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Abstract—Most of existing models for facial behavior analysis
rely on generic classifiers, which fail to generalize well to
previously unseen data. This is because of inherent differences
in source (training) and target (test) data, mainly caused by
variation in subjects’ facial morphology, camera views, etc. All
of these account for different contexts in which target and
source data are recorded, and thus, may adversely affect the
performance of the models learned solely from source data. In
this paper, we exploit the notion of domain adaptation and
propose a data efficient approach to adapt already learned
classifiers to new unseen contexts. Specifically, we build upon
the probabilistic framework of Gaussian processes (GPs), and
introduce domain-specific GP experts (e.g., for each subject).
The model adaptation is facilitated in a probabilistic fashion, by
conditioning the target expert on the predictions from multiple
source experts. We further exploit the predictive variance of
each expert to define an optimal weighting during inference. We
evaluate the proposed model on three publicly available datasets
for multi-class (MultiPIE) and multi-label (DISFA, FERA2015)
facial expression analysis by performing adaptation of two
contextual factors: ‘where’ (view) and ‘who’ (subject). In our
experiments, the proposed approach consistently outperforms (i)
both source and target classifiers, while using a small number of
target examples during the adaptation, and (ii) related state-of-
the-art approaches for supervised domain adaptation.

Index Terms—domain adaptation, Gaussian processes, multiple
AU detection, multi-view facial expression recognition.

I. INTRODUCTION

THE human face is believed to be the most powerful
channel for non-verbally conveying behavioral traits,

such as personality, intentions and affect [1], [2]. Throughout
the ages, people have learned to communicate the behav-
ioral traits to their environment via their facial expressions.
Facial expressions can be described at different levels [3]:
The more prevalent approaches focus on identifying either
the exact facial affect (emotions) or the activations of facial
muscles, named action units (AUs). According to [4] these
orthogonal approaches are just different measurements for
facial expressions. A comprehensive system that can be used
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Fig. 1. The proposed GPDE model. The learning consists of training
the multiple source (sk, k = 1, · · · ,M ) and the target (t) GP
experts (in this case, each subject is treated as an expert), using
the available labeled training data pairs (x,y) – the input features
(e.g., facial landmarks) and output labels (e.g., AU activations),
respectively. Adaptation (dashed lines) for the target data is performed
via conditioning the latent functions, f , of the target GP on the source
experts (t|s). During inference, we fuse the predictions from the
experts (µ{t,(t|s)}) by means of their predictive variance (V {t,(t|s)}),
with the role of a confidence measure.

to unify the different measurements is the facial action coding
system (FACS) [5]. FACS defines 30+ unique AUs and several
categories of head/eye movements, which can be used to
describe every possible facial expression.

Due to its practical importance in medicine, marketing and
entertainment, automated analysis of facial expressions has
received significant attention over the last two decades [6].
Despite rapid advances in computer vision and machine learn-
ing, the majority of the models proposed so far for facial
expression analysis rely on generic classifiers. With the term
‘generic’ we refer to simple classifiers that are trained on
all available data, which is assumed to encode all possible
variations of the population. Hence, the performance of these
classifiers is expected to degrade when applied to previously
unseen data [7]. Such a scenario is the case when we try
to infer the facial expression of a new subject whose level
of expressiveness deviates substantially from the ones of the
training subjects.

Besides the subject identity, there are also other sources
of variation that can significantly affect the performance of
generic classifiers. These sources can well be grouped accord-
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ing to the W5+ context design [8], which describes the target
behavior in terms of the context questions ‘who’, ‘where’,
‘how’, ‘what’, ‘when’ and ‘why’. Ideally, an appropriate model
for facial expression analysis should take into account all the
above contextual factors during training. However, due to the
lack of appropriate data, such an approach is not feasible.
Thus, the majority of the work has focused only on building
personalized classifiers for answering the question ‘who’ [8],
[9], [10], [11], or on combining illumination invariant features
with multi-view learning techniques for addressing the ques-
tion ‘where’ (variations in head-pose and illumination) [12],
[13], [14], [15], [16], [17]. Although these approaches showed
improvement over generic classifiers, there remain a number
of challenges to address. In particular, multi-view learning
requires a large number of images in various poses, which
are typically not readily available. Furthermore, for building
personalized classifiers, access to an adequate collection of
images of the target person is essential. Consequently, exist-
ing approaches perform re-weighting of previously learned
classifiers to fit the target data (e.g., [10]), or training of
new models using additional target data. However, they are
both sub-optimal since they require re-training of the original
models.

A better solution would be to develop mechanisms that
can adapt the learned models to the context of the examined
situation. In this article, we propose a first step in this
direction. In particular, we present an approach that can
be used to adapt the context questions where (view) and
who (subject), for facial expression recognition (FER) and
AU detection, respectively. More specifically, we explore the
problem of domain adaptation, where the distribution of the
(facial) features varies across domains (i.e., contexts such
as the view or subject), while the output labels (i.e., the
emotion expression or the AU activations) remain the same.
In the case of the context question ‘where’, this boils down
to adapting the frontal classifier to a non-frontal view using
only a small number of expressive images from the target
view. Similarly, in the case of the subject adaptation (‘who’),
the model adaptation is performed by using as few annotated
images of target subject as needed to gain in the prediction
performance (e.g., AU detection). Thus, our aim is to find
a data-efficient approach to adapt previously trained generic
models for facial behavior analysis, and overcome the burden
of computation-wise costly model relearning.

The proposed model is a generalization of Gaussian pro-
cesses (GPs) [18], and the product of expert models [19], [20],
to the domain adaptation scenario.1 More specifically, instead
of adjusting the classifier parameters between the domains, as
in [10], [21], [22], [23], [11], we propose the use of domain-
specific GP experts that model the domain specific attributes.
The modeling power of GPs allows us to model the desired
attributes in the target domain, in a data-efficient manner.
This is crucial for the training of the target expert since
the available annotated data are usually scarce. Moreover,
instead of minimizing the error between the distributions of the

1We use the non-parametric probabilistic framework of GPs as a basis
for our model because it is particularly suited for learning highly non-linear
mapping functions that can generalize from a small amount of training data.

original source and target domain data, as in [10], [23], we use
Bayesian domain adaptation [24] and facilitate the adaptation
of the classifier by conditioning the target expert on the
predictions from multiple source experts. The final prediction
for the adapted classifier is obtained as a weighted combination
of the predictions from the individual experts. The weighting
is facilitated by measuring the confidence of each classifier.
Contrary to [25] that represents the confidence heuristically as
the agreement between a positive and a negative classifier, in
our probabilistic formulation during the adaptation we exploit
the variance in the GP predictions when combining the source
and target domains [26]. This results in a confident classifier
that minimizes the risk of potential negative transfer (i.e., the
adapted model performing worse than the model trained using
the adaptation data only). Finally, in contrast to transductive
adaptation approaches (e.g., [10]) that need to be retrained
completely, adaptation of our model is efficient and requires
no retraining of the source model. An outline of the proposed
model is depicted in Fig. 1. The contributions of this work
can be summarized as follows:

• To the best of our knowledge, this is the first work in the
field of facial behavior modeling that can simultaneously
perform adaption to multiple outputs (i.e., AUs). In
our experiments, the proposed approach can effectively
perform adaptation of 12 AUs, while existing models
in the field attempt only adaptation for each output
independently.

• Our proposed model exploits the variance in the predicted
expression in order to utilize a measure of confidence
for weighting the importance of each expert. This is
in contrast to majority of the models that are purely
discriminative and, thus, do not provide a probabilistic
measure of ‘reliability’ for their predictions.

• Our approach is data efficient since it can perform the
adaptation using only a small number of target labeled
data. Through extensive experiments, we show empiri-
cally that it can generalize better than generic classifiers
learned from the available source and/or target (training)
data only, by using as few as 50 target samples for the
adaptation.

• Our experiments demonstrate that the prediction mech-
anism based on the weighted combination of the source
and target experts acts as a guard against negative transfer,
allowing the model to explore the full capacity of the
appropriate domain.

In our previous work [27], each output was constrained
to have the same variance in its predictions. In this article,
we relax this assumption by allowing each output to have
a different confidence in the output. In case of AUs, this is
a more realistic scenario since the proposed classifier may
be more confident in predicting some AUs than the others.
Hence, the weighting of the GP experts is decoupled across
the multiple outputs, which results in more robust predictions
when dealing with imbalanced datasets. Additional within- and
cross-dataset experimental evaluations demonstrate the cases
where the proposed re-weighted predictions are advantageous
over [27].
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II. RELATED WORK

In this section, we first review the related work in facial
behavior analysis. Then we discuss relevant machine learning
approaches for domain adaptation.

A. Domain Adaptation in Facial Behavior Analysis

An important issue for the facial behavior analysis, and, in
particular, the analysis of AUs, remains the poor generaliz-
ability to previously unseen data / contexts. Most works have
attempted to address this issue by normalizing the data based
on person-specific attributes (e.g., removing the global neutral
expression from an expressive image), as in [28]. However,
recent advances in the field focus on employing standard
domain adaptation techniques in order to build personalized
classifiers for the test subjects. A widely used algorithm for
adaptation is the kernel mean matching (KMM) [29], which
directly infers resampling weights by matching training and
test distributions. The authors in [10] employed the KMM
to learn person-specific AU detectors. This is attained by
modifying the SVM cost function to account for the mismatch
in the distribution between source and target domain, while
also adjusting the SVM’s hyper-plane to the target test data.
Although effective, this transductive learning approach is
inefficient since for each target subject a new classifier has
to be relearned during inference. Likewise, the authors in [23]
proposed a supervised extension to the KMM. Specifically,
they used the labeled examples from both domains in order
to align the source and target distributions in a class-to-class
manner. The reweighted source data along with the target data,
form the input features that are used to train several classifiers.

Apart from KMM, adaptation can be also attained by com-
bining the knowledge from multiple classifiers or by sharing
the parameter space between source and target classifiers.
In [22], a two-step learning approach is proposed for person-
specific pain recognition and AU detection. First, data of each
subject are regarded as different source domains, and are used
to train weak Adaboost classifiers. Then, the weak classifiers
are weighted based on their classification performance on the
available target data. A second boosting is applied on the best
performing source classifiers to derive the final set of weak
classifiers for the target data. In [11], [21], the Adaboost clas-
sifiers are replaced with the linear SVMs. First, independent
AU classifiers are trained from the source domain data. Then,
the support vector regression is employed to associate the input
features with the classifiers’ parameters. Finally, the unlabeled
target domain data are fed into the learned regressors, in order
to obtain the target-specific classifiers parameters.

Recently, an attempt closer to our proposed method has been
presented in [25]. The authors suggested to train target-specific
classifiers by exploiting the confidence in the predictions from
the source classifiers. In their approach, the confidence is
represented by the agreement in the predictions between a pair
of SVM classifiers, trained to distinguish the positive and neg-
ative samples in the source data. The confident classifiers are
then employed to obtain ‘virtual’ labels for a portion of the tar-
get data, which can be used to train a target-specific detector.

Note that, apart from [22], all the works mentioned above
operate in the unsupervised setting. While this requires less
effort in terms of obtaining the labels for the target sub-
sample, its underlying assumption is that target data can be
well represented as a weighted combination of the source
data. However, in order for this to work effectively, it is
usually required to have access to lots of data from the
target domain. Even when this is the case, in real world this
assumption can easily be violated (e.g., due to variations in
subject’s expressiveness, illuminations, etc.), resulting in poor
performance of the adapted classifier.

In this work, we adopt a supervised approach that needs
only a small amount of annotated data from target domain
to perform the adaptation. This, in turn, allows us to define
both target and source experts, assuring that the performance
of the resulting classifier is not constrained by the distribution
of the source data, as in unsupervised adaptation approaches.
Contrary to transductive learning approaches such as [10], our
approach requires adaptation of the target expert solely, with-
out the need to relearn the source experts, resulting in an effi-
cient adaptation process. Moreover, compared to our approach,
only [25] provides a measure of confidence in the predicted la-
bels. Yet, even in [25] the confidence is obtained in a heuristic
manner and is not directly related to the prediction of the clas-
sifier. On the contrary, we model the confidence in a principled
manner by means of predicted variance. Finally, note that the
proposed approach and the methods mentioned above differ
from those recently proposed for transfer learning, e.g., [30].
The goal of the latter is to adapt a classifier learned for instance
for one AU to another, which is different from the adaptation
task addressed here and is out of the scope of this work.

B. Domain Adaptation

Domain adaptation is a well studied problem in machine
learning (for an extensive survey, see [31]). In general, the
adaptation problem stems from the change in the distributions
of the input features and/or output labels between the two do-
mains. The goal of domain adaptation is to match the differing
distributions in order to learn a machinery that works suffi-
ciently well on the test (target) data. Recent work has shown
that the study of the causal relations between the data could be
further useful on understanding how the distributions change
across domains [32], [33]. The adaptation can be performed
either in an unsupervised or a (semi-)supervised setting, based
on the availability of labeled target domain data. The (semi-
)supervised setting is more appropriate to our target task, since
the available labels can be used to enhance the classification
performance. One of the first attempts toward this directions
has been presented in [34]. The authors proposed to replicate
the input features to produce shared and domain-specific
features, which are then fed into a generic classifier. Although
straightforward, this approach has been proven effective for the
adaptation task. [35] learns a transformation that maximizes
similarity between data in the source and target domains by en-
forcing data pairs with the same labels to have high similarity,
and pairs with different labels to be dissimilar. Then, a k-NN
classifier is used to perform classification of target data. [36] is
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an extension of this approach to multiple source domains. The
input data are assumed to be generated from category-specific
local domain mixtures, the mixing weights of which determine
the underlying domain of the data, classified using an SVM
classifier. Similarly, [37] learns a linear asymmetric transfor-
mation to maximally align target features to the source domain.
This is attained by introducing max-margin constraints that
allow the learning of the transformation matrix and SVM
classifier jointly. [38] extends the work in [37] by introducing
additional constraints to the max-margin formulation. More
specifically, unlabeled data from the target domain are used to
enforce the classifier to produce similar predictions for similar
target-source data. While these methods attempt to directly
align the target to source features, several works attempted
this through a shared manifold. For instance, [39] learns a
non-linear transformation from both source and target data to
a shared latent space, along with the target classifier. Like-
wise, [40] finds a low-dimensional subspace, which preserves
the structure across the domains. The subspace is facilitated
by projections that are learned jointly with the linear classifier.
The structure preservation constraints are used to ensure that
similar data across domains are close in the subspace.

All of the methods mentioned above tackle the adaptation
problem in a deterministic fashion. Thus, they do not provide
a measure of confidence in the target predictions. By contrast,
our approach is fully probabilistic and non-parametric due to
the use of GPs, and is more related to recent advances in the
literature [41], [24], [42] that perform the domain adaptation
in a Bayesian fashion. Specifically, in [41] a discriminative
framework is proposed to couple data from different domains
in a shared subspace. Task-specific projections are learned
simultaneously with the classifiers in order to couple all the
task from the multiple domains in the obtained subspace.
In [24], the predictive distribution of a GP trained on the
source data is used as a prior for the joint distribution of the
source and target domains. The information from the source
domain can be analytically propagated to the inference of the
target data by simply following the conditional properties of
the GPs. Similarly, in [42] the authors proposed a two-layer GP
that jointly learns separate discriminative functions from the
source and target features to the labels. The intermediate layer
facilitates the adaptation step and a variational approximation
is employed to integrate out this layer, and propagate the
information from the source to the target classifier.

Compared to the aforementioned work, our approach has
the following key differences: in [41], the authors learn the
classifier on a subspace shared among the data from source and
target domains. This can be problematic in cases where access
to target domain data is confined, since it bias the manifold
toward explaining the variations from the source domain. In
contrast to [24], our proposed approach defines a target specific
expert, which is then combined with the source domain
experts. The benefit of this is that the resulting classifier is not
limited by the distribution of the source data. Also, in contrast
to [42], the training of the experts is performed independently,
and thus, we need not retrain the source classifier. Taken
together, these differences bring significant improvements in
estimation of the target tasks, as shown in our experiments.

III. PROBLEM FORMULATION

We consider a supervised setting for domain adaptation,
where we have access to a large collection of labeled source
domain data, S, and a smaller set of labeled target domain
data, T . Let X and Y be the input (features) and output
(labels) spaces, respectively. Hence, X(s) = {x(s)

ns }Ns
ns=1 and

X(t) = {x(t)
nt }Nt

nt=1, with x(s)
ns ,x

(t)
nt ∈ RD, and Nt � Ns.

In our case, the different domains can be different views
or subjects. On the other hand, Y (s) = {y(s)

ns }Ns
ns=1 and

Y (t) = {y(t)
nt }Nt

nt=1 correspond to same labels for both source
and target domains. Each vector y{s,t}n contains the binary
class labels of C classes. In order to avoid the burden of
learning approximate solutions with GP classification, we
formulate the predictions as a regression problem where:

y(v)
nv

= f (v)(x(v)
nv

) + ε(v), (1)

where ε(v) ∼ N (0, σ2
v) is i.i.d. additive Gaussian noise,

and the index v ∈ {s, t} denotes the dependence on each
domain. The objective is to infer the latent functions f (v),
given the training dataset D(v) = {X(v),Y (v)}. By following
the framework of GPs [18], we place a prior on the functions
f (v), so that the function values f (v)

nv
= f (v)(x

(v)
nv ) follow

a Gaussian distribution p(F (v)|X(v)) = N (F (v)|0,K(v)).
Here, F (v) = {f (v)

nv
}Nv
nv=1, and K(v) = k(v)(X(v),X(v)) is

the kernel covariance function, which is assumed to be shared
among the label dimensions. In this work, we use the radial
basis function (RBF) kernel

k(x,x′) = σ2
f exp

(
− 1

2`2
‖x− x′‖2

)
, (2)

where {`, σf} are the kernel hyper-parameters. The regression
mapping can be fully defined by the set of hyper-parameters
θ = {`, σf , σv}. Training of the GP consists of finding the
hyper-parameters that maximize the log-marginal likelihood

log p(Y (v)|X(v),θ(v)) =− 1

2
tr
[
(K(v) + σ2

vI)
−1Y (v)Y (v)T

]
− C

2
log |K(v) + σ2

vI|+ const. (3)

Given a test input x(v)
∗ the predicted function evaluation

f (v)
∗ is given from the GP predictive distribution by con-

ditioning on the training data D(v) as p(f (v)
∗ |x

(v)
∗ ,D(v)) =

N (µ(v)(x
(v)
∗ ), V (v)(x

(v)
∗ )) with

µ(v)(x(v)
∗ ) = k(v)∗

T
(K(v) + σ2

vI)
−1Y (v) (4)

V (v)(x
(v)
∗ ) = k

(v)
∗∗ − k(v)∗

T
(K(v) + σ2

vI)
−1k(v)∗ , (5)

where k
(v)
∗ = k(v)(X(v),x

(v)
∗ ) and k

(v)
∗∗ = k(v)(x

(v)
∗ ,x

(v)
∗ ).

For convenience we denote µ(v)
∗ = µ(v)(x

(v)
∗ ) and V

(v)
∗∗ =

V (v)(x
(v)
∗ ). Under this general formulation, we have the

choice to learn either (i) independent functions f (v) or (ii)
a universal function f that couples the data from the two
domains. However, neither option allows us to explore the
idea of domain adaptation: In the former we learn domain-
specific models, while in the latter we simplify the problem by
concatenating the data from the two domains. An alternative
would be to merge the two approaches in order to achieve a
better generalization, while also being able to model domain
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specific attributes. Such a combined approach would allow us
to obtain more robust predictions.

IV. DOMAIN CONDITIONED GPS

In the following, we introduce the notion of domain adap-
tation in the framework of GPs. Then, we present a novel
methodology to merge the above mentioned learning scenarios,
in order to obtain a universal classifier with good gener-
alization abilities and capable of modeling domain specific
attributes for the target tasks.

A. GP Adaptation

A straightforward approach to obtain a model capable of
performing inference on data from both domains is to assume
the existence of a universal latent function with a single set
of hyper-parameters θ. Thus, the authors in [24] proposed a
simple, yet effective, three-step approach for GP adaptation
(GPA):

1) Train a GP on the source data with marginal likelihood
p(Y (s)|X(s),θ) to learn the hyper-parameters θ. The
posterior distribution is then given by Eqs. (4–5).

2) Use the obtained posterior distribution of the source
data, as a prior for the GP of the target data
p(Y (t)|X(t),D(s),θ).

3) Correct the posterior distribution to account for the target
data D(t) as well.

Now the conditional prior of the target data (given the
source data) in the second step is given by applying Eqs. (4–5)
on X(t)

µ(t|s) =K
(s)
st

T
(K(s) + σ2

sI)
−1Y (s) (6)

V (t|s) =K
(s)
tt −K

(s)
st

T
(K(s) + σ2

sI)
−1K

(s)
st , (7)

where K(s)
tt = k(s)(X(t),X(t)),K

(s)
st = k(s)(X(s),X(t)), and

the superscript t|s denotes the conditioning order. Given the
above prior and a test input x(t)

∗ , the correct form of the
adapted posterior after observing the target domain data is:

µ
(s)
ad (x

(t)
∗ ) = µ

(s)
∗ + V (t|s)

∗
T
(V (t|s) + σ2

sI)
−1(Y (t) − µ(t|s))

(8)

V
(s)
ad (x

(t)
∗ ) = V

(s)
∗∗ − V (t|s)

∗
T
(V (t|s) + σ2

sI)
−1V (t|s)

∗ , (9)

with V
(t|s)
∗ = k(s)(X(t),x

(t)
∗ ) − k(s)(X(s),X(t))

T
(K(s) +

σ2
sI)
−1k(s)(X(s),x

(t)
∗ ).

Eqs. (8–9) show that final prediction in the GPA is the
combination of the original prediction based on the source
data only, plus a correction term. The latter shifts the mean
toward the distribution of the target data and improves the
model’s confidence by reducing the predictive variance. Note
that we originally constrained the model to learn a single latent
function f for both conditional distributions p(Y (v)|X(v))
to derive the posterior for the GPA. However, this constraint
implies that the marginal distributions of the data p(X(v))
are similar. This assumption violates the general idea of
domain adaptation, where by definition, the marginals may
have significantly different attributes (e.g., input features from
different observation views). In such cases, GPA could perform

worse than an independent GP trained solely on the target data
D(t). One possible way to address this issue is to retrain the
log p(Y (t)|X(t),D(s),θ) of the GPA w.r.t. θ [24]. This option
will compensate for the differences in the distributions by
readjusting the hyper-parameters. However, it comes with the
price of retraining of the model. Furthermore, it does not allow
for modeling domain-specific attributes since the predictions
are still determined mainly from the source distribution.

B. GP Domain Experts (GPDE)

In the proposed approach, we assume that each expert is
a GP that operates only on a subset of data, i.e., D(s),D(t).
Hence, we can follow the methodology presented in Sec. III
in order to train domain-specific GPs and learn different latent
functions, i.e., hyper-parameters θ(v). Within the current
formulation we treat the source domain as a combination
of multiple source datasets (e.g., subject-specific datasets)
D(s) = {D(s1), . . . ,D(sM )}, where M is the total number of
source domains (datasets).
Training. Given the above mentioned data split and assuming
conditional independence of the labels from each domain given
the corresponding input features, the marginal likelihood can
be approximated by

p(Y {s,t}, |X{s,t},θ{s,t}) =

p(Y (t)|X(t),θ(t))

M∏
k=1

pk(Y
(sk)|X(sk),θ(s)). (10)

We share the set of hyper-parameters θ(s) across all the source
domains. The intuition behind this is that in each source
domain we may observe a different conditional distribution
p(Y (sk)|X(sk)), yet after exploiting all the available datasets
we can model the overall conditional p(Y (s)|X(s)) with
a single set of hyper-parameters θ(s). However, this does
not guarantee that we are also able to explain the target
conditional p(Y (t)|X(t)) with the same hyper-parameters.
Recall that in our domain adaptation scenario the marginals
of the labels are the same p(Y (t)) = p(Y (s)). However,
both the marginal distribution of the features p(X(t)) and
the conditional distribution of the labels p(Y (t)|X(t)) have
changed in the target domain. Thus, we also search for θ(t)

for modeling the domain-specific attributes. Similar to Sec. III
learning of the hyper-parameters is performed by maximizing

log p(Y {s,t}, |X{s,t},θ{s,t}) = log p(Y (t)|X(t),θ(t))

+

M∑
k=1

log pk(Y
(sk)|X(sk),θ(s)), (11)

where each log-marginal is computed according to Eq. (3). The
above factorization, apart from facilitating learning of the do-
main experts, allows for efficient GP training even with larger
datasets, as shown in [19]. Note that the source experts can be
learned independently from the target, which allows our model
to generalize to unseen target domains without retraining.
Predictions. Once we have trained the GPDE, we need to
combine the predictions from each expert to form an overall
prediction. To achieve so, we build upon the approach in [20],
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where we further readjust the predictions from the source
experts using the conditional adaptation from GPA. Hence,
the predictive distribution is given by

p(f (t)
∗ |x

(t)
∗ ,D) =

M∏
k=1

p
βsk

k (f (t)
∗ |x

(t)
∗ ,D(sk),D(t),θ(s))·

pβt(f (t)
∗ |x

(t)
∗ ,D(t),θ(t)), (12)

where βsk , βt control the contribution of each expert. In
this work we equally weight the experts and normalize
them such that βt +

∑
βsk = 1, as suggested in [19].

The predictive mean and variance are then given by

µgpde
∗ = V gpde

∗

[
βtV

(t)
∗
−1
µ

(t)
∗ +

∑
k
βskV

(sk)
ad

−1
µ

(sk)
ad

]
(13)

V gpde
∗ =

[
βtV

(t)
∗
−1

+
∑

k
βskV

(sk)
ad

−1]−1
. (14)

At this point the contribution of the GPDE becomes clear:
Eq. (13) shows that the overall mean is the sum of the
predictions from each expert, weighted by their precision
(inverse variance). Hence, the solution of the GPDE will favor
the predictions of more confident experts. On the other hand,
if the quality of a domain expert is poor (noisy predictions
with large variance), GPDE will weaken its contribution to
the overall prediction.

C. Weighted GP Domain Experts for imbalanced outputs

In the analysis we conducted so far, we treated the multiple
outputs as i.i.d. samples from a joint Gaussian distribution.
Hence, we assumed a shared covariance matrix among the
multiple output dimensions, which results in the same weight-
ing/variance in Eqs. (13–14). This assumption becomes unre-
alistic in cases where we have to deal with imbalanced data
in the output, e.g., AUs with different occurrence patterns.
Thus, it is important in each expert to account for a different
variance per output. To address this, we follow the approach
presented in [43], [44], and introduce a weighting matrix to
the log-marginal likelihood of each expert in Eq. (11), so that

log p(Y (v)|X(v),θ(v)) = −1

2
tr
[
(K(v) + σ2

vI)
−1Y (v)Λ(v)Y (v)T

]
− C

2
log |K(v) + σ2

vI|+
Nv
2

log |Λ(v)|+ const, (15)

where Λ(v) = diag(λ(v)1 , · · · , λ(v)C ). This is equivalent
to learning a GP with covariance function k(v)(·, ·) =

k(v)(·, ·)/λ(v)c for each output dimension c. The term 1/λ
(v)
c

accounts for the different variances in the output dimensions
and gives more flexibility to the model, since more represen-
tative input-output mappings can be learned.

Note, however, that the predicted variance of a probabilistic
model depends highly on the training data. A GP domain
expert can have access to data with zero activations for a
certain output, while other outputs may frequently co-occur
together. This suggests that there exists an intrinsic structure
between the outputs, which we do not account for within the
GPDE. To ameliorate this, we re-parameterize λ(v)c as

1

λ
(v)
c

=
w

(v)
c∑
c w

(v)
c

, (16)

Algorithm 1 Domain adaptation with (w)GPDE

Inputs: D(s) = {X(s),Y (s)},D(t) = {X(t),Y (t)}
Training:

Learn the hyper-parameters θ{s,t} by maximizing Eq. (11).
Adaptation:

Adapt the posterior from the source experts via Eq. (8–9).
Predictions of Experts:

Combine the prediction from each GP domain expert via
Eq. (13–14) for GPDE or Eq. (17–18) for wGPDE.
Output: y∗ = sign(µgpde

∗ ).

where w(v)
c is the new parameter to learn. As we can see from

Eq. (16), the variance of each output is now proportional to the
amount of the total variance. Such a re-parameterization cor-
rectly enforces the total variance of the GP to be distributed to
the various outputs. It can be also regarded as a straightforward
way to rectify the assumption of having i.i.d. outputs, since
now frequently co-occurring outputs will be assigned similar
weights, and, hence, a similar covariance function. We name
this approach as weighted Gaussian process domain experts
(wGPDE), to differentiate it from the single variance GPDE.
Re-weighted Predictions. By propagating the weighting ma-
trix Λ to the predictive distribution of the proposed wGPDE,
we can derive the re-weighted predictions for the c-th output

µgpde
∗c = V gpde

∗c

[
βtλ

(t)
c V

(t)
∗
−1
µ

(t)
∗c +

∑
k
βskλ

(sk)
c V

(sk)
ad

−1
µ

(sk)
adc

]
(17)

V gpde
∗c =

[
βtλ

(t)
c V

(t)
∗
−1

+
∑

k
βskλ

(sk)
c V

(sk)
ad

−1]−1
. (18)

By comparing Eqs. (13–14) to Eqs. (17–18) we see that the
combined predictions from all the experts depend on the
predicted variance of each output. This allows the re-weighted
experts to be confident (higher contribution to the overall
prediction) for certain outputs, while remaining ‘silent’ for
outputs that have not seen. On the contrary, Eqs. (13–14)
assign the same weight to all outputs, a fact that increases
the bias in the predictions. Algorithm 1 summarizes the
adaptation procedure of the proposed (w)GPDE.

V. EXPERIMENTS

Datasets: We evaluate the proposed model on acted and
spontaneous facial expressions from three publicly available
datasets: MultiPIE [45], Denver Intensity of Spontaneous
Facial Actions (DISFA) [46] and BP4D [47] (using the
publicly available data subset from the FERA2015 [48]
challenge). Specifically, MultiPIE contains images of 373
subjects depicting acted facial expressions of Neutral
(NE), Disgust (DI), Surprise (SU), Smile (SM), Scream
(SC) and Squint (SQ), captured at various pan angles. In our
experiments, we used images from 0◦, −15◦ and −30◦. DISFA
is widely used in the AU-related literature, due to the large
amount of (subjects and AUs) annotated images. It contains
video recordings of 27 subjects while watching YouTube
videos. Each frame is coded in terms of the intensity of 12 AUs
on a six-point ordinal scale. In our experiments, we treated
each AU with intensity larger than zero as active. FERA2015
database includes videos of 41 participants. There are 21
subjects in the training and 20 subjects in the development
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Fig. 2. Example images from MultiPIE (top), DISFA (middle) and
FERA2015 (bottom) datasets.

partition. Each video is annotated in terms of occurrence of 11
AUs. Example images of the three datasets are given in Fig. 2.
Features: We use both a set of geometric features derived
from the facial landmark locations, as well as appearance
features. Specifically, DISFA and FERA2015 datasets
come with frame-by-frame annotations of 66 and 49 facial
landmarks, respectively, while a set of 66 annotated points for
MultiPIE were obtained from [49]. After removing the contour
landmarks from DISFA and MultiPIE annotations, we end up
with the same set of 49 facial points for all three datasets.
These were then registered to a reference face (average face
per view for MultiPIE, and average face for DISFA and
FERA2015) using an affine transformation. We then extract
Local Binary Patterns (LBP) histograms [50] with 59 bins
from patches centered around each registered point. Hence,
we obtain 98D (geometric) and 2891D (appearance) feature
vectors, commonly used in modeling of facial affect. For the
high dimensional appearance features, in order to remove po-
tential noise and artifacts, and also reduce the dimensionality,
we applied PCA, retaining 95% of the energy, which resulted
in approximately 200D appearance feature vectors.
Evaluation procedure. We evaluate (w)GPDE on both
multi-class (FER on MultiPIE) and multi-label (multiple
AU detection on DISFA and FERA2015) scenarios. We also
assess the adaptation capacity of the model with a single
(view adaptation) and multiple (subject adaptation) source
domains. For the task of FER, images from 0◦, −15◦ and
−30◦ served interchangeably as the source domain, while
inference was performed via adaptation to the remaining
views. For the AU detection task, the various subjects from
the training data were used as multiple source domains, and
adaptation was performed each time to the tested subject.

To evaluate the model’s adaptation ability, we strictly
follow a training protocol, where for each experiment we
vary the cardinality of the training target data (we always
use all the available source domain data). For MultiPIE,
we first split the data in 5-folds (4 training, 1 testing and
iterate over all folds) and then, we keep increasing the
cardinality as: Nt = 10, 30, 50, 100, 200, 300, 600, 1200.
For DISFA we follow a leave-one-subject-out approach
(26 training source subjects and 1 target test subject at a
time). For FERA2015 we followed the original partitioning
suggested in [48] (20 training source subjects from the

training partition, while each of the 20 subjects in the
development partition served as an individual target domain).
From the test subject’s sequence in DISFA and FERA2015
the first 500 frames were used as target training data (with
increasing cardinality Nt = 10, 30, 50, 100, 200, 500), while
inference was performed on the rest frames of the sequence.
This is in order to avoid the target model overfitting the
temporally neighboring examples of the test subject. For the
FER experiments, we employ the classification ratio (CR)
as the evaluation measure, while for the AU detection we
report the F1 score and the area under the ROC curve (AUC).
Both F1 and AUC are widely used in the literature as they
quantify different characteristics of the classifiers performance.
Specifically, F1, defined as F1 = 2·Precision · Recall

Precision + Recall , is the harmonic
mean between the precision and recall. It puts emphasis on the
classification task, while being largely robust to imbalanced
data (such as examples of different AUs). AUC quantifies
the relation between true and false positives, showing the
robustness of a classifier to the choice of its decision threshold.
Models compared. We compare the proposed approach with
the two generic models GPsource and GPtarget. The former
is trained solely on the source data, while the latter on the
target data used for the adaptation. We also compare to the
modeled trained on the concatenation of the source and target
training data, i.e., GPs+t. Additionally, we compare to the
state-of-the-art models based on GPs for supervised domain
adaptation, i.e., the GPA [24] and the asymmetric transfer
learning with deep GP (ATL-DGP) [42]. The GPA is an
instance of the proposed GPDE, with only a source expert
(no target) and predictions given by Eqs. (8)–(9). ATL-DGP
employs an intermediate GP to combine the predictions of
GPsource and GPtarget. In Table I, we summarize the learning
and inference complexity of all the GP-related methods. It
is worth noting that GPA [24] and the proposed (w)GPDE
can benefit from offline learning of the expensive source
classifier, GPsource. GPA can perform directly the adaptation
during inference. Hence, it is the most efficient method of all.
However, the fact that it does not update the kernel’s hyper-
parameters after observing the target training data is the reason
why it is expected most of the time to perform worse than the
concatenated model, i.e., GPs+t. Adaptation in the proposed
(w)GPDE depends only on the amount of available target
training data Nt, and thus, it is very efficient since Nt � Ns.
On the other hand, GPs+t and ATL-DGP [42] need to go
through the source data in order to perform the adaptation.
Hence, even with few target training data, their efficiency is
bounded from the cardinality of the source domain.

Apart from the GP-based adaptation techniques, we
compare to the deterministic max-margin domain transfer
(MMDT) [37], that adjusts the SVM classifier to the domain
adaptation scenario, and kernelized Bayesian transfer learning
(KBTL) [41] that finds a shared subspace appropriate for
the classification of various tasks (domains) in a probabilistic
manner. Finally, we compare to state-of-the-art methods from
the field of action unit analysis, i.e., the dynamic SVM
(dynSVM) [28] that performs the adaptation by neutral cali-
bration (e.g., removing the average, per subject, neutral image
from the input data), and the confidence preserving machine
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TABLE I
LEARNING AND INFERENCE COMPLEXITY OF THE GP-RELATED METHODS
FOR DOMAIN ADAPTATION. THE COMPLEXITY FOR TRAINING GPsource IS
O(N3

s ). GPA [24] AND THE PROPOSED (W)GPDE CAN BENEFIT FROM
OFFLINE LEARNING OF THE EXPENSIVE SOURCE CLASSIFIER. FOR

ATL-DGP [42] C IS THE NUMBER OF CLASSES AND M THE NUMBER OF
INDUCING POINTS. NOTE THAT Nt � Ns .

Source offline? Adaptation Prediction (µ∗, V∗)

GPsource 7 N/A O(Ns), O(N2
s )

GPs+t 7 O((Ns +Nt)3) O(Ns +Nt), O((Ns +Nt)2)
ATL-DGP [42] 7 O(CM2(Ns +Nt)) O(CM), O(CM2)
GPA [24] 3 0 O(Ns +Nt), O(N2

s +N2
t )

(w)GPDE 3 O(N3
t ) O(Ns +Nt), O(N2

s +N2
t )

(CPM) [25] that reweights the source classifier based on a con-
fidence measure, before applying it to the data from the target
subject. Implementations of dynSVM and CPM were not avail-
able, thus, the reported results were taken from the authors’
websites. The parameters of the compared methods were tuned
based on a cross-validation strategy. The proposed (w)GPDE
is a non-parametric model with no free parameters to tune.

A. View adaptation from a single source: ‘where’

In this experiment, we demonstrate the effectiveness
of the proposed approach when the distributions between
source and target domain (0◦, −15◦ and −30◦) differ in an
increasing non-linear manner. For this purpose we evaluate
all considered algorithms in terms of their ability to perform
accurate FER as we move away from the source pose. Notice
that the weighted version of our method, i.e., wGPDE is not
evaluated on the current experiment since FER is an intrinsic
single output problem, and hence, there are no additional
variances to be modeled. Furthermore, in this scenario we
only considered the geometric features as inputs to the
compared models since they have been proved efficient to
model the global phenomena of the facial expressions [17].

Table II summarizes the results. The generic classifier
GPsource exhibits the lowest performance, due to the fact
that it has only been trained on source domain images. It
is important to note the fluctuations in the classification rate
when the source and target domain vary. We can clearly see
that when the frontal pose, i.e., 0◦ is used as the source
domain, the symmetric nature of the face helps towards
achieving a satisfactory performance on the target domains.
Yet, the performance degrades when the symmetry is severely
violated, e.g., 0◦ → −30◦. When −15◦ and −30◦ serve as the
source domain, these symmetric attributes cannot be uncovered
from the generic GPsource. Hence, we observe a significantly
lower performance for the target frontal view (around 55%).
The above results clearly indicate the inefficiency of a generic
classifier to deal with data of different characteristics.

On the other hand, the GPtarget when trained with as few
as 30–50 data points, in most of the cases, achieves similar
performance to the GPsource since it benefits from modeling
domain-specific attributes. A further increase in the cardinality
of the target training data results in a significant improvement
in the classification rate. This is even more pronounced in the
scenario we have illustrated above, i.e., the target frontal view.

As we can see the generic classifier when trained on the 0◦ can
reach the CR of 84.06%, compared to the achieved 53.82%
and 56.56% when trained on −15◦ and −30◦, respectively.

The performance of the concatenated model, i.e., GPs+t
is influenced from both the source and the target data, as
was expected. When we have access to only few training
target data, GPs+t is influenced more from the source domain.
Hence, in situations where GPsource performs poorly, we
observe a negative transfer, and thus, GPs+t cannot reach the
performance of the target classifier, even with the inclusion of
more target data. On the contrary, when both GPsource and
GPtarget achieve high performance, the GPs+t manages to
surpass both of them.

A similar trend can be observed in the performance of the
adaptation methods, where the inclusion of 10–30 labeled data
points from the target domain is adequate to shift the learned
source classifier towards the distribution of the target data.
The GPA uses the extra data to condition on the generic
classifier GPsource and increase its prediction performance.
Thus, it can reach its highest performance in situations where
the generic classifier GPsource is already sufficient for the
FER task (i.e., −15◦ and −30◦). However, in most cases
it cannot achieve higher performance than the GPs+t. This
is expected since the latter learns the hyper-parameters on
the concatenation of both source and target domains. On the
contrary, GPA performs inference with the parameters learned
using only the data from the source domain. ATL-DGP on
the other hand follows the learning strategy of the GPs+t,
since it facilitates a joint learning scheme where GPsource and
GPtarget are fused together in an intermediate latent space,
via conditioning, in a deep architecture. The advantage of the
latter is evidenced by the highest achieved accuracy in the
situations where the source classifier performs averagely, i.e.,
0◦ → −30◦, −15◦ → 0◦ and −30◦ → 0◦ for Nt = 10–
50. However, the joint training scheme of ATL-DGP limits its
adaptation ability, due to the high effect of the source prior.
A further disadvantage of ATL-DGP’s joint learning is that it
requires retraining of both source and target classifiers every
time the target distribution changes.

An opposite pattern (compared to ATL-DGP) can be
observed in the performance of both MMDT and KBTL.
Both of these methods achieve, to some extent, to reach
the accuracy of the generic GPtarget classifier, when more
and more target data become available. On the contrary
their performance is problematic when dealing with quite
few labeled target data, i.e., Nt < 50. In such cases, the
parametric nature of MMDT does not allow for effective
learning of the projections from the target to the source
domain, and hence, the learned classifier fails to poor results.
Similarly, KBTL cannot recover accurate projections from
the target domain data to a low-dimensional space. The latter
has a negative impact on the accuracy of KBTL.

Finally, the proposed GPDE, exhibits the most stable
performance for varying cardinality of labeled target data.
This can be attributed to the fact that it uses the notion
of experts to unify GPsource and GPtarget into a single
classifier. To achieve so, GPDE measures the confidence of
the predictions from each expert (by means of predictive
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TABLE II
AVERAGE CLASSIFICATION RATE ACROSS 5-FOLDS ON MULTIPIE. THE VIEW ADAPTATION IS PERFORMED WITH INCREASING CARDINALITY OF

LABELED TARGET DOMAIN DATA (10− 1200).

Target −15◦ −30◦
Nt 10 30 50 100 200 300 600 1200 10 30 50 100 200 300 600 1200

So
ur

ce
0
◦

GPsource 81.65 76.94
GPtarget 55.85 81.19 84.59 89.61 90.66 91.31 91.57 97.26 51.99 76.09 81.97 86.48 88.57 89.75 92.16 98.43
GPs+t 82.41 84.00 85.37 88.70 90.20 91.44 94.32 96.73 77.45 79.75 81.65 85.50 87.72 87.52 89.22 94.64
GPA [24] 82.36 84.00 85.37 88.63 90.20 91.51 93.79 96.15 77.73 79.82 81.65 85.43 87.79 87.72 89.29 93.01
ATL-DGP [42] 83.32 86.34 85.22 85.62 88.16 89.82 91.24 93.72 79.82 82.93 83.36 85.53 85.63 87.41 89.17 93.91
MMDT [37] 21.75 66.88 82.63 88.11 89.81 91.25 90.73 90.46 27.37 71.39 80.47 86.48 87.59 88.70 89.16 90.53
KBTL [41] 41.67 69.11 72.57 85.63 87.98 89.61 91.18 97.19 34.36 62.44 66.62 81.71 84.91 86.35 89.55 95.62
GPDE 82.95 86.35 87.52 92.10 93.73 94.64 95.36 97.84 78.71 82.17 84.65 87.85 88.83 90.01 91.38 96.86

Target 0◦ −30◦
Nt 10 30 50 100 200 300 600 1200 10 30 50 100 200 300 600 1200

So
ur

ce
−
1
5
◦

GPsource 53.82 85.70
GPtarget 52.91 61.27 64.60 71.96 77.53 79.10 81.84 84.06 51.99 76.09 81.97 86.48 88.57 89.75 92.16 98.43
GPs+t 53.11 57.81 60.16 63.81 67.15 69.56 75.24 80.67 84.36 92.62 93.21 93.75 94.53 95.89 96.02 98.01
GPA [24] 55.00 57.67 59.70 63.10 65.51 68.26 72.83 78.31 88.37 92.16 93.21 93.86 94.45 94.97 95.30 97.52
ATL-DGP [42] 70.11 73.20 71.15 72.21 73.48 75.87 79.91 82.15 78.33 79.95 82.68 85.12 86.79 89.44 91.76 95.33
MMDT [37] 17.37 42.91 63.03 71.72 72.44 74.98 78.18 79.23 11.93 63.10 86.54 90.27 89.55 90.40 89.03 86.81
KBTL [41] 22.08 35.99 59.24 67.28 70.35 71.39 75.11 79.03 32.20 64.21 70.35 82.89 87.00 87.85 90.73 96.41
GPDE 56.11 63.23 66.82 72.37 75.64 76.94 80.40 83.80 88.44 93.40 94.32 93.99 94.84 94.64 94.97 98.04

Target 0◦ −15◦
Nt 10 30 50 100 200 300 600 1200 10 30 50 100 200 300 600 1200

So
ur

ce
−
3
0
◦

GPsource 56.56 91.38
GPtarget 52.91 61.27 64.60 71.96 77.53 79.10 81.84 84.06 55.85 81.19 84.59 89.61 90.66 91.31 91.57 97.26
GPs+t 57.22 60.42 61.59 65.38 67.34 70.02 75.70 80.67 92.68 94.51 94.81 95.75 96.21 97.06 96.93 98.24
GPA [24] 57.41 59.83 61.53 64.53 67.15 69.24 75.11 77.60 93.27 94.58 94.72 95.43 95.89 96.54 96.47 97.91
ATL-DGP [42] 70.13 75.38 73.45 74.79 74.68 77.23 79.92 82.03 83.52 84.21 84.94 85.02 87.90 89.84 92.13 94.63
MMDT [37] 20.77 46.11 60.81 69.76 72.63 76.55 78.71 79.69 23.97 72.11 86.41 92.36 92.36 92.68 93.08 92.42
KBTL [41] 22.08 35.60 59.37 67.60 70.15 71.06 74.85 78.18 40.10 68.26 75.38 87.72 89.42 90.01 91.70 97.58
GPDE 59.57 65.58 69.56 72.57 75.96 77.86 81.45 83.61 93.60 94.64 94.84 94.58 94.51 94.25 93.60 98.37

variance), in contrast to GPA (uses source expert only) and
ATL-DGP (uses an uninformative prior). This property of
GPDE is more pronounced in the highly non-linear adaptation
scenarios of 0◦ → −30◦, −30◦ → 0◦ and −15◦ → 0◦ for
Nt > 200, where GPtarget achieves the highest classification
ratio. GPDE performs similarly to the target expert while,
GPA and ATL-DGP underestimate the prediction capacity of
the target-specific classifier, and thus, attain lower results. The
only situations where GPDE achieves inferior performance
are the cases where GPsource performs poorly. Thus, as
expected, GPDE cannot attain a reliable adaptation without
having access to latent factors, opposed to ATL-DGP.

B. Subject adaptation from multiple sources: ‘who’

In this section, we evaluate the models in a multi-label
classification scenario, where the adaptation is performed from
multiple source domains. This is also a natural setting to
demonstrate the importance of modeling different variances
per output dimensions with the proposed wGPDE. In contrast
to the view adaptation scenario for FER, herein we report
results for both geometric and appearance features, since dif-
ferent AUs are better explained from different type of features.

Overall, this is a more challenging setting, since the
datasets are comprised of naturalistic facial expressions, and
the recorded subjects are experiencing the affect in different
ways and levels. The difficulty of the task can be seen in
Fig. 3, where the subject-specific classifier GPtarget trained
with 10–30 labeled data points, achieves a higher average F1
score than the generic classifier GPsource, which is trained on
all available source subjects. The importance of this outcome
gets more clear if we consider that it holds for both DISFA

and FERA2015, when using either geometric or appearance
features. This suggests that, no matter the nature of the inputs,
personalized AU detectors are superior to generic classifiers,
even when limited data are available. Another factor that is
worth mentioning is that the average results are obtained over
a large set of AUs (i.e., 12 AUs for DISFA and 11 AUs for
FERA2015). This fact, not only constitutes the results more
reliable, but it also implies that even a small increase in the
average performance (e.g., 1-2%) can be attributed to an
improved performance over several AUs.

By continuing our analysis of Fig. 3 we observe that the
adaptation models, i.e., GPA, GPDE and wGPDE achieve
superior F1 score compared to the generic GPtarget, under
all scenarios. The latter implies that images from source
and target subjects contain complementary information
regarding the depicted facial expressions. Hence, the target
classifier does not consist anymore an upper bound limit
for the adaptation. This can be explained from the multi-
modal nature of the problem , since we can have different
AU combinations per sequence, contrary to the universal
expressions appearing in the view adaptation scenario. Thus,
expressions that are present only on the source sequences, can
be used to improve the AU detection task for the target subject.
Note also that the classifier trained on the concatenation
of the source and target domains, i.e., GPs+t, outperforms
almost all models on DISFA. However, this is not the case on
FERA2015 dataset, where the subject differences are more
pronounced due to the high resolution images. Hence, GPs+t
fails to the performance achieved by either GPsource or
GPtarget classifier. The proposed GPDE and wGPDE benefit
from modeling the target-specific information and can attain
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Fig. 3. Average F1 score for joint AU detection with subject adaptation on DISFA (top) and FERA2015 (bottom) with increasing number
of target domain data. The results are reported when using geometric (left) and appearance (right) features.

a better adaptation compared to GPA. Another reason for the
difference in the performance between the proposed model
and GPA is that the latter treats all training subjects as data
from a single, broader, source domain. Hence, GPA smooths
out the individual differences and lessens the contribution of
the target domain, as the variations of the target data can be
explained, on average, by the source domain.

Finally, the importance of modeling individual variances
becomes evident by comparing the attained scores from wG-
PDE and GPDE. In 3 out of 4 scenarios, wGPDE achieves
superior performance with more pronounced results on DISFA
dataset when geometric features are used (see Fig. 3(a)). On
the other hand, when appearance features are used, as we can
see in Fig. 3(b) both wGPDE and GPDE perform similarly.
This can be explained by the fact that images from DISFA
are not of high resolution. Hence, the local patches cannot
explain adequately all the important variations that differ
among the various outputs (i.e., AUs). However, as we can see
in Fig. 3(d) this is not the case with the high-resolution images
from FERA2015. The input appearance features are of better
quality, and thus, wGPDE can more accurately model the
individual variances per output, and thus, attain higher scores.

For a better understanding of the efficacy of the adaptation
task, in Table III we report the detailed results per AU for
the case of Nt = 50. Note that this setting is not always the
most beneficial for our proposed approach. In most scenarios
the gap in the performance between (w)GPDE and the other

methods increases as we include more target data. However,
we demonstrate the performance on Nt = 50 because AU
annotations are expensive and laborious. Thus, such a setting
is a more reasonable choice for adaptation for the current task.
The proposed (w)GPDE under the current setting, and using
the geometric features as input (upper half of Table III), attains
an average F1 improvement on both DISFA and FERA2015 of
2%. This small increase in the average performance translates
to an improved F1 score on 6/12 and 8/11 AUs, respectively.
The robustness of (w)GPDE is further supported by both per
AU and average AUC. We can see that (w)GPDE achieves
higher AUC even in the AUs that reports inferior F1 score,
resulting in 9/12 and 10/11 improved AUs on DISFA and
FERA2015, respectively. Thus, it is evident that (w)GPDE
constitutes a more reliable classifier, under these settings.
Regarding the appearance features (lower half of Table III)
the average improvement of (w)GPDE is marginal, especially
on FERA2015. Yet, if we look again individually at each
AU, we observe that the proposed model attains increased
F1 score on 6/12 (8/12 in terms of AUC) and 7/11 (11/11 in
terms of AUC), on DISFA and FERA2015, respectively.

By comparing wGPDE to GPDE we can further observe
that modeling of individual variances results in improved
average performance, which translates to an improvement on
certain AUs. An indicative example is the increase in F1 of
AUs 1, 2, 5, 6 on DISFA, especially when using the geometric
features. On all these 4 AUs, the standard GPDE fails to
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TABLE III
F1 SCORE AND AUC FOR JOINT AU DETECTION ON DISFA AND FERA2015. SUBJECT ADAPTATION WITH Nt = 50.

Dataset DISFA FERA2015
AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg. 1 2 4 6 7 10 12 14 15 17 23 Avg.

Po
in

ts
F1

GPsource 33.1 31.6 54.8 10.5 44.8 31.6 57.3 24.4 35.8 13.7 79.5 51.5 39.0 49.5 34.5 57.9 73.9 77.2 79.5 82.2 62.6 32.1 60.2 37.2 58.8
GPtarget 37.2 41.4 62.2 21.7 57.3 30.2 59.3 25.9 38.3 20.5 76.0 60.1 44.2 43.4 38.5 53.3 72.2 78.3 83.7 80.7 64.6 48.5 60.8 41.0 60.5
GPs+t 42.1 48.3 61.1 19.2 45.2 42.1 63.1 23.8 41.0 23.9 76.2 54.6 45.1 52.9 37.3 59.4 74.1 77.7 81.5 82.1 64.4 34.9 61.5 40.2 60.6
GPA [24] 36.0 37.2 62.4 21.3 52.7 36.4 67.3 27.1 38.7 16.2 77.1 54.8 43.9 54.6 37.8 60.4 74.9 77.9 81.5 83.1 64.6 34.7 61.4 39.7 61.0
GPDE 36.8 38.3 63.2 22.7 54.3 36.8 66.4 26.8 38.9 16.5 77.4 55.9 44.5 52.6 38.8 57.8 75.7 79.2 84.9 84.5 65.9 39.1 65.2 40.7 62.3
wGPDE 41.2 52.9 61.7 25.3 60.9 32.8 58.8 27.1 40.7 16.7 77.6 65.2 46.8 53.4 41.2 58.5 75.1 79.0 84.2 83.4 65.6 40.9 65.7 43.1 62.7

A
U

C

GPsource 71.3 73.2 64.1 56.3 70.7 71.8 77.3 61.6 65.7 57.4 80.2 67.7 68.2 75.5 65.9 81.5 81.5 68.9 76.1 85.9 66.7 57.5 68.5 65.6 72.1
GPtarget 72.6 77.2 75.2 63.3 81.6 66.8 75.7 61.3 69.0 69.3 77.8 74.3 72.0 67.6 68.9 77.0 76.5 73.1 82.6 79.1 70.8 73.2 68.6 68.1 73.2
GPs+t 74.7 75.0 75.4 68.6 73.0 78.9 80.2 61.0 72.9 71.5 78.7 72.3 73.5 76.9 67.9 82.7 81.7 70.8 81.3 85.5 70.1 63.6 69.9 68.5 74.5
GPA [24] 74.9 76.8 75.3 68.1 79.9 73.7 81.2 66.3 71.1 63.1 79.7 73.6 73.6 79.1 68.7 83.4 83.0 72.2 81.4 87.1 70.1 63.3 69.8 68.5 75.1
GPDE 75.5 77.6 76.2 68.3 81.2 73.9 81.3 66.4 71.5 63.8 80.3 74.6 74.2 72.7 69.3 83.2 83.3 76.7 85.5 88.4 73.7 68.6 75.2 70.5 77.0
wGPDE 73.7 83.2 75.0 71.4 82.9 72.3 77.0 64.2 70.6 60.8 80.4 79.4 74.3 74.1 70.6 83.6 82.7 76.6 85.6 87.6 73.7 71.0 74.9 72.2 77.5

L
B

P
F1

GPsource 31.0 27.0 52.2 11.7 35.5 29.3 52.4 31.1 38.6 23.8 73.4 52.4 38.2 35.8 29.9 36.0 63.3 75.8 78.1 73.1 60.5 30.6 58.0 32.1 52.1
GPtarget 35.4 40.9 58.7 10.5 55.4 30.6 56.2 28.9 40.7 23.0 79.7 64.1 43.7 41.6 36.4 48.1 64.9 78.0 80.9 74.7 63.0 50.0 58.8 43.2 58.1
GPs+t 39.9 39.3 63.2 28.8 48.8 38.7 66.4 34.9 47.4 26.4 81.4 56.6 47.7 35.0 28.6 36.7 63.3 75.7 78.1 73.2 60.6 30.6 58.0 34.2 52.2
GPA [24] 38.5 37.3 63.4 13.6 62.0 32.4 63.8 30.9 44.9 24.4 83.1 67.7 46.8 41.2 36.5 46.8 66.9 77.4 80.3 76.8 62.6 47.6 60.1 44.7 58.3
GPDE 39.8 41.1 65.1 17.2 62.2 34.5 64.3 32.5 44.9 25.5 83.4 68.2 48.2 41.4 36.6 47.0 66.8 77.4 80.5 76.7 62.6 47.7 60.1 44.7 58.3
wGPDE 41.0 41.8 65.6 20.8 60.7 34.1 60.9 34.5 46.3 24.4 82.1 66.7 48.2 41.4 37.3 48.7 68.6 77.6 81.6 77.6 63.2 47.4 60.6 44.4 58.9

A
U

C

GPsource 67.2 66.4 57.3 66.3 60.2 68.7 69.7 68.6 69.4 73.6 75.2 68.7 67.6 56.3 58.5 54.0 41.5 47.2 40.4 42.3 47.8 51.5 47.5 55.3 49.3
GPtarget 75.8 77.9 71.1 60.8 81.3 71.8 75.0 68.3 72.1 71.5 84.0 80.4 74.2 65.4 65.3 72.3 62.6 71.5 75.0 63.5 68.6 76.0 62.8 71.0 68.5
GPs+t 76.4 74.2 77.3 81.2 76.9 76.7 85.2 74.6 78.0 74.1 87.6 73.7 78.0 53.9 56.2 58.7 55.6 53.9 56.3 58.3 52.6 54.0 53.1 59.6 55.7
GPA [24] 78.3 80.0 77.5 70.2 84.4 73.2 81.4 72.1 75.4 74.9 88.2 83.0 78.2 66.8 65.9 72.6 71.1 73.1 77.6 74.2 69.5 74.0 65.5 72.0 71.1
GPDE 79.7 82.2 79.6 76.1 84.5 75.2 82.3 74.6 75.4 75.3 88.5 83.4 79.7 66.9 66.0 72.6 70.8 73.2 77.6 73.8 69.6 74.2 65.4 72.1 71.1
wGPDE 80.4 82.1 81.0 79.4 83.7 75.3 80.2 76.1 76.0 73.9 87.4 82.0 79.8 65.9 66.6 74.7 74.7 73.6 79.6 77.4 70.3 73.9 66.9 71.9 72.3

reach the performance of the generic GPtarget classifier.
However, the proposed weighting allows the GPDE to model
output-specific attributes, or ‘pair’ the variances that are
associated with co-occurring outputs, e.g., AUs 1, 2. Similar
pattern can be observed in the results for AU2, for geometric,
and AUs 2, 4, 6, for appearance features on FERA2015.
Especially for AUs 4, 6 the increase in F1 is further supported
by an increase in AUC of 2% and 4%, respectively.

We next compare the proposed (w)GPDE to the state-of-the-
art models from the literature on AU analysis, which attempt
to perform the adaptation. We compare to the supervised
dynSVM [28] and the semi-supervised CPM [25]. dynSVM
attempts to perform the adaptation at the feature level (combi-
nation of geometric and appearance features), where the input
data from each subject (domain) are normalized by removing
the dynamics of the expression. CPM on the other hand tries to
adjust the classifier to the target domain. It achieves so by tak-
ing into account the confidence/agreement in the predictions
of source soft classifiers, when assessing the target data.

Table IV summarizes the results. At first we can see that
the proposed wGPDE outperforms both dynSVM and CPM on
both DISFA and FERA2015. The improvement over dynSVM
on DISFA is marginal. However, the authors in [28], before
applying the dynSVM, attempted to re-balance the data in
order to account for the mismatch in the distribution of
activated AUs. This explains the superior performance of
dynSVM on less frequently occurring AUs, i.e., AUs 9, 15, 20
on DISFA and AUs 14, 23 on FERA2015. On the other hand,
CPM reports lower results, both on average and per AU, on
both datasets. This is partly attributed to the fact that CPM
is a semi-supervised method and uses soft labels (i.e., the
predictions of the source classifier) as ground truth labels for
the target data during training. Another reason for its low
performance is the ‘virtual’ way that CPM utilizes to measure
the confidence. In contrast, the proposed wGPDE has a well
determined probabilistic way to correctly estimate the confi-

dence in the predictions of the various experts. This allows the
wGPDE to weight the contribution of each expert in the final
classification, which results in more accurate predictions.

C. Assessing the confidence in the predictions
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Fig. 4. Quantification of the confidence in the probabilistic predictions
in terms of NLPD for DISFA (left) and FERA2015 (right) with
increasing number of target domain data.

Herein, we assess the ability of (w)GPDE to measure the
confidence in the output labels, by means of the predicted
variance. To this end, we use the negative log-predictive
density (NLPD) as an evaluation measure. It is commonly
used in probabilistic models, since it takes into account the
predictive variance. In Fig. 4 we see the NLPD for the baseline
generic classifiers, i.e., GPsource, GPtarget and GPs+t, and
for the proposed (w)GPDE, on both DISFA and FERA2015
datasets. First of all we observe that all the models (apart from
the GPtarget on DISFA and GPs+t on FERA2015) increase
their variance in the predictions (NLPD is increasing), as we
include more training target data. This, however, is expected
since by increasing the training set, we observe more variations
in the input data (different AU combinations). Hence, the
variance in the outputs also increases. In the case of DISFA,
(Fig. 4(left)) the target expert becomes more confident for
Nt > 10. We attribute this to the nature of the videos in
DISFA, which contain less frequently varying expressions over
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TABLE IV
F1 SCORE FOR JOINT AU DETECTION ON DISFA AND FERA2015. COMPARISON TO STATE-OF-THE-ART. SUBJECT ADAPTATION FOR WGPDE HAS BEEN

PERFORMED WITH Nt = 50.

Dataset DISFA FERA2015
AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg. 1 2 4 6 7 10 12 14 15 17 23 Avg.

wGPDE (pts.) 41.2 52.9 61.7 25.3 60.9 32.8 58.8 27.1 40.7 16.7 77.6 65.2 46.8 53.4 41.2 58.5 75.1 79.0 84.2 83.4 65.6 40.9 65.7 43.1 62.7
wGPDE (app.) 41.0 41.8 65.6 20.8 60.7 34.1 60.9 34.5 46.3 24.4 82.1 66.7 48.2 41.4 37.3 48.7 68.6 77.6 81.6 77.6 63.2 47.4 60.6 44.4 58.9
dynSVM [28] 30.0 26.0 34.0 16.0 45.0 45.0 77.0 47.0 41.0 25.0 84.0 75.0 48.0 43.0 39.0 46.0 77.0 77.0 85.0 87.0 67.0 44.0 62.0 45.0 61.0
CPM [25] 29.5 24.8 56.8 – 41.7 31.5 71.9 – – – 81.6 51.3 – 46.6 38.7 46.5 68.4 73.8 74.1 84.6 62.2 44.3 57.5 41.7 58.0

time. Thus, the generic personalized classifier has seen most of
the available variations – on average – which results in reduced
uncertainty. On the other hand, the events on FERA2015 are
shorter, hence, more frequent variations. Thus, the relevant
NLPD at first decreases, but as more data become available
(more AU combinations) the uncertainty increases. Eventually,
in both situations the generic GPtarget becomes less confident
than GPsource. In contrast, this is not the case for the GPs+t
classifier on FERA2015. The weird behavior of GPs+t is
an indication that it focuses on universal characteristics and
variations on the face, which are irrelevant to the task of AU
detection. Hence, the more data it sees, the more confident it
becomes, yet it still predicts with low F1 score, as can be also
seen from Fig. 3(d).

By comparing GPDE to wGPDE, we observe a similar
modeling behavior. However, GPDE without the weighting
can only produce a single variance for all outputs. This has
a negative impact on the NLPD, since the model is equally
confident for all the outputs. Thus, GPDE results in being
over-confident, even for false predictions. On the other hand,
the weighting term allows the wGPDE to produce different
variance for each predicted output.

The above claims for the difference between GPDE and
wGPDE are better explained from Fig. 5. In Fig. 5(top)
we see an example where both GPDE and wGPDE predict
the exact same labels (almost the same predicted means).
However, GPDE (Fig. 5(left)) suffers from heavier tails. This
results in less accurate estimation of the mass probability for
AUs 1, 2, 10, 12, which can be interpreted by also a higher
NLPD. The same behavior of heavier tails can be observed
in another example in Fig. 5(bottom). However, now GPDE
and wGPDE disagree on their predictions for AUs 6, 17.
wGPDE can better estimate the probability mass for the quite
uncertain AUs 6, 17, which results in their correct prediction
compared to the unweighted GPDE.

D. Cross dataset adaptation

Herein, we evaluate the robustness of the models when
performing the subject adaptation, in a more challenging
scenario. We perform two different cross-dataset experiments,
FERA2015→DISFA and DISFA→FERA2015.2 Note that if
the same subjects were present on both datasets we could
also address the question ‘what’, by modeling the causal
factor that elicited the depicted facial expressions across the
datasets. Since we lack the appropriate data, we focus only
on the question ‘who’. We evaluate the models’ performance

2‘A→B’ denotes the training on dataset A and testing on dataset B.

on 7 AUs (i.e., 1, 2, 4, 6, 12, 15, 17) that are present in both
datasets. We employ the geometric features, since the images
from the two datasets differ significantly in resolution.
However, even the geometric features are being affected by
factors, such as, facial pose and size. This imposes a further
difficulty on the alignment of the input facial features.

By analyzing the results in Fig. 6 we can draw two quick
conclusions. First, FERA2015 is a more representative dataset
for the task of AU detection. The generic classifier GPsource
in Fig. 6(left) achieves similar performance to the adaptation
models in Fig. 3(a). This does not hold for the generic
GPsource in the DISFA→FERA2015 experiment. The latter
is further supported by the performance of GPtarget and
GPs+t, which by including information from the target data
they can significantly outperform the generic GPsource on the
DISFA→FERA2015 adaptation. The second finding is related
to the advantage of the joint modeling of the AUs. This is
illustrated in the performance of the generic GPtarget in both
cross-dataset evaluations. We can see that the average results
are lower than the corresponding ones from Table III.

Regarding the performance of the adaptation methods we
observe that in the FERA2015→DISFA scenario, all the
compared models benefit from the presence of the additional
target domain data. More interestingly, (w)GPDE consistently
outperforms GPA and reaches the average performance of
the corresponding AUs in the within dataset evaluations from
Table III. The importance of wGPDE is not obvious in this
scenario. However, in the DISFA→FERA2015 adaptation,
wGPDE manages to correctly model the individual variances
in the target data, and hence, achieves better performance
than the generic GPtarget (contrary to the simple GPDE).

Finally, the detailed results per AU for the cross dataset
adaptation are presented in Table V. It is clear that the pro-
posed approach, not only outperforms its counterparts on the
current experiment, but also achieves improved performance
on most of the AUs (particularly in FERA2015→DISFA),
compared to the within dataset evaluations. This is an indicator
of the quality of the achieved adaptation, since the model
becomes less sensitive to the input source data. On the other
hand, the subject normalization of dynSVM does not attain a
sufficient adaptation.

VI. DISCUSSION AND CONCLUSIONS

From the conducted experiments on various adaptation
scenarios, we made several important observations: the source
classifier trained on a large number of data can easily be
outperformed by the classifier trained on as few as 50 examples
from the target domain. Furthermore, the existing adaptation
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Fig. 5. Probabilistic prediction of joint AU activations on FERA2015 from GPDE (left) and wGPDE (right). The reported tails account for
the predicted standard deviation. Shorter tails correspond to more confident predictions. Both GPDE and wGPDE are trained with Nt = 50.

TABLE V
CROSS-DATASET EVALUATIONS ON 7 AUS PRESENT IN BOTH DISFA AND FERA2015 DATASETS. THE MODELS ARE TRAINED ON FERA2015 AND

TESTED ON DISFA DATASET (F→ D), AND THE OTHER WAY AROUND (D→ F). SUBJECT ADAPTATION WITH Nt = 50.

F1 AUC
AU 1 2 4 6 12 15 17 Avg. 1 2 4 6 12 15 17 Avg.

F
→

D

GPsource 44.0 43.9 56.4 49.1 54.8 28.9 45.6 46.1 77.3 81.0 65.2 73.7 72.5 66.4 75.4 73.1
GPtarget 39.2 46.4 58.2 61.0 57.3 29.6 39.7 47.3 74.4 81.8 70.8 81.1 73.0 65.8 68.0 73.6
GPs+t 44.3 45.7 59.1 55.6 59.9 27.7 44.9 48.2 78.1 82.6 71.8 81.9 77.5 65.7 75.4 76.2
GPA [24] 41.3 44.7 61.9 57.2 62.9 28.7 44.4 48.7 78.3 80.7 74.6 82.0 79.4 67.6 73.5 76.6
dynSVM [28] – – – – – – – – – – – – – – – –
GPDE 41.8 44.8 63.9 61.7 66.5 28.1 45.8 50.4 79.1 81.9 76.5 85.0 82.4 67.6 75.1 78.2
wGPDE 43.4 46.9 62.4 61.5 63.9 29.6 43.2 50.1 80.4 81.7 75.1 84.5 80.3 68.6 73.2 77.7

D
→

F

GPsource 37.3 28.0 46.5 63.8 74.1 31.6 60.1 48.8 61.1 55.5 71.7 64.8 74.9 50.9 61.9 63.0
GPtarget 41.1 37.5 47.0 67.5 77.0 45.8 59.4 53.6 67.0 66.4 71.7 68.1 69.3 71.1 63.7 68.2
GPs+t 47.1 37.5 52.8 67.5 77.6 34.0 59.8 53.8 71.6 67.9 77.9 73.9 80.7 61.5 67.6 71.6
GPA [24] 40.7 36.3 50.6 68.0 76.9 39.7 60.8 53.3 67.3 65.2 74.6 72.8 76.0 69.0 66.2 70.2
dynSVM [28] 44.0 34.0 50.0 68.0 67.0 26.0 48.0 48.0 – – – – – – – –
GPDE 40.7 36.4 50.5 68.0 77.0 40.0 60.7 53.3 67.3 65.3 74.6 72.7 75.8 69.2 66.2 70.2
wGPDE 42.1 35.9 54.7 69.2 79.5 36.9 62.0 54.3 66.3 64.3 79.5 76.5 83.6 66.5 69.6 72.3
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Fig. 6. Cross-dataset evaluations. Average F1 score of the 7 common AUs
present in both DISFA and FERA2015 datasets. The models are trained on
data from FERA2015 and tested on data from DISFA (left), and the other
way around (right). The reported results are obtained with geometric features
and increasing cardinality of labeled target domain data.

approaches try to adapt the target domain to the source
domain by assuming that the two distributions can be matched.
Yet, when more target data become available, a generic tar-
get classifier can largely outperform the existing adaptation
approaches. To address the aforementioned challenges, we
have presented a method that exploits successfully the non-
parametric probabilistic framework of GPs to perform domain
adaptation for both multi-class and multi-label classification
of human facial expressions. In contrast to existing adaptation
approaches, which leverage solely the source distribution dur-

ing adaptation, the proposed approach defines a target expert
to model domain-specific attributes, and reduce that way the
effect of negative transfer. As a purely probabilistic model,
(w)GPDE explores also the variance in the predictions. The
latter consists an accurate measure of confidence, and as such,
it can be used to reevaluate the predictions from the various
experts to achieve an improved classification performance.

To conclude, in the current work we demonstrated the ad-
vantages of the proposed (w)GPDE by performing adaptation
of two contextual factors: ‘who’ (subject) and ‘where’ (view).
In our future work we plan to explore the remaining contextual
factors (i.e., ‘when’, ‘why’, ‘what’ and ‘how’), simultane-
ously to attain a general framework for adaptation. Although
the ‘when’ and ‘how’ factors can easily be incorporated in
our framework, by accounting for the temporal and multi-
modal (e.g., video and audio) information in the sequences,
respectively, adaptation of the other factors is more difficult,
especially due to the lack of appropriate data.
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