1 Title

2 Development of a simultaneous analytical method for five conjugated cholesterol

3 metabolites in urine and investigation of their performance as diagnostic markers for

4 Niemann–Pick disease type C

5

6 Authors

- 7 Masamitsu Maekawa ^{1,*}, Isamu Jinnoh ², Aya Narita ³, Takashi Iida ⁴, Daisuke Saigusa
- 8 ^{1,5}, Anna Iwahori ², Hiroshi Nittono ⁶, Torayuki Okuyama ⁷, Yoshikatsu Eto ⁸, Kousaku
- 9 Ohno³, Peter T Clayton⁹, Hiroaki Yamaguchi^{1,2}, and Nariyasu Mano^{1,2}

10

11 Affiliations

- 12 ¹ Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-
- 13 machi, Aoba-ku, Sendai 980-8574, Japan
- ¹⁴ ² Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku,
- 15 Sendai 980-8574, Japan
- ³ Division of Child Neurology, Tottori University Hospital, 86 Nishi-machi, Yonago,
- 17 Tottori 683-8503, Japan
- ⁴ College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajousui,
- 19 Setagaya-ku, Tokyo 156-8550, Japan
- ⁵ Department of Integrative Genomics, Tohoku Medical Megabank Organization,
- 21 Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- ⁶ Junshin Clinic Bile Acid Institute, 2-1-22 Hara-machi, Meguro-ku, Tokyo 152-0011,

23 Japan

- 24 ⁷ Department of Clinical Laboratory Medicine, National Center for Child Health and
- 25 Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan

⁸ Advanced Clinical Research Center, Institute for Neurological Disorders, Furusawa-Miyako 255, Asou-ku, Kawasaki, Kanagawa 215-0026, Japan.
⁹ Biochemistry Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health. 30 Guilford Street, London WC1N 1EH, UK
* Corresponding author: Masamitsu Maekawa, Ph.D., Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574,

33 Japan; TEL: +81-22-717-7541, FAX: +81-22-717-7545, E-mail: m-

34 maekawa@hosp.tohoku.ac.jp

35

36 *Abbreviations*: AUC, area under the curve; Cr, creatinine; GlcNAc, N-

37 acetylglucosamine; HQC, high quality control; LC/MS/MS, liquid

38 chromatography/tandem mass spectrometry; LQC, low quality control; MQC, middle

39 quality control; NPC, Niemann–Pick disease type C; *NPC1*, NPC intracellular

40 cholesterol transporter 1; NPC2, NPC intracellular cholesterol transporter 2; Niemann-

41 Pick disease type C; S7B- Δ^5 -CA, 3 β -sulfooxy-7 β -hydroxy-5-cholen-24-oic acid; S7O-

42 Δ^5 -CA, 3 β -sulfooxy-7-oxo-5-cholen-24-oic acid; SNAG- Δ^5 -CA, nonamidated 3 β -

43 sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholen-24-oic acid; SNAG- Δ^5 -CG, glycine-

44 amidated 3β -sulfooxy- 7β -*N*-acetylglucosaminyl-5-cholen-24-oic acid; SNAG- Δ^5 -CT,

45 taurine-amidated 3β -sulfooxy- 7β -*N*-acetylglucosaminyl-5-cholen-24-oic acid; SRM,

46 selected reaction monitoring; ROC, receiver operating characteristic.

47 Abstract

Niemann–Pick disease type C (NPC) is an autosomal recessive disorder characterized 48by progressive nervous degeneration. Because of the diversity of clinical symptoms and 49onset age, the diagnosis of this disease is difficult. Therefore, biomarker tests have 50attracted significant attention for earlier diagnostics. In this study, we developed a 51simultaneous analysis method for five urinary conjugated cholesterol metabolites, 52which are potential diagnostic biomarkers for a rapid, convenient, and noninvasive 53chemical diagnosis, using liquid chromatography/tandem mass spectrometry 54(LC/MS/MS). By the method, their urinary concentrations were quantified and the NPC 55diagnostic performances were evaluated. The developed LC/MS/MS method showed 5657high accuracy and and satisfied all analytical method validation criteria. Analyzing the urine of healthy controls and patients with NPC, three of five urinary conjugated 5859cholesterol metabolites concentrations corrected by urinary creatinine were significantly higher in the patients with NPC. As a result of receiver operating characteristics 60 61 analysis, the urinary metabolites might have excellent diagnostic marker performance. 3β-sulfooxy-7β-hydroxy-5-cholenoic acid showed particularly excellent diagnostic 62

- **ASBMB**
- JOURNAL OF LIPID RESEARCH

- 63 performance with both 100% clinical sensitivity and specificity, suggesting that it is a
- 64 useful NPC diagnostic marker. The urinary conjugated cholesterol metabolites exhibited

Downloaded from www.jlr.org at UCL Library Services, on October 15, 2019

65 high NPC diagnostic marker performance and could be used for NPC diagnosis.

Ē

66 INTRODUCTION

67	Niemann–Pick disease type C (NPC) is a progressive and life-limiting
68	autosomal recessive inherited disorder (1) . The prevalence of this disease is
69	approximately 1/100000 and is classified as a lysosomal disease. It is caused by
70	mutations in the NPC intracellular cholesterol transporter 1 (NPC1) gene coding for
71	membrane proteins or NPC intracellular cholesterol transporter 2 (NPC2) coding for
72	secreted proteins $(2,3)$. Lack of these functional proteins, that work cooperatively with
73	lysosomal free cholesterol efflux, causes excessive accumulation of free cholesterol and
74	sphingolipids (4). However, the relationship between the characteristic lipid
75	abnormalities and pathology of the disease remains unclear, as patients with NPC
76	present a wide variety of clinical symptoms (5). The onset age of NPC ranges from
77	neonatal to adult, and the symptoms are diverse and include systemic, visceral, nervous,
78	and psychiatric abnormalities. Because the prognosis of patients with this disease is
79	poor, it is important to diagnose NPC early and apply the treatment to maintain the
80	quality of life of the patient (5). However, few trained specialists are available and the
81	process leading to the discovery and diagnosis of NPC is complex. As conventional

j m

MASBMB

82	laboratory tests, the filipin test and genetic examination are considered to be the gold
83	standards (5). However, both of these tests are complicated, so biomarker tests have
84	attracted significant attention as a rapid screening method for NPC. Oxysterols are
85	generated from the accumulated cholesterol in NPC cells, and is present in higher
86	concentrations in the plasma of the affected patients (6). The concentration of
87	lysosphingomyelin, which is metabolized from sphingomyelin, is also elevated in the
88	plasma of patients with NPC (7). Lysosphingomyelin-509 is a blood biomarker that has
89	been recently used, but its precise structure remains unknown (8).
90	Following the previous report regarding urinary metabolites in patients with
91	NPC by Alvelius et al. (9), we developed a noninvasive diagnostic method using urine
91 92	
	NPC by Alvelius et al. (9), we developed a noninvasive diagnostic method using urine
92	NPC by Alvelius et al. (9), we developed a noninvasive diagnostic method using urine analysis. First, we developed an analytical method for three multi-conjugated
92 93	NPC by Alvelius et al. (9), we developed a noninvasive diagnostic method using urine analysis. First, we developed an analytical method for three multi-conjugated cholesterol metabolites, 3β -sulfooxy- 7β - <i>N</i> -acetylglucosaminyl-5-cholen-24-oic acid as
92 93 94	NPC by Alvelius et al. (9), we developed a noninvasive diagnostic method using urine analysis. First, we developed an analytical method for three multi-conjugated cholesterol metabolites, 3β -sulfooxy- 7β - <i>N</i> -acetylglucosaminyl-5-cholen-24-oic acid as well as its glycine and taurine conjugates (SNAG- Δ^5 -CA, SNAG- Δ^5 -CG and SNAG- Δ^5 -

98	20 urine samples and preliminarily investigated their diagnostic performance, assuming
99	that they may be useful for NPC screening (11) . However, several patients with NPC
100	had extremely low concentrations of the relevant metabolites and false-negatives. Thus,
101	a comprehensive analysis method was used to search for other biomarker candidates
102	(12), which yielded two strongly detected metabolite peaks in urine of patients with
103	NPC, 3 β -sulfooxy-7 β -hydroxy-5-cholenoic acid (S7B- Δ^5 -CA) and 3 β -sulfooxy-7-oxo-
104	5-cholenoic acid (S7O- Δ^5 -CA) (13). In this study, we evaluated the NPC diagnostic
105	marker performance of five urinary conjugated cholesterol metabolites. To evaluate
106	their diagnostic performances, it is necessary to accurately determine the concentration
107	of all metabolites for every case. Therefore, we developed an LC/MS/MS method that
108	could accurately and simultaneously analyze the urinary concentrations of the five
109	conjugated cholesterol metabolites for each sample. The urinary conjugated cholesterol
110	metabolites in all samples were quantified by the developed method, and their utility as
111	NPC diagnostic markers were evaluated.
112	

Downloaded from www.jlr.org at UCL Library Services, on October 15, 2019

113 MATERIALS AND METHODS

114 Chemicals and reagents

115	SNAG- Δ^5 -CA, SNAG- Δ^5 -CG, SNAG- Δ^5 -CT, S7B- Δ^5 -CA, S7O- Δ^5 -
116	CA, and 3β -sulfooxy- 7β -hydroxy- 23 -nor- 5 -cholenoic acid (as an internal standard (IS))
117	were synthesized as described in previous reports (the structures are shown in the Fig.
118	1) (13-15). Ultrapure water was prepared with a PURELAB ultra apparatus (Organo Co.
119	Ltd., Tokyo, Japan). All reagents (HPLC grade) were purchased from FUJIFILM Wako
120	Pure Chemical Co. Ltd. (Osaka, Japan). Urine samples were collected after obtaining
121	informed consent from untreated patients diagnosed with NPC and healthy volunteers.
122	The urine samples were collected in the morning, stored at -80 °C, and analyzed within
123	1 month. All experiments were performed according to the protocol approved by the
124	Ethics Committee of the Graduate School of Medicine in Tohoku University (Approval
125	number, 2013-1-293).

126

127 LC/MS/MS analysis

128 A Prominence model high performance liquid chromatograph system
129 (Shimadzu Co., Kyoto, Japan) was connected to a triple quadrupole tandem mass

The second secon

130	spectrometer API 5000 equipped with an electrospray ionization probe (SCIEX,
131	Framingham, MA, USA). MS/MS was acquired in selective reaction monitoring (SRM)
132	mode with negative ion detection. Ion spray voltage, turbo spray temperature, curtain
133	gas, nebulizer gas, turbo gas, and collision gas were set at -4500 V, 700 $^{\circ}$ C, 20 psi, 50
134	psi, 50 psi, and 6 units, respectively. SRM conditions were set as listed in Supplemental
135	Table 1. The dwell and pause times were set to 160 and 5 msec. Data acquisition was
136	performed using analyst version 1.5.0 (SCIEX) and SCIEX OS-Q software (SCIEX) for
137	data integration. With respect to the LC, a column switching system was used (10-13,
138	16). After injection of the sample aliquot, 20 mM ammonium acetate buffer (pH
139	5.5)/methanol (9:1, v/v) mixture was loaded on OASIS HLB column (2.1 mm i.d. \times 20
140	mm, 5 μ m, Waters, Milford, MA). Pretreatment of the sample was performed at a flow
141	rate of 1.0 mL/min for 3 min. After washing and concentrating the analytes, the sample
142	eluent was loaded on a Capcell pak C18 BB-H column (2.1 mm i.d. \times 150 mm, 3 $\mu m,$
143	Osaka Soda, Osaka) by switching the valve used for changing the flow path. Mobile
144	phase A (20 mM ammonium acetate buffer (pH 5.5)) and mobile phase B (methanol)
145	were gradually changed from A:B=65:35 to A:B=45:55 over 50 min.

146

147 **Preparation of the stock and working solutions**

148	The analytes and IS were adjusted to a concentration of 100 μ g/mL using
149	water/ethanol (1:1, v/v, as stock solution). IS was diluted with water/ethanol (1:1, v/v)
150	to 33 ng/mL and used as the IS solution. The analytes were mixed and diluted with
151	water/ethanol (1:1, v/v) to 0.3, 1, 3, 10, 30, 100, 300 and 1000 ng/mL (working
152	solutions for the calibration curve). For quality control (QC), mixed solutions of 2, 50,
153	and 800 ng/mL were set as the low quality control (LQC), middle quality control
154	(MQC), and high quality control (HQC) (working solution for QC), respectively.
155	
155 156	Calibration curve
	Calibration curve A total of 50 μL of water was used as a surrogate matrix and 50 μL of IS
156	
156 157	A total of 50 μL of water was used as a surrogate matrix and 50 μL of IS
156 157 158	A total of 50 μL of water was used as a surrogate matrix and 50 μL of IS solution, 50 μL of working solution for the calibration curve, and 350 μL of water were

SASBMB

JOURNAL OF LIPID RESEARCH

162 curves were prepared using the least squares method with $1/x^2$ weighting.

163

164 Matrix effects

To determine matrix effects, 50 μ L of the IS solution, 50 μ L of water/ethanol 165(1:1, v/v) or QCM solution, and 350 μ L of water were added to 50 μ L of urine from a 166healthy control or water. After mixing and centrifugation, the supernatant was injected 167 into the LC/MS/MS system. The matrix factor (MF) for each analyte was calculated 168using the following formula and the ratio considering the MF of IS was calculated as the 169IS normalized MF (7). 170 $MF(\%) = \frac{(Peak area of spiked urine) - (peak area of blank urine)}{(Peak area of standard solution)} \times 100$ 171IS normalized MF (%) = $\frac{(Matrix factor of each analytes)}{(Matrix factor of IS)} \times 100$ 172

173

174 Intra-assay and inter-assay reproducibility

To determine intra- and inter-assay reproducibility, 50 μL of QC solution
(blank, LQC, MQC, HQC), 50 μL of IS solution, and 350 μL of water were added to 50
μL of urine from a healthy control, and the specimens were analyzed using the

178

for every blank, LQC, MQC, and HQC (N = 6). Generally, the recovery (%) was
calculated by relative error (R.E. (%)). However, since the analytes in this study are

procedure described above. Every three days, urine samples were prepared and analyzed

181 endogenous, it was calculated by adding the concentration contained in the healthy

182 control urine (Blank).

183 R.E. (%) =
$$\frac{(Calculated concentration) - ((Added concentration) + (Blank concentration))}{(Added concentration) + (Blank concentration)} \times 100$$

184 Precision (%) was calculated by relative standard deviation (R.S.D. (%)).

185 R.S.D. (%) =
$$\frac{(Standard \ deviation)}{(Mean \ concentration)} \times 100$$

186

187 Stability test

For the stability test, 50 µL of QC solution (blank, LQC, HQC) was dried under
a nitrogen gas stream, and the urine of healthy control was added and stored under
various conditions including: 6 months at -80 °C, 24 h at 4 °C, 12 h at 25 °C as room
temperature, 3 times repeated freeze-thaw cycles, and 48 h in an autosampler.
Afterwards, analysis was performed using the same pretreatment as described above,
and the ratio between the data immediately after preparation and the quantitative value

195

MASBMB

JOURNAL OF LIPID RESEARCH

196 **Dilution test**

A mixture of standard solutions was added to 1.5 mL of healthy human urine to a final standard solution concentration of 645 ng/mL (Dilute 1). Dilute 1 was further diluted 20-fold with water (Dilute 2) and Dilute 1 and 2 were analyzed as described above. Dilution factor (%) was calculated as follows.

201 Dilution factor (%) = $\frac{(Concentration of Dilute 2\times 20)}{(Concentration of Dilute 1)} \times 100$

202

203 Urine analysis

For analysis of the urine samples, $50 \ \mu L$ of urine from healthy subjects (N = 38) and patients with NPC (N = 28) were subjected to analysis. The data was processed using JMP Pro version 13.2.1 software (SAS Institute Inc., NC, USA). Wilcoxon's t-test and receiver operating characteristic (ROC) analysis were used for intergroup analysis and diagnostic performance tests. Urinary creatinine was analyzed with enzymatic creatinine analysis kit (Serotec, Sapporo, Japan). The urinary concentrations of five

210 metabolites were corrected with the urinary creatinine concentration.

211

212 **RESULTS AND DISCUSSION**

213 Detection and separation of analytes with column switching LC/ESI-MS/MS

214 The analytes and IS, which are sulfate conjugates (Fig. 1), were detected with

high sensitivity in negative ion mode (10-13). As a result of optimization, SRM

216 condition was set as listed in Supplemental Table 1. A column switching LC system,

217 which was capable of large volume injection and online solid phase extraction, was used

for the analysis (10-13,16). Under this LC condition, the separation of all analytes and

IS was achieved with sharp peak shapes (Fig. 2A). In addition, the peaks were separated

220 from urinary contaminant peaks, which were detected constantly at the SRM transitions

221 of *m*/*z* 469>97 and 467>97 (Fig. 2B).

222

223 Calibration curves and matrix effects

In general bioanalysis, working solution spiked sample matrices are used for preparing calibration curves. Because the analytes in this study are endogenous in urine,

ļ

ASBMB

226	it is necessary to use a surrogate matrix. Therefore, we investigated the matrix effects
227	for quantification of analytes. Procedure of sample preparation for calibration curves,
228	QC samples and urine samples were summarized in Supplementary Table 2,
229	respectively. We prepared calibration curves using water as a surrogate matrix, and the
230	all calibration curves showed high linearity over wide range from 0.3 to 1000 ng/mL
231	(Supplemental Table 3A). Next, the matrix effects were investigated. The matrix effect
232	is usually calculated by the ratio of peak intensity of the standard solution spiked in a
233	pretreated matrix to that of the neat standard solution (17) . However, the analytical
234	system used herein features an online solid phase extraction, so we could not evaluate
235	the typical method (17) . Therefore, it was evaluated using MF which is the parameter
236	combining the pretreatment extraction efficiency and matrix effects from biological
237	contaminants (7). As a result, the MFs of all analytes and IS was 101–105%
238	(Supplemental Table 3B). The IS normalized MFs of all analytes were nearly 100% and
239	it was found that the analytes could be quantified without considering the matrix effect.
240	
241	Reproducibility test

The method reproducibility was investigated using QC samples. Accuracy was 242243evaluated by subtracting the concentration in the healthy control urine as Blank. The accuracy of the inter- and intra-day assays were within $100\% \pm 10\%$ for all QC samples 244and their precision (%) were within 10% (Table 1). 245246Stability test 247248The QC solution spiked urine samples were stored under various conditions and the analytes were subsequently quantified. All analytes could be stably stored under 249all conditions tested and could be quantified even for the long-term preserved specimens 250(Table 1). 251252**Dilution test** 253When the upper limit of the calibration curve was exceeded, it became 254necessary to dilute with the matrix and re-measure the sample using general 255256bioanalytical techniques. Because endogenous analytes of this study are included in urine, water was used as a surrogate matrix. The influence on the quantitative value was 257

investigated and it was found that 20-fold dilution of the urine sample by water did notaffect the quantitative results (Table 1B).

260

Analysis of five urinary cholesterol metabolites in healthy controls and patients
 with NPC

Subsequently, all urine samples from the healthy controls and patients with 263NPC were analyzed. A total of 66 specimens were collected from every patients with 264NPC and healthy controls, and their demographics are listed in Supplemental Table 4. 265The age of each groups did not differ between healthy controls (0.33–47 years) and 266patients with NPC (0.0274-48 years; P=0.1739), but a larger proportion of females 267268were recruited in the NPC patient group (P=0.0179). The typical SRM chromatogram of patient with NPC was shown in Fig. 2C. The data are summarized in both creatinine-269270corrected concentrations, which are often used for biochemical examinations (Fig. 3 and Supplemental Table 5), and uncorrected concentrations (Supplemental Fig. 1 and 271272Supplemental Table 6). All metabolites were significantly higher in patients with NPC in terms of creatinine-corrected concentrations and uncorrected concentrations other 273

<u>H</u>

274	than SNAG- Δ^5 -CT (Fig. 3 and Supplemental Fig. 1). The correlations between each of
275	the metabolites were investigated and observed to generally correlate (Supplemental
276	Fig. 2). In other, the correlation for S7B- Δ^5 -CA and other metabolites was slightly lower
277	than other combinations. Similar to the reports of Mazzacuva et al. and Jiang et al. (18,
278	19), we speculate that the analytes in this study were produced via oxysterols. It was
279	also assumed that S7O- Δ^5 -CA is metabolized from 7-ketocholesterol and SNAG- Δ^5 -
280	CA, SNAG- Δ^5 -CG, SNAG- Δ^5 -CT, and S7B- Δ^5 -CA are produced from 7 β -
281	hydroxycholesterol. The sequence of cleavage of the side chain, conjugation with
282	sulfuric acid, amino acid, and GlcNAc remains unknown. Because SNAG- Δ^5 -CA,
283	SNAG- Δ^5 -CG, and SNAG- Δ^5 -CT showed high correlations, it is expected that they are
284	produced via similar metabolic pathways. In contrast, S7B- Δ^5 -CA and S7O- Δ^5 -CA may
285	pass through a slightly different route. In addition, S7B- Δ^5 -CA did not overlap at all
286	between the samples from the patients with NPC and healthy controls in any cases
287	tested. In our previous studies (11) and the report by Mazzacuva et al. (18), several
288	cases where metabolites bearing the 7β -GlcNAc group were present in extremely low
289	concentration were observed due to mutation of the UGT3A1 gene, which codes for

<u>H</u>

290	UDP glucosyltransferase 3A1 as a GlcNAc conjugation enzyme (20). In this study, the
291	concentrations of the metabolites of SNAG- Δ^5 -CA, SNAG- Δ^5 -CG, and SNAG- Δ^5 -CT
292	were very low in the urine of patients with NPC Nos. 10 and 17. Conversely, the
293	concentration of S7B- Δ^5 -CA, which does not contain a GlcNAc group, in NPC samples
294	was higher than those of healthy controls, and it is likely that the discrimination
295	between patients with NPC from other subjects by urinary S7B- Δ^5 -CA concentration
296	may be possible. Similarly, S7O- Δ^5 -CA does not contain a GlcNAc group, but some
297	overlap was observed between the concentrations present in the urine samples of the
298	patients with NPC and healthy subjects. The results suggested that analysis of urinary
299	S7B- Δ^5 -CA may prevent overlooking of patients with NPC with false negative results
300	based on abnormally low concentrations due to the UGT3A1 mutation (18, 20).
301	Because the concentrations of urinary cholesterol metabolites were generally higher
302	than plasma oxysterols (Fig. 3, Supplemental Table 7 and (6)), these metabolites act as
303	an excretion pathway of excessive accumulated cholesterol due to metabolic
304	abnormalities similar to other cholesterol metabolic disorder diseases (22-26).
305	

j m

306 Diagnostic performance of the urinary NPC biomarker candidates

307	Finally, the NPC diagnostic performance of each urinary cholesterol
308	metabolites was evaluated using ROC analysis (Fig. 4). This study investigated the
309	biomarkers for a rare lysosomal disease NPC, and we experienced difficulty collecting
310	urine specimens and collected a total of 66 specimens. This limited sample size is not
311	ideal, but the sample number in this study exceeded the threshold which could yield
312	significant differences as result of power analysis (data not shown). Accordingly, the
313	analytical results were subjected to statistical analysis and the AUC value exceeded 0.92
314	for each metabolite. In particular, because S7B- Δ^5 -CA exhibited no overlap between
315	NPC and control patients, the AUC value of the metabolite was 1.0. The cut-off
316	concentration was set to the concentration with the highest value of sensitivity-(1-
317	specificity) which is representative of the highest true positive rate and lowest false
318	positive rate. The sensitivity was 92.6-100% and specificity was 81.1-100%, but S7B-
319	Δ^5 -CA showed 100% for both parameters. These results were nearly equivalent to the
320	plasma oxysterols (6) and their metabolites (18, 19). Therefore, the metabolites
321	investigated herein represent a series of metabolites produced from cholesterol

ASBMB

322

metabolites are a series of metabolites generated from cholesterol accumulation in an 323 NPC-dependent manner (6, 18, 19). In addition, some patients with other lysosomal 324diseases and cholesterol metabolic disorders provided almost low concentrations 325(Supplementary Table 5 and 6). Thus, it is suggested that these urinary metabolites can 326 serve as useful NPC diagnostic biomarkers, reflecting the pathology of NPC. 327 328 **CONCLUSION** 329 A simultaneous analytical method for five urinary conjugated cholesterol 330 metabolites identified from the urine of patients with NPC was developed using 331332LC/MS/MS. The performance of the five metabolites as NPC diagnostic biomarkers was also evaluated. First, we developed a reliable analytical method using column 333 334switching LC/MS/MS, then five NPC diagnostic biomarker candidates in urine were quantified. All five metabolites were generally present in higher concentrations in the 335336 urine of patients with NPC compared to those of healthy controls and showed excellent diagnostic marker performance. It was observed that the conjugated cholesterol 337

Downloaded from www.jlr.org at UCL Library Services, on October 15, 2019

accumulated by NPC pathology (18, 19). These results also suggest that urinary

ų Į

338	metabolites are useful as diagnostic markers of NPC. In particular, S7B- Δ^5 -CA is a					
339	valuable biomarker, exhibiting both 100% sensitivity and specificity. In the future, it is					
340	expected that these five urinary cholesterol metabolites, and S7B- Δ^5 -CA in particular,					
341	will be used for a noninvasive diagnostic screening method for NPC.					
342						
343	Acknowledgements					
344	We are grateful to all donors who provided their valuable urine samples. This					
345	work was supported in part by JSPS KAKENHI 16K20900 and 18K15699. We would					
346	like to thank Editage by Cactus Communuitions Co., Ltd. (Tokyo) for English					
347	language editing.					
348						
349	REFERENCES					
350	1. Vanier, M.T. 2010. Niemann–Pick disease type C. Orphanet J. Rare Dis. 5: 16.					
351	2. Carstea, E. D., M. H. Polymeropoulos, C. C. Parker, S. D. Detera-Wadleigh, R.					
352	R. O'Neill, M. C. Patterson, E. Goldin, H. Xiao, R. E. Straub, M. T. Vanier, et					
353	al. 1993. Linkage of Niemann-Pick disease type C to human chromosome 18.					

- 355 3. Steinberg, S. J., C. P. Ward, and A. H. Fensom. 1994. Complementation studies
- in Niemann-Pick disease type C indicate the existence of a second group. J.

357 *Med. Genet.* **31:** 317–320.

- 4. Kwon, H. J., L. Abi-Mosleh, M. L. Wang, J. Deisenhofer, J. L. Goldstein, M. S.
- Brown, and R. E. Infante. 2009. Structure of N-terminal domain of NPC1
- 360 reveals distinct subdomains for binding and transfer of cholesterol. *Cell*. **137**:
- 361 1213–1224.

ASBMB

JOURNAL OF LIPID RESEARCH

- 362 5. Geberhiwot, T., A. Moro, A. Dardis, U. Ramaswami, S. Sirrs, M. P. Marfa, M.
- T. Vanier, M. Walterfang, S. Bolton, C. Dawson, et al. 2018. Consensus clinical
 management guidelines for Niemann-Pick disease type C. *Orphanet J. Rare*
- 365 *Dis.* **13:** 50.
- 366 6. Porter, F. D., D. E. Scherrer, M. H. Lanier, S. J. Langmade, V. Molugu, S. E.
- 367 Gale, D. Olzeski, R. Sidhu, D. J. Dietzen, R. Fu, et al. 2010. Cholesterol
- 368 oxidation products are sensitive and specific blood-based biomarkers for
- 369 Niemann-Pick C1 disease. *Sci. Transl. Med.* **2:** 56ra81.

	370	7.	Welford, R. W., M. Garzotti, L. C. Marques, E. Mengel, T. Marquardt, J.
MBSBMB	371		Reunert, Y. Amraoui, S. A. Kolb, O. Morand, and P. Groenen. 2014. Plasma
	372		lysosphingomyelin demonstrates great potential as a diagnostic biomarker for
	373		Niemann-Pick disease type C in a retrospective study. PLoS
	374		One;9(12):e114669.
RCH	375	8.	Giese, A. K., H. Mascher, U. Grittner, S. Eichler, G. Kramp, J. Lukas, D. te
ESEA	376		Vruchte, N. A. Eisa, M. Cortina-Borja, F. D. Porter et al. 2015. A novel, highly
JOURNAL OF LIPID RESEARCH	377		sensitive and specific biomarker for Niemann-Pick type C1 disease. Orphanet
ЕП	378		<i>J Rare Dis.</i> 10: 78.
AAL O	379	9.	Alvelius, G., O. Hjalmarson, W. J. Griffiths, I. Björkhem, and J. Sjövall. 2001.
OUR	380		Identification of unusual 7-oxygenated bile acid sulfates in a patient with
Ţ	381		Niemann-Pick disease, type C. J. Lipid Res. 42(10): 1571–1577.
	382	10.	Maekawa, M., Y. Misawa, A. Sotoura, H. Yamaguchi, M. Togawa, K. Ohno, H.
, <u></u>	383		Nittono, G. Kakiyama, T. Iida, A. F. Hofmann, et al. 2013. LC/ESI-MS/MS
	384		analysis of urinary 3 β -sulfooxy-7 β -N-acetylglucosaminyl-5-cholen-24-oic acid
	385		and its amides: new biomarkers for the detection of Niemann-Pick type C

387 1 388 388

JOURNAL OF LIPID RESEARCH

386

disease. *Steroids*. **78(10):** 967–972.

387 11. Maekawa, M., A. Narita, I. Jinnoh, T. Iida, T. Marquardt, E. Mengel, Y. Eto, P.

388 T. Clayton, H. Yamaguchi, and N. Mano. 2019. Diagnostic performance

- 389 evaluation of sulfate-conjugated cholesterol metabolites as urinary biomarkers
- of Niemann–Pick disease type C. *Clin. Chim. Acta.* **494:** 58–63.
- 391 12. Maekawa, M., M. Shimada, K. Ohno, M. Togawa, H. Nittono, T. Iida, A. F.

Hofmann, J. Goto, H. Yamaguchi, and N. Mano. 2015. Focused metabolomics

- 393 using liquid chromatography/electrospray ionization tandem mass spectrometry
- 394 for analysis of urinary conjugated cholesterol metabolites from patients with
- ³⁹⁵ Niemann-Pick disease type C and 3β-hydroxysteroid dehydrogenase

396 deficiency. Ann. Clin. Biochem. **52:** 576–587.

13. Maekawa, M., K. Omura, S. Sekiguchi, T. Iida, D. Saigusa, H. Yamaguchi, and

398 N. Mano. 2016. Identification of Two Sulfated Cholesterol Metabolites Found

in the Urine of a Patient with Niemann-Pick Disease Type C as Novel

400 Candidate Diagnostic Markers. *Mass Spectrom. (Tokyo).* **5:** S0053.

401 14. Iida, T., G. Kakiyama, Y. Hibiya, S. Miyata, T. Inoue, K. Ohno, T. Goto, N.

B	403		7-N-acetylglucosaminyl-24-amidated conjugates of 3β,7β-dihydroxy-5-cholen-
EASBMB	404		24-oic acid, and related compounds: unusual, major metabolites of bile acid in
ba	405		a patient with Niemann-Pick disease type C1. Steroids. 71: 18–29.
	406	15.	Kakiyama, G., A. Muto, M. Shimada, N. Mano, J. Goto, A. F. Hofmann, and T.
RCH	407		Iida. 2009. Chemical synthesis of 3β-sulfooxy-7β-hydroxy-24-nor-5-cholenoic
RESEARCH	408		acid: an internal standard for mass spectrometric analysis of the abnormal Δ^5 -
	409		bile acids occurring in Niemann-Pick disease. Steroids. 74: 766–772.
DF LIF	410	16.	Maekawa, M., M. Mori, M. Fujiyoshi, H. Suzuki, K. Yanai, A. Noda, M.
JOURNAL OF LIPID	411		Tanaka, S. Takasaki, M. Kikuchi, K. Akasaka, et al. 2018. A direct injection
OURI	412		LC/ESI-MS/MS analysis of urinary cyclophosphamide as an anticancer drug
ר	413		for monitoring occupational exposure. Chromatography. 39: 41-47.
	414	17.	Matuszewski, B. K., M. L. Constanzer, and C. M. Chavez-Eng. 2003.

402

	a patient with Niemann-Pick disease type C1. Steroids. 71: 18–29.
15.	Kakiyama, G., A. Muto, M. Shimada, N. Mano, J. Goto, A. F. Hofmann, and T.
	Iida. 2009. Chemical synthesis of 3β-sulfooxy-7β-hydroxy-24-nor-5-cholenoic
	acid: an internal standard for mass spectrometric analysis of the abnormal Δ^5 -
	bile acids occurring in Niemann-Pick disease. Steroids. 74: 766–772.
16.	Maekawa, M., M. Mori, M. Fujiyoshi, H. Suzuki, K. Yanai, A. Noda, M.
	Tanaka, S. Takasaki, M. Kikuchi, K. Akasaka, et al. 2018. A direct injection
	LC/ESI-MS/MS analysis of urinary cyclophosphamide as an anticancer drug
	for monitoring occupational exposure. Chromatography. 39: 41-47.
17.	Matuszewski, B. K., M. L. Constanzer, and C. M. Chavez-Eng. 2003.

- Strategies for the assessment of matrix effect in quantitative bioanalytical 415
- 416 methods based on HPLC-MS/MS. Anal. Chem. 75: 3019-3030.
- 18. Mazzacuva, F., P. Mills, K. Mills, S. Camuzeaux, P. Gissen, E. R. Nicoli, C. 417

Mano, J. Goto, T. Nambara, et al. 2006. Chemical synthesis of the 3-sulfooxy-

418		Wassif, D. te Vruchte, F. D. Porter, M. Maekawa, et al. 2016. Identification of
419		novel bile acids as biomarkers for the early diagnosis of Niemann-Pick C
420		disease. FEBS Lett. 590: 1651–1662.
421	19.	Jiang, X., R. Sidhu, L. Mydock-McGrane, F. F. Hsu, D. F. Covey, D. E.
422		Scherrer, B. Earley, S. E. Gale, N. Y. Farhat, F. D. Porter, et al. 2016.
423		Development of a bile acid-based newborn screen for Niemann-Pick disease
424		type C. Sci. Transl. Med. 8: 337ra63.
425	20.	Mackenzie, P. I., A. Rogers, J. Treloar, B. R. Jorgensen, J. O. Miners, R.
426		Meech. 2008. Identification of UDP glycosyltransferase 3A1 as a UDP N-
427		acetylglucosaminyltransferase. J. Biol. Chem. 283: 36205-36210.
428	21.	Jiang, X., R. Sidhu, F. D. Porter, N. M. Yanjanin, A. O. Speak, D. T. te Vruchte,
429		F. M. Platt, H. Fujiwara, D. E. Scherrer, J. Zhang, et al. 2011. A sensitive and
430		specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease
431		from human plasma. J. Lipid Res. 52: 1435–1445.
432	22.	Clayton, P. T., J. V. Leonard, A. M. Lawson, K. D. R. Setchell, S. Andersson,
433		B. Egestad, and J. Sjövall. 1987. Familial giant cell hepatitis associated with

ASBMB

JOURNAL OF LIPID RESEARCH

<u>H</u>

27

434		synthesis of 3 β , 7 α -dihydroxy-and 3 β , 7 α , 12 α -trihydroxy-5-cholenoic acids. <i>J</i> .
435		<i>Clin. Invest.</i> 79: 1031–1038.
436	23.	Setchell, K. D. R., F. J. Suchy, M. B. Welsh, L. Zimmer-Nechemias, J. Heubi,
437		and W. F. Balistreri. 1988. Δ^4 -3-oxosteroid-5 β -reductase deficiency described in
438		identical twins with neonatal hepatitis. A new inborn error in bile acid
439		synthesis. J. Clin. Invest. 82: 2148–2157.
440	24.	Clayton, P. T., M. Casteels, G. Mieli-Vergani, and A. M. 1995. Lawson.
441		Familial giant cell hepatitis with low bile acid concentrations and increased
442		urinary excretion of specific bile alcohols: a new inborn error of bile acid
443		synthesis? Pediatr. Res. 37: 424-431.
444	25.	Setchell, K. D., M. Schwarz, N. C. O'Connell, E. G. Lund, D. L. Davis, R.
445		Lathe, H. R. Thompson, R. W. Tyson, R. J. Sokol and D. W. Russell. 1998.
446		Identification of a new inborn error in bile acid synthesis: mutation of the
447		oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J.
448		<i>Clin. Invest.</i> 102: 1690–1703.
449	26.	Clayton, P. T. 2011. Disorders of bile acid synthesis. J. Inherit. Metab. Dis. 34:

ASBMB

JOURNAL OF LIPID RESEARCH

<u>H</u>

450

593-604.

451

GASBMB

JOURNAL OF LIPID RESEARCH

452 Fig. Legends

453 Fig. 1 Chemical structure of analytes and internal standard.

454 3β-Sulfooxy-7β-*N*-acetylglucosaminyl-5-cholenoic acid (SNAG- Δ^5 -CA) (A), glycine-

455 amidated 3 β -sulfooxy-7 β -N-acetylglucosaminyl-5-cholenoic acid (SNAG- Δ^{5} -CG) (B),

456 taurine-amidated 3β -sulfooxy- 7β -*N*-acetylglucosaminyl-5-cholenoic acid (SNAG- Δ^5 -

457 CT) (C), 3β-sulfooxy-7β-hydroxy-5-cholenoic acid (S7B- Δ^5 -CA) (D), 3β-sulfooxy-7-

458 oxo-5-cholenoic acid (S7O- Δ^5 -CA) (E), 3β-sulfooxy-7-oxo-23-nor-5-cholenoic acid

459 (Internal standard, IS) (F).

460

461 Fig. 2 SRM chromatograms of analytes and IS. 30 ng/mL standard mixture (A), an
462 urine of a healthy control (B), an urine of patient with Niemann-Pick disease type C
463 (C). All of analytes and IS were separated from each other and completely separated
464 from the contaminant peaks. SRM, selected reaction monitoring; IS, internal standard.
465

\mathbf{m}	
Σ	
Ω	
S	
A	

466

ll H

467	SNAG- Δ^5 -CT (C), S7B- Δ^5 -CA (D), S7O- Δ^5 -CA (E), and their total concentration (F) in
468	the urine of healthy controls and patients with NPC. SNAG- Δ^5 -CA, S7B- Δ^5 -CA, and
469	their total concentration in the urine of patients with NPC were significantly higher than
470	those observed in healthy controls. NPC, Niemann–Pick disease type C; SNAG- Δ^5 -CA,
471	3β -Sulfooxy- 7β - <i>N</i> -acetylglucosaminyl-5-cholenoic acid; SNAG- Δ^5 -CG, Glycine-
472	amidated 3 β -sulfooxy-7 β - <i>N</i> -acetylglucosaminyl-5-cholenoic acid; SNAG- Δ^5 -CT,
473	Taurine-amidated 3 β -sulfooxy-7 β - <i>N</i> -acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA,
474	3β-Sulfooxy-7β-hydroxy-5-cholenoic acid; S7O- Δ^5 -CA, 3β-Sulfooxy-7-oxo-5-
475	cholenoic acid.
476	
477	Fig. 4 ROC analysis results of the urinary concentration of SNAG- Δ^5 -CA (A), SNAG-
478	Δ^{5} -CG (B), SNAG- Δ^{5} -CT (C), S7B- Δ^{5} -CA (D), S7O- Δ^{5} -CA (E), and their total
479	concentration (F). AUC, cut-off concentration, sensitivity, and specificity are also
480	shown. The AUC values ranged between 0.916 and 1.0. The sensitivities were 92.6% to
481	100% and the specificities were 81.1% to 100%. The cut-off concentrations ranged from

Fig. 3 The creatinine-corrected concentrations of SNAG- Δ^5 -CA (A), SNAG- Δ^5 -CG (B),

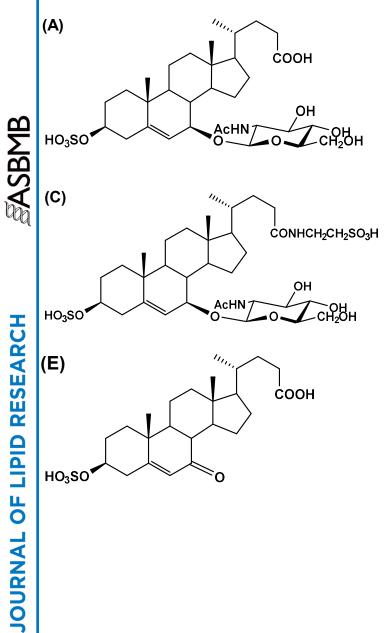
- 483 Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; SNAG- Δ^5 -CG,
- 484 Glycine-amidated 3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholenoic acid; SNAG- Δ^5 -
- 485 CT, Taurine-amidated 3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -

86 CA, 3β -Sulfooxy- 7β -hydroxy-5-cholenoic acid; S7O- Δ^5 -CA, 3β -Sulfooxy-7-oxo-5-

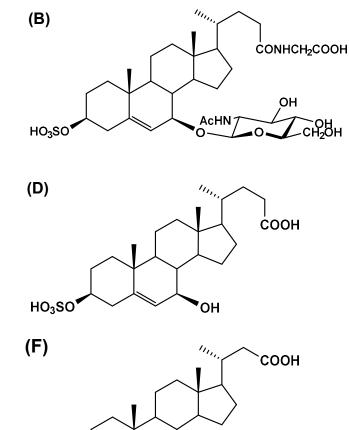
487 cholenoic acid; ROC, receiver operating characteristic.

Table 1 Ana	lytical validation data.
(A)Intra-da	v and inter-dav assav

(Ά).	Intra-d	lay	and	inter-day	assay

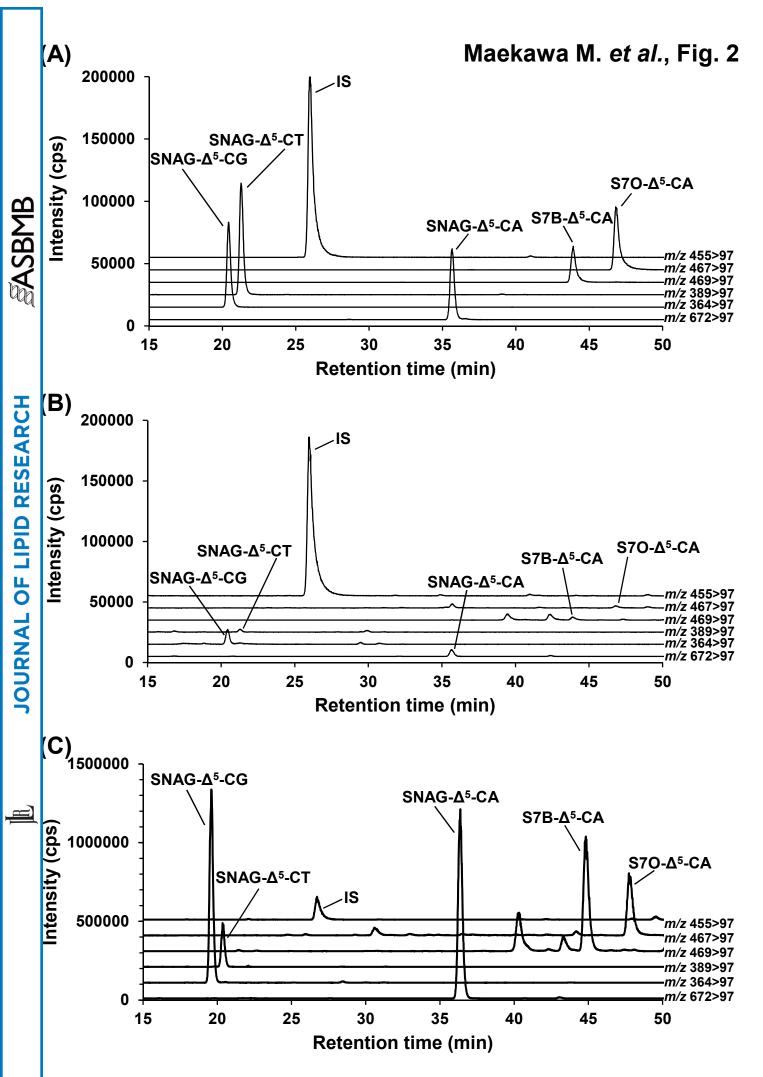

Intra-	Intra-day assay (N=6)							
No	Compound	Recover	ry (%)			Accurac	cy (%)	g at l
		Blank	LQC	MQC	HQC	LQC	MQC	HQC P
1	SNAG-∆ ⁵ -CA	4.69	2.53	2.59	2.20	3.64	-6.01	-6.73 brai
2	SNAG-∆ ⁵ -CG	3.07	4.36	3.19	2.87	2.56	-6.63	-7.99 ve
3	$SNAG-\Delta^5-CT$	3.07	6.68	2.39	2.54	4.21	-4.06	-3.40 če
4	$S7B-\Delta^5-CA$	3.69	2.12	1.86	3.96	-4.94	-6.49	-10.23
5	S7O- Δ^5 -CA	7.48	1.54	2.13	4.28	5.73	6.10	3.17 g
Inter-	day assay (N=6)							oer 15
No	Compound	Recover	ry (%)			Accurac	ey (%)	, 2019
		Blank	LQC	MQC	HQC	LQC	MQC	HQC [©]
1	SNAG-∆ ⁵ -CA	4.27	5.50	2.95	2.25	-0.94	-3.60	-4.64
2	SNAG-∆ ⁵ -CG	2.43	4.29	3.50	2.03	-0.81	-4.25	-7.35
3	$SNAG-\Delta^5-CT$	3.11	6.15	1.69	1.82	0.100	-3.92	-4.26
4	$S7B-\Delta^5-CA$	8.31	6.79	4.57	3.00	-5.79	-2.46	-8.75
5	S7O- Δ^5 -CA	5.76	4.11	3.55	4.25	3.06	9.76	7.67

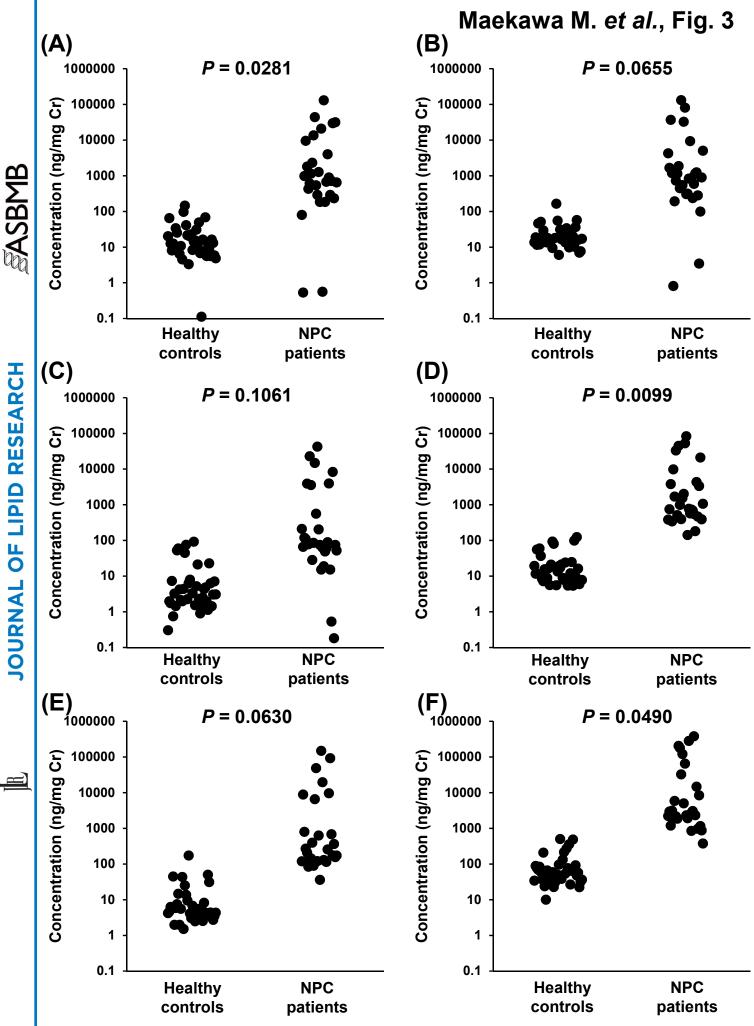
Downloaded from www

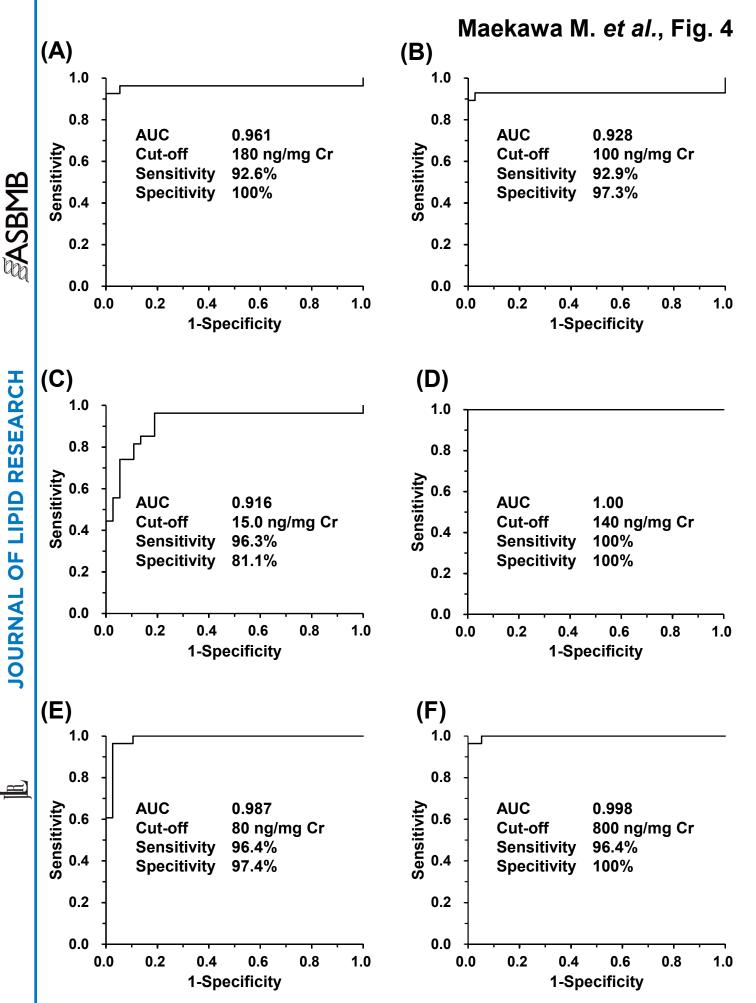

						Down	
						Downloaded	
B) St	ability and dilution te	est				d from	
		Recovery (%	, Mean±SD)			WWW	
		Freeze and the	naw	-80°C for 6 r	nonths	4°Č	ours
		LQC	HQC	LQC	HQC	LQ	HQC
1	SNAG- Δ^5 -CA	99.9±3.75	104±0.687	95.3±4.58	95.0±2.64	99. DZ3.19	97.1±0.227
2	SNAG- Δ^5 -CG	97.9±1.17	99.1±0.642	110±3.76	97.6 ± 1.88	101 = 3.84	97.2±0.931
3	SNAG- Δ^5 -CT	98.1±2.34	101 ± 1.08	96.8±2.13	98.5±1.66	97.ޱ4.48	$97.2{\pm}1.97$
4	$S7B-\Delta^5-CA$	$98.6 {\pm} 2.47$	97.4±1.18	98.9±5.89	103 ± 1.46	96.§±1.34	92.1±0.347
5	S7O- Δ^5 -CA	96.8±4.99	104 ± 1.64	99.9±3.05	104 ± 0.168	1029=6.30	93.4±1.65
		24°C for 121	nours	Autosampler	for 48 hours	Dilution	
		LQC	HQC	LQC	HQC	10 μg/mL	
1	SNAG- Δ^5 -CA	95.5±3.23	95.8±2.16	92.2±2.80	93.7±0.797	10940.759	
2	SNAG- Δ^5 -CG	98.4±2.36	95.9±1.15	99.7±2.21	94.4 ± 0.844	109 ± 0.976	
3	SNAG- Δ^5 -CT	95.6±2.17	94.6±0.399	94.7±2.38	96.3±2.18	107 ± 1.81	
4	$S7B-\Delta^5-CA$	94.4±7.45	93.8±2.30	101±3.09	106±1.09	104 ± 1.11	
5	$S7O-\Delta^5-CA$	95.3±2.92	96.9±3.36	103±1.43	109 ± 1.40	102±1.76	

LQC, low quality control (2 ng/mL); MQC, middle quality control (50 ng/mL); HQC, high quality control (800 ng/mL); SNAG- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; SNAG- Δ^5 -CG, Glycine-amidated 3 β -sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; SNAG- Δ^5 -CT, Taurine-amidated 3 β -sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetylglucosaminyl-5-cholenoic acid; S7B- Δ^5 -CA, 3 β -Sulfooxy-7 β -*N*-acetyl

Maekawa M. et al., Fig. 1




The second



ЮH

HO₃SO

