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Abstract

Conditional Density Estimation (CDE) models deal with estimating conditional
distributions. The conditions imposed on the distribution are the inputs of the
model. CDE is a challenging task as there is a fundamental trade-off between model
complexity, representational capacity and overfitting. In this work, we propose to
extend the model’s input with latent variables and use Gaussian processes (GPs)
to map this augmented input onto samples from the conditional distribution. Our
Bayesian approach allows for the modeling of small datasets, but we also provide
the machinery for it to be applied to big data using stochastic variational inference.
Our approach can be used to model densities even in sparse data regions, and allows
for sharing learned structure between conditions. We illustrate the effectiveness
and wide-reaching applicability of our model on a variety of real-world problems,
such as spatio-temporal density estimation of taxi drop-offs, non-Gaussian noise
modeling, and few-shot learning on omniglot images.

1 Introduction

Conditional Density Estimation (CDE) is the very general task of inferring the probability distribution
p(f(x) |x), where f(x) is a random variable for each x. Regression can be considered a CDE
problem, although the emphasis is on modeling the mapping rather than the conditional density. The
conditional density is commonly Gaussian with parameters that depend on x. This simple model for
data may be inappropriate if the conditional density is multi-modal or has non-linear associations.

Throughout this paper we consider an input x to be the condition, and the output y to be a sample
from the conditional density imposed by x. For example, in the case of estimating the density of
taxi drop-offs, the input or condition x could be the pick-up location and the output y would be
the corresponding drop-off. In this context, we are more interested in learning the complete density
over drop-offs rather than only a single point estimate, as we would expect the taxi drop-off to be
multi-modal because passengers need to go to different places (e.g., airport/city center/suburbs). We
would also expect the drop-off location to depend on the starting point and time of day: therefore, we
are interested in conditional densities. In the experiment section we will return to this example.

In this work, we present a Gaussian process (GP) based model for estimating conditional densities,
abbreviated as GP-CDE. While a vanilla GP used directly is unlikely to be a good model for
conditional density estimation as the marginals are Gaussian, we extend the inputs to the model with
latent variables to allow for modeling richer, non-Gaussian densities when marginalizing the latent
variable. Fig. 1 shows a high-level overview of the model. The added latent variables are denoted by
w. The latent variable w and condition x are used as input of the GP. A recognition/encoder network
is used to amortize the learning of the variational posterior of the latent variables. The matrices A
and P act as probabilistic linear transforms on the input and the output of the GP, respectively.

The GP-CDE model is closely related to both supervised and unsupervised, non-Bayesian and
Bayesian models. We first consider the relationship to parametric models, in particular Variational

∗Equal contribution

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Axx

y
NN GP

w

DecoderEncoder

f P y

Figure 1: Diagram of the GP-Conditional Density Estimator. The GP-CDE consists of an encoder
(blue) and a decoder (orange). The observed variables x and y are respectively the condition on the
distribution and a sample from the conditional distribution. The encoder consists of a neural network,
and uses the variables x and y as inputs to produce the parameters for the posterior of the latent
variable w. The decoder part is built out of a GP and two linear transformation matrices, A and P.
A is applied to the condition x to reduce the dimensionality of x before it is combined with the latent
w and fed into the GP. The matrix P can be used to correlate the outputs of the latent function f .

Autoencoders (VAEs) [17, 23] and their conditional counterparts (CVAE) [18, 24]. (C)VAEs use a
deterministic, parametrized neural network as decoder, whereas we adopt a Bayesian non-parametric
GP. Using a GP for this non-linear decoder mapping offers two advantages. First, it allows us to
specify our prior beliefs about the mapping, resulting in a model that can gracefully accommodate
sparse or missing data. Note that even large datasets can be sparse, e.g., the omniglot images or
taxi drop-off locations at the fringes of a city. As the CVAE has no prior on the decoder mapping,
the model can overfit the training data and the latent variable posterior becomes over-concentrated,
leading to poor test log-likelihoods. Second, the GP allows tractable uncertainty propagation through
the decoder mapping (for certain kernels). This allows us to calculate the variational objective
deterministically, and we can further exploit natural gradients for fast inference. Neural network
decoders do not admit such structure, and are typically optimized with general-purpose tools.

A second perspective can be seen through the connection to Gaussian process models. By dropping
the latent variables w we recover standard multiple-output GP regression with sparse variational
inference. If we drop the known inputs x and use only the latent variables, we obtain the Bayesian
GP-LVM [26, 20]. Bayesian GP-LVMs are typically used for modeling complex distributions and
non-linear mappings from a lower-dimensional latent variable into a high-dimensional space. By
combining the GP-LVM framework with known inputs we create a model that outputs conditional
samples in this high-dimensional space.

Our primary contribution is to show that our GP-CDE can be applied to a wide variety of settings,
without the necessity for fine-tuning or regularization. We show that GP-CDE outperforms GP
regression on regression benchmarks; we study the importance of accurate density estimation in
high-dimensional spaces; and we deal with learning the correlations between conditions in a large
spatio-temporal dataset. We achieve this through three specific contributions. (i) We extend the
model of Wang and Neal [29] with linear transformations for the inputs and outputs. This allows
us to deal with high-dimensional conditions and enables a priori correlations in the output. (ii) We
apply natural gradients to address the difficulty of mini-batched optimization in [26]. (iii) We derive
a free-form optimal posterior distribution over the latent variables. This provides a tighter bound and
reduces the number of variational parameters to optimize.

2 Background: Gaussian Processes and Latent Variable Models

Gaussian Processes A Gaussian process (GP) is a Bayesian non-parametric model for functions.
Bayesian models have two significant advantages that we exploit in this work: we can specify prior
beliefs leading to greater data efficiency, and we can obtain uncertainty estimates for predictions. A
GP is defined as a set of random variables {f(x1), f(x2), . . .}, any finite subset of which follow a
multivariate Gaussian distribution [22]. When a stochastic function f : RD → R follows a GP it is
fully specified by its mean m(·) and covariance function k(·, ·), and we write f ∼ GP(m(·), k(·, ·)).

The most common use of a GP is the regression task of inferring an unknown function f , given a set
of N observations y = [y1, . . . , yN ]⊤ and corresponding inputs x1, . . . ,xn. The likelihood p(yi | f)
generally is taken to depend on f(xi) only, and the Gaussian likelihood N (yn | f(xn), σ

2) is widely
used as it results in analytical closed-form inference.
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Conditional Deep Latent Variable Models Conditional Deep Latent Variable Models (C-DLVMs)
consist of two components: a prior distribution p(wn) over the latent variables2 which is assumed to
factorize over the data, and a generator or decoder function gθ(xn,wn) : R

Dx+Dw → R
Dy . The

VAE and CVAE are examples where the generator function is a deep (convolutional) neural network
with weights θ [17, 24]. The outputs of the generator function are the parameters of a likelihood,
commonly the Gaussian for continuous data or the Bernoulli for binary data. The joint distribution
for a single data point is pθ(yn,wn |xn) = p(wn)pθ(yn |xn,wn). We assume the data to be i.i.d.,
then the the marginal likelihood in the Gaussian case is given by

log pθ(Y |X) =
∑

n
log pθ(yn |xn) =

∑

n
log

∫

p(wn)N (yn |gθ(xn,wn), σ
2I) dwn , (1)

where X = {x}Nn=1, and likewise for Y and W. As gθ(xn,wn) is a complicated non-linear function
of its inputs, this integral cannot be calculated in closed-form. Kingma and Welling [17] and Rezende
et al. [23] addressed this problem by using variational inference. Variational inference posits an
approximate posterior distribution qφ(W), and finds the closest qφ to the true posterior, measured
by KL divergence, i.e. argminqφ KL [qφ(W)‖p(W |X,Y)]. It can be shown that this optimization
objective is equal to the Evidence Lower Bound (ELBO)

log pθ(Y |X) ≥ L :=
∑

n
Eqφ(wn) [log pθ(yn |xn,wn)]−KL [qφ(wn)‖p(wn)] .

A mean-field distribution is typically used for the latent variables W with a multivariate Gaussian
form for qφ(wn) = N (wn |µwn

,Σwn
). Rather than representing the Gaussian parameters µwn

and Σwn
for each data point directly, Kingma and Welling [17] and Rezende et al. [23] instead

amortize these parameters into a set of global parameters φ, where φ parameterizes an auxiliary
function hφ : (xn,yn) 7→ (µwn

,Σwn
), referred to as the encoder/recognition network.

3 Conditional Density Estimation with Gaussian Processes

This section details our model and the inference scheme. Our contributions are threefold:(i) we derive
an optimal free-form variational distribution q(W) (Section 3.2); (ii) we ease the burden of jointly
optimizing q(f(·)) and q(W) using natural gradients (Section 3.2.1) for the variational parameters of
q(f(·)); (iii) we extend the model to allow for the modeling of high-dimensional inputs and impose
correlation on the outputs using linear transformations (Section 3.3).

3.1 Model

The key idea of our model is to substitute the neural network decoder in the C-DLVM framework
with a GP, see Fig. 1. Treating the decoder in a Bayesian manner leads to several advantages. In
particular, in the small-data regime, a probabilistic decoder will be advantageous to leverage prior
assumptions and avoid over-fitting.

As we want to apply our model on both high-dimensional correlated outputs (e.g., images) and high-
dimensional inputs (e.g., one-hot encodings of omniglot labels), we introduce two matrices A and P.
They are used for probabilistic linear transformations of the inputs and the outputs, respectively. The
likelihood of the GP-CDE model is then given by

pθ(yn |xn,wn,f(·),A,P) = N
(

yn

∣

∣Pf
(

[Axn,wn]
)

, σ2I
)

,

where [·, ·] denotes concatenation. We assume the GP f(·) consists of L independent GPs fℓ(·) for
each output dimension ℓ. The latent variables are a priori independent for each data point and have a
standard-normal prior distribution. We discuss priors for A and P in section 3.3.

3.2 Inference

In this section, we present our inference scheme, initially in the case without A and P to lighten the no-
tation. We will return to these matrices in section section 3.3. We calculate an ELBO on the marginal

2It is common for “z” to denote the latent variables. However, as this letter collides with the notation of
inducing inputs in GPs, we will use “w” for the latent variables throughout this paper.
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likelihood, similarly to (1). Assuming a factorized posterior q(f(·),W) = q(f(·))
∏

n q(wn), where
W = {wn}

N
n=1, between the GP and the latent variables we get the ELBO

L =
∑

n

{

Eq(wn) Eq(f(·))

[

log p(yn |f(·),xn,wn)
]

−KL [q(wn)‖p(wn)]
}

−KL [q(f(·))‖p(f(·))] . (2)

Since the ELBO is a sum over the data we can calculate unbiased estimates of the bound using
mini-batches. We follow Hensman et al. [15] and choose independent sparse GPs over the output
dimensions q(fℓ(·)) =

∫

p(fℓ(·) |uℓ) q(uℓ) duℓ, where ℓ = 1, . . . , L and uℓ ∈ R
M are inducing

outputs corresponding to the inducing inputs zm, m=1, . . . ,M , so that uml = fℓ(zm). We choose
q(uℓ) = N (uℓ |mℓ,Sℓ). Since p(fℓ(·) |uℓ) is conjugate to q(uℓ), the integral can be calculated
in closed-form. The result is a new sparse GP for each of the output dimensions q(fℓ(·)) =
GP(µℓ(·), σℓ(·, ·)) with closed-form mean and variance. See Appendix C for a detailed derivation.
Using the results of Matthews et al. [21], the KL-term over the multi-dimensional latent function f(·)
simplifies to

∑

ℓ KL [q(uℓ)‖p(uℓ)], which is closed-form, since q(uℓ) and p(uℓ) are both Gaussian.

The inner expectation over the variational posterior q(f(·)) in (2) can be calculated in closed-form
(see Appendix C) as the likelihood is Gaussian. We define this analytically tractable quantity as

Lwn
= Eq(f(·))

[

log p(yn |f(·),xn,wn)
]

. (3)

Using this definition, and using the sparse variational posterior for q(f(·)) as described above, we
write the bound in (2) as

L =
∑

n

{

Eq(wn) Lwn
−KL [q(wn)‖p(wn)]

}

−
∑

ℓ
KL [q(uℓ)‖p(uℓ)] . (4)

We consider two options for q(wn): (i) we can either make a further Gaussian assumption, and have
a variational posterior of the form q(wn) = N (wn |µwn

,Σwn
), or (ii) we can find the analytically

optimal value of the bound for a free-form q(wn).

(i) Gaussian q(wn) First, a Gaussian q(wn) implies that the KL over the latent variables is closed-
form, as both the prior and posterior are Gaussian. Therefore, we are left with the calculation of
the first term in (4) Eq(wn) Lwn

. We follow the approach of C-DLVMs, explained in Section 2,
and use Monte Carlo sampling to estimate the expectation. To enable differentiability, we use the
re-parameterization trick and write wn = µwn

+ Lwn
ξn with p(ξn) = N (0, I), independent for

each data point, and Lwn
L⊤

wn
= Σwn

. Note that this does not change the distribution of q(wn), but
now the expectation is over a parameterless distribution. We can then take a differentiable unbiased
estimate of the bound by sampling from ξn.

In practice, rather than represent the Gaussian parameters µwn
and Lwn

for each data-point directly,
we instead amortize these parameters into a set of global parameters φ, where φ parameterizes an
auxiliary function hφ, (or ‘recognition network’) of the data: (µwn

,Lwn
) = hφ(xn,yn). This is

identical to the decoder component of C-DLVMs.

An alternative approach would be to use the kernel expectation results of Girard et al. [13] to
evaluate Eq(wn) Lwn

. Using these results we can evaluate the bound in closed-form, rather than
an approximate using Monte Carlo. However, the computations involved in calculating the kernel
expectations can be prohibitive, as it requires evaluating a NM2Dy sized tensor. Furthermore,
closed-form solutions for the kernel expectations only exist for RBF and polynomial kernels, which
makes this approach less favorable in practice.

(ii) Analytically optimal q(wn) So far, we assumed that the variational distribution q(wn) is
Gaussian. When q(·) is non-Gaussian, it is possible to integrate over wn with quadrature as we detail
in the following. We first bound the conditional p(Y |X,W) and use the same sparse variational
posterior for the GP as before, to obtain

log p(Y |X,W) ≥
∑

n
Lwn

−
∑

ℓ
KL [q(uℓ)‖p(uℓ)] .
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As shown in [15] and explained above we can calculate Lwn
analytically. By expressing the marginal

likelihood as log p(Y |X) = log
∫

p(Y |X,W)p(W) dW, we get

log p(Y |X) ≥ log

∫

exp
(

∑

n
Lwn

−
∑

ℓ
KL [q(uℓ)‖p(uℓ)]

)

p(W) dW

=
∑

n
log

∫

exp (Lwn
) p(wn) dwn −

∑

ℓ
KL [q(uℓ)‖p(uℓ)]

where we exploited the monotonicity of the logarithm. We can compute this integral with quadrature
when wn is low-dimensional (the dimensionality of xn does not matter here). Assuming we have
sufficient quadrature points, this gives the analytically optimal bound for q(wn). The analytical
optimal approach does not resort to the Gaussian approximation for q(wn), so it is a tighter bound.
See Appendix D for a proof that this bound is necessarily tighter than the bound in the Gaussian case.

3.2.1 Natural Gradient

Optimizing q(uℓ) together with q(W) can be challenging due to problems of local optima and
the strong coupling between the inducing outputs uℓ and the latent variables W. One option is to
analytically optimize the bound with respect to the variational parameters of uℓ, but this prohibits
the use of mini-batches and reduces the applicability to large-scale problems. Recall that the
variational parameters of uℓ are the mean and the covariance of the approximate posterior distribution
q(uℓ) = N (mℓ,Sℓ) over the inducing outputs. We can use the natural gradient [3] to update the
variational parameters mℓ and Sℓ.

This approach has the attractive property of recovering exactly the analytically optimal solution for
q(uℓ) in the full-batch case if the natural gradient step size is taken to be 1. While natural gradients
have been used before in GP models [15], they have not been used in combination with uncertain
inputs. Due to the quadratic form of the log-likelihood as a function of the kernel inputs X,W and
Z, we can calculate the expectation w.r.t. q(W), which will still be quadratic in the inducing outputs
uℓ. Therefore, the expression is still conjugate, and the natural gradient step of size 1 recovers the
analytic solution.

In practice, the natural gradient is used for the Gaussian variational parameters mℓ and Sℓ, and
ordinary gradients are used for the inducing inputs Z, the recognition network (if applicable) and other
hyperparameters of the model (the kernel and likelihood parameters). The variational parameters of
q(A) and the parameters of P are also updated using the ordinary gradient.

3.3 Probabilistic Linear Transformations

Input For high-dimensional inputs it may not be appropriate to define a GP directly in the aug-
mented space [xn,wn] ∈ R

Dx+Dw . This might be the case if the input data is a one-hot encoding of
many classes. We can extend our model with a linear projection to a lower-dimensional space before
concatenating with the latent variables, [Axn,wn]. We denote this projection matrix by A, as shown
in Fig. 1.

We use an isotropic Gaussian prior for elements of A and a Gaussian variational posterior that
factorizes between A and the other variables in the model: q(f(·),W,A) = q(f(·))q(W)q(A). For
Gaussian q(w) the bound is identical as in (2) except that we include an additional −KL [q(A)‖p(A)]
term and include the mean and variance for Ax as the input of the GP. A similar approach was used
in the regression case by Titsias and Lázaro-Gredilla [27].

Output We can move beyond the assumption of a priori independent outputs to a correlated model
by using a linear transformation of the outputs of the GP. This model is equivalent to a ‘multi-output’
GP model with a linear model of covariance between tasks. In the multi-output GP framework [2],
the Dy outputs are stacked to a single vector of length NDy, and a single GP is used jointly with a
structured covariance. In the simplest case, the covariance can be structured as R⊗K, where R can
be any positive semi-definite matrix of size Dy ×Dy, and K is an N ×N matrix. By transforming
the outputs with the matrix P we recover exactly this model with R = P⊤P. Apart from the
simplicity of implementation, another advantage is that we can handle degenerate cases (i.e., where
the number of outputs is less than Dy) without having to deal with issues of ill-conditioning. It would
be possible to use a Gaussian prior for P while retaining conjugacy, but in our experiments we use a
non-probabilistic P and optimize it using MAP.
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4 Related work

The GP-CDE model is closely related to both supervised an unsupervised Gaussian process based
models. If we drop the latent variables W our approach recovers standard multiple-output Gaussian
process regression with sparse variational inference. If we drop the known inputs X and use only
the latent variables, we obtain a Bayesian GP-LVM [26]. Bayesian GP-LVMs are typically used for
modeling complex distributions and non-linear mappings from a lower-dimensional variable into
a high-dimensional space. By combining the GP-LVM framework with known inputs we create a
model that outputs conditional samples in this high-dimensional space. Differently from Titsias
and Lawrence 26, during inference we do not marginalize out the inducing variables uℓ but rather
treat them as variational parameters of the model. This scales our model to arbitrarily large datasets
through the use of Stochastic Variational Inference (SVI) [15, 16]. While the mini-batch extension
to the Bayesian GP-LVM was suggested in [15], its notable absence from the literature may be due
to the difficulty in the joint optimization of W and uℓ. We found that the natural gradients were
essential to alleviate this problem. A comparison demonstrating this is presented in the experiments.

Wang and Neal [29] proposed the Gaussian Process Latent Variable model (GP-LV), which is a
special case of our model. The inference they employ is based on Metroplis sampling schemes and
does not scale to large datasets or high dimensions. In this work, we extend their model using linear
projection matrices on both input and output, and we present an alternative method of inference that
scales to large datasets. Damianou and Lawrence [11] also propose a special case of our model,
though they use it for missing data imputation rather than to induce non-Gaussian densities. They
also use sparse variational inference, but they analytically optimize q(uℓ) so cannot use mini-batches.
Depeweg et al. [12] propose a similar model, but use a Bayesian neural network instead of a GP.

The use of a recognition model, as in VAEs, was first proposed by Lawrence and Quiñonero-Candela
[20] in the context of a GP-LVM, though it was motivated as a constraint on the latent variable
locations rather than an amortization of the optimization cost. Recognitions models were later used
by Bui and Turner [7] and by Dai et al. [9] for deep GPs.

A GP model with latent variables and correlated multiple outputs was recently proposed in Dai
et al. [10]. In this model, the latent variables determine the correlations between outputs via a
Kronecker-structured covariance, whereas we have a fixed between-output covariance. That is, in our
model the covariance of the stacked outputs is (PP⊤)⊗ (KXKW), whereas in Dai et al. [10] the
covariance is KW ⊗KX. These models are complementary and perform different functions. [6]
proposed a model that is also similar to ours, but with categorical variables in the latent space. Other
approaches to non-parametric density estimation include modeling the log density directly with a GP
[1], and using an infinite generalization of the exponential family [25] which was recently extended
to the conditional case [4].

5 Experiments

Large-scale spatio-temporal density estimation We apply our model to a New York City taxi
dataset to perform conditional spatial density estimation. The dataset holds records of more than 1.4
million taxi trips, which we filter to include trips that start and end within the Manhattan area. Our
objective is to predict spatial distributions of the drop-off location, based on the pick-up location, the
day of the week, and the time of day. The two temporal features are encoded as sine and cosine with
the natural periods, giving 6-dimensional inputs in total3. Trippe and Turner [28] follow a similar
setup to predict a distribution over the pick-up locations given the fare and the tip of the ride.

Table 1 compares the performance of 6 different models, unconditional and conditional Kernel
Density Estimation (U-KDE, C-KDE), Mixture Density Networks (MDN-k, k = 1, 5, 10, 50) [5], our
GP-CDE model, a simple GP model and the unconditional GP-LVM [26]. We evaluate the models
using negative log predictive probability (NLPP) of the test set. The test sets are constructed by
sequentially adding points that have greatest minimum distance from the testing set. In this way we
cover as much of the input space as possible. We use a test set of 1000 points, and vary the number
of training points to establish the utility of models in both sparse and dense data regimes. We use 1K,
5K and 1M randomly selected training points to evaluate the models in both sparse and dense data
regimes.

3See https://github.com/hughsalimbeni/bayesian_benchmarks for the data.
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Figure 2: Conditional densities (displayed as heat-maps: yellow means higher probability) of drop-off
locations conditioned on the pick-up location (red cross).

Unconditional KDE (U-KDE) ignores the input conditions. It directly models the drop-off locations
using Gaussian kernel smoothing. The kernel width is selected with cross-validation. The Conditional
KDE (C-KDE) model uses the 50 nearest neighbors in the training data, with kernel width taken
from the unconditional model. The table shows that the conditional KDE model performs better than
the unconditional KDE model for all conditions. This suggests that the conditioning on the pick-up
location and time strongly effects the drop-off location. If the effect of conditioning were slight, the
unconditional model should perform better as it has access to all the data.

Table 1: NLPP for Manhattan data
(lower is better). The models are trained
on different dataset sizes.

1K 5K 1M

GP-LVM 2.61 2.52 2.43
GP 2.68 2.67 2.67
GP-CDE 2.31 2.22 2.13

U-KDE 2.49 2.5 2.35
C-KDE 2.40 2.38 2.314

MDN-1 2.83 2.77 2.65
MDN-5 2.72 2.55 2.16
MDN-10 3.17 2.66 2.06
MDN-50 5.09 3.08 1.97

We also evaluate several MDNs models with differing
number of mixing components (MDN-k, where k is the
number of components), using fully connected neural net-
works with 3 layers. The MDN model perform poorly
except in the large data regime, where the model with the
largest number of components is the best performing. The
MDN with a large number of components can put mass
at localized locations, which for this data is likely to be
appropriate as the taxis are confined to streets.

We test three GP-based models: our GP-CDE model with
2-dimensional latent variables, and two special cases: one
without conditioning (GP-LVM) and one without latent
variables (GP). The GP-LVM [26] is our model without
the conditioning, and does not perform well on this task
as it has not access to the inputs and models all conditions
identically. The GP model has no latent variables and
independent Gaussian marginals, and so cannot model this
data well as the drop-off location is quite strongly non-
Gaussian. We added predictive probabilities for all models
in Appendix F to illustrate these findings.

The GP-CDE performs best on this dataset for the small data regimes. For the large data case
the MDN model is superior. We attribute this to the high density of data when 1 million training
points are used. We used a 2D latent space and Gaussian q(W) for the latent variables, with a
recognition network amortizing the inference. We use the RBF kernel and use Monte Carlo sampling
to evaluate the bound, as described in Section 3.2. For training we use the Adam optimizer with a
exponentially decaying learning rate starting at 0.01 for the hyperparameters, the inducing inputs
and on the recognition network parameters. Natural gradient steps of size 0.05 are used for the GP’s
variational parameters. Fig. 2 shows the density of our GP-CDE model for two different conditions.
Similar figures for the other methods are in Appendix F.
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Figure 3: Sample images for 4-shot learning.
Left column is a true (unseen) image, remain-
ing columns are samples from the posterior con-
ditioned on the same label. See supplementary
material for further examples.

Few-shot learning We demonstrate the GP-
CDE model for the challenging task of few-shot
conditional density estimation on the omniglot
dataset. Our task is to obtain a density over the
pixels given the class label. We use the train-
ing/test split from [19], using all the examples
in the training classes and four samples from
each of the test classes. The inputs are one-hot
encoded (1623 classes) and the outputs are the
pixel intensities, which we resize to 28× 28.

We apply a linear transformation on both the
input and output (see Section 3.3). We use a
1623× 30 matrix A with independent standard-
normal priors on each component to project the
labels onto a 30-dimensional space. To prevent
the model from overfitting, it is important to
treat the A transformation in a Bayesian way and marginalize it.

To correlate the outputs a priori we use a linear transformation P of the GP outputs, which is equivalent
to considering multiple outputs jointly in a single GP with a Kronecker-structured covariance. See
Section 3.3. We use 400 GP outputs so P has shape 400× 784. To initialize P we use a model of
local correlation by using the Matérn-5/2 kernel with unit lengthscale on the pixel coordinates and
taking the first 400 eigenvectors scaled by the square-root eigenvalues. We then optimize the matrix
P as a hyperparameter of the model. Learning the P matrix is a form of transfer learning: we update
our prior in light of the training classes to make better inference about the few-shot test classes.

We obtain a log-likelihood of 7.2× 10−2 nat/pixel, averaging over the all the test images (659 classes
with 16 images per class). We train for 25K iterations with the same training procedure as in the
previous experiment. Samples from the posterior on a selection of test classes are shown in Fig. 3.
For a larger selection, see Fig. 8 in Appendix F.

Heteroscedastic noise modeling We use 10 UCI regression datasets to compare two variants of
our CDE model with a standard sparse GP and a CVAE. Since we model a 1D target we consider wn

to be uni-dimensional, allowing us to use the quadrature method (Section 3.2) to obtain the bound
for an analytically optimal q(wn). We compare also to an amortized Gaussian approximation to
q(wn), where we use a three-layer fully connected neural network with tanh activations for the
recognition model. In all three models we use a RBF kernel and 100 inducing points, optimizing
for 20K iterations using Adam optimizer for the hyperparameters and a natural gradient optimizer
with step size 0.1 for the Gaussian variational parameters. The quadrature model use Gauss-Hermite
quadrature with 100 points. For the CVAE we use, given the modest size of the UCI datasets, a
relatively small encoder and decoder network architecture together with dropout. See Appendix B for
details.

Fig. 3 shows the test log-likelihoods using 20-fold cross validation with 10% test splits. We normalize
the inputs to have zero mean and unit variance. We see that the quadrature CDE model outperforms
the standard GP and CVAE on many of the datasets. The optimal GP-CDE model performs better
than the GP-CDE with Gaussian q(w) on all datasets. This can be attributed to three reasons: we
impose fewer restrictions on the variational posterior, there is no amortization gap (i.e. the recognition
network might not find the optimal parameters [8]), and problems of local optima are likely to be less
severe as there are fewer variational parameters to optimize.
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Figure 4: Test log-likelihood of the GP, the optimal GP-CDE, the amortized GP-CDE, the CVAE,
and a Linear model on 10 UCI datasets. Higher is better.
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Density estimation of image data In this experiment we compare the test log-likelihood of the
GP-CDE and the CVAE [24] on the MNIST dataset for the image generation task. We train the
models with N = 2, 4, 8, . . . , 512 images per class, to test their utility in different data regimes. The
model’s input is a one-hot encoding of the image label which we concatenate with a 2-dimensional
latent variable. We use all 10, 000 test images to calculate the average test log-likelihood, which we
estimate using Monte Carlo.

For the CVAE’s encoder and decoder network architecture we follow Wu et al. [30] and regularize
the network using dropout. Appendix B contains more details on the CVAE’s setup. The GP-CDE
has the same setup as in the few-shot learning experiment, except that we set the shape of the output
mixing matrix P to 50 × 784. We reduce the size of P, compared to the omniglot experiment, as
the MNIST digits are relatively easier to model. Since we are considering small datasets in this
experiment the role of the mixing matrix becomes more important: it enables the encoding of prior
knowledge about the structure in images.

Wu et al. [30] point out that when evaluating test-densities for generative models, the assumed
noise variance σ2 plays an important role, so for both models we compare two different cases: one
with the likelihood variance parameter fixed and one where it is optimized. Table 2 shows that in
low-data regimes the highly parametrized CVAE severely overfits to the data and underestimates the
variance. The GP-CDE operates much more gracefully in these regimes: it estimates the variance
correctly, even for N = 2 (where N is the number of training points), and the gap between train/test
log-likelihood is considerably smaller.

Table 2: Log-likelihoods of the CVAE and GP-CDE models. N is the number of images per class.
Higher test log-likelihood is better. See Appendix E for the complete table.

CVAE: Fixed σ2 CVAE: σ2 optimized GP-CDE: Fixed σ2 GP-CDE: σ2 optimized
N Test Train Test Train σ2

opt Test Train Test Train σ2
opt

2 -129.72 180.97 -1296.63 956.39 0.01378 161.9 242.2 74.01 130.4 0.0303
4 -60.03 178.22 -759.18 956.26 0.01364 195.2 254.2 86.59 160.3 0.0310

256 52.17 76.18 218.08 325.72 0.03272 606.2 545 108.1 105.4 0.0378
512 54.48 65.30 244.88 286.38 0.03407 606.7 512 124.2 120.7 0.0388

Necessity of natural gradients Natural gradients are a vital component of our approach. We
demonstrate this with the simplest possible example modeling a dataset of 100 ‘1’ digits, using an
unconditional model with no projection matrices, no mini-batches and no recognition model (i.e.
exactly the GP-LVM in Titsias and Lawrence [26]). We compare our natural gradient approach with
step size of 0.1 against using the Adam optimizer (learning rate 0.001) directly for the variational
parameters. We compare also to the analytic solution in Titsias and Lawrence [26], which is possible
as we are not using mini-batches. We find that the analytic model and our natural gradient method
obtain test log-likelihoods (using all the ‘1’s in the standard testing set) of 1.02, but the ordinary
gradient approach attains a test log-likelihood of only −0.13. See Fig. 9 in Appendix F for samples
from the latent space, and Fig. 10 for the training curves. We see that the ordinary gradient model
cannot find a good solution, even in a large number of iterations, but the natural gradient model
performs similarly to the analytic case.

6 Conclusion

We presented a model for conditional density estimation with Gaussian processes. Our approach
extends prior work in three significant ways. We perform Bayesian linear transformations on both
input and output spaces to allow for the modeling of high-dimensional inputs and strongly-coupled
outputs. Our model is able to operate in low and high data regimes. Compared with other approaches
we have shown that our model does not over-concentrate its density, even with very few data.
For inference, we derived an optimal posterior for the latent variable inputs and we demonstrated
the usefulness of natural gradients for mini-batched training of GPs with uncertain inputs. These
improvements provide us with a more accurate variational approximation, and allow us to scale to
larger datasets than were previous possible. We applied the model in different settings across a wide
range of dataset sizes and input/output domains, demonstrating its general utility.
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