
Meta Reinforcement Learning with
Latent Variable Gaussian Processes

Steindór Sæmundsson
Department of Computing
Imperial College London

United Kingdom

Katja Hofmann
Microsoft Research

Cambridge
United Kingdom

Marc Peter Deisenroth
Department of Computing
Imperial College London

United Kingdom

Abstract

Learning from small data sets is critical in
many practical applications where data col-
lection is time consuming or expensive, e.g.,
robotics, animal experiments or drug design.
Meta learning is one way to increase the data
efficiency of learning algorithms by general-
izing learned concepts from a set of training
tasks to unseen, but related, tasks. Often, this
relationship between tasks is hard coded or re-
lies in some other way on human expertise.
In this paper, we frame meta learning as a hi-
erarchical latent variable model and infer the
relationship between tasks automatically from
data. We apply our framework in a model-
based reinforcement learning setting and show
that our meta-learning model effectively gen-
eralizes to novel tasks by identifying how new
tasks relate to prior ones from minimal data.
This results in up to a 60% reduction in the
average interaction time needed to solve tasks
compared to strong baselines.

1 INTRODUCTION

Reinforcement learning (RL) is a principled mathemati-
cal framework for learning optimal controllers from trial
and error [28]. However, RL traditionally suffers from
data inefficiency, i.e., many trials are needed to learn
to solve a specific task. This can be a problem when
learners operate in real-world environments where exper-
iments can be time consuming (e.g., where experiments
cannot run faster than real time) or expensive. For exam-
ple, in a robot learning setting, it is impractical to con-
duct hundreds of thousands of experiments with a single
robot because we will have to wait for a long time and
the wear and tear on the hardware can cause damage.

There are various ways to address data-efficiency in RL.
Model-based RL, where predictive models of the transi-
tion function are learned from data, can be used to reduce
the number of experiments in the real world. The learned
model serves as an emulator of the real world. A chal-
lenge with these learned models is the problem of model
errors: If we learn a policy based on an incorrect model,
the policy is unlikely to succeed on the real task. To miti-
gate the issue of these model errors it is recommended to
use probabilistic models and to take model uncertainty
explicitly into account during planning [27, 10]. This
approach has been applied successfully to simulated and
real-world RL problems [9], where a policy-search ap-
proach was used to learn optimal policy parameters. Ro-
bustness to model errors and, thereby, increased data ef-
ficiency, can be achieved by using model predictive con-
trol (MPC) instead of policy search since MPC allows
for online updates of the model, whereas policy search
would update the model only after a trial [17].

If we are interested in solving a set of related tasks we
can use meta learning as an orthogonal approach to in-
crease data efficiency. Generally, the aim of meta learn-
ing is to train a model on a set of training tasks and
then generalize to new tasks using minimal additional
data [12]. The strength of meta learning is to transfer
learned knowledge to related situations. For example,
we may want to control multiple robot arms with slightly
different specifications (e.g., link weights or lengths) or
different operating environments (e.g., underwater, in
low gravity). Normally, learned controllers deal with a
single task. In a robotics context, solutions for multiple
related tasks are often desired, e.g., for grasping multiple
objects [22] or in robot games, such as robot table ten-
nis [24] or soccer [3]. Much of the literature on meta and
transfer learning in RL has focused on multi-task learn-
ing, i.e., cases where the system/robot is the same, but the
task changes [16, 29, 3, 5, 20, 21, 24, 8, 12]. Although
meta learning given multiple or non-stationary dynamics
has also been considered in [11, 18, 4, 1].

We adopt a meta learning [26, 32, 12] perspective on the
problem of using knowledge from prior tasks for more
efficient learning of new ones. We take a probabilistic
view and propose to transfer knowledge within a model-
based RL setting using a latent variable model. We focus
on settings where system specifications differ, but where
the task objective is identical. We treat system specifi-
cations as a latent variable, and infer these unobserved
factors and their effects online. To address the issue of
meta learning within the context of data-efficient RL, we
propose to learn predictive dynamics models conditioned
on the latent variable and to learn controllers using these
models. We use Gaussian processes (GPs) [25] to model
the dynamics, and MPC for policy learning. To obtain a
posterior distribution on the latent variable, we use vari-
ational inference. The posterior can be updated online as
we observe more and more data, e.g., during the execu-
tion of a control strategy. Hence, we systematically com-
bine three orthogonal ideas (probabilistic models, MPC,
meta learning) for increased data efficiency in settings
where we need to solve different, but related tasks.

2 MODEL-BASED RL

We consider stochastic systems of the form

xt+1 = f(xt, ct) + ε (1)

with state variables x ∈ RD, control signals c ∈ RK

and i.i.d. system noise ε ∼ N (0,E), where E =
diag(σ2

1 , . . . , σ
2
D). For model-based RL we first aim to

learn the unknown transition function f . In this context,
[27, 10] highlighted that probabilistic models of f are
essential for data-efficient learning as they mitigate the
effect of model errors. Therefore, we learn the dynamics
of the system using a GP.

GP Dynamics A GP is a probabilistic, non-parametric
model and can be interpreted as a distribution over func-
tions. A GP is defined as an infinite collection of random
variables {f1, f2, . . . }, any finite number of which are
jointly Gaussian distributed [25]. A GP is fully specified
by a mean function m and a covariance function (ker-
nel) k, which allows us to encode high-level structural
assumptions on the underlying function such as smooth-
ness or periodicity. We denote an unknown function f
that is modeled by a GP by f ∼ GP (m(·), k(·, ·)). We
use the squared exponential (RBF) covariance function

k(xi,xj)=σ
2
f exp

(
− 1

2 (xi − xj)
TL−1(xi − xj)

)
(2)

where σ2
f is the signal variance and L is a diagonal ma-

trix of squared length-scales.

RL with MPC Our objective is to find a sequence of
optimal controls c∗0, . . . , c

∗
H−1 that minimizes the ex-

pected finite-horizon cost

J = E
[∑H

t=1
`(xt)

]
, (3)

where xt is the state of the system at time t and ` is
a known immediate/instantaneous cost function that en-
codes the task objective. We consider an episodic setting.
Initial states x0 are sampled from p(x0) = N (µ0,Σ0).

To find the optimal open-loop sequence c∗0, . . . , c
∗
H−1,

we compute the expected long-term cost J in (3) using
Gaussian approximations p(x1), . . . , p(xH) for a given
control sequence c0, . . . , cH−1. The computation of the
expected long-term cost is detailed in the supplementary
material. Then, we find an open-loop control sequence
that minimizes the expected long-term cost and apply
the first control signal c∗0 to the system, which transi-
tions into the next state. Next we re-plan, i.e., we deter-
mine the next open-loop control sequence c∗0, . . . , c

∗
H−1

from the new state. This iterative MPC approach turns an
open-loop controller into a closed-loop controller. Com-
bining MPC with learned GP models for the underlying
dynamics increases the robustness to model errors and
has shown improved data efficiency in RL [17].

3 MODEL-BASED META RL

We assume a setting with a potentially infinite number
of dynamical systems that are of the same type but with
different specifications (e.g., multiple robotic arms with
links of differing lengths and weight). More formally,
we assume a distribution over dynamical systems with
samples fp ∼ p(f) indexed by p = 1..P . Each sam-
ple fp is a dynamical system of the form (1) with states
x ∈ RD and control signals c ∈ RK . Instead of learning
individual predictive models for each dynamical system
from scratch, we look to meta learning as an approach to
learning new dynamics more data efficiently by leverag-
ing shared structure in the dynamics.

Meta Learning Generally, meta learning aims to learn
new tasks with minimal data and/or computation using
knowledge or inductive biases learned from prior tasks
[12]. Here we require our model to accomplish two
things simultaneously:

1. Multi-Task Learning: Disentangle global and
task-specific properties of the different dynamics
such that it can solve multiple tasks.

2. Transfer Learning: Use global properties to gen-
eralize predictive performance to novel dynamics.

We propose to address this meta-learning challenge in
a probabilistic way: We model the distribution over sys-
tems using a latent embeddingh and model the dynamics
using a global function conditioned on the latent embed-
ding. Each sample fp from the distribution is modeled
as

xt+1 = f(xt, ct,hp) + ε , (4)

such that the successor state depends on the latent sys-
tem specification hp. This means, we explicitly model
the global properties through a shared function f and the
task-specific variation using a distribution over the latent
variables p(hp). Framing the meta learning problem as
a hierarchical Bayesian model means that meta-training
becomes inference in a meta-learning model.

Training and Evaluation Training corresponds only
to the multi-task learning aspect of our meta learning ap-
proach. We aim to learn the global function f and the
latent embeddings hp given trajectory observations from
a set of training systems. For evaluation at test time, we
use inference to obtain a distribution over a set of latent
variables h∗ for each test system. Since our objective
is to improve data efficiency in an RL setting, we con-
sider two related but distinct measures of performance.
One corresponds to the transfer learning aspect of our
approach, where we infer only the latent test embeddings
without updating the global model f . We refer to this as
the single-shot performance. The other measure we use
is the additional data required to successfully solve a RL
task: few-shot learning. In this case, the global model f
is updated with new additional data, thus combining both
the multi-task and transfer learning aspects.

The meta RL procedures for training and testing are de-
tailed in algorithms 1 and 2, respectively.

3.1 META-LEARNING MODEL

Our meta-learning model is a GP prior on the unknown
transition function in (4) with a concatenated state x̃t =
(xt, ct,hp) ∈ RD+K+Q as the input to the model. We
define yt = xt+1 − xt as the targets of the GP and take
the mean function to be m(x̃t) = 0, which encodes that
a priori the state does not change [9]. Each dimension of
the targets y is modeled by an independent GP. We use a
Gaussian likelihood

p(yt|x̃t,f(·),θ) = N (yt|f(x̃t),E), (5)

where θ = {E,L, σ2
f , Q} are the model hyper-

parameters and f(·) =
(
f1(·), . . . , fD(·)

)
denotes a

multi-dimensional function. We place a standard-normal
prior hp ∼ N (0, I) on the latent variables hp. The full

Initialize dataset D and model M
. Initial random rollouts

forall training tasks do
execute random policy
add observations to D

end
. Meta training

while training tasks not solved do
—update—: train M and infer h given D
forall unsolved training tasks do

for each step in horizon do
—plan—: get control sequence using (3)
—execute—: execute first control in

sequence
end
add observations to D
check if task solved

end
end
Algorithm 1: Model-based Meta RL with MPC (Train)

specification of the model is

p(Y ,H,f(·)|X,C) (6)

=
∏P

p=1
p(hp)

∏Tp

t=1
p(yt|xt, ct, hp,f(·))p(f(·))

where we denote a collection of vectors in bold upper-
case and we have dropped dependence on the hyper-
parameters for notation purposes. The corresponding
graphical model is given in Fig. 1. The figure shows
the dependence of individual system observations on the
global GPs f(·) modeling each dimension of the out-
puts, the system-specific latent embeddings hp and the
observed states and controls.

Model Properties Our meta-learning GP (ML-GP)
model exhibits three important properties:

1. The latent variable encodes a distribution over plau-
sible systems and is inferred from data

2. Conditioning the GP on the latent variable enables
it to disentangle global and task specific variation
in the dynamics. Generalization to new dynamics is
done by inferring the latent variable of that system.

3. The latent variable is fixed within system trajecto-
ries so that inference can be performed online (e.g.
while executing a controller).

Fig. 2 illustrates these properties on a toy example.

Given dataset D and model M from training
. Single shot performance

forall test tasks do
for each step in horizon do

—plan—: get control sequence using (3)
—execute—: execute first control in sequence
—inference—: infer the value of h∗ given

observations so far
end
add observations to D
check if task solved

end
. Meta test

while test tasks not solved do
—update—: train M and infer h given D
forall unsolved test tasks do

for each step in horizon do
—plan—: get control sequence using (3)
—execute—: execute first control in

sequence
end
add observations to D
check if task solved

end
end
Algorithm 2: Model-based Meta RL with MPC (Test)

3.2 INFERENCE

To learn the dynamics model we seek to optimize the
hyperparameters θ w.r.t. the log-marginal likelihood,
which involves marginalization of the latent variables
in (6). For predictions of the evolution of a system we
also need to infer the posterior GP and the posterior dis-
tribution of the latent variables H = (h1, ...,hP). We
approach this problem with approximate variational in-
ference. We posit a variational distribution that assumes
independence between the latent functions of the GP and
the latent task variables

Q(f(·),H) = q(f(·))q(H) (7)

and minimize the Kullback-Leibler divergence between
the approximate and true posterior distributions. Equiv-
alently we can maximize the evidence lower bound

L = EQ(f(·),H)

[
log

p(Y ,H,f(·)|X,C)

Q(f(·),H)

]
, (8)

which lower-bounds the log-marginal likelihood [15].
We parameterize our variational distribution such that we
can compute the lower bound in (8). We then jointly op-
timize L with respect to the model hyperparameters and
the variational parameters.

Sparse Gaussian Processes It is important to account
for the fact that training a GP on a joint data set of

yt

∞
f(·)

xt

ut

hp

t = 1, . . . , Tp

p = 1, . . . , P

Figure 1: Graphical model for our ML-GP model.

x

f
(x

)

Train pred.

Test pred.

True f(x)

Train data

Test data

Figure 2: The figure shows six unknown tasks (toy exam-
ples) with a shared structure (the same function) and task
specific variation (fixed offset). The ML-GP model is
able to disentangle the two automatically given the train-
ing data (black discs) as demonstrated by the training
prediction curves. It also infers a reasonable value for
the offset given a single observations from unseen test
tasks (orange discs) and can use the global structure to
generalize predictive performance on those tasks.

P different systems quickly becomes infeasible due to
the O(T 3) computational complexity for training and
O(T 2) for predictions where T is the total number of
observations. To address this we turn to the variational
sparse GP approximation [30] and approximate the pos-
terior GP with a variational distribution q(f(·)) that de-
pends on a small set of M � T inducing points. We in-
troduce a set ofM inducing inputsZ = (z1, . . . ,zM) ∈
RM×(D+K+Q), which live in the same space as x̃, with
corresponding GP function valuesU = (u1, . . . ,uM) ∈
RM×D. We follow [14] and specify the variational ap-
proximation as a combination of the conditional GP prior
and a variational distribution over the inducing function
values, independent across output dimensions

q(fd(·)) =
∫
p(fd(·)|ud)q(ud)dud. (9)

where q(ud) = N (ud|md,Sd) is a full rank Gaussian.
The integral in (9) can be computed in closed form since
both terms are Gaussian, resulting in a GP with mean and

covariance functions given by

mq(·) = kTZ(·)K
−1
ZZm

d (10)

kq(·, ·) = k(·, ·)− kTZ(·)K
−1
ZZ(KZZ − Sd)K−1ZZkZ(·)

(11)

where [kZ(·)]i = k(·, zi) and [KZZ]ij = k(zi, zj).
Here, the variational approach has two main benefits:
a) it reduces the complexity of training to O(TM2) and
predictions to O(TM), b) it enables mini-batch training
for further improvement in computational efficiency.

Latent Variables For the latent variables H we as-
sume a Gaussian variational posterior

q(H) =
∏P

p=1
N (hp|np,T p) (12)

where T p is in general a full rank covariance matrix. We
use a diagonal covariance in practice for more efficient
computation of the ELBO (8).

Evidence Lower Bound (ELBO) The ELBO can be
shown to decompose into (see supplementary material)

L =
∑P

p=1

∑T

t=1
Eq(ft|xt,ct)

[
log p(yt|f t)

]
−KL

[
q(H)||p(H)

]
−KL

[
q(U)||p(U)

]
(13)

where the expectation is taken with respect to

q(f t|xt, ct) =

∫
q(f t|xt, ct,hp)q(hp)dhp. (14)

We emphasize that q(f t|xt, ct,hp) =
q(f(x̃t)|xt, ct,hp) is the marginal of the GP eval-
uated at the inputs x̃t. The integral in (14) is intractable
due to the non-linear dependence on hp in (10) and
(11). Given our choice of kernel (RBF) and Gaussian
variational distribution q(hp) the first and second
moments can be computed in closed form. We could use
these terms to compute the log-likelihood term in closed
form since the likelihood is Gaussian but in practice
this can be prohibitively expensive since it requires
the evaluation of a TM2D tensor. Instead we avoid
computing the moments by approximately integrating
out the latent variable using Monte Carlo sampling.

Training For the update steps in algorithms
1 and 2 we jointly optimize the GP hyper-
parameters θ and the variational parameters
φ = {Z,M {md,Sd}Dd=1, {np,T p}Pp=1} w.r.t.
the ELBO. For the inference step in algorithm 2, we
optimize only the variational parameters for the latent
variables h, i.e. φh = {np,T p}Pp=1.

In practice, we use a single sample hp ∼ q(hp) drawn
from the variational distribution for each system. We use
stochastic mini-batch training, sampling a small num-
ber of trajectories and their associated latent variable
at a time. Empirically, we found standardizing the in-
put states and controls (x, c) and outputs (y) crucial
for successful training of the model. For optimization
we used Adam [19] with default hyperparameters: α =
1× 10−2, β1 = 0.9, β2 = 0.999, ε = 10−8.

4 EXPERIMENTS

Our experiments focus on evaluating our proposed model
in terms of predictive performance, the nature of the la-
tent embeddings and data efficiency. We address the fol-
lowing questions: “Does conditioning the GP on the la-
tent variable allow us to disentangle system specific and
global properties of the observations? Does this improve
predictive performance in the transfer learning setting?”
(Section 4.1). “Is the latent system embedding the model
learns a sensible one? (Section 4.2) “Does the appli-
cation of our ML-GP in model-based RL lead to data-
efficient learning across tasks” (Section 4.3).

As a baseline model we use a sparse GP (SGP) [30]
as described in Section 3.2 but without the latent vari-
able that explicitly represents the task. For assessing the
model quality (Section 4.1) we additionally evaluate the
performance of a standard GP with no sparse approxima-
tion. We use the following nonlinear dynamical systems
to perform our experiments:

Cart-pole swing-up The cart-pole system consists of
a cart that moves horizontally on a track with a freely
swinging pendulum attached to it. The state of this non-
linear system is the position x and velocity ẋ of the cart
and the angle θ and angular velocity θ̇ of the pendulum.
The control signals act as a horizontal force on the cart
limited to the range c ∈ [−15, 15]N. The mean of the
initial state distribution is the state where the pendulum
is hanging downward. The task is to learn to swing up
and balance the pendulum in the inverted position in the
middle of the track.

Double-pendulum swing-up The double-pendulum
system is a two-link robotic arm with two motors, one in
the shoulder and one in the elbow. The state of the system
comprises the angles θ1, θ2 and angular velocities θ̇1, θ̇2
of the inner and outer pendulums, respectively. The con-
trol signals are the torques c1,2 ∈ [−4, 4]Nm applied to
the two motors. The mean of p(x0) is the position where
both pendulums are hanging downward. The goal is to
find a control strategy that swings the double pendulum
up and balances it in the inverted position.

4.1 QUALITY OF MODEL LEARNING

In the first set of experiments, we investigate if the latent
variable of the ML-GP improves prediction performance
on unseen systems compared to the SGP baseline. To
assess the effect of the sparse approximation we also in-
clude a standard GP baseline (no sparse approximation)
in this section. To test the prediction quality, we exe-
cute the same fixed control signals1 on six settings of the
cart-pole task to generate one 100-step (10 s) trajectory
per training task. The specifications of the training tasks
were all combinations (m, l) of m ∈ {0.4, 0.6, 0.8}, l ∈
{0.5, 0.7} where m and l denote the mass and length of
the pendulum, respectively. Thus, the total number of
data points for our six training tasks is T = 600 amount-
ing to 60 s of interaction time.

For evaluation we use the same sequence of control
signals we used for training and compute the one-step
prediction quality in terms of root mean squared error
(RMSE) and negative log likelihood (NLL) on a set of
test tasks. We use 14 held-out test tasks specified as
m ∈ {0.4, 0.6, 0.7, 0.8, 0.9}, l ∈ {0.4, 0.5, 0.6, 0.7},
excluding the (m, l)-combinations of the training tasks.

During evaluation, we observe 10 time steps from an un-
seen trajectory based on which we infer the latent task hp

using variational inference for the ML-GP while leaving
the model hyperparameters and other variational param-
eters fixed. We then predict the next 90 steps using the
ML-GP, SGP and GP models. ML-GP also performs on-
line inference of the latent variable after each step. We
repeat this experiment with 10 different seeds that deter-
mine the initial state, and average the results.

Fig. 3 shows the RMSE and NLL for all 3 models. The
ML-GP clearly outperforms both the SGP and GP base-
lines in terms of both the accuracy of its mean predic-
tions (as evident by the RMSE) as well as capturing the
data better under its predictive distribution as seen by the
NLL. The NLL accounts for both the mean prediction
as well as the uncertainty of the model about the predic-
tion. Both baselines have comparable RMSEs to each
other with enough inducing points but generalize poorly
on new tasks with overconfident predictions. Fig. 4 illus-
trates this behavior.

The baselines fail to generalize since they have no ob-
servations from the system with this configuration. The
ML-GP generalizes from training to new test tasks nat-
urally because it explicitly incorporates the latent vari-
ables encoding the system configuration.

1the control signals were manually chosen as ones that
solved a configuration not included in either the training or test
set.

0.25

0.50

0.75

R
M

S
E

ML-GP SGP GP

25 50 75 100 125 150 175 200

Inducing Points

−10

−5

N
L

L

Figure 3: Mean and two standard deviation confidence
error-bars of the RMSE and NLL for the ML-GP, SGP
and the standard GP model as a function of the number of
inducing points. The ML-GP significantly outperforms
both baselines.

4.2 LATENT EMBEDDING

In order for our model to perform well in meta learning
settings, the latent variables hp need to reflect a sensi-
ble embedding. By sensible we mean it should take on
a particular structure: a) locally similar values in the la-
tent space should correspond to similar task specifica-
tions and b) moving in latent space should correspond to
coherent transitions in task specifications.

Fig. 5 shows an example of an inferred latent embedding
of both training and test tasks after the training procedure
outlined above. The test-task latent variables are inferred
from 10 observations from the held-out systems.

The different colors of the discs denote the four different
settings of lengths whereas the colors of the dotted lines
connecting the discs denote the five different settings of
mass. The figure plots the mean of each q(hp) with two
standard deviation error bars in each dimension. The em-
bedding displays an intuitive structure where changes in
length or mass are disentangled (denoted by the black ar-
rows) into a length-mass coordinate system with the ex-
pected transitive properties, e.g. the lengths are ordered
as blue (l = 0.4), green (l = 0.5), red (l = 0.6) and
orange (l = 0.7). The uncertainty estimates also exhibit
qualitatively the intuitive property of being less uncertain
about tasks which are similar to (closer to) the training
tasks, e.g. comparing the red and blue tasks in fig. 5.

4.3 DATA-EFFICIENT RL

Our second set of experiments investigates the perfor-
mance of the ML-GP model in terms of data efficiency
in RL settings. Specifically, we look at whether our meta
learning approach is a) at least as efficient at solving a

−7

−4

−1

2

5

−7

−4

−1

2

5

A
n

gu
la

r
V

el
o

ci
ty

50 55 60 65 70 75 80

Timestep

−7

−4

−1

2

5

Test data ML-GP SGP GP

Figure 4: One-step predictions of the angular velocity in
cart-pole. The figure shows the true data points (discs)
and the predictive distributions with a two standard de-
viation confidence interval for the ML-GP, SGP and a
standard GP. The ML-GP generalizes well to new tasks;
both the SGP and GP baselines are overly confident.

set of training tasks, b) more efficient at solving subse-
quent test tasks, when compared to a non-meta learning
baseline and c) whether the ML-GP model improves per-
formance when compared to the SGP model trained with
the meta learning approach.

We first learn a model of the dynamics (4), which we then
use to learn a policy to control the system. For policy
learning we use MPC, minimizing the cost in (3) with a
moving horizon to learn an optimal sequence of control
signals. We assume we have a set of training systems
and evaluate the performance of the models using some
held-out test systems with novel configurations (tasks).

We run experiments on both the cart-pole swing-up task
and the double-pendulum swing-up task. In both scenar-
ios, we use a sampling frequency of 10Hz, episodes of
30 steps (3 s) and a planning horizon of 10 steps. For the
cart-pole swing-up, solving the task means the pendulum
is balanced closer than 8 cm from the goal position for at
least the last 10 steps. For the double-pendulum swing-
up, it means the outer pendulum is balanced closer than
22 cm for at least the last 10 steps.

At meta-training or test-time, a pass through the training-
/test-set means executing the MPC policy learning algo-
rithm on each of the unsolved task in that set. Each ex-
ecution constitutes a trial for that task. The sets are tra-
versed until all the tasks are solved or all unsolved tasks
have executed 15 trials. The training and test procedures
are detailed in algorithms 1 and 2 in section 3. All results
are averaged over 20 independent random initializations.

Length

Mass

l = 0.4

l = 0.5

l = 0.6

l = 0.7

m = 0.4

m = 0.6

m = 0.7

m = 0.8

m = 0.9

Figure 5: Latent space embedding of cart-pole configu-
rations/tasks. The figure shows the mean (discs) of the
inferred latent variables and two standard deviation error
bars. Filled discs are training tasks and empty discs are
held out test tasks. The colors of the discs represent the
length and the colors of the dotted lines between discs
represent the mass.

Note that we execute on all (unsolved) tasks before re-
training the dynamics model as detailed in section 3.
This means that the model is updated with 3 s worth of
experience for every task in that pass at a time. On the
other hand, the model does not take advantage of addi-
tional prior experience until it has completed a pass.

For comparison with the ML-GP model, we use the SGP
model trained in two different ways. To establish a
lower-bound baseline, we run the model-based RL ap-
proach where we train a separate model for each task on
both the training and test sets. After each training task
we additionally attempt to solve each of the test tasks
to evaluate single-shot performance where we report the
mean across the training tasks as the single shot success
rate. We refer to this baseline as SGP-I which is a sparse
variant of the approach in [17] that achieves state-of-the-
art in data efficiency. Secondly, we train a single SGP
model on all the training tasks simultaneously using the
same training approach as we do for ML-GP. We refer
to this baseline as SGP-ML.

Cart-pole swing-up We train the models on six
specifications of the cart-pole dynamics, with m ∈
{0.4, 0.6, 0.8}, l ∈ {0.6, 0.8} and evaluate its per-
formance on a set of four test tasks chosen as m ∈
{0.7, 0.9}, l = {0.5, 0.7}. We choose these settings to
examine the performance on both interpolation and ex-
trapolation for differing lengths and masses. We choose
the squared distance between the tip of the pendulum
and goal position (with the pendulum balanced straight
in the middle of the track) as the cost. Fig. 6 shows the
mean success rate (over initializations and the four test
tasks) of ML-GP, SGP-I and SGP-ML against the num-
ber of trials executed on the systems. We observe that

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trials

0

20

40

60

80

100
S

u
cc

es
s

R
at

e
(%

)

ML-GP

SGP-I

SGP-ML

Figure 6: Mean success rate over initializations and the
four test tasks for the cart-pole system after training
on six tasks. The graph compares ML-GP with SGP-
I (trained independently) and SGP-ML (trained on all
tasks).

both the ML-GP model and the SGP-ML display gen-
eralization to new tasks as evident by the success rate
in the first trial (see also Table 1). However, whereas
the ML-GP quickly improves with more observations in
subsequent trials, the SGP-ML model struggles to solve
the remaining tasks. We attribute this failure to the in-
ability of the SGP-ML model to explain variation in the
dynamics caused by differences in system specifications.

When comparing with independent training of each sys-
tem we see that the ML-GP compares favorably, reach-
ing 80% success rate after only three trials and 90% af-
ter six trials compared to the SGP-I, which reaches 80%
after 7 trials and 90% after 8 trials. We further ana-
lyze performance of ML-GP to identify the tasks that
were additionally solved between trials 3 and 6. We find
that this is due to a consistently challenging system with
m = 0.9, l = 0.5, which requires the learner to extrap-
olate beyond the range of values seen during training.
The mean number of trials required to solve this task is
4.3 ± 0.6, compared to the task mean of 2.7 ± 0.2 tri-
als. Table 1 shows the mean total time required to solve

Table 1: Mean time spent solving the cart-pole system
and the single-shot success rate.

MODEL TRAIN (s) TEST (s) SINGLE SHOT
SGP-I 16.1 ± 0.4 17.5 ± 0.4 0.08 ± 0.01
SGP-ML 23.7 ± 1.4 20.8 ± 1.2 0.38 ± 0.04
ML-GP 15.1 ± 0.5 8.1 ± 0.6 0.35 ± 0.05

the training and test tasks. On average, ML-GP needs
less than half the amount of time to solve the test tasks
compared to individually training on the tasks (SGP-I).
We also see an improvement in the total training time,
which suggests that ML-GP derives some transfer ben-
efit during training despite training on the systems on a
concurrent trial basis, i.e. we do not update the model

until all systems have executed a given trial. Compared
to the SGP-ML, the ML-GP model can maintain an accu-
rate model while learning multiple systems and quickly
adapts to new dynamics, whereas the performance of
SGP-ML stagnates as reflected in the interaction time on
both the training and test systems.

Double-pendulum swing-up We repeat the same ex-
perimental set-up on the double-pendulum task. We
trained on six systems with m1 ∈ {0.5, 0.7}, l1 ∈
{0.4, 0.5, 0.7} and evaluate on a set of four test tasks
chosen as m1 ∈ {0.6, 0.8}, l1 = {0.6, 0.8}, where
m1, l1 are the mass and length of the inner pendulum.
The cost is the squared distance between the tip of the
outer pendulum and the goal position (with both pendu-
lums standing straight up). Fig. 7 plots the mean success
rate against the number of trials executed on the system.
Comparing the ML-GP model to the SGP-ML we ob-
serve comparable single-shot performance and a qualita-
tively similar learning curve for the test tasks. However,
the ML-GP reaches 90% success rate about four trials
before the SGP-ML, around trial nine, i.e. meta learn-
ing achieves a significantly higher data efficiency. Com-
pared to independent training of the tasks using SGP-I,
the ML-GP leads to significantly less (new) training data
needed to solve the tasks. Table 2 reports the mean total

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Trials

0

20

40

60

80

100

S
u

cc
es

s
R

at
e

(%
)

ML-GP

SGP-I

SGP-ML

Figure 7: Mean success rate over initializations and the
four test tasks for the double pendulum after training on
six tasks. The graph compares the ML-GP against the
SGP-I (trained independently on each task) and the SGP-
ML (trained using the meta learning procedure).

time required to solve the tasks. Compared to the SGP-
ML, the performance of the two is similar, although ar-
guably the ML-GP compares favorably in terms of aver-
age time needed to solve the test tasks. Compared to the
SGP-I, we see improvement during training as well as at
test time. The average time needed for ML-GP to solve
the test environments is reduced to around 40% to that of
the SGP-I.

Table 2: Mean time spent solving the double-pendulum
system and the single-shot success rate.

MODEL TRAIN (s) TEST (s) SINGLE SHOT
SGP-I 18.9 ± 0.7 25.9 ± 1.5 0.07 ± 0.01
SGP-ML 17.9 ± 1.3 13.7 ± 2.2 0.36 ± 0.06
ML-GP 16.6 ± 1.1 10.2 ± 1.6 0.43 ± 0.06

5 RELATED WORK

Meta learning has long been proposed as a form of learn-
ing that would allow systems to systematically build up
and re-use knowledge across different but related tasks
[26, 32]. MAML is a recent promising model free meta
learning approach that learns a set of model parameters
that are used to rapidly learn novel tasks [12]. Another
interpretation of MAML is formulated in [13], which
shares our hierarchical Bayesian formulation of the meta
learning problem. However, the model-free setting in
which MAML has been applied so far typically require
orders of magnitude more training data than the model-
based approaches we build up on in the present work.

Our ML-GP model resembles the GP latent variable
model (GPLVM), which is typically used in unsuper-
vised settings [23]. In the GPLVM, the GP is used
to map a low-dimensional latent embedding to higher-
dimensional observations. A Bayesian extension (BG-
PLVM) was introduced in [31] where inference over the
latent variable is performed using variational inference.
To enable minibatch training, and unlike BGPLVM, we
take the approach of [14] and do not marginalize out the
inducing variables. The main difference of our model
and the GPLVM is that we learn a mapping from both
observed and latent inputs to observations.

The combination of observed and latent inputs was in-
vestigated in [33] where the authors use Metropolis
sampling for inference which does not scale to larger
datasets. A similar setup is found in [7] where the model
is used for partially observed input data. The work also
proposes uses in autoregressive settings similar to ours.
Different from us, the distribution over inducing vari-
ables is analytically optimized, making minibatch train-
ing infeasible.

A related and complimentary line of research are multi-
output GPs (MOGPs) [2]. Recently, [6] proposed a la-
tent variable extension to MOGPs (LVMOGP) which is
similar to our ML-GP, particularly in their missing data
formulation of the model. The crucial difference from
our work is that we augment the input space by concate-
nating the latent variable to the input space while the LV-
MOGP uses the Kronecker product of two separate ker-
nels applied on the latent and input spaces respectively.

Notably, the two models are equivalent for kernels that
naturally decompose as a Kronecker product (e.g. the
RBF) but depart from there.

A similar framework to ours is found in [11], called hid-
den parameter Markov decision processes (HiP-MDP),
which parametrizes a family of related dynamics through
a low dimensional latent embedding. The HiP-MDP as-
sumes a fixed latent variable within trajectories. Differ-
ent from us, the authors use an infinite mixture of GP
basis functions where the task specific variation is ob-
tained through the weights of the basis functions [11].
This work was extended in [18], replacing the GP basis
functions with a Bayesian neural network. This enables
non-linear interactions between the latent and addresses
scalability. In this work, the interactions between latent
and state variables are obtained through the non-linear
RBF kernel, and the scalability is addressed through the
variational sparse approach.

In [8], an RL setting is considered that is closely related
to our meta-learning set-up. The authors use a parametric
policy that depends on a known deterministic task vari-
able and augment the policy function to include it as well.
In [8], the authors consider the same dynamical system
but solve different tasks by augmenting the policy with a
task variable. In our work, we look at different settings
of the dynamics but the task remains the same. We show
how to generalize to the setting where task variables are
latent and inferred from interaction data. This dramati-
cally extends applicability in real-world settings.

6 CONCLUSION

We proposed a meta learning approach within the context
of model-based RL that allows us to transfer knowledge
from training configurations of robotic systems to unseen
test configurations. The key idea behind our approach
is to address the meta learning problem probabilistically
using a latent variable model. We use online variational
inference to obtain a posterior distribution over the latent
variable, which describes the relatedness of tasks. This
posterior is then used for long-term predictions of the
state evolution and controller learning within a model-
based RL setting. We demonstrated that our ML-GP
approach is as efficient or better than a non-meta learn-
ing baseline when solving multiple tasks at once. The
ML-GP further generalizes well to learning models and
controllers for unseen tasks giving rise to substantial im-
provements in data-efficiency on novel tasks.

Acknowledgements

This work was supported by Microsoft Research through
its PhD Scholarship Programme.

References

[1] M. Al-Shedivat, T. Bansal, Y. Burda, I. Sutskever,
I. Mordatch, and P. Abbeel. Continuous adapta-
tion via meta-learning in nonstationary and com-
petitive environments. In International Conference
on Learning Representations (ICLR), 2018.

[2] M. A. Àlvarez, L. Rosasco, and N. D. Lawrence.
Kernels for vector-valued functions: A review.
Foundations and Trends in Machine Learning
(FTML), 4(3):195, 2012.

[3] S. Barrett, M. Taylor, and P. Stone. Transfer learn-
ing for reinforcement learning on a physical robot.
In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2010.

[4] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret.
Robots that can adapt like animals. Nature,
521:503–507, 2015.

[5] B. da Silva, G. Konidaris, and A. Barto. Learning
parametrized skills. In International Conference on
Machine Learning (ICML), 2012.

[6] Z. Dai, M. A. Álvarez, and N. D. Lawrence. Effi-
cient modeling of latent information in supervised
learning using Gaussian processes. In Neural Infor-
mation Processing Systems (NIPS). 2017.

[7] A. Damianou and N. D. Lawrence. Semi-described
and semi-supervised learning with Gaussian pro-
cesses. Uncertainty in Artificial Intelligence (UAI),
2015.

[8] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox.
Multi-task policy search for robotics. In IEEE In-
ternational Conference on Robotics and Automa-
tion (ICRA), 2014.

[9] M. P. Deisenroth, D. Fox, and C. E. Rasmussen.
Gaussian processes for data-efficient learning in
robotics and control. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (PAMI),
37(2):408–423, 2015.

[10] M. P. Deisenroth and C. E. Rasmussen. PILCO:
A model-based and data-efficient approach to pol-
icy search. In International Conference on Machine
Learning (ICML), 2011.

[11] F. Doshi-Velez and G. Konidaris. Hidden param-
eter Markov decision processes: A semiparamet-
ric regression approach for discovering latent task
parametrizations. In International Joint Conference
on Artificial Intelligence (IJCAI), 2016.

[12] C. Finn, P. Abbeel, and S. Levine. Model-agnostic
meta-learning for fast adaptation of deep networks.
In International Conference on Machine Learning
(ICML), 2017.

[13] E. Grant, C. Finn, S. Levine, T. Darrell, and T. Grif-
fiths. Recasting gradient-based meta-learning as hi-
erarchical Bayes. In International Conference on
Learning Representations (ICLR), 2018.

[14] J. Hensman, N. Fusi, and N. D. Lawrence. Gaus-
sian processes for big data. In Uncertainty in Arti-
ficial Intelligence (UAI), 2013.

[15] M. Hoffman, D. Blei, C. Wang, and J. Paisley.
Stochastic variational inference. Journal of Ma-
chine Learning Research (JMLR), pages 1303–
1347, 2013.

[16] A. Ijspeert, J. Nakanishi, and S. Schaal. Learning
attractor landscapes for learning motor primitives.
In Neural Information Processing Systems (NIPS),
2002.

[17] S. Kamthe and M. P. Deisenroth. Data-efficient re-
inforcement learning with probabilistic model pre-
dictive control. In International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), 2018.

[18] T. Killian, S. Daulton, G. Konidaris, and F. Doshi-
Velez. Robust and efficient transfer learning with
hidden parameter Markov decision processes. In
Neural Information Processing Systems (NIPS),
Long Beach, CA, 2017.

[19] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In International Confer-
ence on Learning Representations (ICLR), 2015.

[20] J. Kober, E. Otzop, and J. Peters. Reinforcement
learning to adjust robot movements to new situa-
tions. In International Joint Conference on Artifi-
cial Intelligence (IJCAI), 2011.

[21] G. Konidaris, I. Scheidwasser, and A. Barto. Trans-
fer in reinforcement learning via shared features.
Journal of Machine Learning Research (JMLR),
13:1333–1371, 2012.

[22] O. Kroemer, R. Detry, J. Piater, and J. Peters.
Combining active learning and reactive control for
robot grasping. Robotics and Autonomous Systems
(RAS), 58:1105–1116, 2010.

[23] N. D. Lawrence. Gaussian process latent variable
models for visualisation of high dimensional data.
In Neural Information Processing Systems (NIPS).
2004.

[24] K. Mülling, J. Kober, O. Kroemer, and J. Peters.
Learning to select and generalize striking move-
ments in robot table tennis. International Journal
of Robotics Research (IJRR), 2013.

[25] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press,
2006.

[26] T. Schaul and J. Schmidhuber. Metalearning.
Scholarpedia, 5(6):4650, 2010.

[27] J. G. Schneider. Exploiting model uncertainty esti-
mates for safe dynamic control learning. In Neural
Information Processing Systems (NIPS). 1997.

[28] R. S. Sutton and A. G. Barto. Reinforcement Learn-
ing: An Introduction. The MIT Press, 1998.

[29] M. Taylor and P. Stone. Cross-domain transfer for
reinforcement learning. In International Confer-
ence on Machine Learning (ICML), 2007.

[30] M. Titsias. Variational learning of inducing vari-
ables in sparse Gaussian processes. In International
Conference on Artificial Intelligence and Statistics
(AISTATS), 2009.

[31] M. Titsias and N. D. Lawrence. Bayesian Gaus-
sian process latent variable model. In International
Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

[32] R. Vilalta and Y. Drissi. A perspective view and
survey of meta-learning. Artificial Intelligence Re-
view (AI Review), 18(2):77–95, 2002.

[33] C. Wang and R. M. Neal. Gaussian Process Regres-
sion with Heteroscedastic or Non-Gaussian Resid-
uals. ArXiv e-prints, Dec. 2012.

