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ABSTRACT	
	
The	 recent	 history	 of	 perceptual	 experience	 has	 been	 shown	 to	 influence	 subsequent	
perception.	 Classically,	 this	 dependence	 on	 perceptual	 history	 has	 been	 examined	 in	
sensory	adaptation	paradigms,	wherein	prolonged	exposure	to	a	particular	stimulus	(e.g.	
a	vertically	oriented	grating)	produces	changes	 in	perception	of	 subsequently	presented	
stimuli	 (e.g.	 the	 tilt	 aftereffect).	 More	 recently,	 several	 studies	 have	 investigated	 the	
influence	of	 shorter	perceptual	exposure	with	effects,	 referred	 to	as	 serial	dependence,	
being	described	for	a	variety	of	 low	and	high-level	perceptual	dimensions.	 In	 this	study,	
we	examined	serial	dependence	in	the	processing	of	dispersion	statistics,	namely	variance	
-	 a	 key	 descriptor	 of	 the	 environment	 and	 indicative	 of	 the	 precision	 and	 reliability	 of	
ensemble	 representations.	 We	 found	 two	 opposite	 serial	 dependencies	 operating	 at	
different	 timescales,	 and	 likely	 originating	 at	 different	 processing	 levels:	 A	 positive,	
Bayesian-like	 bias	 was	 driven	 by	 the	 most	 recent	 exposures,	 dependent	 on	 feature-
specific	 decision-making	 and	 appearing	 only	 when	 high	 confidence	 was	 placed	 in	 that	
decision;		and	a	longer-lasting	negative	bias	-	akin	to	an	adaptation	after-effect	-	becoming	
manifest	 as	 the	 positive	 bias	 declined.	 Both	 effects	 were	 independent	 of	 spatial	
presentation	location	and	the	similarity	of	other	close	traits,	such	as	mean	direction	of	the	
visual	variance	stimulus.	These	findings	suggest	that	visual	variance	processing	occurs	 in	
high-level	areas,	but	is	also	subject	to	a	combination	of	multi-level	mechanisms	balancing	
perceptual	stability	and	sensitivity,	as	with	many	different	perceptual	dimensions.		
	
Keywords:	serial	dependence,	visual	variance,	ensemble	processing,	adaptation	after-
effects	
	
1.	INTRODUCTION	
	
Considerable	evidence	 indicates	 that	 the	human	visual	 system	 is	able	 to	extract	 statistical	
information	 from	 sensory	 signals	 supporting	 the	 formation	 of	 summary	 or	 ‘ensemble’	
representations	 across	 a	 variety	 of	 dimensions,	 including	 low-level	 features	 such	 as	
orientation	 or	 size,	 as	 well	 as	 higher-level	 (complex	 or	 abstract)	 traits	 such	 as	 facial	
expressions	in	a	crowd	(1-6).	Such	information	can	be	used	to	efficiently	encode	(7,	8)	and	
interpret	subsequent	sensory	inputs,	and	to	make	predictions	about	future	events	(9,	10).		
	
Many	 forms	 of	 visual	 input	 can	 be	 summarised	 in	 terms	 of	 statistical	 moments	 such	 as	
central	tendency	(e.g.,	mean)	and	variance	or	dispersion	(consider,	for	example,	a	random	
dot	kinematogram,	which	will	have	a	mean	and	a	variance	in	the	distribution	of	dot	motion).	
Most	 studies	on	ensemble	processing	have	 focused	on	central	 tendency	statistics	 (11-17),	
while	 variance	 computations	have	 received	 less	attention.	However,	 variance	 is	 known	 to	
play	a	crucial	role	in	visual	experience,	modulating	perceptual	grouping,	ensemble	averaging		
(18-23),	 texture	processing	 (24,	25)	 and	 comparison	between	arrays	 (26).	Variance	 is	 also	
critical	to	perceptual	prediction,	since	it	provides	a	measure	of	the	expected	range	of	stimuli	
(10)	 as	well	 as	 the	 precision	 (reliability)	 of	 the	 sensory	 input	 (27-29).	 As	 an	 indication	 of	
sensory	 reliability,	 variance	 also	 affects	 metacognitive	 judgments,	 although	 evidence	 is	
conflicting	regarding	the	extent	and	direction	of	this	effect	(19,	20,	30).		
	



Notably,	 most	 studies	 involving	 variance	 manipulations	 have	 examined	 its	 impact	 on	
perceptual	decisions	about	other	features,	rather	than	on	the	perception	of	variance	itself.	
Comparatively	 few	 studies	 have	 investigated	 the	 mechanisms	 of	 variance	 processing	
directly.	 Those	 that	 do	 have	 addressed	 mainly	 three	 questions:	 what	 are	 the	 general	
properties	 of	 variance	 processing	 (speed,	 automaticity,	 attentional	 demands),	 to	 what	
extent	does	variance	computation	rely	on	the	processing	of	the	individual	elements	of	the	
ensemble,	 and	 whether	 it	 operates	 as	 a	 specific	 trait	 of	 the	 ensemble	 or	 the	 feature-
dimension	over	which	it	is	computed,	or	rather	as	an	abstract	property.	So	far,	these	studies	
have	employed	heterogeneous	designs	and	reached	disparate	conclusions.	Concerning	the	
general	properties	of	variance	processing,	a	study	examining	judgments	of	colour	diversity	
(31)	 suggested	a	 rapid,	pre-attentive	mechanism.	This	 is	 in	agreement	with	another	 study	
which	 reported	 priming	 by	 visual	 variance,	 an	 effect	 that	 seems	 to	 occur	 rapidly,	
automatically	and	without	need	of	feature-based	attention	(32);	however,	this	latter	study	
did	 not	 examine	 variance	 perception	 directly,	 but	 only	 the	 priming	 effect	 of	 variance	 on	
mean	 judgments.	 Regarding	 the	 second	 question,	 namely	 the	 reliance	 of	 variance	
computation	on	the	processing	of	individual	elements,	available	evidence	(based	on	highly	
heterogeneous	studies)	 is	conflicting:	one	study	on	pattern	regularity	 (positional	variance)	
suggested	 a	 very	 inefficient	 computation	 of	 variance,	 underwritten	 by	 subsampling	 of	 a	
small	 fraction	 of	 the	 elements	 of	 the	 array	 (24).	 By	 contrast,	 and	 surprisingly	 given	 the	
finding	of	a	rapid,	pre-attentive	mechanism,	the	abovementioned	study	on	colour	diversity	
reported	 that	 variance	 processing	 required	 a	 conscious	 representation	 of	 the	 individual	
elements	 (31);	 in	 similar	manner,	 a	 study	 on	 facial	 emotions	 in	 a	 crowd	determined	 that	
variance	judgments	along	this	dimension	relied	on	high-level	processing	of	individual	faces	
(33).	Finally,	regarding	the	question	about	whether	variance,	once	computed	over	a	certain	
feature-dimension	 of	 a	 visual	 ensemble,	 retains	 its	 specificity	 or	 rather	 emerges	 as	 an	
abstract	 property,	 the	 previously	 reported	 study	 on	 priming	 suggested	 that	 the	 effect	 of	
(implicit)	 variance	 on	 mean	 perception	 was	 feature-specific	 (32).	 In	 contrast,	 a	 study	 on	
direct	variance	perception	found	negative	adaptation	after-effects	which	generalized	across	
dimensions	 of	 visual	 variance,	 suggesting	 a	 high-level,	 rather	 than	 sensory	 origin	 for	 this	
effect,	and	therefore,	that	variance	operates	as	an	independent	cognitive	property	(34).	In	
summary,	 available	 evidence	 shows	 some	 dissension,	 but	 a	 picture	 starts	 to	 emerge:	
variance	computations	would	be	relatively	rapid,	but	appear	to	require	high-level	processing	
of	the	individual	elements	of	the	array;	however,	once	computed,	variance	would	become	
dissociated	 from	 the	 properties	 of	 the	 ensemble	 and	 of	 the	 perceptual	 dimension	 over	
which	it	was	estimated,	and	operate	as	a	high-level	cognitive	trait.	
	
To	 clarify	 some	 the	 above	 issues,	 here,	 we	 examine	 variance	 processing	 as	 a	 distinct	
perceptual	 feature,	 by	 investigating	 the	 influence	 of	 previous	 variance	 presentations	 on	
judgments	 about	 this	 dimension.	 It	 has	 long	 been	 known	 that	 perception	 is	 affected	 by	
previous	input.	Influences	of	past	perceptual	events	on	current	perception	fall	generally	into	
two	different	categories.	Most	well-known	are	adaptation	after-effects	-	repulsive	(negative)	
biases	 in	 perception	 exerted	 after	 prolonged	 exposure	 to	 a	 certain	 stimulus	magnitude	 -	
that	have	been	described	for	many	low	and	high-level	traits	(including	variance)	(34-37)	and	
which	 are	 classically	 employed	 as	 an	 experimental	 tool	 for	 investigating	 perceptual	
mechanisms	 (38).	 The	 second	 category	 is	 observed	 in	 relation	 to	 shorter	 presentations,	
generally	consisting	of	an	attractive	(positive)	perceptual	bias	toward	recent	sensory	history.	
These	‘serial	dependencies’	have	been	found	for	several	low	and	high-level	features	(39-43).	



It	 has	 been	proposed	 that	 these	 two	different	 effects	 contribute	 in	 opposite	ways	 to	 the	
‘tuning’	 of	 the	 balance	 between	 perceptual	 sensitivity	 and	 stability:	 while	 negative	
adaptation	 produces	 a	 normalization	 of	 neural	 representations	 in	 order	 to	 maximize	
sensitivity	 to	 changes	 around	 the	 most	 frequent	 stimulus	 intensity,	 serial	 dependence	
contributes	 to	 perceptual	 stability	 by	 smoothing	 out	 discrete	 discontinuities	 as	 sensory	
noise	(39).		
	
Our	study	employs	serial	dependence	in	variance	judgments	as	a	way	to	track	the	dynamics	
and	 timescales	 of	 the	 processing	 of	 this	 statistic	 as	 a	 distinct	 perceptual	 feature.	 We	
conducted	three	experiments:		
	
Experiment	1	 investigated	 the	existence,	magnitude	and	direction	of	 serial	dependence	 in	
visual	variance	perception,	as	well	as	its	relationship	with	associated	stimulus	features,	such	
as	 ensemble	 mean	 and	 spatial	 location.	 In	 addition,	 we	 separately	 explored	 fovea	 and	
periphery,	 as	 the	 compression	of	 visual	 information	 into	 summary	 statistics	 is	 particularly	
relevant	to	the	much	larger,	poorly	spatially-resolved	peripheral	field	(4,	44-46).	Experiment	
2	 attempted	 to	 identify	 the	 specific	 level(s)	 of	 perceptual	 decision	 that	 give	 rise	 to	 serial	
dependence	 in	 variance:	whether	 it	 is	 a	 bias	 in	 low	 level	 perceptual,	 decision-making,	 or	
response	processes.	In	Experiment	3	we	investigated	the	relationship	between	the	reported	
confidence	 in	perceptual	decisions	and	their	 influence	 in	subsequent	 judgments	along	the	
same	 dimension,	 especially	 considering	 Bayesian	 accounts	 of	 confidence	 as	 a	measure	 of	
the	precision	of	neural	representations(29).		
	
Overall,	 our	 results	 indicate	 that	 judgements	 of	 visual	 variance	 are	 subject	 to	 serial	
dependence	 effects	 as	 seen	 for	 many	 other	 sensory	 dimensions.	 These	 effects	 are	
independent	of	basic	stimulus	features	such	as	spatial	location,	but	do	depend	on	whether	
the	previous	judgement	made	was	regarding	the	same	(visual	variance)	or	a	different	(visual	
direction)	 dimension,	 and	 on	 the	 level	 of	 confidence	 expressed	 in	 previous	 judgements.	
Together,	these	results	suggest	that	visual	variance	is	processed	as	a	more	abstract	feature	
of	perception,	 though	 is	 subject	 to	 the	 same	processes	of	efficient	 coding	and	perceptual	
stability	found	for	many	other	perceptual	dimensions.		
	
	
	
2.	EXPERIMENT	1:	SERIAL	DEPENDENCES	IN	VARIANCE	JUDGMENTS	
	
Figure	 1	 outlines	 the	 experimental	 paradigm	 utilised	 across	 all	 three	 experiments.	 We	
employed	 random	 dot	 kinematograms	 (RDKs),	 which	 allow	 independent	 manipulation	 of	
mean	and	variance,	and	asked	participants	to	score	the	‘randomness’	of	the	motion	of	RDKs	
using	 a	 visual	 analogue	 scale.	 Several	 variations	 of	 this	 basic	 paradigm	 were	 used	 to	
characterise	the	effects	of	previous	history	on	variance	judgments.		
	



	
Fig	 1:	 Experiments	 1	 –	 3:	 structure.	 In	 all	 experiments,	 each	 trial	 presented	 an	RDK	of	 a	 certain	mean	 and	
variance	(standard	deviation,	StD)	 in	the	motion	trajectories	of	 its	component	dots.	 In	the	example,	trial	n-1	
and	n	have	low	and	high	StD	values,	respectively.	Experiment	1	required	variance	(StD)	reports	for	each	trial,	
using	a	visual	analogue	scale.	Experiment	2	interleaved	2/3	of	trials	in	which	variance	reports	were	required,	
and	1/3	in	which	either	no	response	(2A)	or	mean	trajectory	estimation	(2B)	was	required.	In	2B	the	trial	type	
was	 pre-cued,	 so	 that	 the	 word	 DIR	 and	 RAN	 at	 the	 beginning	 of	 each	 trial	 indicated	 whether	 a	 mean	 or	
variance	judgment	was	required	for	that	trial.	 	Experiment	3	required	subjective	confidence	ratings	following	
variance	reports,	by	using	a	similar	visual	analogue	scale.					
	

	
In	Experiment	1,	we	investigated	the	existence	of	serial	dependence	in	variance	judgments	
and	its	relationship	to	basic	features	of	stimulus	presentation,	including	eccentricity,	spatial	
location,	 and	 mean	 RDK	 motion	 direction.	 Thus,	 Experiment	 1	 employed	 the	 basic	 task	
(variance	estimation	without	further	requirements),	with	separate	blocks	in	which	the	RDK	
was	displayed	in	fovea	and	periphery.	
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2.1.	METHODS	
	
2.1.1.	Stimuli	 	
	
The	 stimulus	 consisted	 of	 a	 cluster	 of	 random	 moving	 dots	 (RDK)	 displayed	 for	 500	
milliseconds	 at	 a	 certain	 eccentricity	 (0o	 or	 20o,	 see	 below)	 over	 a	 dark	 grey	 background	
(3.92	cd/m2).	The	cluster	spanned	5	degrees	of	visual	angle	(dva)	along	the	horizontal	and	
vertical	 dimensions	 and	 was	 comprised	 of	 100	 light	 grey	 dots	 (diameter	 of	 0.11	 dva,	
luminance	 43.14	 cd/m2)	moving	 along	 a	 straight	 trajectory	 at	 a	 rate	 of	 2	 pixels	 by	 frame	
(8.45	dva/s).	The	 initial	position	of	each	dot	was	uniformly	randomized	 (excluding	overlap	
with	other	dots)	and	its	motion	direction	was	extracted	from	a	circular	Gaussian	(von	Mises)	
distribution	 that	 varied	 for	 each	 stimulus	 presentation:	 its	 mean	 could	 take	 any	 random	
integer	value	 from	0o	 to	359o	 and	 its	 standard	deviation	was	pseudorandomized	among	6	
possible	values,	namely	5o,	10o,	20o,	30o,	40o	and	60o.	This	parameter	(henceforth	StD)	is	the	
dimension	of	interest	in	this	experiment.		
	
	
2.1.2.	Procedure	
	
The	experimental	session	comprised	a	practice	block	with	72	trials	and	eight	experimental	
blocks	with	60	trials	each.	The	practice	had	a	double	purpose:	 (i)	 familiarizing	participants	
with	the	scoring	process	and	the	scale	used	in	the	experiment,	and	(ii)	training	maintenance	
of	centered	gaze	fixation.	A	broader	range	of	StD	values	was	presented	during	the	practice	
block	compared	to	 the	experimental	blocks	 (1o,	10o,	20o,	36o,	60o	and	90o).	Feedback	was	
provided	after	each	response.	Within	this	block,	the	first	36	trials	were	‘foveal’	(the	stimulus	
was	presented	at	0	dva	eccentricity)	and	the	remaining	36	were	‘peripheral’	(20	dva).		
	
Regarding	 the	 eight	 experimental	 blocks,	 they	 employed	 the	 narrower	 set	 of	 StD	 values	
detailed	 in	 the	previous	 ‘Stimuli’	 section	 (5o,	10o,	20o,	30o,	40o	and	60o)	and	did	not	have	
feedback.	Half	of	the	eight	blocks	were	‘foveal’	(stimulus	presentation	at	0	dva	eccentricity	
for	 all	 trials)	 and	 half	 ‘peripheral’,	 with	 presentation	 at	 20	 dva	 along	 the	 horizontal	 axis,	
equally	 frequent	 in	 the	 right	 and	 left	 hemifields.	 The	 sequence	 of	 foveal	 and	 peripheral	
blocks	was	pseudorandomized	for	each	participant.		
	
Eye	tracking	was	performed	during	the	entire	experimental	session.	Calibration	of	the	eye-
tracking	system	was	performed	at	the	beginning	of	each	block	(practice	and	experimental)	
using	a	standard	5-point	grid,	allowing	for	a	maximal	average	error	of	0.5	dva.		
	
At	 the	 beginning	 of	 each	 trial	 a	 red	 fixation	 cross	 appeared	 on	 the	 centre	 of	 the	 screen,	
spanning	1.1	dva	(horizontally	and	vertically).	Participants	were	instructed	to	maintain	their	
gaze	on	the	fixation	cross.	The	RDK	stimulus	appeared	after	1000	ms,	and	both	the	stimulus	
and	the	fixation	cross	disappeared	simultaneously	at	1500	ms	from	trial	onset.	Participants	
were	instructed	to	score	the	‘randomness’	(variance)	of	the	motion	of	the	RDK	using	a	visual	
analogue	scale	(see	Fig.	1),	adjusting	the	position	of	a	sliding	bar	with	the	mouse.		The	initial	
position	 of	 the	 bar	was	 randomized	 for	 each	 trial	 along	 the	whole	 length	 of	 the	 scale	 to	
exclude	the	possibility	that	participants	simply	repeated	the	same	(response)	action	on	each	
trial.	For	simplicity,	the	scale	was	a	linear	translation	of	the	StD	numeric	values	ranging	from	



0o	 (left	 end)	 to	 90o	 (right	 end	 of	 the	 scale).	 If	 the	 participant	 failed	 to	 respond	 within	 5	
seconds,	 the	 next	 trial	 started	 automatically.	 The	 inter-trial	 interval	 was	 randomized	
between	250-1000ms.		
	
On	each	trial,	participants	were	allowed	to	correct	 their	gaze	position	during	the	 first	700	
ms,	if	they	noticed	that	their	gaze	had	deviated	from	the	central	fixation	cross.	However,	if	a	
deviation	(of	more	than	5	dva)	occurred	between	700	-	1000	ms,	the	trial	was	aborted	and	
restarted.	 About	 a	 third	 of	 participants	 (9/30)	 were	 tested	 with	 a	 slightly	 different	
procedure,	in	which	a	trial	abortion	led	directly	to	the	start	of	the	next	trial	(after	the	inter-
trial	interval).	This	procedure	led	to	the	exclusion	of	more	trials	from	analysis,	since	poorly	
fixated	trials	were	not	restarted.	Importantly,	in	both	cases	trials	retained	for	analysis	were	
those	in	which	fixation	was	maintained	during	stimulus	presentation	(1000	ms	–	1500	ms),	
and	no	trial	was	aborted	or	restarted	after	stimulus	onset	at	1000	ms.	
	
	
2.1.3.	Participants	
	
Participants	 were	 recruited	 through	 online	 advertisement	 and	 among	 members	 of	 the	
laboratory.	All	were	over	18	years	old	and	reported	normal	or	corrected-to-normal	vision.	
Every	 participant	 signed	 an	 informed	 consent	 form	 before	 taking	 part	 and	 was	 either	
awarded	10	course	credits	or	paid	£10	for	their	participation.	The	study	was	granted	ethical	
approval	by	the	Research	Ethics	Committee	of	the	University	of	Sussex.	
	
	
2.1.4.	Apparatus	
	
Experiments	were	 programmed	 in	MATLAB	 2012b	 (MathWorks	 Inc.,	 Natick,	 US-MA)	with	
Psychtoolbox	3.0.10	and	displayed	on	a	LaCie	Electron	22BLUE	II	22’’	with	screen	resolution	
of	1024	x	768	pixels	and	refresh	rate	of	60	Hz.	Eye	tracking	was	performed	with	Eyelink	1000	
Plus	(SR	Research,	Mississauga,	Ontario,	Canada)	at	a	sampling	rate	of	1000	Hz,	using	a	level	
desktop	camera	mount.	Head	position	was	stabilized	at	43	cm	from	the	screen	with	a	chin	
and	forehead	rest.		
	
	
2.1.5.	Statistical	analysis	
	
Statistical	 analyses	 (detailed	 in	 the	 Results	 section)	 were	 performed	 on	 Matlab	 2016a	
(MathWorks	 Inc.,	 Natick,	 US-MA),	 R	 3.4.2	 (The	 R	 Foundation	 for	 Statistical	 Computing,	
http://www.R-project.org)	and	JASP	(JASP	Team	(2017).	JASP	(Version	0.8.3.1,	Mac	OS	X	–	El	
Capitan	(10.11)).	
	
	
2.2.	RESULTS	
	
Thirty	participants	 (25	 female,	mean	age	19.0	yr.,	 standard	deviation	1.35)	participated	 in	
this	 experiment.	 Except	 for	 two	 members	 of	 the	 laboratory,	 the	 rest	 were	 first-year	
Psychology	students	who	volunteered	for	course	credits.	



	
To	 ensure	 the	 validity	 of	 foveal	 and	 peripheral	 conditions,	 trials	 without	 centred	 gaze	
fixation	during	stimulus	presentation	were	removed	from	the	analysis:	a	trial	was	deemed	
valid	 if	 the	participant	maintained	 fixation	within	5	dva	 from	 the	 centre	of	 the	 screen	 for	
over	80%	of	the	stimulus	presentation	period	(1000-1500	ms	from	trial	onset).	Invalid	trials	
were	removed,	as	well	as	all	data	regarding	trial	history	that	involved	at	least	one	of	these	
trials:	 for	 instance,	 if	 trial	 n	 was	 valid	 but	 trial	 n-3	 was	 not,	 trial	 n	 was	 not	 included	 in	
analyses	 regarding	 serial	 dependence	 associated	 to	 position	 n-3	 or	 further	 backwards.	 A	
total	of	12480	trials	entered	the	analysis.	
	
	
2.2.1.	Overview	of	responses	
	
Figure	2a	shows	the	distribution	of	responses	(Rn)	for	each	StD	value	and	visual	eccentricity.		
Showing	that	participants	were	able	to	perceive	the	different	levels	of	variance	presented	in	
the	 experiment,	 reports	 were	 positively	 correlated	 and	 monotonically	 increased	 with	
stimulus	StD	for	both	foveal	and	peripheral	presentations.		
	



	
Fig.	2.	Experiment	1.	2a.	Distribution	of	responses	by	StDn	and	eccentricity.	The	height	of	the	bars	represents	
the	mean	 and	 the	 error	 bars	 the	 between-subject	 standard	 error.	 	2b.	 Normalized	 relative	 error	 in	 current	
response	(zREn)	as	a	function	of	the	StD	presented	in	the	previous	trial	(StDn-1).	The	relative	error,	defined	as	
REn=(Rn-StDn)/StDn,	has	been	normalized	by	the	distribution	of	errors	provided	by	each	subject	for	the	current	
StDn;	 thus,	a	positive	zREn	means	a	 larger	report	 in	that	trial	 than	the	participant’s	average	for	that	stimulus	
level,	and	conversely	a	negative	zREn	indicates	a	lower-than-average	score	i.e.,	sign	is	not	necessarily	related	to	
comparison	 with	 veridical	 StDn,	 if	 the	 participant	 exhibits	 a	 systematic	 bias	 for	 that	 StDn.	 Consequently,	
plotting	 zREn	 reports	 by	 StDn-1	 allows	 examination	 of	 any	 possible	 bias	 in	 relation	 to	 previous	 trial	 StDn-1,	
beyond	 any	 unrelated	 source	 of	 bias.	 The	 error	 bars	 represent	 the	 between-subject	 standard	 error.	 The	
ascending	 slope	 of	 the	 plots	 indicates	 a	 positive	 bias	 associated	with	 StDn-1,	 for	 both	 foveal	 and	 peripheral	
presentations:	 relative	 overestimation	 occurs	 for	 larger	 StDn-1.	 2c.	 Response	 bias	 associated	 with	 StD	
presented	in	recent	history.	Each	data	point	represents	the	fixed-effects	coefficient	estimate	(B)	in	a	Bayesian	
linear	mixed-effects	model	(LMM)	for	the	association	between	the	StD	presented	in	trials	n-1	to	n-10	(StDn-t,	
t=1…10)	and	the	normalized	response	error	in	the	current	trial.	
	



To	examine	the	general	pattern	of	variance	judgments,	we	conducted	a	repeated-measures	
ANOVA	 on	 the	 influence	 of	 two	within-subject	 factors,	 StD	 in	 the	 current	 trial	 (StDn)	 and	
eccentricity,	 on	 participant’s	 responses.	 Both	 main	 effects	 and	 their	 interaction	 were	
significant	 (sphericity	 correction	 was	 applied	 by	 the	method	 of	 Greenhouse-Geisser).	 For	
StDn,	 the	main	effect	 yielded	F(1.825,45.621)=473.80,	p<0.001,	η2p=0.950,	 in	 relation	with	
higher	 reports	 for	 larger	 stimulus	StD.	 For	eccentricity	 the	main	effect	was	F(1,25)=33.32,	
p<0.001,	 η2p=0.571:	 peripheral	 presentation	 was	 associated	 with	 lower	 variance	 reports,	
with	a	mean	difference	of	6.798	(fovea	-	periphery),	t(25)=8.237,	p<0.001,	Cohen’s	d=1.615.	
The	 interaction	 effect	 StDn*eccentricity	 was	 also	 significant,	 F(2.715,	 67.882)=20.06,	
p<0.001,	η2p=0.445,	indicating	that	the	difference	between	foveal	and	peripheral	responses	
increased	 for	 large	 StDn	 values,	 as	 shown	 in	 figure	 2a.	 These	 results	were	 confirmed	 in	 a	
Bayesian	 RM	 ANOVA	 with	 the	 same	 variables:	 the	 full	 model	 (both	 main	 effects	 and	
interaction)	 was	 the	 most	 explanatory	 according	 to	 the	 Bayes	 factor,	 outperforming	 the	
second	 best	 (only	 the	 two	 main	 effects)	 by	 a	 factor	 of	 BFfull/main	 effects=1.075*106.	 These	
findings	(lower	responses	in	periphery	than	in	fovea,	especially	for	large	StDn)	seem	to	relate	
to	a	greater	regression	to	the	mean	exhibited	 in	responses	about	peripheral	stimuli	 (likely	
due	 to	 worse	 discrimination	 between	 stimulus	 levels),	 combined	 with	 the	 fact	 that	 the	
range	of	the	response	scale	allows	for	larger	errors	by	overestimation	than	underestimation.	
	
To	further	characterize	perception	of	variance	throughout	the	different	presented	StD	levels	
and	 confirm	 the	 apparently	 worse	 performance	 in	 the	 periphery,	 we	 examined	 the	
dispersion	 of	 the	 responses	 per	 StD	 (𝜎!),	 defined	 as	 the	 standard	 deviation	 of	 the	
distribution	of	responses	per	stimulus	level.	We	conducted	a	repeated-measures	ANOVA	on	
the	influence	of	StDn	level	and	eccentricity	on	response	dispersion.	The	main	effect	for	StDn	
yielded	 a	 F(2.994,74.840)=58.426,	 p<0.001,	 η2p=0.700,	 in	 relation	 with	 greater	 response	
dispersion	for	large	StD	levels,	as	is	common	in	magnitude	estimation	tasks:	𝜎! 	was	lowest	
at	9.87	for	StD=5	and	steadily	increased	with	StD	value	until	it	peaked	at	21.03	for	StD=30,	
remained	almost	equal	(𝜎!=	20.51)	for	StD=40	and	decreased	moderately	for	StD=60	(𝜎!=	
15.98),	probably	due	to	a	ceiling	effect.	As	 for	the	main	effect	of	eccentricity	on	response	
dispersion,	 it	 was	 F(1,25)=4.165,	 p=0.052,	 η2p=0.143,	 suggesting	 a	 trend	 towards	 greater	
response	 dispersion	 in	 peripheral	 presentations:	 mean	 difference	 -0.658	 (fovea	 –	
periphery),	t(25)=-1.738,	p=0.086,	Cohen’s	d=-0.339.	Last,	the	effect	of	the	interaction	term	
StDn*	 eccentricity	 was	 F(3.530,	 88.244)=4.757,	 p=0.002,	 η2p=0.160,	 due	 to	 the	 larger	
response	 dispersion	 in	 periphery	 occurring	mainly	 for	 large	 StD	 values.	 In	 a	 Bayesian	 RM	
ANOVA	with	the	same	variables	as	 in	the	frequentist	counterpart,	the	best	model	was	the	
full	model	 (StDn,	 eccentricity	 and	 interaction),	which	outperformed	 the	 second	best	 (with	
only	 StDn)	 by	 a	 factor	of	BFfull/StDn=8.747.	 In	 summary,	 response	dispersion	 increased	with	
stimulus	 (StD)	 level	 and	 there	 was	 a	 (nearly	 significant)	 trend	 towards	 greater	 response	
dispersion	for	peripheral	presentations,	especially	at	 large	StD,	suggesting	a	slightly	worse	
performance	 at	 20	 dva	 eccentricity	 compared	 to	 0	 dva,	 in	 agreement	 with	 the	 previous	
finding	of	a	greater	regression	to	the	mean	in	peripheral	responses.		
	
	
2.2.2.	Variance	reports	are	subject	to	a	positive	bias	driven	by	very	recent	trial	history	
	

To	characterize	the	existence	of	serial	dependences	in	variance	reports,	we	tracked	whether	
the	 response	 errors	 provided	 by	 each	 participant	 for	 each	 StD	 level	 were	 different	 as	 a	



function	of	 the	 StD	 level	 presented	 in	 the	 previous	 trial	 (serial	 dependence	 in	 relation	 to	
trial	 n-1),	 or	 at	 positions	 further	 backwards	 in	 trial	 history	 (trial	 n-t).	 Thus,	 the	 response	
variable	 in	 our	 analyses	 of	 serial	 dependence,	 unless	 stated	 otherwise,	 is	 the	 normalized	
response	error	relative	to	the	current	stimulus	(zREn).	Response	errors	(defined	as	REn=(Rn-
StDn)/StDn)	are	normalized	by	the	distribution	of	reports	provided	by	each	individual	for	the	
level	of	StD	presented	in	the	current	trial,	so	that	their	absolute	value	is	independent	of	the	
current	StDn	level	and	of	each	participant’s	global	scoring	biases.	
	
Figure	2b	presents	the	average	zREn	as	a	function	of	the	previous	stimulus	(StDn-1),	plotted	
separately	 by	 eccentricity.	 Regardless	 of	 generally	 lower	 reports	 at	 larger	 eccentricity,	 a	
trend	towards	larger	zREn	for	higher	StDn-1	values	is	evident	for	all	trials	pooled	as	well	as	for	
both	foveal	and	peripheral	presentations.	This	indicates	a	positive	(attractive,	Bayesian-like)	
bias	 driven	 by	 trial	 n-1:	 current	 responses	 resemble	 the	 previous	 stimulus	 –	 serial	
dependence	for	visual	variance.		
	
To	verify	this	observation,	we	ran	a	repeated-measures	ANOVA	on	the	effect	of	StDn-1	level	
(as	 within-subject	 factor)	 on	 current	 variance	 reports	 (zREn).	 The	 effect	 of	 StDn-1	 was	
statistically	 significant	 (F(3.231,93.697)=7.221,	 	 p<0.001,	 η2p=0.199,	 Greenhouse-Geisser	
correction	applied).	The	Bayes	factor	for	the	inclusion	of	StDn-1	compared	to	the	null	model	
(both	of	them	included	participant	as	grouping	variable)	was	BFinclusion=56187.91,	indicating	
extreme	 (47)	 evidence	 for	 a	 superior	 explanatory	 ability	 of	 the	 model	 that	 included	 this	
term.		
	
Serial	 dependence	 in	 variance	 does	 not	 depend	 on	 other	 stimulus	 properties	 (visual	
eccentricity,	spatial	location	or	ensemble	mean)	
	
Having	 established	 the	 existence	 of	 a	 positive	 serial	 dependence	 exerted	 by	 the	 previous	
trial,	we	sought	to	ascertain	which	properties	of	the	stimulus	presentation	might	modulate	
such	bias.	Previous	studies	on	serial	dependence	have	observed	that	it	appears	in	the	fovea	
as	 well	 as	 the	 periphery,	 and	 its	 strength	 is	 tuned	 by	 spatiotemporal	 proximity	 (39).	
Moreover,	 if	 the	 function	 of	 (positive)	 serial	 dependence	 is	 to	 promote	 perceptual	
continuity	 (39),	 it	 seems	 reasonable	 to	 expect	 that	 similarity	 of	 other	 attributes	 of	
consecutive	 stimuli	 would	 lead	 to	 a	 stronger	 influence	 of	 the	 studied	 feature	 dimension,	
especially	for	two	attributes	as	closely	related	as	ensemble	mean	and	variance.	
	
To	 test	 the	 influence	 of	 these	 properties,	we	 conducted	 a	 repeated-measures	ANOVA	on	
zREn	(as	dependent	variable)	with	two	within-subject	factors:	StDn-1	and	each	of	the	features	
of	interest,	separately:	eccentricity,	retinal	location	and	similarity	of	means.		
	
For	 eccentricity,	 both	 main	 effects	 were	 statistically	 significant	 (Feccentricity(1,25)=31.004,	
p<0.001,	 η2p	 eccentricity	 =0.554;	 FStDn-1(2.662,	 66.556)=7.029,	 p<0.001,	 η2p	 StDn-1	 =0.219;	
sphericity,	 correction	 by	 Greenhouse-Geisser),	 while	 the	 interaction	 was	 not	 (F(3.789,	
94.722)=1.710,	p=0.157,	η2p	=0.064).	This	result,	as	indicated	by	the	roughly	parallel	plots	for	
fovea	 and	 periphery	 in	 figure	 2b,	 suggests	 that	while	 eccentricity	 influences	 the	 absolute	
value	of	the	current	StD	response,	 it	does	not	modulate	the	serial	dependence	exerted	by	
StDn-1.	To	formally	test	this	hypothesis,	we	turned	to	Bayesian	repeated-measures	ANOVA.	
Table	 1a	 summarizes	 the	 comparison	 between	 all	 competing	 models.	 The	 largest	 Bayes	



factor	 corresponds	 to	 the	 model	 including	 both	 main	 effects	 but	 not	 the	 interaction	
(BF10=3.432*1029),	 which	 outperforms	 the	 model	 that	 also	 includes	 the	 interaction	 term	
StDn-1*eccentricity	 by	 a	 factor	 of	 BFmain	 effects/full=	 17.645	–	 strong	 (47)	 evidence	 against	 its	
inclusion	and	supporting	the	conclusion	that	while	there	is	an	overall	difference	in	reports,	
there	is	no	difference	in	serial	dependence	across	eccentricity.	

	
Regarding	the	influence	of	spatial	location,	we	analysed	only	peripheral	presentation	blocks,	
classifying	 trials	 according	 to	 whether	 the	 previous	 stimulus	 had	 been	 presented	 on	 the	
same	or	the	opposite	hemifield	as	the	current	one:	i.e.	same	presentation	location	versus	a	
separation	of	40	dva	between	consecutive	presentations.	Results	for	the	model	comparison	
given	by	a	Bayesian	repeated-measures	ANOVA	are	presented	in	Table	1b:	the	best	model	in	
terms	of	evidence	includes	only	StDn-1	(BF10=2.073),	while	the	worst	model	also	includes	the	
hemifield	and	 the	 interaction	 term	StDn-1*	hemifield	 (BF10=0.120).	This	 indicates	moderate	
evidence	 against	 the	 full	 model	 (including	 interaction)	 compared	 to	 the	 null,	 and	 strong	
evidence	against	it	when	compared	to	the	most	explanatory	model,	i.e.	the	one	with	StDn-1	

only	 (BFfull/StDn-1=0.058).	 These	 results	 support	 the	 hypothesis	 of	 serial	 dependence	 being	
unaffected	by	the	spatial	location	of	consecutive	stimuli.	
	
Last,	we	examined	the	 influence	of	mean	RDK	direction	on	serial	dependence	of	variance;	
specifically,	whether	the	magnitude	of	the	serial	dependence	effect	(in	variance)	depended	
on	 the	 successive	 presentations	 containing	 a	 similar	 mean	 direction.	 With	 this	 aim,	 we	
binned	 the	 absolute	 difference	 between	 the	 mean	 RDK	 directions	 in	 the	 previous	 and	
current	trial	into	5	categories:	≤36o,	37o-72o,	73o-108o,	109o-144o,	145o-180o.	As	before,	we	
conducted	 a	 Bayesian	 repeated-measures	 ANOVA	 with	 two	 within-subject	 factors	 (StDn-1	
and	 mean	 difference).	 As	 shown	 in	 Table	 1c,	 the	 best	 model	 included	 only	 StDn-1	 (BF10=	
3.210*105),	 whereas	 the	 model	 including	 both	 main	 effects	 and	 its	 interaction	 was	 the	
second	worst	after	the	one	with	mean	difference	only,	with	a	BF10=0.281.	The	Bayes	factor	
for	 inclusion	 of	 the	 interaction	 term	 indicated	 extreme	 evidence	 against	 it	
(BFinclusion=3.491*10-6);	this	was	also	the	case	if	the	comparison	was	made	between	the	full	
model	 and	 the	model	 lacking	 only	 the	 interaction	 (BFmain	 effects/full	 =	 1789.55).	 This	 lack	 of	
association	of	mean	similarity	and	serial	dependence	in	variance	was	further	confirmed	in	a	
further	 experiment	 (detailed	 in	 Supplementary	 Materials,	 section	 1)	 that	 used	 a	 limited	
range	of	mean	trajectories,	allowing	for	only	four	between-trial	differences	(0o,	35o,	55o	and	
90o).	
	
In	summary,	serial	dependence	in	variance	reports	is	not	modulated	by	low-level	properties	
of	the	stimulus	 including	visual	eccentricity	or	spatial	 location,	or	associated	features	such	
as	mean,	suggesting	that	visual	variance	(operationalized	as	variance	of	motion	direction)	is	
processed	as	a	feature	dimension	independent	from	these	properties,	at	least	at	the	level	of	
perceptual	decision-making	that	gives	rise	to	serial	dependence.	
	
	
TABLE	1.	Serial	dependence	and	stimulus	properties	-	Model	comparison		
	
1a.	Eccentricity		

Models		 P(M)		 P(M|data)		 BF	M		 BF	10		 error	%		

Null	model	(incl.	subject)		
	
0.200		

	
2.747e -30		

	
1.099e -29		

	
1.000		

	 		



1a.	Eccentricity		

Models		 P(M)		 P(M|data)		 BF	M		 BF	10		 error	%		

StDn-1		
	
0.200		

	
1.229e -29		

	
4.918e -29		

	
4.476		

	
0.626		

	
Eccentricity		

	
0.200		

	
0.004		

	
0.015		

	
1.385e +27		

	
1.303		

	
StDn-1	+	Eccentricity	 	 0.200			 0.943			 65.900			 3.432e +29			 3.951			
StDn-1	+	Eccentricity	+	StDn-1 	✻	 Eccentricity			 	 0.200			 0.053			 0.226			 1.945e +28			 2.392			

		
	
1b.	Spatial	location	(hemifield)	

Models		 P(M)		 P(M|data)		 BF	M		 BF	10		 error	%		
Null	model	(incl.	subject)		 	 0.200			 0.232			 1.208			 1.000			 		
StDn-1	

	
0.200		

	
0.481		

	
3.702		

	
2.073		

	
0.464		

	
Hemifield	

	
0.200		

	
0.079		

	
0.343		

	
0.340		

	
1.690		

	
StDn-1	+	Hemifield	 	 0.200			 0.181			 0.883			 0.780			 3.545			
StDn-1	+	Hemifield	+	StDn-1 	✻	 Hemifield		 	 0.200			 0.028			 0.114			 0.120			 1.387			

		
	
1c.	Mean	difference	(n-1,	n)	

Models		 P(M)		 P(M|data)		 BF	M		 BF	10		 error	%		
Null	model	(incl.	subject)		 	 0.200			 3.111e -6			 1.244e -5		 1.000		 		
StDn-1	 	 0.200			 0.998		 2550.135			 320978.693		 0.570		
Mean	difference	

	
0.200		

	
4.784e -9	

	
1.914e -8	

	
0.002	

	
0.726		

	
StDn-1	+	Mean	difference	 	 0.200			 0.002		 0.006		 502.187		 0.815		
StDn-1	+	Mean	difference	+	StDn-1 	✻	 Mean	
difference		 	

0.200		
	

8.729e -7	
	

3.491e -6	
	

0.281			
	

1.091		
	
		

Note.		All	models	include	subject.		
	
	
Table	 1.	 	 Experiment	 1.	 Serial	 dependence	 (associated	 with	 trial	 n-1)	 and	 stimulus	 properties.	 Each	 table	
presents	the	results	of	a	Bayesian	repeated-measures	ANOVA	on	zREn,	with	two	within-subject	factors:	StDn-1	
and	one	property	of	interest:		eccentricity,	spatial	location	(peripheral	blocks	only:	same	or	opposite	hemifield	
than	previous	 stimulus)	and	difference	 in	 the	mean	 trajectories	of	 the	RDKs	presented	 in	 consecutive	 trials.	
P(M):	 prior	 probability	 of	 each	model,	 assumed	 to	 be	 equal	 for	 all.	 P(M/data):	 posterior	 probability	 of	 the	
model	 (given	 the	 data).	 BFM:	 Bayes	 factor	 for	 the	 model.	 BF10:	 Bayes	 factor	 for	 the	 alternative	 hypothesis	
relative	to	a	null	model	(expressed	by	each	model).	
	
	
Positive	serial	dependence	in	variance	extends	up	to	the	latest	2	trials	
	
Investigations	of	serial	dependence	have	typically	focussed	on	the	influence	of	very	recent	
trial	history,	examining	only	 the	effect	of	 the	 immediately	previous	and	penultimate	 trials	
on	 reports.	We	 examined	 serial	 dependence	 through	 trial	 history	 by	modelling	 the	 fixed-
effects	size	of	serial	dependence	while	allowing	for	between-subject	variability,	building	ten	
varying	 intercept,	 varying	 slope	Bayesian	 linear	mixed-effects	models	 (LMM)	with	 zREn	 as	
dependent	 variable,	 and	 StDn-t	 (t=1…10,	 respectively)	 as	 independent	 predictor,	 with	
random-effects	grouped	by	participant.	We	chose	a	uniform	prior	distribution	over	the	real	



numbers	 for	 the	 fixed-effects	 coefficient	 and	 for	 the	 standard	deviation	of	 the	by-subject	
varying	intercepts	and	slopes,	and	a	LKJ	prior	with	shape	parameter	η=	2.0	for	the	random-
effect	correlation	matrices.	Unless	stated	otherwise,	analogous	priors	were	established	for	
other	Bayesian	LMMs	reported	in	this	paper.	Fixed-effects	coefficient	estimates	were	largely	
insensitive	to	prior	selection,	as	can	be	seen	in	the	example	presented	in	the	Supplementary	
Materials	(section	2).		
	
We	 applied	 these	 models	 to	 foveal	 and	 peripheral	 blocks	 separately	 as	 well	 as	 overall	
dataset.	 Figure	2c	presents	 the	 fixed-effect	 coefficients	and	95%	credible	 intervals	 for	 the	
association	between	past	StD	(up	to	trial	n-10)	and	current	report	for	all	trials,	as	well	as	per	
eccentricity.	The	 fixed-effects	B	coefficient	estimates	 for	 the	effect	of	StDn-1	and	StDn-2	on	
zREn	 are	 positive,	 indicating	 an	 attractive	 bias.	 For	 StDn-1	 (all	 trials	 pooled),	 B=0.0034	
(0.0017-0.0051)	suggesting	that,	regardless	of	the	value	of	StDn,	participants’	judgments	of	
visual	variance	increased	by	a	magnitude	of	0.0034	(z-score)	per	1o	increase	in	previous	trial	
StD	(StDn-1).	The	effect	of	StDn-2	is	weaker	but	still	present:	B=0.0014,	(0.0003	–	0.0026).	To	
make	 clear	 the	 size	 of	 these	 effects,	 we	 can	 consider	 absolute	 responses	 as	 outcome	
variable	 (adding	the	current	StDn	and	the	 interaction	with	StDn-1	 to	 the	models).	Here,	 the	
increase	is	of	0.0586	(0.0272	-		0.0892)	units	per	unit	of	StDn-1,	or	an	attractive	effect	of	5.9%	
towards	the	previous	stimulus,	whereas	for	StDn-2	the	effect	size	is	0.0242	(0.0006	-	0.0483)	
(2.4%).		
	
Thus,	 variance	 judgments	 at	 one	 specific	 trial	 (n)	 are	 attracted	 a	 small	 but	 meaningful	
amount	towards	the	variance	presented	in	the	previous	trial	(n-1)	and	to	a	lesser	extent	the	
trial	before	(n-2).	Note	that,	since	the	initial	position	of	the	response	bar	is	randomized	for	
each	trial,	 simple	motor	routines	 involved	 in	 response	execution	cannot	explain	 this	serial	
dependence.		
	
	
2.2.3.	Variance	reports	are	subject	to	a	negative	bias	driven	by	less	recent	trial	history	
	
Looking	past	the	previous	2	trials,	as	shown	in	figure	2c,	a	reversal	 from	positive	(trial	n-1	
and	n-2)	to	negative	B	coefficient	values	is	observed	for	less	recent	presentations,	indicative	
of	a	negative	(i.e.	repulsive,	anti-Bayesian)	bias:	current	responses	were	 less	similar	to	the	
StD	presented	in	those	trials,	in	a	manner	akin	to	sensory	adaptation	after-effects	(34,	38).	
This	 effect	 started	 at	 trial	 n-4,	 peaked	 at	 trials	 n-7	 to	 n-9	 (StDn-8:	 B=-0.0021	 (-0.0032	 -	 -
0.0010))	and	faded	afterwards,	largely	declining	from	trial	n-10	onwards.	Similar	effect	sizes	
and	timescales	are	observed	for	foveal	and	peripheral	presentations	(see	figure	2).	
	
	
	
3.	EXPERIMENT	2:	PROCESSING	STAGES	 INVOLVED	IN	SERIAL	DEPENDENCE	 IN	VARIANCE	
REPORTS	
	
In	 the	previous	experiment	we	 found	evidence	 for	 serial	 dependence	 in	 judgments	about	
the	variance	of	RDK	stimuli.	 Specifically,	we	 found	 two	opposite	 types	of	bias	at	different	
timescales:	an	attractive,	Bayesian-like	bias	related	to	the	StD	of	the	very	recent	(n-1	and	n-
2)	trials	and	a	repulsive,	negative	bias	which	operates	on	a	longer	timescale.		



	
At	what	 level	 of	 processing	 do	 these	 serial	 dependencies	 exert	 their	 influence?	 The	 non-
local	nature	and	independence	from	inter-trial	similarity	in	RDK	direction	mean	suggest	that	
attractive	serial	dependence	may	not	be	driven	by	 low-level,	sensory	processes.	However,	
the	specific	stages	of	variance	processing	at	which	it	arises	are	yet	to	be	determined	(39,	43,	
48).	To	address	this	issue,	in	this	experiment	we	applied	several	manipulations	to	the	task	to	
disambiguate	 the	 contributions	 of	 low-level	 sensory	 processes,	 perceptual	 decisions	 and	
responses	to	serial	dependence	of	variance	judgements.		
	
Experiment	2A	aimed	to	isolate	the	contribution	of	response	to	the	serial	dependence	effect	
by	introducing	‘no-response’	trials,	in	order	to	exclude	the	influence	of	physically	making	a	
response.	However,	in	this	experiment,	no-response	trials	were	not	pre-cued,	meaning	that	
potential	 contribution	 of	 decision-making	 and	 response	 preparation	 during	 stimulus	
presentation	could	not	be	ruled	out.	For	this	reason,	in	Experiment	2B	we	employed	a	(pre-
cued)	 task	 switching	 design	 to	 disentangle	 the	 contribution	 of	 perception	 and	 decision	
processes.		
	
	
3.1.	METHODS	
	
The	methods	of	these	experiments	were	similar	to	those	of	Experiment	1	with	the	following	
exceptions:	
	
3.1.1.	Stimuli	 	
	
All	stimuli	were	presented	on	the	centre	of	the	screen	(where	a	fixation	cross	was	displayed)	
and	eye-tracking	was	not	performed,	as	visual	eccentricity	was	not	under	examination.		
	
		
3.1.1.	Procedure	
	
Experiment	2A	had	a	practice	block	with	72	trials	and	ten	experimental	blocks	with	60	trials	
each;	same	for	2B	except	that	the	practice	block	was	longer	(90	trials),	due	to	the	additional	
demands	of	its	task-switching	design	(see	below).	In	Experiment	2B	9	participants	(out	of	16)	
performed	 a	 session	 twice	 as	 long	 (10	 blocks),	 due	 to	 differential	 availability	 of	 different	
participants.	 For	 both	experiments,	 in	 each	block,	 2/3	of	 the	 trials	 required	 ‘randomness’	
scores	 as	 described	 for	 Experiment	 1.	 In	 Experiment	 2A,	 the	 remaining	 1/3	 were	 no-
response	trials:	after	stimulus	presentation,	instead	of	the	response	bar	only	a	blank	screen	
appeared	 for	 a	 randomized	 interval	 between	 1000-3000	 ms,	 after	 which	 the	 next	 trial	
started.	Participants	were	told	in	advance	that	they	should	expect	a	certain	number	of	no-
response	trials,	but	they	did	not	know	the	proportion	and	these	trials	were	not	pre-cued	in	
any	way.	In	Experiment	2B,	1/3	of	trials	required	participants	to	report	the	‘mean’	direction	
of	the	motion	of	the	RDK,	by	adjusting	a	rotating	arrow	with	the	mouse	(see	figure	1).	The	
required	task	was	pre-cued	at	the	beginning	of	the	trial:	one	three-letter	word,	either	‘RAN’	
(‘randomness’	report	required)	or	‘DIR’	(mean	direction	report	required)	was	displayed	for	
one	second	before	the	appearance	of	the	fixation	cross.	The	rest	of	the	trial	structure	was	
the	same	as	in	Experiment	1	(only	the	response	scale	differed	in	RAN	and	DIR-trials).		



	
	
3.2.	RESULTS	
	
3.2.1.	 Experiment	 2A:	 effect	 of	 response	 execution	 on	 serial	 dependence	 in	 variance	
reports	
	
Fifteen	Psychology	students	(13	female,	mean	age	20.4,	standard	deviation	5.3)	volunteered	
in	exchange	for	course	credits,	under	the	conditions	described	previously.	The	total	number	
of	 trials	 collected	 across	 all	 participants	 was	 9000,	 out	 of	 which	 3000	 were	 no-response	
trials.		
	
Serial	dependence	of	previous	StD	is	not	affected	by	response	processes	
	
Figure	3a	shows	the	distribution	of	normalized	variance	reports	(zREn)	as	a	function	of	the	
previous	trial	StD	(StDn-1)	and	type,	i.e.	whether	n-1	had	been	a	response	or	a	no-response	
trial.	 The	 ascending	 and	 roughly	 parallel	 plots	 for	 each	 trial	 (n-1)	 type	 suggest	 that	 serial	
dependence	 in	 relation	 to	 StDn-1	was	 similar	 in	magnitude	 and	 sign	 (i.e.	 attractive	 effect)	
regardless	of	whether	trial	n-1	was	a	response	or	a	no-response	trial.	To	formally	test	this	
observation,	we	 conducted	 a	 Bayesian	 repeated-measures	 ANOVA	on	 the	 effect	 of	 StDn-1	
and	 trial	n-1	 type	 (as	within-subject	 factors)	on	zREn.	A	comparison	of	all	possible	models	
based	on	the	results	of	this	analysis	is	shown	in	Table	2a.	The	best	model	includes	only	StDn-

1	(BF10=2.386*106).	There	was	strong	evidence	against	the	inclusion	of	the	interaction	term	
StDn-1*trial	 n-1	 type:	 BFinclusion=0.051.	 In	 a	 direct	 comparison	 between	 the	 main-effects	
model	and	the	full	model	the	ratio	was	given	by	BFmain	effects/full=10.75.	This	lack	of	interaction	
confirmed	that	StDn-1	effect	on	current	report	was	independent	of	response	execution.	
	



	
Fig	 3.	 Experiment	 2.	 3a	 -	 3b.	Normalized	 relative	 error	 in	 current	 response	 (zREn)	 as	 a	 function	 of	 the	 StD	
presented	in	the	previous	trial	(StDn-1),	plotted	separately	by	trial	n-1	type:	response	versus	no-response	in	3a	
(experiment	 2A),	 RAN	 versus	 DIR	 in	 3b	 (experiment	 2B).	 The	 error	 bars	 represent	 the	 between-subject	
standard	 error.	 Both	 response	 and	 no-response	 trials	 are	 associated	 with	 a	 positive	 bias	 by	 trial	 n-1	 (as	
suggested	by	 the	 ascending	plot	 lines	 in	 3a),	whereas	 in	 figure	 3b,	 only	RAN	 trials	 elicit	 such	positive	 serial	
dependence.	3c	–	3d.	Fixed-effects	coefficient	estimates	in	20	Bayesian	LMMs	with	StDn-t	(t=1…10)	as	predictor	
of	 current	 response	 (zREn),	 modelled	 separately	 by	 trial	 n-t	 type:	 in	 3c,	 response	 versus	 no-response	 trials	
(experiment	 2A);	 in	3d,	 RAN	 versus	 DIR	 trials	 (experiment	 2B).	 Since	 the	 dependent	 variable	 is	 the	 current	
variance	(‘randomness’)	judgment,	trial	n	is	always	a	response	(3c)	or	a	RAN	(3d)	trial.	The	error	bars	represent	
the	95%	credible	intervals	for	the	true	value	of	the	coefficient.	
	
	
Figure	 3c	 shows	 the	 fixed-effects	 coefficient	 estimates	 and	 95%	 credible	 intervals	 for	 20	
Bayesian	LMMs	for	zREn,	with	StDn-t	(t=1…10)	as	putative	predictor,	split	by	trial	n-t	type	and	
modelled	 separately.	 A	 similar	 pattern	 in	 terms	 of	 effect	 size	 and	 direction	 can	 be	 seen	
regardless	of	whether	previous	trials	required	response	or	not:	an	attractive	bias	in	relation	
to	 the	 latest	 two	 trials	 (weaker	 for	 n-2),	 a	 roughly	 zero	 effect	 of	 trial	 n-3	 and	 a	 reversal	
toward	 a	 negative	 effect	 peaking	 around	 trials	 n-5	 to	 n-9,	 with	 a	 similar	 magnitude	 and	
timescale	than	for	Experiment	1.		
	
Having	 established	 that	 serial	 dependence	 does	 not	 arise	 from	 response	 itself,	 we	
questioned	whether	intermediate	responses	(i.e.	responses	made	in	past	trials	between	the	
current	one,	n,	and	a	trial	n-t	whose	serial	effect	 is	considered)	could	affect	the	degree	to	



which	the	effect	of	further	trials	carried	through.	For	simplicity	we	considered	only	the	case	
of	 serial	 dependence	 related	 to	 trial	 n-2	 (for	 the	 sake	 of	 homogeneity,	 we	 limited	 the	
analysis	 to	 those	 response	 trials	 wherein	 trial	 n-2	 had	 also	 been	 a	 response	 trial)	 and	
classified	the	dataset	according	to	whether	the	intermediate	trial	(n-1)	had	been	a	response	
or	a	no-response	trial.	We	ran	a	Bayesian	repeated-measures	ANOVA	on	the	effect	of	StDn-2	

and	trial	n-1	type	(as	within-subject	factors)	on	zREn.	The	best	model	contained	only	StDn-2	
(BF10=30.045),	 outperforming	 the	 full	 model	 (two	 factors	 and	 interaction)	 by	 a	 factor	 of	
12.87.	 However,	 when	 the	 comparison	 was	 made	 between	 the	 full	 model	 and	 the	
equivalent	model	stripped	of	the	effect	of	interest	(i.e.	the	interaction	StDn-2*	trial	n-1	type),	
the	 latter	 outperformed	 the	 former	 by	 only	 a	 factor	 of	 BFmain	 effects/full	 =	 1.98.	Overall,	 the	
Bayes-factor	 for	 inclusion	 of	 the	 interaction	 term	 indicated	moderate	 evidence	 against	 it	
(BFinclusion=0.261),	 suggesting	 that	 the	 attractive	 bias	 related	 to	 previous	 trials	 is	 not	
disrupted	(nor	boosted)	by	the	participant	providing	a	response	on	the	intermediate	trials.	
	
	
TABLE	2.	Serial	dependence	and	task	requirements	-	Model	comparison		
	
2a.	Response	(Experiment	2A)	

Models		 P(M)		 P(M|data)		 BF	M		 BF	10		 error	%		

Null	model	(incl.	subject)		
	
0.200		

	
3.575e -7		

	
1.430e -6		

	
1.000		

	 		
StDn-1		

	
0.200		

	
0.853		

	
23.192		

	
2.386e +6		

	
0.393		

	
Trial	n-1	type	(response	vs.	no-response)	

	
0.200		

	
5.551e -8		

	
2.220e -7		

	
0.155		

	
0.772		

	
StDn-1	+	Trial	n-1	type	

	
0.200		

	
0.135		

	
0.622		

	
376281.756		

	
1.178		

	
StDn-1	+	Trial	n-1	type	+	StDn-1 	✻	 	Trial	n-1	type	

	
0.200		

	
0.013		

	
0.051		

	
35151.882		

	
2.835		

	
		

	
2b.	Dimension-specific	judgment	(Experiment	2B)	

Models		 P(M)		 P(M|data)		 BF	M		 BF	10		 error	%		
Null	model	(incl.	subject)		

	
0.200		

	
0.012		

	
0.048		

	
1.000		

	 		
StDn-1	

	
0.200		

	
0.023		

	
0.095		

	
1.964		

	
0.360		

	
Trial	n-1	type	(variance	vs.	mean	estimation)	

	
0.200		

	
0.109		

	
0.489		

	
9.202		

	
1.348		

	
StDn-1	+	Trial	n-1	type	 	 0.200			 0.283			 1.578			 23.921			 2.994			
StDn-1	+	Trial	n-1	type	+	StDn-1 	✻	 	Trial	n-1	type	 	 0.200			 0.573			 5.371			 48.459			 2.705			

		
Note.	All	models	include	subject.	
	
	
Table	2.		Experiment	2.	Serial	dependence	(associated	with	trial	n-1)	and	trial	n-1	type	(task	requirements	in	
that	trial).	Each	table	section	presents	the	model	performance	on	Experiment	2A	and	2B	datasets,	respectively,	
according	 to	 the	 results	 of	 a	 Bayesian	 repeated-measures	 ANOVA	on	 zREn,	with	 two	within-subject	 factors:	
StDn-1	 and	 trial	 n-1	 type:	 response/no-response	 in	 Experiment	 2A,	 RAN/DIR	 in	 Experiment	 2B.	 P(M):	 prior	
probability	of	each	model,	assumed	to	be	equal	 for	all.	P(M/data):	posterior	probability	of	 the	model	 (given	
the	data).	BFM:	Bayes	factor	for	the	model.	BF10:	Bayes	factor	for	the	alternative	hypothesis	relative	to	a	null	
model	(expressed	by	each	model).	
	
	
2.2.	Experiment	2B:	effect	of	decision	on	serial	dependence	in	variance	reports	



	
Experiment	 2A	 demonstrated	 that	 serial	 dependence	 in	 visual	 variance	 is	 not	 due	 to	
response	execution;	however,	as	trials	were	not	pre-cued	as	to	whether	a	response	would	
be	 required,	 these	 results	 do	 not	 disambiguate	 between	 perception	 and	 decision-making	
(response	preparation).	Therefore,	in	Experiment	2B	we	deployed	a	pre-cued	task-switching	
design	 in	which	 participants	 needed	 to	 prepare	 and	 respond	 to	 two	 different	 perceptual	
tasks:	reporting	the	variance	(RAN	trials)	or	the	mean	(DIR	trials)	of	the	motion	of	the	RDK.	
	
Fifteen	first-year	Psychology	students	(13	female,	mean	age	21.4	yr,	standard	deviation	8.8)	
participated	 in	 this	 experiment	 in	 exchange	 for	 course	 credits,	 under	 the	 conditions	
described	 above.	 In	 total	 they	 performed	 7200	 trials,	 out	 of	 which	 2400	 were	 DIR-trials	
(alternative	task).	
	
Serial	dependence	is	related	to	dimension-specific	decision-making	
	
We	analyzed	the	data	in	similar	manner	to	Experiment	2A,	ascertaining	the	influence	of	trial	
type	 in	 the	 observed	 serial	 dependence	 on	 variance	 judgments.	 Figure	 3b	 presents	 the	
distribution	of	variance	reports	(zREn)	as	a	function	of	StDn-1	and	trial	n-1	type	-i.e.	whether	
it	required	a	decision	about	variance	(RAN)	or	mean	(DIR).	Only	when	successive	decisions	
were	both	regarding	variance	do	we	see	an	ascending	slope	in	relation	to	increasing	StDn-1,	
suggesting	that	 the	attractive	bias	associated	with	StDn-1	was	only	exerted	 if	a	decision	on	
that	dimension	had	been	made.			
	
Table	 2b	 presents	 a	 Bayesian	 repeated-measures	 ANOVA	 with	 StDn-1	 and	 trial	 n-1	 type	
(RAN/DIR)	as	within-subject	factors.	The	most	explanatory	was	the	full	model	including	both	
main	 effects	 and	 their	 interaction	 (BF10=48.459),	 although	 the	 evidence	 in	 its	 favour	
compared	to	 the	model	with	only	 the	main	effects	was	anecdotal	 (BFfull/main	 effects	=	2.026).	
However,	evidence	in	favour	of	the	interaction	term	was	larger	when	taking	in	consideration	
all	possible	models:	BFinclusion=5.371	–moderate	evidence	for	inclusion.		Thus,	results	point	to	
serial	dependence	by	StDn-1	being	dependent	on	which	dimension	participants	had	to	judge	
in	the	previous	trial.	
	
We	noted	that	the	average	time	between	onsets	of	consecutive	trials	was	longer	if	the	first	
had	been	a	RAN	trial	(4.63	vs	4.48	s,	Bayesian	pair-samples	t-test:	BF10=29.63).	We	therefore	
wondered	whether	time	could	be	confounding	the	interaction	between	StDn-1	and	trial	n-1	
response	type,	since	 it	has	been	shown	to	 influence	serial	dependence	 in	previous	studies	
(48-50).	 To	 test	 this	 possibility	 we	 defined	 timen-1,n	 as	 the	 interval	 between	 consecutive	
stimulus	onsets,	binned	into	two	levels,	either	below	or	above	the	participant’s	median.	This	
variable	 was	 added	 as	 a	 third	 within-subject	 factor	 to	 the	 Bayesian	 repeated-measures	
ANOVA	 described	 in	 the	 previous	 paragraph.	 We	 sought	 to	 directly	 compare	 two	
explanatory	hypotheses	for	the	observed	difference	in	serial	dependence	by	StDn-1	when	n-1	
had	been	a	RAN	compared	to	a	DIR	trial:	i)	trial	n-1	type	(RAN/DIR)	or	ii)	inter-stimulus	time	
being	 the	cause	of	 this	difference.	Thus,	we	compared	 the	explanatory	power	of	a	model	
with	StDn-1,	trial	n-1	type	(RAN/DIR)	and	their	interaction	against	a	model	with	StDn-1,	timen-
1,n	and	their	interaction.	The	former	outperformed	the	latter	by	a	factor	of	105.37,	indicating	
extreme	evidence	in	 its	favour.	Overall,	analysis	of	each	separate	effect	 indicated	extreme	
evidence	against	inclusion	of	the	interaction	term	StDn-1*timen-1,n	(BFinclusion=6.668*10-4).	This	



indicated	 that	 the	difference	between	 serial	dependence	driven	by	RAN	compared	 to	DIR	
trials	was	better	explained	by	the	trial	type	itself,	rather	than	by	the	inter-trial	time.	There	
was	 no	 support	 for	 an	 independent	 contribution	 of	 time	 to	 the	 observed	 difference	
between	RAN	and	DIR	trials.	
	
As	in	previous	experiments,	we	also	examined	serial	dependence	within	a	broader	span	of	
trial	 history.	 Figure	 3d	 presents	 the	 fixed-effects	 coefficient	 estimates	 and	 95%	 credible	
intervals	 for	 the	 association	 between	 StDn-t	 (t=1…10)	 and	 zREn,	 after	 splitting	 the	 dataset	
according	 to	 the	 trial	 type	 at	 each	 position:	 thus,	 the	 influence	 of	 RAN	 and	 DIR	 trials	 is	
modelled	 separately	 by	 20	 Bayesian	 LMMs.	 As	 expected	 from	 the	 previous	 analysis,	 the	
positive	 effect	 related	 to	 StDn-1	 is	 only	 present	when	 those	 trials	 required	 participants	 to	
report	variance;	this	is	also	the	case	for	StDn-2.	As	for	the	negative	effect	appearing	at	longer	
timescales,	 it	 is	 clearly	 present	 in	 RAN	 trials,	 while	 for	 DIR	 trials,	 although	 the	 credible	
intervals	 for	 the	 coefficient	 contain	 zero	 at	 all	 trial	 positions	 (likely	 due	 to	 the	 smaller	
number	of	DIR	trials),	the	negative	effect	seems	to	appear	as	early	as	trial	n-1	(B=-0.0021	(-
0.0051	-	0.0009)),	peak	at	 trial	n-5	 (B=-0.0023	(-0.0052	–	0.0007)	and	decrease	afterward.	
The	appearance	of	a	negative	serial	dependence	regardless	of	the	task	suggests	that	it	may	
be	sensory	in	origin	-	an	adaptation	after-effect.	
	
If	we	ask	why	is	there	a	serial	dependence	effect	at	n-1,	we	should	also	ask	why	there	is	no	
such	 effect	 at	 n-3.	 Thus,	 having	 established	 that	 positive	 serial	 dependence	 arises	 from	
feature-specific	 decision-making,	 we	 investigated	 the	 inverse	 question:	 what	 is	 the	
contribution	of	feature-specific	decision-making	to	the	fading	of	positive	serial	dependence	
for	 trials	 located	 further	 away	 in	 history?	 Is	 this	 decline	 affected	 in	 a	 different	 way	 by	
subsequent	decisions	made	on	the	same,	compared	to	a	different	feature-dimension?	Like	
for	Experiment	2A,	we	considered	all	those	RAN	trials	for	which	trial	n-2	had	also	been	RAN	
type,	 and	 examined	 the	 association	 between	 StDn-2	 and	 current	 report	 in	 relation	 to	 the	
intermediate	 trial	 (n-1)	 task.	 An	 explanatory	 role	 for	 the	 interaction	 term	 StDn-2*trial	 n-1	
response	type	would	 indicate	that	the	 intermediate	trial	 type	 influenced	n-2-related	serial	
dependence.	In	a	Bayesian	two-factor	repeated-measures	ANOVA,	the	best	model	included	
only	 trial	 n-1	 response	 type	 (BF10=41.799),	 suggesting	 that	 there	was	 no	 interaction	with	
StDn-2–related	serial	dependence.		
	
	
	 	
4.	EXPERIMENT	3:	INFLUENCE	OF	CONFIDENCE	IN	SERIAL	DEPENDENCE	
	
Results	of	Experiments	1	and	2	 indicate	 that	positive	 serial	dependence	 in	visual	 variance	
involves	 mid	 to	 high-level	 processes,	 namely	 decision-making	 about	 the	 same	 feature-
dimension.	 In	 light	 of	 this,	 we	 questioned	 how	 confidence	 in	 those	 decisions	 modulates	
serial	 dependence.	 We	 were	 especially	 interested	 in	 the	 modulation	 of	 the	 positive	
(Bayesian-like)	 bias	 exerted	 by	 very	 recent	 trials,	 in	 the	 light	 of	 Bayesian	 accounts	 of	
confidence	as	a	measure	of	the	precision	of	neural	representations	(29).	
	
	
4.1.	METHODS	
	



4.1.1.	Stimuli	
	
Stimulus	 presentation	was	 identical	 to	 Experiment	 1;	 as	 in	 this	 case,	 we	 employed	 again	
foveal	 and	 peripheral	 (20o)	 presentations,	 as	 we	 considered	 that	 the	 interplay	 between	
decision-making,	 confidence	 and	 serial	 dependence	 might	 vary	 at	 different	 degrees	 of	
sensory	precision.		
	
	
4.1.2.	Procedure	
	
Experiment	3,	like	Experiment	1,	had	a	72-trial	practice	block	and	eight	60-trial	experimental	
blocks,	half	of	which	were	‘foveal’	and	half	‘peripheral’.	Eye-tracking	was	performed	in	the	
same	manner	as	in	Experiment	1.				
	
During	the	response	phase	of	each	trial,	two	identical	visual	analogue	scales	were	displayed	
on	 the	 screen:	 the	 upper	 one	 for	 scoring	 ‘randomness’	 (variance)	 and	 the	 lower	 one	 for	
confidence	(see	Figure	1).	The	initial	position	of	each	sliding	bar	was	randomized	separately,	
and	 the	 time	 allowed	 for	 responding	 to	 both	 items	was	 6	 seconds.	 For	 data	 analysis,	we	
obtained	 the	 numerical	 scores	 as	 a	 linear	 translation	 from	 the	 selected	 positions:	 for	
confidence,	the	score	was	expressed	as	a	0	to	1	proportion	of	the	overall	length	of	the	line.	
	
	
4.2.	RESULTS	
	
Twenty-two	 participants	 (17	 female,	 mean	 age	 19.6	 yr.,	 standard	 deviation	 2.42)	
volunteered	for	this	experiment:	all	except	for	three	members	of	the	laboratory	were	first-
year	Psychology	 students.	As	 in	Experiment	1,	 trials	without	 valid	 fixation	during	 stimulus	
presentation	were	 removed	 from	 the	 analysis,	 as	well	 as	 data	 about	 trial	 history	 of	 valid	
trials	involving	any	invalid	trial.	In	total,	8880	trials	were	included	in	the	analyses.	
	
	
4.2.1.	Confidence	reports	correlate	with	the	accuracy	and	precision	of	variance	judgments	
	
Figure	4a	presents	the	distribution	of	confidence	scores	(Cn)	plotted	by	current	stimulus	StD	
(StDn)	and	eccentricity.	For	both	foveal	and	peripheral	trials,	a	trend	towards	decreasing	Cn	
for	larger	StDn	is	observed,	except	for	the	maximal	StD	(60o).	For	each	StD	value,	confidence	
scores	 are	 lower	 in	 the	 periphery.	 To	 test	 these	 observations,	 we	 conducted	 a	 Bayesian	
repeated-measures	ANOVA	on	the	effect	of	StDn	and	eccentricity	(as	within-subject	factors)	
on	 Cn.	 The	 best	 model	 was	 the	 one	 including	 both	 main	 effects	 only	 (BF10=6.657*1026),	
outperforming	 the	 full	 model	 with	 the	 interaction	 term	 StDn*eccentricity	 by	 a	 factor	 of	
BFmain	 effects/full	 =	 9.615.	 This	 indicates	 that,	 despite	 the	 overall	 lower	 confidence	 scores	 in	
peripheral	blocks,	 the	relationship	between	different	stimulus	 levels	and	confidence	 is	the	
same	regardless	of	eccentricity.	
	



	
Fig	4.	Experiment	3.	4a.	Confidence	scores	(Cn)	by	StDn	plotted	separately	by	eccentricity.	4b	–	4c.	Normalized	
relative	error	in	current	response	(zREn)	as	a	function	of	the	StD	presented	in	the	previous	trial	(StDn-1),	plotted	
separately	 by	 confidence	 reported	 in	 the	 current	 (4b)	 or	 previous	 (4c)	 trial.	 Confidence	 scores	 have	 been	
binned	 into	 tertiles	 according	 to	 each	 participant’s	 distribution	 of	 reports.	 The	 error	 bars	 represent	 the	
between-subject	standard	error.	The	plots	in	4b	are	all	ascending	and	roughly	parallel,	indicating	that	current	
confidence	 does	 not	 modulate	 serial	 dependence	 by	 previous	 trial	 StD.	 Conversely,	 when	 considering	
confidence	 reported	 in	 the	 previous	 (n-1)	 trial	 (4c),	 we	 observe	 drastically	 different	 slopes:	while	 the	 high-
confidence	plot	(upper	tertile)	has	a	clear	ascending	slope	indicative	of	a	positive	bias,	the	middle-tertile	plot	is	
only	mildly	positive	and	for	the	lower-tertile	is	slightly	descending,	suggesting	a	negative	bias	away	from	low-
confidence	 n-1	 trials.	 4d.	 Fixed-effects	 coefficient	 estimates	 in	 30	 Bayesian	 LMMs	 with	 StDn-t	 (t=1…10)	 as	
predictor	of	current	response	(zREn),	modelled	separately	by	confidence	reported	in	trial	n-t	(Cn-t),	binned	into	
tertiles.	The	error	bars	represent	the	95%	credible	intervals	for	the	true	value	of	the	coefficient.	As	suggested	
for	trial	n-1	in	figure	4c,	the	size	and	direction	of	the	bias	associated	with	each	trial	position	depends	on	the	
confidence	 reported	 in	 that	position,	 so	 that	 the	bias	will	be	more	negative	 (or	 less	positive),	 the	 lower	 the	
reported	 confidence,	 within	 the	 general	 trend	 of	 an	 increasingly	 negative/less	 positive	 bias	 as	 we	 move	
backwards	in	history.	
	
	
Subsequently	 we	 explored	 whether	 confidence	 reports	 were	 differentially	 shaped	 by	



response	 accuracy	 or	 precision	 –	 and	 considered	 also	 the	 role	 of	 eccentricity.	 Regarding	
accuracy,	we	defined	‘error	size’	as	the	absolute	value	of	the	difference	between	real	and	
reported	StD:	En	=	| StDn  - Rn |. In	a	Bayesian	LMM	with	Cn	as	dependent	variable	and	En,	StDn 

and	their	interaction	as	independent	variables,	Cn	reports	are	inversely	associated	with	error	
size	(B=-0.0083	(95%	credible	interval	-0.0103	-		-0.0062))	and	StDn	(B=	-0.0056	(-0.0071	-		-
0.0040)	 and	 positively	 associated	with	 the	 interaction	 between	 both	 (B=0.0003	 (0.0002	 -	
0.0003)).	 The	 inverse	 association	 between	 error	 size	 and	 Cn	 suggests	 that	 participants’	
reports	 of	 confidence	 are,	 at	 least	 in	 part,	 grounded	 in	 task	 accuracy.	 	 Furthermore,	 the	
positive	 sign	 of	 the	 coefficient	 estimate	 for	 the	 interaction	 term	 En	 *StDn	 suggests	 that	
confidence	tracks	relative,	rather	than	absolute	error:	the	inverse	association	between	error	
size	 (defined	as	an	absolute	value)	and	confidence	 is	weighted	down	for	 large	StD	values.	
When	considering	both	error	size	and	eccentricity,	the	negative	association	with	error	size	
remains	 (Berror=-0.0078	 (-0.0102	 -	 -0.0055)),	 whereas	 foveal	 presentations	 are	 associated	
with	higher	confidence	reports	 independently	of	task	accuracy	(Beccentricity=0.0510	(0.0080	-		
0.0908)).	However	the	interaction	term	does	not	show	evidence	of	a	different	evaluation	of	
increases	 in	 error	 size	 in	 low	 compared	 to	 high	 eccentricities	 (Berror*eccentricity=-0.0013	 (-
0.0040		-		0.0016)).	
	
As	 for	precision,	we	calculated	 the	 standard	deviation	of	each	participant’s	 responses	per	
StD	value	(𝜎!)	as	a	measure	of	response	dispersion.	Subsequently	we	modelled	confidence	
by	 𝜎! ,	 StD	 and	 their	 interaction.	 As	 expected,	 response	 dispersion	 shows	 a	 negative	
correlation	 with	 confidence:	 B=-0.0101	 (95%	 credible	 interval	 -0.0160	 -	 -0.0045).	 When	
adding	eccentricity	to	this	model,	the	main	effect	for	𝜎! 	is	close	in	value	(B=-0.0105	(-0.0162	
-	 -0.0050)),	whereas	 the	 interaction	 term	𝜎! 	 *eccentricity	 (B=-0.0003	 	 (-0.0067	 -	 0.0062))	
suggests	that	the	interaction	between	response	dispersion	and	confidence	is	similar	in	fovea	
and	periphery.	In	summary,	our	results	indicate	that	confidence	‘is’	a	measure	of	response	
precision,	and,	 to	 the	extent	 to	which	the	 latter	can	be	considered	a	proxy	 for	perceptual	
precision,	they	are	in	agreement	with	Bayesian	accounts	of	metacognition	(29).	
	
Interestingly,	 we	 observed	 a	 very	 strong	 serial	 dependence	 for	 confidence	 reports.		
Modelling	reported	confidence	(by	a	Bayesian	LMM)	as	a	function	of	the	report	provided	in	
the	 previous	 trial	 (Cn-1),	 the	 coefficient	 for	 the	 latter	 is	 B=	 0.1874	 (95%	 credible	 interval			
0.1445	 -	0.2307),	with	an	R2=0.3188.	 Importantly,	 if	we	add	 the	error	size	of	 the	previous	
trial	(En-1)	to	the	model,	as	well	as	the	interaction	En-1*	Cn-1,	the	coefficient	estimate	for	Cn-1	
has	 a	 similar	 (even	 larger)	 value:	 B=0.2197	 (0.1698	 –	 0.2720).	 This	 is	 also	 the	 case	when	
StDn-1	is	included	in	the	model,	suggesting	that	the	serial	dependence	in	confidence	scores	is	
not	 only	 due	 to	 accuracy/attention	 fluctuating	 at	 timescales	 of	 several	 trials,	 nor	 to	 the	
direct	 influence	 of	 the	 StD	 in	 the	 previous	 stimulus,	 but	 rather	may	 be	 an	 expression	 of	
response	inertia	and/or	‘confidence	leak’	as	described	in	(51).	
	
	
4.2.2.	Confidence	in	a	past	trial	determines	the	direction	of	serial	dependence	in	variance	
reports	
	
According	to	Bayesian	accounts	of	perceptual	decision-making,	reliance	on	prior	information	
is	greater	when	the	current	sensory	 input	 is	noisy	or	 imprecise,	or	when	the	prior	 itself	 is	
highly	 precise	 (10,	 42,	 52).	 Within	 this	 framework,	 confidence	 is	 often	 regarded	 as	 a	



measure	 of	 the	 precision	 of	 the	 sensory	 signal	 (29),	 a	 consideration	 that	 is	 in	 agreement	
with	our	data.	Thus,	we	hypothesized	that	high	reported	confidence	in	the	current	trial	(Cn)	
would	 decrease	 any	 attractive	 pull	 toward	 previous	 history	 (with	 respect	 to	 variance	
judgments),	 whereas	 confidence	 in	 past	 trials	 (Cn-t)	 would	 have	 the	 opposite	 effect.	 We	
further	reasoned	that	such	effect	of	confidence	in	the	past	trials	would	apply	mostly	to	very	
recent	trials,	whose	information	represents	a	more	important	contribution	when	priors	are	
iteratively	updated.	Indeed,	this	second	hypothesis	is	in	agreement	with	our	observation	of	
a	positive	bias	in	variance	judgments	exerted	only	by	the	most	recent	trials	(see	figure	2c	as	
example).	
	
Figures	4b	and	4c	depict	zREn	as	a	function	of	StDn-1,	plotted	separately	by	current	(4b)	and	
previous	 (4c)	 trial	 confidence.	Confidence	 scores	have	been	binned	 into	 tertiles	on	a	per-
participant	 basis.	 In	 4c,	 all	 three	 plots	 present	 an	 ascending,	 roughly	 parallel	 slope:	 it	
appears	 that	 serial	 dependence	 exerted	 by	 trial	 n-1	 takes	 place	 independently	 of	 the	
confidence	 placed	 in	 the	 current	 judgment,	 contrary	 to	 our	 initial	 hypothesis.	 However,	
when	we	consider	the	influence	of	confidence	in	the	previous	response,	we	do	see	a	striking	
interaction,	 in	 line	 with	 what	 would	 be	 expected	 within	 a	 Bayesian	 framework:	 low-
confidence	n-1	judgments	do	not	exert	any	positive	serial	dependence	–	quite	the	opposite,	
the	plot	has	a	slightly	descending	slope,	pointing	toward	a	negative	bias	in	relation	to	StDn-1.	
This	 slope	 is	 mildly	 ascending	 for	 medium	 confidence	 and	 neatly	 positive	 only	 for	 high-
confidence	past	decisions.		
	
In	order	to	validate	these	observations,	 first	we	performed	a	Bayesian	repeated-measures	
ANOVA	 on	 the	 effect	 of	 StDn-1	 and	 Cn	 (confidence	 score	 in	 the	 current	 trial,	 binned	 into	
tertiles)	on	zREn.	Results	of	a	Bayesian	repeated	measures	ANOVA	are	presented	in	Table	3a.	
The	 best	 model	 contains	 both	 main	 effects	 (StDn-1	 and	 Cn)	 but	 not	 the	 interaction	
(BF10=349.668),	 outperforming	 the	model	 with	 the	 interaction	 term	 by	 a	 factor	 of	 BFmain	

effects/full	=	93.544.	This	provides	‘very	strong’	evidence	against	the	inclusion	of	the	interaction	
term	 and	 indicates	 that	 confidence	 in	 the	 current	 judgment	 does	 not	 modulate	 serial	
dependence	from	the	previous	trial.		
	
Subsequently	 we	 performed	 an	 analogous	 analysis,	 but	 with	 StDn-1	 and	 Cn-1	 (confidence	
score	in	the	previous	trial,	by	tertiles)	as	within-subject	factors.	Table	3b	presents	the	results	
of	this	analysis.	Evidence	is	in	favour	of	the	null	model	by	a	large	margin	(31.25	times	more	
explanatory	than	the	second	best,	which	includes	only	Cn-1).	Nevertheless,	when	considering	
the	term	of	interest	for	our	hypothesis,	namely	the	interaction	StDn-1*Cn-1,	there	is	a	strong	
evidence	in	favour	of	its	inclusion	compared	to	the	model	stripped	of	that	effect	(including	
only	 the	 two	main	 factors):	 BFfull/main	 effects=26.989.	 Still,	 because	 none	 of	 both	 competing	
models	were	superior	to	the	null	model,	this	result	must	be	taken	with	caution.	
	
	
TABLE	3.	Serial	dependence	and	reported	confidence-	Model	comparison		
	
3a.	Current	trial	confidence	

Models		 P(M)		 P(M|data)		 BF	M		 BF	10		 error	%		

Null	model	(incl.	subject)		
	
0.200		

	
0.002		

	
0.010		

	
1.000		

	 		
StDn-1		

	
0.200		

	
0.011		

	
0.043		

	
4.437		

	
0.393		

	



3a.	Current	trial	confidence	

Models		 P(M)		 P(M|data)		 BF	M		 BF	10		 error	%		

Cn	
	
0.200		

	
0.137		

	
0.637		

	
57.150		

	
0.642		

	
StDn-1	+	Cn	

	
0.200		

	
0.841		

	
21.088		

	
349.668		

	
1.213		

	
StDn-1	+	Cn	+	StDn-1 	✻	 	Cn	

	
0.200		

	
0.009		

	
0.036		

	
3.738		

	
5.208		

	
		

	
3b.	Previous	trial	(n-1)	confidence	

Models		 P(M)		 P(M|data)		 BF	M		 BF	10		 error	%		
Null	model	(incl.	subject)		

	
0.200		

	
0.923		

	
47.768		

	
1.000		

	 		
StDn-1	

	
0.200		

	
0.025		

	
0.102		

	
0.027		

	
0.535		

	
Cn-1	

	
0.200		

	
0.030		

	
0.123		

	
0.032		

	
1.097		

	
StDn-1	+	Cn-1	 	 0.200			 8.080e-4			 0.003			 8.757e-4			 1.439			
StDn-1	+	Cn-1	+	StDn-1 	✻	 	Cn-1	 	 0.200			 0.022			 0.089			 0.024			 1.099			

		
Note.	All	models	include	subject.	
	
	
Table	3.		Experiment	3.	Serial	dependence	(associated	with	trial	n-1)	and	confidence	reported	in	current	and	
previous	trial.	Bayesian	repeated-measures	ANOVA	on	zREn,	with	two	within-subject	factors:	StDn-1	and	current	
(3a)	 or	 previous	 (3b)	 trial	 confidence.	 P(M):	 prior	 probability	 of	 each	 model,	 assumed	 to	 be	 equal	 for	 all.	
P(M/data):	posterior	probability	of	 the	model	 (given	 the	data).	BFM:	Bayes	 factor	 for	 the	model.	BF10:	Bayes	
factor	for	the	alternative	hypothesis	(expressed	by	each	model).	
	
	
We	next	asked	the	degree	to	which	confidence	in	trials	located	further	back	in	history,	up	to	
n-10,	influenced	serial	dependence	of	variance	judgements.	We	split	the	dataset	according	
to	the	confidence	scores	reported	in	each	past	position	(Cn-t,	discretized	into	tertiles	within	
each	participant’s	 scores),	and	 ran	 three	Bayesian	LMMs	per	position	 (30	models	 in	 total)	
for	 the	 association	 between	 StDn-t	 and	 zREn	 at	 each	 level	 of	 past	 confidence.	 Figure	 4d	
presents	 the	 B	 coefficient	 estimates	 and	 95%	 credible	 intervals	 for	 each	 trial	 position	 n-t	
(t=1…10).	 A	 marked	 influence	 of	 past	 confidence	 on	 the	 size	 and	 direction	 of	 serial	
dependence	is	observed,	such	that,	when	high	confidence	was	reported	in	very	recent	trials	
(n-1,	n-2),	an	attractive	pull	 toward	recent	StD	values	 is	manifest,	although	this	bias	 fades	
rapidly,	 being	 absent	 by	 trial	 n-3	 and	 thereafter.	Note	 that	 trials	with	 highest	 confidence	
(upper	tertile)	do	not	exert	a	clear,	unambiguous	negative	bias	at	any	point	of	trial	history,	
although	some	traces	seem	to	be	present	from	trial	n-4	onwards.	The	largest	negative	bias	
is	 driven	by	 low-confidence	 trials,	 for	which	 it	 seems	 to	 appear	 as	 recently	 as	 in	 trial	 n-1	
(although	 the	 credible	 intervals	 contain	 zero),	 becomes	unambiguous	at	n-2	and	peaks	at	
trial	 n-4,	 decreasing	 afterwards,	 in	 contrast	with	 the	 slower	 build-up	of	 the	negative	 bias	
seen	 for	 past	 trials	 with	 intermediate	 confidence.	 Thus,	 the	 reversal	 from	 positive	 to	
negative	bias	seen	in	this	and	previous	experiments	seems	related	to	the	rapid	decay	of	the	
positive	bias	of	high-confidence	trials.		As	for	the	negative	effect,	it	seems	to	appear	as	early	
as	whenever	such	competing	(positive)	bias	is	not	manifest,	but	fades	more	slowly	than	the	
former.	Results	were	similar	when	considering	foveal	and	peripheral	blocks	separately.		
	



At	first	glance,	the	early	appearance	of	the	negative	effect	(after	exposure	to	a	single	sub-
second	presentation)	and	its	association	with	low	confidence	could	suggest	that	it	is	at	least	
in	 part	 of	 decisional	 origin,	 rather	 than	 exclusively	 a	 product	 of	 sensory	 adaptation.	
However,	 some	 amount	 of	 negative	 bias	 was	 observed	 in	 relation	with	 past	 DIR	 trials	 in	
Experiment	2B	(trials	in	which	participants	were	not	making	a	decision	on	variance).	Thus,	it	
seems	 more	 likely	 that	 the	 apparent	 relationship	 between	 the	 negative	 effect	 and	
confidence	 is	due	 to	concealment	of	 the	effect	 in	presence	of	 the	positive	bias,	 the	 latter	
being	associated	with	high-confidence	decision-making.			
	
On	average,	response	times	for	variance	reports	in	low,	medium	and	high	confidence	trials	
were	1.59,	1.46	and	1.30	seconds,	respectively	(Bayesian	RM	ANOVA:	BF10=22288,	extreme	
evidence	 for	 the	 alternative	 hypothesis),	 presumably	 related	 to	 subjective	 trial	 difficulty.		
Therefore,	we	sought	to	rule	out	the	possibility	that	the	effect	of	past	confidence	on	serial	
dependence	was	only	related	to	the	difference	in	response	times,	and	consequently	in	inter-
stimulus	 times.	 For	 each	 trial	 position	 up	 to	 n-10,	 we	 performed	 a	 three-way	 Bayesian	
repeated-measures	 ANOVA	 for	 zREn	 (as	 dependent	 variable)	 with	 three	 within-subject	
factors:	StDn-t,	Cn-t	(in	tertiles)	and	timen,n-t	(time	between	stimulus	onset	of	trials	n-t	and	n,	
binned	in	two	levels	with	respect	to	the	median).	In	all	cases,	the	evidence	for	inclusion	of	
the	 interaction	 term	 StDn-t*timen,	 n-t	 was	 ‘extremely’	 low,	 i.e.	 the	 Bayes	 factor	 for	 this	
specific	effect	was	always	below	1/100.	This	suggested	that	time	was	not	confounding	the	
reported	interaction	between	confidence	and	serial	dependence.	
	
	
	
4.2.3.	Time	and	the	additional	confidence	report	might	promote	an	earlier	reversal	toward	
negative	serial	dependence	in	variance	judgments	
	
Experiment	 3	 had	 an	 identical	 design	 to	 Experiment	 1	 except	 for	 the	 requirement	 of	 an	
additional	 report	 (about	 confidence)	 per	 trial.	 Consequently,	 an	 additional	 difference	was	
introduced:	the	inter-trial	time	was	longer	in	Experiment	3	that	in	Experiment	1	(5.06	versus	
3.69	seconds,	Bayesian	independent	samples	t-test:	BF10>6.690*107).	As	previous	work	has	
strongly	 implicated	 time	 between	 successive	 stimuli	 or	 stimuli	 and	 response	 as	 critical	
contributors	 to	 serial	 dependence	 (48-50),	 we	 sought	 to	 take	 advantage	 of	 this	
circumstance	to	enquire	(post-hoc)	about	the	factors	that	drive	the	decrease	and	eventual	
shift	 towards	 negative	 of	 the	 serial	 dependence	 effect	 as	 we	 move	 backwards	 in	 trial	
history.			
	
Figure	5a	presents	the	Bayesian	LMM	coefficients	and	95%	credible	intervals	for	the	effect	
of	 StDn-t	 (t=1…10)	 in	 current	variance	 report	as	 found	 for	Experiments	1	and	3.	While	 the	
positive	 bias	 exerted	 by	 StDn-1	 is	 similar	 in	 magnitude	 in	 both	 experiments	 (B=0.0034	
(0.0017-0.0051)	 in	 Experiment	 1,	 B=0.0030	 (0.0018	 –	 0.0042)	 in	 Experiment	 3),	 such	
attraction	 is	 still	 present	 at	 StDn-2	 in	 Experiment	 1	 (B=0.0014,	 (0.0003	 –	 0.0026)),	 but	 has	
virtually	disappeared	for	Experiment	3	(B=0.0003	(-0.0009	-	0.0015).	Thus,	in	Experiment	3	
the	reversal	 to	negative	bias	occurs	as	early	as	 in	 trial	n-3	and	peaks	at	n-5	 (B=	 -0.0023	(-
0.0036	-	-0.0010)),	with	a	similar	effect	size	as	the	maximum	negative	bias	in	Experiment	1,	
which	is	seen	at	n-8	(B=-0.0021	(-0.0032	-	-0.0010)).	This	earlier	build-up	of	the	negative	bias	
could	be	related	to	the	longer	inter-stimulus	intervals	in	the	present	experiment:	time	might	



drive,	hypothetically,	the	reversal	to	repulsive	serial	effects	and	its	posterior	fading.	Results	
of	 Experiment	 2B	 (concerning	 the	 effect	 of	 DIR	 trials)	 and	 on	 low-confidence	 trials	 in	
Experiment	 3	 seem	 to	 suggest	 that	 the	 negative	 bias	 appears	 as	 early	 as	 whenever	 the	
conditions	 for	 the	 arising	 of	 a	 positive	 bias	 are	 not	met.	 If,	 hypothetically,	 positive	 serial	
dependence	declines	with	time,	the	negative	effect	could	become	evident	in	an	earlier	trial	
in	relation	to	the	longer	inter-stimulus	times	observed	in	the	present	experiment.	Another	
explanation	for	the	earlier	shift	towards	negative	in	Experiment	3	would	be	a	disruption	of	
the	positive	bias	caused	by	 the	additional	 confidence	 report	–	especially	 if	 such	Bayesian-
like	pull	is	caused	by	decision	processes	or	depends	upon	memory	to	some	extent.	
	

	
Fig	 5.	 Comparison	 between	 Experiments	 1	 and	 3.	Both	 experiments	 have	 the	 same	 design	 except	 for	 the	
requirement	of	a	confidence	report	(in	addition	to	a	variance	report)	per	trial	in	Experiment	3.	This	also	makes	
the	 inter-stimulus	 time	 longer,	 on	 average,	 for	 Experiment	 3	 compared	 to	 Experiment	 1.	 5a.	 Fixed-effects	
coefficient	estimates	 in	20	Bayesian	LMMs	with	StDn-t	 (t=1…10)	as	predictor	of	current	response	(zREn),	with	
the	data	of	Experiment	1	and	3	modelled	separately.	The	error	bars	represent	the	95%	credible	 intervals	for	
the	 true	 value	 of	 the	 coefficient.	 The	 shift	 toward	 negative	 coefficient	 estimates	 takes	 place	 at	 earlier	 trial	
positions	in	Experiment	3.	5b.	Fixed-effects	coefficient	estimates	for	the	interaction	terms	StDn-t*timen,n-t	and	
StDn-t*C-reportn-t	 in	 10	 Bayesian	 LMMs	 for	 prediction	 of	 zREn,	 with	 StDn-t,	 timen,n-t,	 C-reportn-t	 and	 all	
interactions	 as	 putative	 predictors.	 The	 variable	 timen,n-t	 reflects	 the	 time	 between	 onsets	 of	 the	 stimuli	 in	
trials	n-t	(t=1…10)	and	n.	C-reportn-t	is	a	binary	factor	indicating	whether	confidence	reports	were	made	in	all	
trials	between	n-t	and	n,	or	in	none,	regardless	of	the	content	of	the	reports	(i.e.	the	amount	of	confidence).	A	
negative	 interaction	 term	 with	 StDn-t	 indicates	 a	 less	 positive/more	 negative	 serial	 dependence	 effect	 in	
relation	 with	 longer	 time	 or	 the	 requirement	 of	 an	 additional	 confidence	 report	 per	 trial.	 While	 credible	
intervals	contain	zero	in	most	instances,	there	is	a	predominance	of	negative	estimates	up	to	n-5,	which	could	
suggest	 a	 causal	 role	 for	 both	 time	 and	 the	 additional	 confidence	 report	 in	 terms	 of	 promoting	 an	 earlier	
reversal	of	the	bias	in	Experiment	3	compared	to	1.	
	
To	 further	 examine	 this	 issue,	 we	 pooled	 all	 valid	 trials	 from	 experiments	 1	 and	 3.	 To	
ascertain	 the	 influence	 of	 an	 additional	 decision	 made	 per	 trial	 beside	 the	 variance	
judgment,	 we	 defined	 a	 binary	 variable,	 named	 C-report,n-t,	 indicating	whether	 or	 not	 all	
intermediate	 trials,	 between	n	 and	n-t,	 had	 a	 confidence	 report	 in	 addition	 to	 a	 variance	
report.	Note	that	the	content	of	the	reports	(i.e.	the	amount	of	confidence)	did	not	affect	
this	 definition.	 When	 participants	 had	 missed	 at	 least	 one	 confidence	 report	 in	 the	
considered	historical	span	of	a	certain	trial,	that	trial	was	excluded	from	the	model,	in	order	
to	make	 the	comparison	unambiguous.	Subsequently	we	built	 ten	Bayesian	LMM	for	 zREn	
(as	dependent	variable)	in	relation	with	three	variables	defined	at	each	considered	point	of	
trial	history,	namely	StDn-t,	timen,	n-t	and	C-report,n-t,	and	all	interactions.	The	fixed-effects	B	
coefficients	of	the	interaction	terms	StDn-t	*	timen,n-t	 	and	StDn-t	*	C-report,n-t	are	plotted	in	



figure	 5b,	 for	 trials	 n-1	 to	 n-10	 as	 predictors	 of	 current	 variance	 judgment.	 A	 negative	
interaction	 coefficient	 would	 indicate	 a	 comparatively	 less	 positive/more	 negative	 serial	
dependence	 effect	 at	 that	 position	 in	 relation	 to	 longer	 time	 or	 the	 extra	 report,	
respectively.	 At	 all	 positions,	 credible	 intervals	 for	 both	 interaction	 terms	 contain	 zero	
(except	for	StDn-t	*	C-report,n-t	at	n-5).	However,	there	is	a	predominance	of	negative	values	
for	both	interaction	terms	within	the	recent	half	of	the	considered	span	of	trial	history,	up	
to	 trial	 n-5.	 Thus,	 although	 results	 are	 inconclusive	 regarding	 the	 causes	 for	 the	different	
patterns	 of	 serial	 dependence	 in	 Experiments	 1	 and	 3,	 the	 ‘mostly-negative’	 interaction	
terms	StDn-t	 *	 timen,n-t	 	 	 and	StDn-t	 *	C-report,n-t	 suggest	 that	both	 time	and	 the	additional	
confidence	 report	 might	 promote	 a	 less	 positive	 /	 more	 negative	 serial	 dependence	 in	
variance	and	thus	contribute	to	the	observed	earlier	reversal	in	the	direction	of	the	bias.	An	
interesting	 possibility	would	 be	 that	 the	 dimension-specific,	 decision-based	 positive	 serial	
dependence	 is	 subject	 to	 memory	 decay	 as	 well	 to	 a	 decision	 capacity	 bottleneck.	 The	
presented	 data	 do	 not	 conclusively	 support	 a	 particular	 interpretation,	 so	 future	
experiments	are	required	to	elucidate	the	relative	contribution	of	time	itself	and	additional	
judgements	in	shaping	the	effects	of	trial	history.		
	
	
	
5.	DISCUSSION	
	
The	 examination	 of	 serial	 dependence	 provides	 a	 valuable	 window	 on	 perceptual	
processing.	In	a	series	of	studies,	we	applied	this	approach	to	visual	statistics	rather	than	to	
individual	perceptual	features:	specifically,	to	variance,	a	basic	trait	in	the	interpretation	of	
noisy	information	about	complex	visual	scenes.	We	found	evidence	for	two	opposite	serial	
dependence	 effects	 operating	 on	 different	 timescales:	 an	 attractive	 (positive)	 bias	
associated	with	very	recent	variance	presentations,	which	is	exerted	only	when	a	judgment	
about	 that	 dimension	 was	 made	 in	 the	 most	 recent	 1-2	 trials	 and	 high	 confidence	 was	
placed	 in	 that	 decision,	 and	 a	 repulsive	 (negative)	 bias	which	 appears	 even	 for	 the	most	
recent	trial	history	for	low-confidence	variance	presentations,	but	which	generally	becomes	
manifest	several	trials	into	history	and	remains	constant	for	up	to	ten	trials.		
	
Several	studies	on	serial	dependence	have	found	a	positive	(attractive)	bias	towards	recent	
perceptual	history,	which	is	modulated	by	attention,	enhanced	by	spatial	proximity	yet	not	
specific	to	retinal	location,	takes	place	in	the	fovea	as	well	as	the	periphery,	and	fades	after	
5-15	seconds	but	does	not	require	explicit	memory	(39).	While	control	experiments	support	
that	 this	 effect	 does	 not	 require	 a	 motor	 response,	 there	 is	 an	 ongoing	 debate	 about	
whether	 its	basis	 is	perceptual	or	post-perceptual:	 the	results	of	a	 two-alternative	 forced-
choice	 discrimination	 task	 (39)	 (with	 a	 sample	 size	 of	 three	 participants),	 a	 recent	
behavioural	 study	 (53)	 and	 a	 V1-based	 fMRI	 study	 (43)	 have	 been	 used	 in	 support	 of	 a	
perceptual	 origin,	 while	 another	 study	 employing	 a	 combination	 of	 appearance	 and	
performance	tasks	has	made	the	case	for	a	post-perceptual	(decisional)	source	(48).	All	four	
studies	examining	the	mechanistic	basis	of	serial	dependence	have	used	a	low-level	feature	
like	 orientation;	 nevertheless,	 serial	 dependence	 has	 also	 been	 described	 for	 high-level	
features,	including	facial	appearance	(40,	41),	relative	timing	(54)	and	numerosity	(42).	
	



In	our	experiments	on	visual	variance	(a	high-order	visual	statistic),	we	found	a	positive	bias	
that	 shares	 many	 of	 the	 characteristics	 listed	 above,	 but	 differs	 in	 others:	 In	 terms	 of	
similarities,	it	operates	on	a	similar	timescale	(temporal	tuning	seems	to	be	slightly	shorter	
for	high-level	domains,	as	shown	in	a	study	with	face	perception	(40)	and	also	in	our	data),	
occurs	similarly	across	presentation	eccentricities,	and	is	not	related	to	response	execution.	
It	also	exhibits	other	characteristics	that	suggest	that,	for	visual	variance,	the	bias	depends	
on	 decisional	 rather	 than	 perceptual	 processes.	 First,	 it	 is	 entirely	 independent	 of	 retinal	
location,	 appearing	 with	 similar	 magnitude	 for	 successive	 stimuli	 displayed	 at	 the	 same	
position	or	at	an	angular	distance	of	40o	–	as	shown	in	the	peripheral	trials	in	Experiment	1.	
Second,	 it	 is	 independent	 of	 a	 closely	 related	 statistical	 property	 -	 the	 mean	 direction	
(previous	 studies	 have	 highlighted	 a	 strong	 relationship	 between	 mean	 and	 variance,	
showing	 that	 variance	 plays	 an	 important	 role	 in	 the	 accuracy	 and	 confidence	 of	 mean	
judgments)(22,	 26).	 Together,	 these	 properties	 make	 a	 low-level,	 perceptual	 origin	 very	
unlikely.	Note	 that	priming	of	mean	 judgments	by	 visual	 variance,	 as	described	 in	 (32),	 is	
also	independent	of	the	similarity	of	means	and	retinal	location.	
	
The	 most	 compelling	 argument	 in	 favour	 of	 a	 decisional	 origin	 for	 the	 positive	 serial	
dependence	 in	 our	 results	 is	 that,	 in	 a	 task-switching	 design,	 the	 bias	 disappears	 entirely	
when	 participants	 are	 engaged	 in	 a	 decision	 about	 a	 different	 feature-dimension	 than	
variance.	 This	 is	 shown	 in	 our	 Experiment	 2B	 where	 participants	 make	 decisions	 about	
either	 the	 variance	 or	 the	mean	 direction	 of	 the	 RDK	 stimuli.	 This	 is	 particularly	 notable,	
since	 mean	 judgments	 are	 strongly	 dependent	 on	 ensemble	 variance	 (22,	 26),	 and	 the	
stimulus	is	identical	for	both	tasks.	Even	so,	the	possibility	remains	that	the	absence	of	serial	
dependence	 in	 this	 alternative	 task	 may	 be	 related	 to	 a	 withdrawal	 of	 feature-specific	
attention	 (withdrawal	 of	 attending	 to	 the	 feature	of	 variance),	 since	 serial	 dependence	 is	
enhanced	 by	 attention	 (39).	 Characterising	 the	 precise	 effect	 of	 attention	 on	 serial	
dependence	of	variance	judgements,	and	its	 interaction	with	task,	remains	an	opportunity	
for	future	studies.	
	
From	a	predictive	perception	perspective,	the	fact	that	only	high-confidence	trials	drive	the	
positive	serial	dependence	may	be	considered	supportive	of	both	perceptual	and	decisional	
origin,	as	a	more	precise	prior	would	give	rise	to	a	stronger	reliance	on	sensory/decisional	
history	(29).	However,	an	interpretation	based	on	sensory	precision	might	also	predict	two	
associations	that	are	not	 found	 in	our	data:	and	 i)	an	 inverse	association	of	positive	serial	
dependence	with	 current-trial	 confidence,	 and	 ii)	 an	 inverse	 association	with	 eccentricity,	
given	 lower	 sensory	 precision	 in	 the	 peripheral	 field.	 Rather,	 our	 experiments	 strongly	
support	a	lack	of	association	of	serial	dependence	with	these	two	factors.	In	broader	terms,	
serial	dependence	in	variance	judgments	could	be	regarded	as	part	of	a	generic	strategy	of	
mirroring	 or	 transferring	 trusted	 decisions.	 This	 explanation	 could	 also	 encompass	 the	
negative	 serial	 dependence	 associated	 with	 low	 confidence	 (as	 a	 repulsion	 away	 from	
judgments	deemed	unreliable);	 however,	 the	different	 timescales	over	which	 the	positive	
and	 negative	 biases	 operate	 suggest	 that	 they	 are	 independent	mechanisms	 rather	 than	
two	aspects	of	a	confidence-based	strategy	(55).	
	
Finally,	 several	 pieces	 of	 evidence	 in	 our	 experiments	 suggest	 that	 the	 positive	 serial	
dependence	is	disrupted	by	additional	decision-making,	regardless	of	the	domain	on	which	
the	 subsequent	decisions	operate	 (variance,	mean,	 confidence).	 In	other	words:	 in	all	our	



experiments,	 the	 attractive	 effect	 of	 StDn-2	 stimulus	 on	 the	 current	 response	 (which	 only	
arises	 when	 a	 high-confidence	 judgment	 about	 variance	 was	 made	 in	 trial	 n-2)	 is	 much	
weaker,	on	average,	than	that	of	the	StDn-1.	When	enquiring	about	the	factors	(interposed	
between	StDn-2	and	the	current	response)	that	might	explain	this	decline,	we	failed	to	find	
any	difference	based	on	the	type	of	decision	that	had	been	made	in	the	following	trial	(n-1):	
in	 Experiment	 2B,	 the	magnitude	 of	 the	 effect	 of	 StDn-2	 (when	 a	 variance	 judgment	 was	
made	at	that	point)	did	not	appear	to	depend	upon	whether	a	decision	in	trial	n-1	was	made	
about	 the	 variance	 or	 the	 mean	 of	 the	 stimulus.	 However,	 if	 the	 number	 of	 interposing	
decisions	was	increased,	and	an	additional	decision	(about	confidence)	was	required	in	trial	
n-1	(in	addition	to	the	decision	about	variance),	 the	positive	effect	of	trial	n-2	was	greatly	
diminished.	 This	 apparent	 relationship	 with	 quantity,	 but	 not	 quality	 of	 subsequent	
decisions	 (made	 after	 the	 one	 that	 exerts	 the	 bias	 and	 before	 the	 one	 that	 is	 biased)	
suggests	that	serial	dependence	may	be	limited	by	an	amodal	decision-capacity	bottleneck.	
The	apparent	fading	of	the	effect	with	time	also	points	to	some	sort	of	memory	limitation.	
Note,	however,	that	these	considerations	arise	from	post-hoc	analyses	which	revealed	only	
suggestive	 trends,	 although	 the	 evidence	 was	 not	 conclusive	 in	 any	 case.	 The	 factors	
contributing	to	the	disruption	or	fading	of	positive	serial	dependence	in	relation	with	more	
remote	presentations	are	deserving	of	further	research.	
	
In	 summary,	 it	 is	 likely	 that	 variance-related	positive	 serial	 dependence	 is	 driven	by	high-
level	perceptual	decision-making	processes.	 In	 this	 respect,	our	 findings	are	 in	agreement	
with	 Fritsche	 et	 al	 (48),	 who	 assert	 the	 same	 for	 orientation	 judgments.	 These	 authors	
propose	 that	 working	 memory	 representations	 are	 biased	 toward	 previous	 (dimension-
specific	 and	 task-specific)	decisions,	 a	hypothesis	 that	 is	 supported	by	 the	potentiation	of	
the	bias	when	several	seconds	are	allowed	between	stimulus	offset	and	response.	A	recent	
study	 by	 Bliss	 and	 colleagues	 (49)	 provides	 converging	 evidence,	 reporting	 that	 serial	
dependence	is	absent	at	the	moment	of	perception	but	increases	in	visual	working	memory,	
reaching	 a	 maximum	 when	 a	 6-second	 delay	 between	 stimulus	 offset	 and	 response	 is	
placed.	Interestingly,	in	2005	Kanai	and	colleagues	also	found	a	decision-based	positive	bias	
on	 the	 reported	 direction	 of	 ambiguous	 motion,	 appearing	 only	 when	 the	 stimulus	 was	
presented	 several	 seconds	 after	 the	 adaptor;	 they	 called	 this	 effect	 ‘perceptual	
sensitization’	 (50).	 In	our	study,	participants	could	respond	 immediately	after	the	stimulus	
offset,	but,	due	to	the	relatively	long	duration	of	stimulus	presentation	(500	ms)	it	is	likely	
that	 they	 made	 an	 initial	 decision	 before	 that	 time,	 as	 suggested	 by	 the	 results	 of	
Experiment	2	in	this	study,	wherein	the	bias	exerted	by	the	previous	trial	was	unaffected	if	a	
response	had	not	been	required	(Experiment	2A),	but	disrupted	if	a	different	decision	had	
been	 indicated	 by	 a	 pre-cue	 (Experiment	 2B).	 Thus,	 it	 is	 likely	 that,	 at	 the	 moment	 of	
response,	the	representational	content	produced	for	the	current	decision	had	been	already	
distorted	 by	 the	 memory	 of	 previous	 decisions.	 More	 broadly,	 our	 results	 suggest	 that	
memory	representations	of	not	only	the	current,	but	also	previous	perceptual	decisions	may	
be	subject	to	similar	limitations	related	to	time	and	informational	capacity.	
	
Our	 conclusion	 of	 a	 high-level	 mechanism	 of	 variance	 processing	 is	 also	 in	 line	 with	 the	
conclusions	 of	 Payzan-Le	Nestour	 et	 al	 (2016)	 regarding	 variance-driven	 adaptation	 after-
effects,	which	suggest	that	variance	is	an	abstract	property	that	works	independently	from	
its	 sensory	 origin	 and	 generalizes	 across	 domains	 (34).	 Michael	 and	 colleagues	 (32)	 also	
propose	 variance	 as	 an	 independent	 property	 from	 ensemble	 average,	 but	 suggest	 that,	



regarding	 priming,	 it	 operates	 through	 feature-specific	 channels.	 In	 our	 experiments	 we	
used	a	single	formalization	of	variance	–	dispersion	of	a	dot-motion	cloud	-	so	the	degree	to	
which	 our	 results	 will	 generalise	 to	 other	 variance-related	 serial	 dependencies	 requires	
further	investigation.	
	
What	 are	 the	 perceptual/neural	 mechanisms	 underlying	 the	 observed	 positive	 serial	
dependence?	 Although	 this	 is	 still	 uncertain,	 previous	 works	 have	 proposed	 exposure-
related	 gain	 changes	 or	 shifts	 in	 the	 neural	 tuning	 (39)).	 Furthermore,	 its	 behaviour	
resembles	 that	 implied	 by	 Bayesian	 frameworks	 of	 information	 processing,	 in	 which	
judgments	 about	 a	 certain	 dimension	 are	 attracted	 towards	 prior	 information.	 Several	
studies	have	recognised	that	the	observed	systematic	errors	in	magnitude	estimation	tasks,	
across	 diverse	 dimensions	 can	 be	well	 accounted	 for	 by	 assuming	 an	 iteratively	 updated	
prior,	 in	which	recent	 information	is	given	more	weight	compared	to	the	overall	statistical	
properties	of	the	environment	(42,	52,	56,	57).	Variance-related	positive	serial	dependence	
indeed	shares	many	characteristics	with	recursive	Bayesian	dynamics,	including	the	greater	
weight	of	more	recent	 information	and	the	association	with	high	confidence	 in	past	trials.		
Positive	 serial	 dependence	 is	 probably	Bayesian-like	 in	many	aspects,	 but	 there	 are	 some	
nuances	to	perceptual	decision-making	that	demand	further	investigation.	
	
The	 basis	 of	 the	 longer-lasting	 negative	 bias	 is	 less	 conclusive,	 but	 may	 be	 related	 to	
adaptation	 after-effects,	 like	 the	 variance	 adaptation	 described	 in	 (34).	 The	 fact	 that	 the	
negative	 effect	 is	 observed	 in	 relation	 with	 individual	 presentations	 lasting	 only	 500	ms,	
appears	as	early	as	for	the	following	trial,	and	remains	even	for	trial	n-9	could	seem	unusual	
for	 a	 ‘sensory’	 after-effect.	 However,	 negative	 after-effects	 in	 response	 to	 sub-second	
stimuli	 have	 been	 described	 previously	 ((50),	 (48)),	 and	 in	 (48)	 it	 also	 lasts	 for	 several	
seconds.	 In	(48),	the	authors	propose	that	 it	 is	not	the	stimulus	itself,	but	a	memory	trace	
that	 causes	 the	 negative	 after-effect	 on	 orientation.	 It	 is	 likely	 that	 the	 observed	
relationship	 between	 the	 current	 trial	 and	 a	 specific	 trial	 in	 history	 (e.g.	 n-5)	 is	 actually	
driven	by	a	broader,	averaged	contextual	 representation	and	not	by	 the	 individual	 stimuli	
several	 trials	 removed	 from	 the	 present.	 In	 our	 case,	 as	 we	 dealt	 with	 a	 more	 abstract	
dimension,	 we	 might	 not	 consider	 this	 high-level	 after-effect	 strictly	 sensory	 in	 the	 first	
place	(58).	As	stated	in	the	previous	section,	some	aspects	of	this	negative	bias	could	point	
to	a	decisional	component,	including	its	independence	of	retinal	location,	predominance	in	
low-confidence	trials	and	seemingly	smaller	size	when	a	different	decision	was	required	in	
the	past	(DIR	trials	in	Experiment	2B	–	note	however	that	the	interaction	with	trial	type	was	
not	significant).	 In	any	case,	the	line	between	perceptual	and	post-perceptual	after-effects	
may	be	blurred	concerning	statistical	properties	(34,	58).	
	
Some	 previous	 studies	 on	 different	 features,	 both	 low-level	 (namely	 motion	 (50)	 and	
orientation	 (48))	 as	 well	 as	 high-level	 (such	 as	 face	 attributes	 (59))	 have	 reported	
concomitant	positive	and	negative	biases	exerted	by	the	same	stimulus.	In	Kanai	et	al	(50),	a	
negative	 rapid	motion	 after-effect	 of	 sensory	 origin	 (rMAE)	 was	 elicited	 by	 a	 short,	 sub-
second	 sine-wave	 luminance	 grating	 presented	 immediately	 before.	 However,	 when	 the	
inter-stimulus	 interval	 (ISI)	 was	 long	 enough	 (>3	 seconds),	 a	 positive	 bias	 was	 elicited	
instead,	 in	response	to	the	percept	and	not	the	 low-level	sensory	signal	(as	proven	by	the	
use	of	ambiguous	motion	adaptors).	In	Fritsche	et	al	(45),	opposite	effects	of	recent	history	
on	orientation	judgments	were	exerted	by	perception	(negative	bias)	and	decision	(positive	



serial	dependence),	very	much	 in	 line	with	our	 findings.	The	authors	propose	that	each	of	
these	 effects	 has	 a	 different	 biological	 function,	 namely	 increasing	 sensitivity	 to	 changes	
within	the	current	sensory	context	and	promoting	perceptual	stability.	Taubert	et	al	suggest	
the	 same	 duality	 in	 their	 study	 of	 serial	 dependences	 in	 face	 attributes	 (59),	 although	 in	
their	 case	 positive	 and	 negative	 biases	 are	 exerted	 concomitantly	 by	 different	 high-level	
features	of	the	same	visual	stimulus	(faces):	stable	traits	such	as	gender	would	be	subject	to	
positive	biases	 in	order	 to	 smooth	away	noise,	whereas	negative	after-effects	maximizing	
sensitivity	would	predominate	in	changeable	attributes	such	as	facial	expresion.	
	
In	summary,	our	study	on	visual	variance	reveals	two	opposite	inter-trial	dependences	that	
operate	 at	 different	 timescales	 and	 which	 likely	 arise	 at	 different	 levels	 of	 perceptual	
decision-making:	 a	 positive	 serial	 dependence	 in	 relation	 to	 high-confidence,	 dimension-
specific	 decisions,	 and	 a	 longer	 lasting	 negative	 bias	 of	 likely	 sensory	 origin.	 Further	
investigations	 are	 needed	 to	 elucidate	 the	 precise	 mechanistic	 basis	 of	 variance-related	
serial	dependence,	whether	it	generalizes	to	other	instances	of	variance,	its	relationship	to	
other	instances	of	serial	dependence	and	the	extent	to	which	its	properties	can	be	modelled	
within	an	iterative	Bayesian	framework.		
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