𝑇 paths, the well-

documented Qmax-cutoff problem in X-ray diffraction (14) and difficulties in achieving the required 

accuracy in pressure control and measurement inside the diamond anvil cell (DAC), especially at high 



temperature (10).  These problems have fuelled the controversy.  This matter is important not just 

due to the industrial applications of supercritical fluids, but because the 𝑃, 𝑇 paths in the outer 

layers of the major and outer planets are expected to pass right through this part of the phase 

diagram. 

Here, we conduct a study of the transition from gas-like to rigid liquid-like behaviour across the 

Frenkel line in supercritical N2 in which the transition is characterized in unprecedented detail by the 

combination of neutron diffraction (to circumvent the Qmax-cutoff problem) and Raman spectroscopy 

on the same sample, supported by ab-initio molecular dynamics (MD). Empirical potential structure 

refinement (EPSR) was performed to reliably extract pair distribution functions and coordination 

numbers from the measured total scattering data.  This allows us to clarify what changes, and what 

does not change, when the Frenkel line is crossed.  Our results can provide a practical experimental 

definition of the Frenkel line to guide future studies. 

Experimental and simulation methods are outlined in the supporting information.  Figure 1 (a) shows 

a representative selection of the raw 𝑆(𝑄) data obtained, including the lowest (25 MPa) and highest 

(300 MPa).  The general form of the 𝑆(𝑄) data obtained remains similar throughout.  However, the 

first peak moves outwards, increases in amplitude, and sharpens with increasing pressure.  A 

shoulder on the right side of the first peak moves to higher Q and becomes a new peak. Because it 

involves the largest relative density change the pressure increment from 25 to 75 MPa produces the 

largest changes in S(Q).  Figure 1 (b) shows the molecular (excluding intra-molecular features) 𝑔(𝑟) 

corresponding to these 𝑆(𝑄) data, obtained using EPSR.  Note that these 𝑔(𝑟) data are not simply 

direct Fourier transforms of the 𝑆(𝑄) data.  They are produced from the arrangement of molecules 

in the EPSR “box” that produces an 𝑆(𝑄) most closely fitting the diffraction data.  In the 𝑔(𝑟) data 

we also observe the most significant changes between 25 MPa and 75 MPa as expected. The main 

changes are the development of the first neighbour peak at around 4 Å followed at high pressures 

by the second and third neighbour peaks as might be expected for a fluid that is becoming more 

liquid-like. There is a sharp peak at ~2.5 Å which appears only in the 25 MPa data.  This peak is 

present only in this data set and makes no physical sense. It also appears in the raw Fourier 

transform of the 𝑆(𝑄). For these reasons we attribute this peak to an artefact due to the poor 

signal-to-noise ratio in the 𝑆(𝑄) data in this low-density sample.  Figure 1 (c) shows the variation of 

the co-ordination number as a function of pressure, calculated using the position of the minimum in 

𝑔(𝑟) between the first and second neighbour peaks as a cut-off radius. As can be seen, the co-

ordination rises quickly from 9 to ≈11.5 at 175 MPa and thereafter remains constant. This is 

consistent with the idea that above this pressure nitrogen has the co-ordination of a close packed 

dense liquid. The co-ordination number at 25 MPa includes the effect of the spurious 2.5 Å peak (see 



above) and may therefore overestimate the co-ordination at this pressure. To assess the magnitude 

of this overestimate we carried out integrations of the co-ordination with the peak removed and 

found that the co-ordination reduced by only 0.5 molecules. We have chosen to use all our data for 

figure 1 (c), but note that the effect of the spurious peak is small and does not affect our 

conclusions. We have also examined the variation of other parameters (position and width of the 

peaks) in the 𝑔(𝑟) data as a function of pressure.  Within the scatter in the data, these vary 

smoothly throughout (see supporting information). 

 

 



 

 

Figure 1.  (a) Selected plots (offset by 0.2) of obtained diffraction data 𝑆(𝑄).  (b) Selected plots of 

𝑔(𝑟) (offset by 0.8) extracted using empirical potential structure refinement (EPSR).  (c) Plot of the 

co-ordination number for the first shell as a function of pressure, obtained using EPSR by numerical 

integration of the first shell in the 𝑔(𝑟) function. 

The EPSR process also determines the (intra-molecular) N-N bond length at each pressure.  We 

would expect this to decrease at the higher pressures studied.  This expected trend is observed, 

although it is barely visible due to the scatter in the data (see supporting information).  We note also 

that the data cannot be quantitatively reconciled with the accepted gas phase bond length 𝑎0 =

1.09768 Å (15).  Throughout, the bond length given by EPSR is ca. 1% too long. 

We also collected information on the N-N bond length 𝑎 using Raman scattering.  The frequency of 

the intense Raman-active vibron in N2 at ca. 2330 cm-1 can be linked to the bond length via the 

dimensionless mode Grüneisen parameter 𝛾 (equation 2).  Whilst the shift in bond length and 

Raman frequency relative to their absolute values is extremely small, the change in Raman 

frequency is easily resolvable, allowing the collection of data on the bond length with much higher 

resolution (figure 2) than is possible using diffraction measurements and EPSR. 

𝜔(𝑃)

𝜔0
= [

𝑎(𝑃)

𝑎0
]
−𝛾

          (2) 



The mode Grüneisen parameter 𝛾 is a measure of the influence of anharmonic effects on the 

vibrational frequency of this specific vibrational mode and can be calculated from the pair potential 

for the N – N bond.  The Lennard-Jones (6-12) potential is exactly correct only for Van der Waals 

bonding, but is a good approximation which is used successfully for covalent bonding (16)(17).  The 

use of any potential of the 6-12 form results in 𝛾 = 3.5 exactly so we have used this value in our 

analysis.  In figure 2 (a) we show a plot of Raman frequency versus pressure at 300 K, combining our 

data with that of May et al. (18) and selected data from Devendorf and Ben-Amotz (15).  Data from 

other studies (19-21) are consistent with these findings.  Figure 2 (b) shows the obtained values of N 

– N bond length 𝑎 as a function of pressure.  The gas phase bond length has been obtained from ref. 

(15). 

 



 

 

Figure 2. (a) Raman peak position as a function of pressure, plotted from present data and MD 

simulations alongside previous studies in the diamond anvil cell (DAC) and supercritical fluid cell 

(SCF) (refs. (15,18) and refs. therein).  (b) N – N bond length 𝑎 as a function of pressure, calculated 

from Raman peak position using equation (2).  (c) Raman peak HWHM as a function of pressure. 



The Raman peak width (half width half maximum, HWHM) (figure 2 (c)) also displays qualitatively 

different pressure dependencies at low density and high density.  Unfortunately the peak width is 

not given in ref. (15) but May et al. (18) observed a decreasing linewidth upon pressure increase up 

to the highest pressure reached in their study (59 MPa).  We also observe a decreasing linewidth 

upon pressure increase at the lowest pressures studied, followed by an increase in linewidth as 

pressure is increased beyond ca. 250 MPa.  We cannot quantitatively compare our results to May et 

al. since the narrowest linewidths observed are close to the limit set by the resolution of the 

spectrometers used in the different studies. 

We can state little about the intensity variation as a function of pressure since this is not given in 

refs. (15,18).  In our own data the intensity (normalized to account for the density change) exhibits a 

steady increase upon pressure increase throughout, albeit with some noise in the data (see 

supporting information). 

Our experimentally determined Raman peak position is in good agreement with the results of our 

ab-initio MD simulations (figure 2(a)).  Whilst the MD simulations slightly overestimate the effect on 

Raman frequency of the changes in density the trends observed agree nicely with experiment.  In 

addition, we used ab-initio MD to examine if any kind of orientational order existed in the sample.  

This was not the case at any of the densities studied. 

Analysis of our combined data demonstrates that there exists a narrow transition between gas-like 

and rigid liquid-like behaviour at ca. 150 MPa, which we associate with the Frenkel line, and which 

corresponds to where the Frenkel line is expected to lie in N2 at this temperature on the basis of 

available theory and heat capacity measurements.  The position of the Frenkel line can be estimated 

in the supercritical region from a consideration of the heat capacity at constant volume 𝐶𝑉.  The 

definition of the Frenkel line in terms of shear wave propagation is that the line is crossed when 

𝐶𝑉 = 2𝑘𝐵 (5), following (in this case) subtraction of the contribution from rotational motion (𝑘𝐵).  

According to this definition, the Frenkel line is crossed at 150.0 MPa at 300 K.  The Frenkel line 

according to this criterion is plotted in figure 3 down to 160 K, beneath which the heat capacity 

criterion can no longer be used due to proximity to the peak in heat capacity due to the Widom line 

for 𝐶𝑉, which is very broad by this temperature.  The Frenkel line position at 300 K has also been 

estimated by rescaling of the Lennard-Jones parameters used to estimate the Frenkel line position 

for Ar (22).  This estimate puts the Frenkel line at 300 K at 140 MPa.  Thus both estimates that can be 

made from the literature on the Frenkel line position at 300 K are in excellent agreement with our 

data and simulations.  At this pressure the co-ordination number plateaus out at the expected 

maximum value of just under 12 (N2 crystallizes into the hexagonal close-packed structure with a co-



ordination number of 12 at 300 K).  The behaviour of the Raman peak position demonstrates that 

contraction of the intra-molecular bond is taking place above 150 MPa to achieve further 

compression.  The linewidth undergoes collisional narrowing up to ca. 150 MPa as also characterized 

in the previous study to 59 MPa (18), then increases upon further pressure increase.  This can be 

explained by the fluid, whilst being unable to support static shear stress, being able to support shear 

(nonhydrostatic) stress for a limited time due to the propagation of shear waves that is possible on 

the rigid liquid side of the Frenkel line (5,11). 

Thus, up to 150 MPa behaviour is gas-like, in the sense that compression of the sample is achieved 

by reduction of the inter-molecular distance and increase in the co-ordination number.  In this 

regime, we obtain the slightly counter-intuitive result that the bond length increases upon pressure 

increase.  This is because the increase in density increases the influence of attractive Van der Waals 

forces between molecules, thus loosening the intra-molecular bond.  Beyond 150 MPa the behaviour 

is rigid liquid-like, in the sense that the co-ordination number stays constant and much of the 

compression is achieved by direct compression of the N – N intra-molecular bond. 

In conclusion, we have performed a careful and rigorous study of the manner in which supercritical 

fluid N2 transforms from gas-like behaviour to rigid liquid-like behaviour at 300 K, by crossing the 

Frenkel line.  The Frenkel line is crossed at 150 MPa at 300 K.  Our neutron diffraction and Raman 

data, supported by MD simulations, are all in agreement on this point.  These findings allow us to 

clearly and reliably quantify, for the first time, what changes and what does not change in the fluid 

diffraction data when the Frenkel line is crossed.  These findings can guide future studies.  As far as 

the diffraction data are concerned, the only parameter that could be reliably determined which 

exhibits a non-monotonic change when the Frenkel line is crossed is the co-ordination number.  This 

stops increasing upon pressure increase and stays constant, with a value just below that for the solid 

phase into which the sample will crystallize upon further pressure increase. 

Our findings contrast with those from previous studies utilizing X-ray diffraction to observe the 

Frenkel line(6,11), which observed a variety of other changes when the Frenkel line is claimed to be 

crossed, including in the position of the first peak in 𝑔(𝑟) (11).  We suggest that these changes may 

be a result of the irregularity of the 𝑃, 𝑇 path followed in some cases in the experiments, and of the 

potential for unavoidable systematic errors in the background subtraction and Fourier transform 

procedures utilized to extract the peak parameters.  The Qmax-cutoff problem, in particular, is well 

understood (14) and is an unavoidable consequence of the X-ray wavelength being similar to the 

interatomic spacing in order to obtain a diffraction pattern. 



We therefore propose neutron diffraction, avoiding the Qmax-cutoff problem, as the reliable method 

to evaluate the location and character of the Frenkel line.  If X-ray diffraction must be employed, we 

propose that the data should be analysed using EPSR in a manner similar to that employed in the 

present study or deploy similar methods (such as Reverse Monte Carlo) rather than by a direct 

Fourier transform of the diffraction data, to minimize the potential for systematic analysis errors.  In 

addition, analysis should focus primarily on the co-ordination number since this quantity is 

calculated from the first peak in 𝑔(𝑟) so is less affected by the Qmax-cutoff problem.  There is still the 

potential for a systematic error due to the choice of where to define the minimum between the first 

and second peaks in 𝑔(𝑟).  We therefore agree with the proposal that the relative, rather than 

absolute, co-ordination number should be considered as the reliably determined quantity (23).  In 

both our work and ref. (6) the co-ordination number plateaus out at a fixed value where we expect 

the Frenkel line to be crossed. 

Reliably evaluating the presence (or lack thereof) of the Frenkel line solely through a diffraction 

experiment is difficult.  We therefore propose that, where possible, diffraction should be combined 

with optical spectroscopy.  In the Raman results reported here, and in similar experiments we have 

conducted previously on supercritical methane (10) and subcritical ethane (24), we observe 

behaviour which is fundamentally different in the gas-like and rigid liquid-like regions.  The changes 

are evident in the raw data, are in agreement with our MD simulations, and their observation is not 

dependent on the validity of any analysis procedure that we may wish to employ. 

The lack of orientational order existing in our MD simulations is interesting, but consistent with the 

limited orientational order in the corresponding solid phase of N2 produced upon crystallization at 

300 K.  Bearing in mind that the drastic change in Raman frequency associated with the Frenkel line 

is reproduced by the MD simulations, we can conclude that orientational order does not necessarily 

need to exist on the rigid liquid-like side of the Frenkel line. 

Finally, we would like to examine the location of the Widom lines for N2 in relation to our data 

(figure 3).  The Widom lines can be plotted out using the fundamental EOS (25) and (in common with 

Widom lines in other samples) stay close to the critical isochore until they terminate.  As noted in 

the introduction, the Widom lines diverge from each other before terminating.  The exact point at 

which a Widom line terminates is not clearly defined – the extremal value in the property simply 

gets more and more smeared out the further you go from the critical point.  Our decisions of where 

to terminate the representative Widom lines in figure 3 are outlined in the supporting information.  

Other Widom lines that we examined (𝐶𝑉, 𝐶𝑃, sound speed) all terminated at lower temperature 

than those shown in figure 3. 



From the data summarized in figure 3 we may note a fundamental difference between the Frenkel 

line and the Widom lines.  The former is crossed at far higher pressure and density (note the 

logarithmic pressure axis in figure 3).  The Widom lines stay close to the critical isochore, at which 

there is enough empty space between adjacent particles in the fluid to squeeze in an additional 

particle.  The Frenkel line, on the other hand, is crossed when the fluid has a density and co-

ordination number close to that of a solid. 

 

Figure 3.  Phase diagram of fluid N2.  The green lines are the Widom lines extending furthest from 

the critical point: a. compressibility, b. thermal conductivity and c. viscosity.  

It is clear from this that it is the Widom lines and related phenomena, rather than the Frenkel line, 

that dominate fluid behaviour in the region close to the critical point and result in large fluctuations 

in key fluid parameters in this region.  They are therefore most important from the point of view of 

industrial applications of supercritical fluids which utilize this region of the phase diagram rather 

than the region at much higher density where the Frenkel line is crossed. 

On the other hand, we have a fundamental theoretical objection to the argument that the Widom 

line(s) can mark a boundary between gas-like and liquid-like behaviour significantly above 𝑇𝐶.  By 

definition, 𝑇𝐶  is defined by the relation between the available thermal energy and the depth 𝜀 of the 



potential well due to the attractive potential between fluid particles at modest separations 

(equation 3) (26). 

𝑘𝐵𝑇𝐶 ≈ 𝜀          (3) 

Thus, above 𝑇𝐶, the attraction between particles cannot cause condensation to a liquid-like state 

because sufficient thermal energy is always available to overcome the attractive potential and allow 

the particles to escape.  The only way to force a sample into a liquid-like state significantly above 𝑇𝐶  

is to increase density up to the point where there is nowhere for the particles to escape to.  Our data 

on the co-ordination number (figure 1c) show that this condition is not met until the Frenkel line is 

crossed at ca. 150 MPa, at just over double the density at the critical isochore where the Widom 

lines lie.  Below 150 MPa, all our data are consistent with the sample behaving in a gas-like manner 

in terms of both static and dynamic properties. 
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Experimental and analysis methods 

Raman spectroscopy 

A diamond anvil cell (DAC) was equipped with diamonds having 1 mm culets and a stainless steel 

gasket, indented then drilled using a custom-constructed spark eroder.  Liquid N2 was loaded into 

the sample chamber by immersing the entire DAC in liquid N2 then turning the pressure screws using 

long Allen keys to close the DAC.  Pressure was measured using the ruby photoluminescence 

method, resulting in a typical error of ±0.002 GPa. Pressure was measured both before and after the 

collection of the Raman spectra at each step to evaluate the total error in the pressure 

measurement. In all cases, error bars are too small to display. Data were collected on pressure 

decrease from 2.6 GPa at constant temperature. To calibrate the pressure measurement, a spectrum 

was collected of the same chip of ruby as used for the pressure measurement at ambient conditions. 

Spectra of the intense Raman-active vibron at ca. 2330 cm-1 were collected on a Renishaw InVia 

Raman spectrometer (633 nm laser excitation, 2800 lines per mm grating).  The total instrumental 

linewidth was confirmed from the Raman spectrum of the unstressed diamond to be, at most, 1.3 

cm-1 HWHM.  Each spectrum was fitted using a single Lorentzian peak in Magicplot Pro following 

subtraction of a linear background.  The calibration of the Raman measurements was checked using 

the intense Raman-active vibration of diamond at 1332 cm-1 at ambient conditions.  Our data are in 



good agreement with those collected in previous studies in the pressure ranges in which they 

overlap, confirming the accuracy of this calibration. 

 

Neutron diffraction 

Time-of-flight neutron diffraction data were collected on the SANDALS instrument at the ISIS pulsed 

neutron source.  The experiments utilized the TiZr high pressure cell, allowing pressures up to 3 kbar 

to be generated using a compressor and capstan pump.  Pressure measurement was made using a 

transducer on the gas pipeline leading to the cell.  Data were normalized and corrected using 

Gudrun to obtain the static structure factor 𝑆(𝑄).  The equation of state (EOS) utilized to normalize 

the data was the Span-Wagner EOS (25) available on NIST REFPROP.  Collection time was varied 

between 8 hours and 24 hours depending on the density of N2 at each pressure studied. 

 

Empirical potential structure refinement (EPSR) 

Neutron diffraction data were analysed using the EPSR software package.  At each pressure at which 

neutron diffraction data were collected a fitting routine was run using a box of 1000 N2 molecules at 

the fixed density obtained from the Span-Wagner EOS.  After allowing the potential energy to 

equilibrate the empirical potential was turned on and allowed to change in order to fit to the 

diffraction data.  After this process was complete and the energy had stabilized again, the 

parameters output from EPSR were accumulated for 5000 iterations, keeping the previously 

obtained empirical potential fixed.  Further details on the EPSR analysis method are available in ref. 

(27).  A number of parameters are output by an EPSR simulation.  In this work we used the total 

radial distribution function 𝑔(𝑟), the running coordination number and the intramolecular radial 

distribution function 𝑑(𝑟) (simply the distribution of N-N bond lengths).  The function 𝑑(𝑟) was 

fitted using a single Gaussian at each pressure studied. 

 

Ab-initio molecular dynamics (MD) simulations 

A series of Ab-Initio molecular dynamics (AIMD) simulations were performed using periodic 

boundary conditions in a cubic cell containing 108 molecules at densities ranging from 10 mol/l to 45 

mol/l. Simulations used the CASTEP code (28) using ultrasoft pseudopotentials with an energy cut off 

of 490 eV, the PBE exchange-correlation functional and the TS semi-empirical dispersion correction 

(29). The ab-initio molecular dynamics simulations used a timestep of 1.0 fs and Nosé-Hoover 



thermostats (5 chains) in a constant NVT ensemble. Each simulation was equilibrated for 1 ps (1000 

timesteps) then continued for a further 2000-6000 steps. The pressure for each simulation was 

obtained from the set density using the Span-Wagner EOS (25). Raman frequencies were obtained 

by calculating the Fourier transform of each individual molecular bondlength versus time followed 

by averaging of Fourier transforms over all molecules (Welch windowing and zero padding was used 

to calculate individual Fourier transforms).  In the analysis the Raman frequencies produced using 

AIMD were normalized by subtraction of a small constant (32 cm-1) to ensure the lowest density 

experimental and AIMD datapoints produced the same Raman shift as the underlying DFT 

framework resulted in a systematic overestimate of frequency. 

The time averaged values of the electronic Hamiltonian are tabulated below, along with the 

corresponding calculated Raman frequency: 

Density (mol/L) Frequency (cm-1) Time-averaged Electronic 

Hamiltonian (Hartrees) 

10 2369.3 -2.192681 

15 2369.7 -2.192695 

20 2365.8 -2.192740 

25 2364.7 -2.192727 

30 2367.1 -2.192565 

35 2369.1 -2.192256 

40 2371.5 -2.191739 

45 2372.6 -2.190979 

 

  



Plots of various parameters in 𝑺(𝑸) and 𝒈(𝒓) as a function of pressure 

 

 



 

 



 

Figure S1.  Plots of the position and width of the first peak in 𝑆(𝑄), position of the first and second 

peaks in 𝑔(𝑟) and second shell co-ordination number as a function of pressure. 

 

Figure S2.  Plot of the N – N bond length obtained from the EPSR software, as a function of pressure. 



Termination of Widom lines 

Out of the Widom lines we studied using the fundamental EOS, those that persisted to the highest 

temperature were those for viscosity, density (compressibility) and thermal conductivity.  In our 

judgement, by 195 K the variation in these parameters around the critical isochore was not 

sufficiently large in a narrow 𝑃, 𝑇 range to justify plotting as part of a Widom line.  Figure S3 shows 

plots of these parameters at 195 K. 

 



 

 

Figure S3.  Plots of density, thermal conductivity and viscosity as a function of pressure at 195 K 

obtained from the fundamental EOS. 


