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Abstract 

Loss of function mutations in the gene neurofibromatosis Type 2 (NF2), coding for a 

tumour suppressor Merlin, cause multiple tumours of the nervous system such as 

schwannomas, meningiomas and ependymomas. These tumours may occur 

spontaneously or as part of the hereditary condition Neurofibromatosis Type 2 (NF2). 

Current treatment is confined to (radio) surgery and no drug therapies exist. NF2 

mutations and/or Merlin inactivation are also seen in other cancers including some 

mesothelioma, breast cancer, colorectal carcinoma, melanoma and glioblastoma. To 

study the relationship between Merlin-deficiency and tumourigenesis we have 

developed an in vitro model comprising human primary schwannoma cells, the most 

common Merlin-deficient tumour and the hallmark for NF2. Using this model we 

show increased expression of cellular prion protein (PrPC) in schwannoma cells and 

tissues. Additionally, a strong overexpression of PrPC is observed in human Merlin-

deficient mesothelioma cell line TRA and in human Merlin-deficient meningiomas. 

PrPC contributes to increased proliferation, cell-matrix adhesion and survival in 

schwannoma cells acting via 37/67kDa non-integrin laminin receptor (LR/37/67kDa) 

and downstream ERK1/2, PI3K/AKT and FAK signalling pathways. PrPC protein is 

also strongly released from schwannoma cells via exosomes and as a free peptide 

suggesting that it may act in an autocrine and/or paracrine manner. We suggest that 

PrPC and its interactor, LR/37/67kDa, could be potential therapeutic targets for 

schwannomas and other Merlin-deficient tumours.  

Key words 

Cellular Prion Protein (PrPC), Merlin-deficient tumours, Schwannoma, 

Neurofibromatosis Type 2 (NF2), 37/67kDa non-integrin laminin receptor  



3 
 

Introduction 

Mutations in a gene coding for the tumour suppressor protein Merlin (NF2) lead to 

the development of multiple tumours of the nervous system including schwannomas, 

meningiomas and ependymomas. These tumours occur spontaneously or as a part 

of the hereditary disease Neurofibromatosis type 2 (NF2) (1). NF2 gene 

mutations/Merlin inactivation are also found in proportion of breast cancer, colorectal 

carcinoma, melanoma, glioblastoma and mesothelioma (2). Current treatments for 

NF2, surgery and radiosurgery, are invasive and cannot be used in all patients, 

therefore new drug-based treatments are needed (3). Schwannoma is the most 

common Merlin-deficient tumour and the hallmark for NF2 (4). Using a primary 

human schwannoma in vitro cell model we have previously uncovered signalling 

pathways involved in schwannoma development including; ERK1/2, FAK, Src, NFκB, 

JNK, PI3K/AKT, p53/MDM2 and the ubiquitin ligase CRL4DCAF1 (5-8).  

A cDNA array hybridisation and RT-PCR highlighted significantly increased activity of 

the prion protein (PrP)-encoding gene, PRNP, in schwannoma compared to 

Schwann cells (9). Cellular prion protein PrPC is a N-glycosylated protein, tethered to 

the cell membrane via a C-terminal glycosyl-phosphatidylinositol (GPI) anchor (10). 

PrPC is expressed in CNS neurons and glial cells (10) as well as in PNS axons and 

associated Schwann cells (11) displaying important biological functions such as 

myelination maintenance, neural precursor proliferation and adult neurogenesis (12-

14). PrPC is overexpressed in different cancers including colorectal cancer, breast 

cancer, pancreatic cancer and melanoma regulating proliferation, cell adhesion and 

survival  (15)  via key signalling pathways [cyclin D1, ERK1/2, caspase-3 and 

PI3K/AKT (16, 17)], previously shown to be involved in schwannoma development 

(18, 19). PrPC can be released from cells, taking part in autocrine and/or paracrine 
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signalling (20, 21). PrPC has been shown to bind to the cell surface 37/67kDa laminin 

receptor protein (LR/37/67kDa) which could be potentially targeted by anti-LR 

37/67kDa antibodies (22) and LR/37/67kDa/laminin interaction inhibitor NSC47924 

(23).  

We demonstrate, for the first time, that (a) PrPC protein is strongly overexpressed in 

schwannoma compared to control Schwann cells/tissues; (b) that this 

overexpression is negatively regulated by Merlin and depends on NFκB; (c) PrPC 

levels are also highly increased in Merlin-deficient human mesothelioma cell line 

TRA and Merlin-deficient human meningioma grade I tissues and primary cells; (d) 

PrPC increases schwannoma cell proliferation, survival and cell-matrix adhesion 

acting via LR/37/67kDa and downstream ERK1/2, PI3K/AKT, and FAK signalling 

pathways; (e) PrPC is released from schwannoma cells, both via exosomes and also 

as cleaved peptides.  We  therefore suggest that decreasing PrPC levels either by 

using humanized anti-PrP antibody PRN100 [clinical trials are planned by MRC Prion 

Unit for sporadic Creutzfeldt-Jakob disease (24)]; or proteasome inhibitor (targeting 

NFκB) Bortezomib [FDA approved for multiple myeloma (25)];  or targeting PrPC  

receptor and/or the, LR/37/67kDa laminin receptor, using inhibitors such as 

NSC47924 (23) or antibodies (22) could be a good therapeutic strategy for 

schwannoma and other Merlin-deficient tumours. 
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Results 
 
Cellular di-glycosylated form or prion protein PrPC is strongly overexpressed 

in schwannoma  

Immunocytochemistry shows increased PrP staining in Merlin negative human 

primary schwannoma cells (NF2-/-), throughout the cytoplasm and cell membranes 

(Figure 1a, right panel) compared to the weak staining seen in control human 

Schwann cells (NF2+/+) (Figure 1a, left panel). Immunohistochemistry on formalin-

fixed, paraffin-embedded tissues also shows a very high level of PrP expression in 

human schwannoma tumours (Figure 1b, third panel) compared to healthy nerve 

(Figure 1b, first panel) and traumatic neuroma (Reactive non-neoplastic proliferation 

of, Schwann cells and perineurial cells caused by injury or trauma) sections (Figure 

1b, second panel). These data are confirmed by Western blotting, demonstrating a 

strong PrP overexpression in schwannoma compared to Schwann cells and tissues 

(Figure 1c and Supplementary Figure 1a right panel).  

To define which form of the PrP is overexpressed in schwannoma (i.e. either the 

normal cellular PrPC, or pathogenic infectious proteinase K-resistant PrPRes), cells 

were either lysed normally with the addition of protease inhibitors or with proteinase 

K (16). Western blot analysis of schwannoma lysates treated with proteinase K show 

complete ablation of PrP (Figure 1d, right lane) compared to control (Figure 1d, left 

lane) suggesting that the cells express cellular PrPC and not PrPRes. 

Mature, di-glycosylated PrPC has been linked to resistance to apoptosis in several 

cancers whereas lack of glycosylation is linked to PrPC to PrPRes conversion (26). 

Using a PNGaseF de-glycosylation assay we show that the PrPC expressed in both 

Schwann and schwannoma cells is di-glycosylated (Figure 1e left panel). Both 

samples show two clear de-glycosylated bands which account for the presence of 
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mono- and completely un-glycosylated PrPC after treatment with PNGaseF. The 

replicates are highly variable but no difference in the ratio of mono-: un-glycosylated 

bands between Schwann and schwannoma samples was observed (Figure 1e right 

panel).  

 

PrPC overexpression is due to increased transcription and translation and not 

due to decreased proteosomal degradation 

Treatment of schwannoma cells with transcription inhibitor actinomycin D (ActD) 

(10nM, 24h) (Figure 1f) and translation inhibitor cycloheximide (CHX) (1µM, 24h) 

reduced PrPC levels by ~80% (Figure 1g). Additionally, proteosomal degradation 

inhibitor MG132 (1µM, 24h) increased PrPC level by ~50% (Figure 1h). These and 

our previous data on PRNP gene activation in schwannoma (9), suggest that 

increased PrPC level is due to increased transcription and translation and not due to 

intracellular accumulation caused by decreased proteosomal degradation (27).  

Similarly to schwannoma, PrPC is also upregulated in human Merlin-deficient 

mesothelioma cell line TRA (28) (Figure 1i) and in Merlin-deficient human grade I 

meningioma tissues (Figure 1j ) and primary cells (Figure 1k and Supplementary 

Figure 1b) compared to controls. 

 

Merlin-reintroduction is sufficient to reduce PrPC levels in Merlin-deficient-

schwannoma and -mesothelioma but not -meningioma cells 

To investigate if PrPC overexpression is due to Merlin deficiency we reintroduced 

Merlin (NF2) wild-type protein into schwannoma, TRA and meningioma grade I cells, 

using recombinant adenovirus AdNF2 (29). Interestingly, Merlin-reintroduction 

reduced PrPC levels in both schwannoma (Figure 2a) and TRA (Figure 2b) cells but 
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not in meningioma cells (Figure 2c), suggesting that in Merlin-negative meningioma, 

additional mutations may be involved in the regulation of PrPC [(30-33) and  (34)]. 

 

PrPC expression in schwannoma cells is up-regulated by NFκB 

To find potential therapeutic targets downstream of Merlin which are involved in 

increased levels of PrPC we inhibited two major transcription regulators in 

schwannoma, ubiquitin E3 ligase CRL4DCAF1 using shRNA (35, 36) and NFκB using 

SN50 inhibitor (8µg/ml, 72 hours) (5). We demonstrate that PrPC overexpression in 

schwannoma cells was not affected by CRL4DCAF1 shRNA (Figure 2d) but, instead, 

was significantly decreased upon treatment with NFκB inhibitor SN50 (Figure 2e and 

Supplementary Figure 2). Thus, in schwannoma PrPC overexpression is due to 

Merlin-deficiency and downstream activation of transcription factor NFκB. 

 

PrPC is released mainly via exosomes from schwannoma cells  

A small but significant increase in PrPC was detected by ELISA in the medium from 

schwannoma cells compared to Schwann cells (Figure 3a). Since PrPC can be 

released via exosomes (20), we first checked the expression of exosome/late 

endosome marker CD63 in schwannoma and Schwann cells. Figure 3b 

demonstrates strong overexpression of CD63 in schwannoma compared to Schwann 

cells, suggesting higher levels of exosomes/late endosomes in these cells (Figure 

3b). Additional ELISA experiments, on GFM media containing exosome-free FCS, 

show that the majority of PrPC released from schwannoma cells is released via 

exosomes and only a small portion as free peptides. The levels of exosome-bound 

PrPC (Figure 3c, dark grey bar) are 6-fold higher compared to the levels of free PrPC 

(Figure 3c, black bar) present in the supernatant fraction left over after exosomes 
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were isolated. This was compared to ‘whole’ cell culture medium which was 

simultaneously collected and run (Figure 3c, medium light grey bar) and fresh GFM 

as a negative control (Figure 3c, white bar). A similar pattern was demonstrated by 

Western blotting where clear bands for PrPC are seen in the exosome fraction 

(Figure 3d, second row). PrPC is a glycoprotein and therefore its molecular weight 

spans between 30 to 37 kDa(10). No band for PrPC is detectable in the supernatant 

fraction of medium remaining after exosome isolation collected from schwannoma 

cells (Figure 3d, third row) which could be due to lower sensitivity of western blot 

technique compared to ELISA. Furthermore, immunocytochemistry showed co-

localisation between PrPC and CD63 in schwannoma cells (Figure 3e).  The levels of 

free PrPC are not altered upon treatment of cells with PIPLC (0.2U/ml, 3h) which 

cleaves PrPC at the GPI anchor (37) (Figure 3f) and there is no significant difference 

in the amount of PrPC released into the cell culture medium after PIPLC treatment 

(Figure 3g). Thus free PrPC (Figure 3c) is released by other mechanisms than 

PIPLC-mediated cleavage. One alternative mechanism is ADAM10 

metalloproteinase-mediated cleavage (38). We demonstrate that upon schwannoma 

cell treatment with ADAM10 inhibitor GI254023X (20µM) for 3 hours the levels of  

PrPC increased in cell lysates (Figure 3h) and decreased in culture media (Figure 3i), 

suggesting that in schwannoma cells PrPC cleavage and release is mediated at least 

partially by ADAM10 metalloproteinase. 

 

Reducing PrPC levels decreases proliferation and survival of schwannoma 

cells  

To investigate functional relevance of PrPC overexpression we used two methods to 

reduce PrPC expression in schwannoma cells; (1) two sets of PRNP shRNA lentiviral 
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particles; (2) an anti-prion agent TCS and both techniques strongly reduced PrPC 

expression (Supplementary Figures 3ai, 3aii and 3b). Since, PRNP shRNA lentiviral 

particles from Santa Cruz and PRNP shRNA  lentivirus from GE Dharmacon 

displayed similar efficiency for PrP knock down and the decrease of downstream 

signalling pathways (Supplementary Figures 3ai and 3aii) we combined the data for 

both shRNA’s. We demonstrate that the number of proliferating, Ki67-positive cells, 

and total cell number (DAPI) were significantly reduced upon treatment with PRNP 

shRNA (Figures 4a, 4i and Supplementary Figure 4a) and TCS (Figures 4b, 4j and 

Supplementary Figure 4b), as were levels of proliferation marker, cyclin D1 (Figures 

4c and 4d). Cells show an increase in apoptosis, detected by cleaved caspase-3 

immuno-labelling, upon depletion of PrPC  using both PRNP shRNA (Figures 4e and 

4i) and TCS (Figures 4f and 4j), and confirmed by Western blot analysis (Figures 4g 

and 4h). The percentage of alive cells was significantly decreased both using TCS 

and PRNP shRNA (Supplementary Figures 4c and 4d). We also demonstrate that 

PrP synthetic peptide (amino acid residues 105 - 120 of the human prion protein, N-

terminal) (0.8µM, 72 hours)  has a cyto-protective role in schwannoma; rescuing 

cells from hydrogen peroxide H2O2 (500µM, 12 hours) mediated cell death (Figure 4k, 

l m and Supplementary Figure 4e). 

 

Reducing PrPC levels decreases cell matrix adhesion in schwannoma 

Schwannoma display increased cell-matrix adhesion (39) and PrPC has been shown 

to affect cell adhesion via interactions with laminin and the neural cell adhesion 

molecule (NCAM) in hippocampal neurons (10). Therefore, we investigated whether 

reducing levels of PrPC would decrease cell adhesion to the laminin/poly-lysine cell 

matrix. After knockdown of PRNP mRNA, cells were less capable of adhering to the 
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cell matrix (Figure 4n). The same reduction in adhesion was also seen upon 

depletion of PrPC using TCS (Figure 4o), n=3). These data suggest that PrPC is 

involved in the pathological cell-matrix adhesion of schwannoma. 

 

Decreasing expression of PrPC alters activity and expression of several key 

signalling pathways known to be involved in schwannoma development 

We next analysed whether signalling via the key pathways (PI3K/AKT, ERK1/2 and 

FAK) known to be involved in schwannoma proliferation, survival and cell-matrix 

adhesion were affected by reducing PrPC. The MAPK pathway has previously been 

linked to PrPC signalling (40).  

ERK. Levels of total ERK1/2 are significantly reduced upon treatment with PRNP 

shRNA and high concentrations of TCS (Figures 5a and 5b, dark grey bars). Active 

pERK1/2 expression (light grey bars), was also significantly reduced with PRNP 

shRNA and at both 100μM and 500μM TCS inhibitor concentrations (Figures 5a and 

5b, light grey bars). 

AKT. Although a slight tendency for total AKT to decrease upon PrP knockdown and 

TCS treatment, the values are non-significant (Figures 5c and 5d dark grey bars). 

Levels of active pAKT, however, significantly decrease with PRNP shRNA and TCS 

(Figures 5c and 5d, light grey bars). 

FAK. Total FAK is significantly reduced after PRNP knockdown and upon treatment 

with high levels (500μM) of TCS (Figures 5e and 5f, dark grey bars). Levels of auto-

phosphorylated FAKY397 are significantly reduced with PRNP shRNA and also at all 

concentrations of TCS (Figures 5e and 5f, light grey bars).  

Thus PrPC is linked to increased expression and activation of ERK1/2, FAK and the 

activation of PI3K/AKT pathway in schwannoma cells which are known to be 



11 
 

involved in schwannoma development (18, 19). 

 

Treatment with PrP peptide and overexpressing PrPC increases Schwann cell 

proliferation and expression of c-Jun 

Next we looked at the effects of increasing PrPC levels in Schwann cells to see if a 

pathological phenotype could be induced. First, we used a PrP synthetic peptide to 

mimic the effect of free PrP in cell culture media (41, 42). Schwann cells were 

stimulated for 6 days with 0.8μM of PrP peptide before looking at levels of 

proliferation (Ki67) and expression of the proto-oncogene c-Jun which is involved in 

Schwann cells proliferation and  overexpressed/activated in schwannoma via  c-Jun 

N-terminal kinase (JNK) leading to increased tumour proliferation and survival (43). 

Both the number of Ki67 positive cells (Figure 6a, red staining) and c-Jun positive 

cells (Figure 6b, green staining) increased in cells treated with PrP (105 – 120) 

peptide compared to untreated cells in GFM media. Cell morphology examined by 

the cytoskeletal F-actin marker phalloidin, showed that Schwann cells looked more 

like schwannoma tumour cells with an increase in cell spreading and membrane 

ruffling after treatment with PrP peptide (0.8µM)  for 6 days and two weeks 

compared to untreated cells (Figure 6c). Cell area was measured using ImageJ 

software in n=52 cells (6 days) and in n=50 cells (2 weeks) (Figure 6c right panel). 

Next, we checked if PrP (105 – 120) peptide treatment had caused the 

transformation of endogenous PrPC protein into protease-resistant PrPRes (44). Cells 

were lysed either in the presence of protease inhibitors or instead with proteinase K 

after being treated for six days with PrP (105 – 120) peptide. Results show that cells 

still expressed normal protease-sensitive PrPC after treated with PrP (105 – 120) 

(Figure 6d).  
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Moreover, we produced PRNP overexpressing lentiviruses using a pLenti6.2/V5-

DEST plasmid (Supplementary Figure 5), to overexpress full length PrPC in Schwann 

cells. DNA from PRNP coding region (NCBI Reference Sequence: NG_009087.1) 

from two separate transformation starter colonies (O/E1B, Figure 6e and O/E2B, 

Supplementary Figure 6) were used. Western blotting shows that overexpression of 

PrPC significantly increases levels of both Cyclin D1 and c-Jun in Schwann cells 

compared to the GFP-containing control (Figures 6e-g and Supplementary Figure 6). 

These data confirm our results obtained using PRNP shRNA and TCS in 

schwannoma cells indicating the crucial role of PrPC in schwannoma development. 

 

PrPC employs LR/37/67kDa to regulate cellular functions 

Membrane-bound as well as externally added PrPC has been previously shown to 

interact with the LR/37/67kDa observed in murine N2a neuroblastoma and 

hypothalamic neuronal mouse GT1 cell lines (23). We demonstrate that 

LR/37/67kDa is expressed in schwannoma cells (Supplementary Figure 7a). 

LR/37/67kDa co-localises with PrPC in the cytosol, cell membrane and membrane 

ruffles in permeabilised schwannoma cells (Figure 7a) and in membrane ruffles of 

non-permeabalised cells (Figure 7b). Additionally, LR/37/67kDa interacts with PrPC in 

schwannoma cell lysates demonstrated by co-immunoprecipitation using both 

proteins as bait (Figures 7c and 7d). Stimulation of starved schwannoma cells with 

synthetic PrP (105 – 120) peptide for 24 hours increased expression of cyclin D1 

(Figures 7e, light grey bars and 7i, row 1) and, after one hour increased activation of 

ERK, AKT and FAK (Figures 7f-h, light grey bars and 7i, rows 2-4) which was 

reverted using LR/37/67kDa shRNA (Figures 7e-h, dark grey bars and 7i, rows 1-4). 

We used a mock PrP peptide to show that the effect of the synthetic PrP (105 – 120) 
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peptide is specific (Supplementary Figure 7b).  
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Discussion 

In the current study we found, that PrPC is expressed at protein level in Merlin-

deficient human primary schwannoma cells and tissues compared to controls. 

Surprisingly, this increase is due to upregulated PRNP transcription and translation 

per se and not by, as previously reported, decreased proteasomal degradation (27). 

We have also revealed that PrPC overexpression translates to other Merlin-deficient 

tumours, such as human Merlin-negative mesothelioma cell line TRA and human 

Merlin-negative grade I meningioma cells/tissues. Interestingly, Merlin re-introduction 

strongly reduced PrPC levels schwannoma and TRA cells but not in meningioma. 

This could be due to mutation in additional tumour suppressors, observed in Merlin-

deficient meningiomas, such DAL-1 (differentially expressed in adenocarcinoma of 

the lung)/4.1B protein (30, 31, 45), BCR (breakpoint cluster region) (32), or 

SMARCB1 (46) which requires further investigations.. We also revealed that PrPC 

overexpression in schwannoma cells is regulated by transcription factor NFκB which 

we previously shown is regulated by  Merlin (6).  NFκB has been shown to be 

involved in PrP-mediated invasion and migration in breast cancer cells (47) and can 

be activated by PrP peptide PrP(106-126) in human monocyte-derived dendritic cells 

(48), however its role in the regulation of PrPC expression has never been reported 

and importantly opens a new therapeutic angle. 

The pathological relevance of PrPC overexpression is emphasised by its increased 

release from schwannoma cells compared to Schwann cells  which suggest an  

effect  via auto- and/or paracrine mechanisms  (49).. Interestingly, PrPC is released 

both as free (cleaved) peptide,, by ADAM10 metalloproteinase cleavage, and in 

association with exosomes. Although, there are previous observations showing 

exosome-mediated release of PrPC from various cell types such as activated 
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platelets, rat and mouse cortical neurons and mouse neuroblastoma cells   (50-52) 

our findings demonstrate this mechanism for the first time in human primary tumour 

cells.  

Concerning the mechanism of action, we have shown that PrPC contributes to 

schwannoma development by increasing the expression of the cell cycle regulator 

cyclin D1 resulting in pathologically enhanced proliferation. Although one study 

performed on cortical neurones showed no effect of PrP on cyclin D1 levels (53), 

most studies agree with our findings (54). PrPC-deficient fibroblasts displayed a 

significant down-regulation of cyclin D1 (54) and, in gastric carcinoma, PrPC 

accelerated the G1/S phase transition via induction of cyclin D1 through PI3K/AKT 

pathway (55), supporting our finding on the role of PrPC in cyclin D1 expression and 

AKT activation. We also demonstrate that ERK1/2 activation, which is involved in 

schwannoma proliferation (56), is potentiated by  PrPC. This is in agreement with 

other studies reporting the role of MAPK pathway in PrPC-induced neuritogenesis 

(53). PrPC in schwannoma cells contributes to increased pathological survival of 

these cells, which parallels the majority of work in the field (57). However, a link 

between PrPC overexpression and increased cell death via caspase-3 has been 

reported in murine TSM1 neuronal cells and HEK293T cells (57). Importantly, we 

found that PrPC has cytoprotective effect in schwannoma, since pre-treatment with 

PrP (105 – 120) peptide rescued schwannoma cells from H2O2 oxidative stress-

mediated cell death  (58).   

PrPC plays a role in cell matrix adhesion of schwannoma cells in accordance with 

previous findings revealing PrPC interaction with adhesion molecules such as 

LR/37/67kDa (59) and integrins (60). FAK, a component of focal adhesion 

complexes is overexpressed in schwannoma (5). Previous findings have shown that 
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PrPC silencing induces focal adhesion remodelling (61), now our findings strengthen 

the link between PrPC and FAK as we demonstrate that reducing levels of PrPC 

decreases cell-matrix adhesion as well the activity and expression of FAK. 

Essentially, we have shown by knock down experiments that the PrPC-mediated 

activation of cyclin D1, ERK1/2, AKT and FAK pathways is due to PrPC interaction 

with LR/37/67kDa, suggesting that LR/37/67kDa acts as a cell surface receptor for 

PrPC in schwannoma cells. 

These results were complemented by either treating Schwann cells with synthetic 

PrP (105 – 120) peptide or by overexpressing PRNP. Both treatments dramatically 

changed Schwann cells’ morphology, increased cell proliferation and the expression 

of the major regulator of Schwann cell proliferation c-Jun (62-64).  

In summary, we demonstrate that PrPC protein is overexpressed in human 

schwannoma cells and tissues and plays a part in schwannoma proliferation, cell 

matrix adhesion and survival. Importantly, PrPC overexpression was also observed in 

human mesothelioma cell line TRA and in human grade I meningioma cells and 

tissues. PrPC is released in schwannoma cells by exosomes and as free peptides 

which may contribute to tumourigenesis by autocrine or/and paracrine signalling. 

PrPC interacts with and acts via LR/37/67kDa to activate cyclin D1, ERK1/2, 

PI3K/AKT and FAK in schwannoma cells. Thus, PrPC and LR/37/67kDa, are good 

potential therapeutic targets for schwannoma and other Merlin-deficient tumours. 

PrPC-mediated signalling can be inhibited in two main ways: firstly, by targeting PrPC 

directly using humanized anti-PrP antibody PRN100 (MRC Prion Unit for sporadic 

Creutzfeldt-Jakob disease) (24) or using the proteasome inhibitor (targeting NFκB) 

Bortezomib (FDA approved for multiple myeloma treatment) (Supplementary 

information25); secondly, by blocking LR/37/67kDa using inhibitors such as anti-
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LR/37/67kDa antibodies (22), polysulfated glycans (59), small interfering RNAs (65) 

and LR/37/67kDa-Laminin interaction inhibitor NSC47924 (23). 

 

Material and Methods 

Cell cultures 

After informed consent, schwannoma and meningioma grade I specimens were 

collected from surgical procedures and normal nerve from post-mortem donors. 

Schwannoma and Schwann cells were cultured in growth factor medium (GFM): 

DMEM; 100U/ml pen/strep; 2.5 µg/ml Insulin (Thermo Fisher Scientific, MA, USA); 

0.5µM Forskolin (Tocris, Bristol, UK); 10% FBS, 2.5µg/ml Amphotericin (Sigma, MO, 

USA); 10nM β1 heregulin; 0.5mM 3-isobutyl-1-methylxanthine (IBMX) (Bio-Techne, 

MN, USA)  at 37ºC in 10% CO2 (66). Meningioma cells were grown in DMEM 

containing glucose (4.5 g/l), 10% FBS, 100 U/ml penicillin/streptomycin and 1% 

glutamine. Human meningeal cells (HMC, Sciencell, CA, USA) were grown in the 

recommended HMC medium (Sciencell) at 37 °C and 5% CO2. Human 

mesothelioma cell lines HIB and TRA were cultured in DMEM, containing 10% FBS 

and 100 U/ml pen/strep at 37 °C and 5% CO2. (39). Human schwannoma and 

meningioma grade I primary cells (passages 1-4) and tissues used in this study are 

Merlin-negative (Supplementary Figure 1a and Figure 1k). All Schwann cell cultures 

are S100 positive (Supplementary Figure 1b). The n number states number of 

biological repeats. 

 

Chemicals  

TCS anti-prion agent 13 was from Tocris Bioscience (67), Proteinase K, MG132, 

Cycloheximide (CHX), Actinomycin D (Act. D), Phosphatidylinositol Phospholipase C 
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(PIPLC) and DAPI were from Sigma (MO, USA). Synthetic PrP peptide (AA105-120, 

KTNMKHMAGAAAAGAVVGGLG) was from AbD Serotec (Bio-Rad, CA, USA) and 

mock peptide (NGAKALMGGHGATKVMVGAAA) was kindly provided by Dr. M. 

Salmona of the Instituto Ricerche Farmcologiche Mario Negri, Italy.  NFκB inhibitor 

SN50 was from Calbiochem (La Jolla, CA, USA) and ADAM 10 inhibitor GI254023X 

from Sigma (Sigma, MO, USA).  

 

Exosome Isolation 

Cells were cultured for 7 days in medium containing exosome-free FBS (Gibco). 

Exosomes were isolated using total exosome isolation reagent (Thermo Fisher 

Scientific) according to the manufacturer's protocol. 

 

Enzyme-linked Immunosorbent assay 

Cells were cultured for 3 days   in GFM; medium was collected and concentrated 10x 

using AmiconUltra® filters (Merck Millipore, MA, USA). PrPC was detected using 

Prion Protein (PRNP) ELISA kit (CUSABIO, Hubei, China, ABIN821046) according to 

the manufacturer’s protocol. 

 

Immunocytochemistry 

Immunocytochemistry was performed as described in Flaiz et. al 2009 (68) using 

anti-human-PrPC (Santa Cruz Biotechnologies, CA, USA), anti-CD63 (Merck 

Millipore), anti-c-Jun (Cell Signalling Technology, MA, USA) and anti- LR/37/67kDa 

(Novus Biologicals, CO, USA) antibodies. Alexa Fluor 488-labeled phalloidin (Life 

Technologies, CA, USA) was used to visualize actin filaments (1:100; Molecular 

Probes, Eugene, OR). Multitrack imaging was performed using a Zeiss Confocal 
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LSM510.  

Immunohistochemistry 

Tissue sections were pre-treated with EDTA buffer at pH 9 for 30 min, before 

overnight incubation with the anti-PrPC12F10 (1:1000; Bioquote, York, UK). 

Detection was performed with the Vectastain Universal Elite ABC kit (Vector 

Laboratories, Peterborough, UK). 

 

Proliferation and survival assays 

Proliferation and survival assays were carried out using immunofluorescence, after 

72 hours incubation with viral particles or treatment with TCS prion inhibitor, with 

anti-Ki67 (Dako) and anti-cleaved caspase-3 (Cell Signalling Technologies) 

antibodies. Multitrack imaging was performed using a Zeiss Confocal LSM510.  

 

MTS test  

Schwannoma cells were pre-treated with 0.8µM of PrP peptide for 72 hours followed 

by addition of H2O2 (500µM) for additional 12 hours. MTS test was performed 

according to manufacturer’s protocol (Promega). 

 

De-glycosylation assay 

Cell lysates were treated with 5% sodium dodecyl sulphate, 1M Dithiothreitol, 0.5M 

Sodium phosphate buffer (pH7.5), 10% Triton X-100 and PNGase F (Promega, WI, 

USA)  at 37ºC for 1-3h before being run on SDS-PAGE.   

 

Adhesion assay 

Cells were seeded onto pre-coated 96-well plates for three hours using different 
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conditions: DMEM and 20µM, 100µM and 500µM anti-prion agent TCS.. PRNP and 

scramble shRNA were selected prior to being split and plated. Cells were counted 

and adhesion assay was performed as described previously in Utermark et al (39). 

 

Merlin re-introduction  

Merlin (NF2) wild type (recombinant adenovirus AdNF2) and control GFP-containing 

vector adenoviruses were a kind gift from J. Testa (29). Cells were treated with virus 

for 24 hours and then incubated with fresh GFM for additional 24 hours and lysed. 

 

Knock-down experiments using shRNA’s  

Cells were incubated with shRNA and scramble control viruses for 48 hours, before 

selection with puromycin for 72 hours. PRNP shRNA lentiviral particles (Santa Cruz 

Biotechnologies);  pool of three to five expression constructs each encoding a 

different, target-specific 19-25nt region of PrPC  were used to knock 

down PRNP expression plus control hairpin shRNA particles. Results were combined 

with lentivirus made from TRCN0000083488, part of a TRC PRNP shRNA, glycerol 

set (GE Dharmacon, CO, USA). 37/67kDa Laminin Receptor shRNA (h) lentiviral 

particles (Santa Cruz Biotechnologies) were used to knock down LR/37/67kDa (h) 

(pool of three to five expression constructs that encode a 19-25 nt (plus hairpin)).  

 

PRNP overexpressing clone  

DNA from PRNP coding region (NCBI Reference Sequence: NG_009087.1) from two 

separate transformation starter colonies (1B and 2B) were cloned into a pLenti6 

overexpressing vector (Invitrogen). Lentiviral particles were produced by transfection 

into HEK293FT cells using Fugene 6 (Promega). 
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Co-Immunoprecipitation 

Primary human schwannoma cells (1mg) lysed in low-salt buffer was incubated 

overnight with 1µg normal IgG (Santa Cruz Biotechnologies) or 1µg anti-PrP 

antibody (Sigma), 37/67kDa anti-laminin receptor (Abcam) in the presence of protein 

G agarose beads (GE healthcare). 

 

Western Blotting 

After Western blotting (39)  membranes were incubated with primary antibodies: anti-

PrP, anti-cleaved caspase-3, anti-cyclin D1, anti-total MAPK/ERK1/2, anti-total FAK, 

anti-pFAK Tyr397,  anti-total AKT, anti-pAKT Ser473, anti- active MAPK; anti-pThr183-

pTyr185-ERK1/2; Promega),  anti-37/67kDa laminin receptor (Novus Biologicals), anti-

CD63 (Merck Millipore), second anti-PrPC (AbD Serotec; N-terminus) and anti-Merlin 

antibody (Cell Signalling) (D1B8 clone cat. number 6995). Horseradish peroxidase-

conjugated secondary antibodies (BioRad) and chemiluminescence (Thermo Fisher 

Scientific) were used for detection. GAPDH (Merck Millipore) was used as a loading 

control. Densities were quantified using FluorS-Multi-Imager with Quantity One 

software (Biorad).  

 

Statistics 

Unpaired student’s two-tailed t-test was used in all pairwise comparisons and 

analysis of variance (one-way Anova) followed by post-hoc tukey test for multiple 

comparisons. F-test was used to compare variances and standard deviations 

between the groups compared to meet the assumption of the statistical test. 

Experiments were performed in at least triplicates using at least three different 

batches of cells from different individuals. In some experiments samples from more 
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than three different individuals were used.  ns (not significant) p>0.05, * p<0.05, 

**p<0.01, ***p<0.001. In figures mean ± SEM is given.  
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Figure legends 

Figure 1. 

Expression  of PrPC in human Schwann cells (NF2+/+) and schwannoma cells (NF2-

/-). (a-c) PrP is overexpressed in schwannoma compared to Schwann cells (a, n=5; 

b, n=20; c, n=5). PrP localises to the membrane ruffles and throughout the cytosol of 

schwannoma cells (a, n=5). (d) PrPC in schwannoma is degraded upon treatment 

with proteinase K (PK), n=5. (e left and right) Glycosylation patterns of PrPC 

between Schwann cells (NF2+/+) and schwannoma (NF2-/-) cells show no difference 

in the ratio of mono- and un-glycosylated PrPC between these two cell types (n=5).  (f 

and g) Treatment of schwannoma cells with actinomycin D (ActD) (f, n=5) and with 

cycloheximide (CHX) (g, n=6) reduces PrPC expression in schwannoma cells. (h) 

Inhibition of proteasomal degradation by MG132 increases PrPC levels in 

schwannoma cells, n=6. (i) PrPC is strongly overexpressed in human Merlin-deficient 

mesothelioma cell line TRA compared to human Merlin-positive mesothelioma cell 

line HIB (n=3). (j and k) Human Merlin-negative (Fish analysis of chromosome 22q 

loss (69)) meningioma grade I tissues (j, n=10) and primary cells (k, n=8) strongly 

overexpress PrPC compared to normal Merlin-positive meningeal tissues and primary 

cells. Data are presented as ±SEM (Ns p>0.05, *p<0.05, **p<0.01, ***p<0.00).  

Figure 2. 

The regulation of PrPC expression. (a-c) Adenoviral reintroduction of the Merlin/NF2 

gene into human Merlin-negative schwannoma (a, n=3), Merlin-negative TRA (b, n=3) 

and Merlin-negative meningioma grade I cells (c, n=3) significantly decreased PrPC 

expression in schwannoma and TRA cells but not in meningioma cells. (d) 

CRL4DCAF1 shRNA has no effect on PrPC expression. (e) NFκB inhibitor SN50 
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significantly decreased PrPC levels. Data are presented as ±SEM (Ns p>0.05, 

*p<0.05, **p<0.01, ***p<0.00). 

Figure 3. 

PrPC is released from schwannoma cells via exosomes. (a) PrPC is released 

significantly more from schwannoma cells (NF2-/-, dark grey bar) compared to 

Schwann cells (NF2+/+, light grey bar) detected by ELISA, n=3. (b) Schwannoma 

cells (NF2-/-) display strong expression of exosome/late endosome marker CD63 

compared to Schwann cells (NF2+/+), n=3. (c and d) The majority of PrPC released 

from schwannoma cells is released via exosomes (c, dark grey bar, n=3 and d 

second raw, n=5), only a very small amount is released as free peptide in the 

supernatant (c, black bar, n=3). (e) PrPC co-localises to late endosome/exosome 

marker CD63 in schwannoma cells, n=3. (f and g) Treatment of schwannoma cells 

with PIPLC showed no change to the levels of PrPC within cells (f, n=3) and PrPC 

released from cells (g, n=3). (h and i) In schwannoma cells PrPC cleavage and 

release is mediated by ADAM10 metalloproteinase. Cells were treated with ADAM10 

inhibitor GI254023X (20µM) for 3 hours and PrPC levels were detected by Western 

blotting in cell lysates (h, n=5) and by ELISA in culture media (i). E Cadherin is used 

as a control for ADAM10 inhibition (70). Phalloidin visualise actin. Data are 

presented as ±SEM (ns p>0.05, *p<0.05,**p<0.01, ***p<0.001). Multi-track, z-stack 

confocal microscopy was used for immunofluorescence (d and e).  

Figure 4.  

The role of PrPC in schwannoma proliferation, survival and cell-matrix adhesion.  (a 

and i) Number of Ki-67-positive nuclei reduces upon depletion of PrPC using PRNP 

shRNA, n=5. (b and j) Number of Ki-67-positive nuclei reduces upon depletion of 
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PrPC using anti-prion agent TCS, n=5. (c and d) levels of Cyclin D1 significantly 

reduce with PRNP shRNA (c, n=5) and TCS treatment (d, n=5). (e and i) Reducing 

PrPC levels significantly increases expression of cleaved caspase-3 using PRNP 

shRNA, n=3. (f and j) Reducing PrPC levels using TCS significantly increases 

expression of cleaved caspase-3, n=3.  (g and h) Both PRNP shRNA (g, n=5) and 

TCS (h, n=5) reduce PrPC levels and significantly increase expression of cleaved 

caspase-3. (k, l and m) PrP synthetic peptide (KTNMKHMAGAAAAGAC 

corresponding to amino acid residues 105 - 120 of the human prion protein, N-

terminal) rescues schwannoma cells from H2O2-mediated cell death. Cells were pre-

treated with 0.8µM of PrP peptide for 72 hours followed by addition of H2O2 (500µM) 

for additional 12 hours (n=3). Ki67 staining was used to detect proliferating cells (red) 

(k and l) and cleaved caspase 3 staining (green) for apoptotic cells (k and m). (n and 

o) Reducing PrPC by shRNA (l, n=3) and TCS (m, n=3) reduces cell-matrix adhesion. 

Data are presented as ±SEM (ns p>0.05,*p<0.05,**p<0.01, ***p<0.001). In i, j and k 

total cell number was monitored by DAPI staining (blue). 

Figure 5. 

Signalling pathways activated by PrPC in schwannoma.  (a, c and e) Reducing levels 

of PrPC using PRNP shRNA significantly decreased levels of both total (a, dark grey 

bars, n=5) and pERK1/2 (a, light grey bar, n=5), pAKTS473 (c, light grey bars, n=5) but 

not total AKT (c, dark grey bars, n=5) and both total (e, dark grey bars, n=5) and 

pFAKY397 (e, light grey bars, n=5). (b, d and f) Reducing levels of PrPC using TCS 

significantly decreased levels of both total (b, dark grey bars, n=5) and pERK1/2 (b, 

light grey bar, n=5), pAKTS473 (d, light grey bars, n=5) but not total AKT (d, dark grey 

bars, n=5) and both total (f, dark grey bars, n=5) and pFAKY397 (f, light grey bars, 

n=5). Data are presented as ±SEM (ns p>0.05,*p<0.05,**p<0.01,***p<0.001). PRNP 
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shRNA from both Santa Cruz biotechnologies and GE healthcare were used and the 

results were merged (Supplementary figure 3ai and 3aii).  

Figure 6. 

Increasing PrPC levels in normal Schwann cells (NF2+/+) leads them to obtain 

schwannoma-like properties. (a-b) Schwann cells treated with PrP (105 – 120) 

synthetic peptide for six days showed an increase in the number of Ki67-positive (a, 

n=3) and c-Jun-positive cells (b, n=3). (c) PrP synthetic peptide (105 – 120) altered 

cell morphology of Schwann cells over the course of six days and, even more so, 

after 2 weeks (c, phalloidin green, n=3). Cell area was measured using ImageJ 

software in n=52 cells (6 days) and in n=50 cells (2 weeks) (c right panel). (d) 6 days 

treatment with PrP (105 – 120) synthetic peptide the PrP in Schwann cells was still 

sensitive to proteinase K degradation (d, n=3). (e-g) overexpression of PrPC with a 

clone of the PRNP gene significantly increases expression of Cyclin D1 (e and g, 

n=3) and c-Jun (f and g, n=3). Data are presented as ±SEM (*p<0.05,**p<0.01, 

***p<0.001).  

Figure 7. 

PrPC interacts with and signals via the 37/67kDa non-integrin laminin receptor 

protein (LR). (a and b) PrPC co-localises with LR in schwannoma throughout the 

cytosol and in the membrane of permeabalised cells (a, n=3) and in discreet 

membrane ruffles of non-permeabalised cells (b, n=3). (c and d) Co-

immunoprecipitation (co-IP) of LR in schwannoma cell lysates pulls down PrPC (c, 

n=5) and co-IP of PrPC in schwannoma cell lysates pulls down LR (d, n=8). (e-h) 

Treatment of schwannoma cells with PrP (105 – 120) synthetic peptide increases 

levels of cyclin D1 (e light grey bars, n=5), pERK1/2 (f light grey bars, n=5), pAKTS473 
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(g light grey bars, n=5) and pFAKY397 (h light grey bars, n=5).  LR knockdown using 

shRNA reduces the ability of PrP peptide to increase levels of cyclin D1 (e, dark grey 

bars, n=5), pERK1/2 (f dark grey bars, n=5), pAKTS473 (g dark grey bars, n=5) and 

pFAKY397 (h dark grey bars, n=5). (i) Western blot pictures corresponding to (e-h) 

graphs. Data are presented as ±SEM (ns p>0.05*, p<0.05,**p<0.01, ***p<0.001). 

Multi-track confocal microscopy z-stacks were used for co-localisation of 

immunofluorescence (a and b).  
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