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Abstract— The present work introduces a new algorithm,
named Global Quadrature PLL (GQPLL) for tracking a si-
nusoidal signal and for estimating its frequency and amplitude.
The proposed technique derives from the well-known PLL
architecture based on Quadrature Signal Generation (QSG),
that is widely used for tracking the fundamental of single-phase
electrical signals. The proposed algorithm improves the existent
QSG-PLL solutions from two different perspectives. First,
the cancellation of the DC-bias is embedded by construction.
Moreover, a Lyapunov-based stability analysis guarantees the
global convergence of the estimates for arbitrarily large adap-
tation gains, enabling fast adaptation transients. The provided
simulations show that the algorithm is able to deal with sudden
variations of the fundamental frequency and of the DC-bias
magnitude.

I. INTRODUCTION

The electrical grid has undergone substantial changes
during the last decade and further structural modifications
are foreseen in the next years. The reason for these changes
is twofold: the rise of distributed power generation systems
and the integration of renewable energy sources subjected to
natural variability. Such a trend to decentralization, paired to
the increased unpredictability of these new power sources,
greatly complicates the management of the electrical grid.
As a consequence, all the power devices requiring grid syn-
chronization face the challenge of adapting to time-varying
grid-voltage conditions, both in amplitude and frequency.
Nevertheless, this problem is magnified in small grids or in
those parts of the network undergoing islanded operation due
to faults or maintenance. All of these arguments have moti-
vated the research for high-performance grid-synchronization
algorithms with frequency-adaptive features, able to cope
with rapidly changing conditions.

The most common algorithms developed for grid syn-
chronization consist of modified Phase-Locked-Loops (PLL)
provided of frequency adaptation. The recent work [1] offers
a quite detailed overview of the prevalent architectures used
in single-phase applications, focusing in particular on those
methods using Quadrature Signal Generation (QSG). In the
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literature, QSG units are sometimes also referred to as Or-
thogonal Signal Generators (OSG). The Frequency Locked-
Loop (FLL) of [2], [3] based on a Second Order Generalized
Integrator (SOGI) to implement the OSG, is for instance
capable of tracking sinusoids with time-varying frequency
and amplitude. Other algorithms taking origin from the very
same idea of providing frequency-adaptive capability to a
PLL can be found in [4] and [5]. The Enhanced PLL
(EPLL) of [6], [7] is a successful design that has found
extensive application to the estimation of power-grid signal
parameters. Compared to a conventional PLL, its output
signal is locked both in phase and in amplitude with the
input. While the original EPLL is not robust to the presence
of DC-bias, several further modifications have been proposed
to overcome this limitation. The reader is referred to [8] for
a modified EPLL based on delayed-signal cancellation that
features the rejection of DC-bias. The problem of rejecting
the DC-offset has been addressed also by [9] and [10].

The single-phase fundamental tracking problem tackled
by the aforementioned algorithms can be boiled-down to
the problem of estimating/tracking the following sinusoidal
signal

s(t) = A sin(ϑ(t) + ϑ0)

ϑ̇(t) = ω
ϑ(0) = 0

given the following biased/perturbed measurement

y(t) = s(t) + c+ η(t)

where c is an unknown scalar constant and where η(t) is an
unstructured perturbation term. The fundamental frequency
ω, the amplitude A and the initial angle ϑ0 of the sinusoid
are unknown. We assume that ω > ω, with ω > 0 a known
lower bound on the angular frequency of the signal.

In the specific realm of power-electrical signal estima-
tion, the unstructured perturbation term η(t) contains the
lumped contribution of unknown higher-order harmonics,
inter-harmonics, measurement noise or quantization effects
of the measurement front-end. When not dealt with explicitly
by the algorithm (see for instance [11] and [12]) all these
perturbations together may be considered as an exogenous
bounded disturbance affecting the measured signal. This is
indeed the typical setting of PLL-based methods aimed at
tracking/estimating the fundamental. In this setting, provid-
ing a formal stability guarantee for the estimation algorithm
is mandatory, at least with local properties.

Abstracting from the specific power-grid signal estima-
tion problem, several solutions to the sinusoidal estimation



problem outlined above have been conceived in the system-
theoretic and signal processing fields, and many results are
given in terms of adaptive observers (see [13], [14], [15],
[16], [17], [18], [19] among others), or nonlinear adaptive
systems [20], [21], [22]. Notably, all of these methods for-
mally guarantee the global stability of the estimator. Despite
coming along with global stability guarantees, these meth-
ods are not widely used in the electrical-engineering field,
mainly due to their complexity and the lack of an extensive,
comparable sample of practical case-studies. On the contrary
the modified-PLL methodologies listed above, tailored for
power-electrical applications and supported by experimental
results, represent the preferred solution in this field, even if
only supported by local stability proofs. Indeed, the formal
stability proofs of SOGI-OSG-FLL and of most QSG-PLLs
are based either on small-signal analysis (local linearization
of the dynamics), either on averaging. The latter approach
invokes the use of unpractical limiting conditions for the
adaptation gains. The same conclusion can be drawn for the
EPLL scheme [6], whose proof is based on variational argu-
ments. As a final result, the adaptation rate for the estimated
frequency must be tuned accurately to guarantee the stability
of these algorithms in all the operating conditions. Typically,
boosting the adaptation gains improves the convergence rate
when the initial guess on the frequency is close to the true
one and for clean measurements, but it may cause instability
for large initialization error or in presence of measurement
perturbations. In other words, global convergence may get
lost in practice.

In this work, a frequency-adaptive QSG-PLL is devised
that admits a Lyapunov function which guarantees the global
asymptotic stability of the adaptive system. The proposed
algorithm is given the name Global Quadrature PLL (GQ-
PLL), in order to underline the fact that the Lyapunov-based
global stability proof certifies the global convergence of the
estimator without invoking small-gain arguments. Instead,
the adaptation gain can be made arbitrarily large in order
to achieve a faster convergence rate, while preserving global
stability properties. Moreover, the global stability property is
guaranteed also in presence of DC-offset, which is accounted
for natively by the proposed methodology.

For the sake of the further discussion, let us consider the
equivalent trigonometric expression of the signal y(t), where
we neglect η(t) for the purpose of algorithm design:

y(t) = a sin(ϑ(t)) + b cos(ϑ(t)) + c,

where a, b ∈ R are unknown parameters related to the
amplitude by A =

√
a2 + b2. Letting Ω̂(t) be the estimate

for the squared-frequency Ω := ω2, we aim at tracking y(t)
by an estimated signal ŷ(t) having the following structure

ŷ(t) = â(t) sin(ϑ̂(t)) + b̂(t) cos(ϑ̂(t)) + ĉ0(t)
˙̂
ϑ(t) =

√
Ω̂(t), Ω̂(t) ≥ Ω, ∀t ≥ 0

where we have introduced the lower bound Ω := ω2 (known
conservatively) and where ĉ0(t) is a DC-bias compensation
term.

The tracking objective can be attained by designing
adaptation laws for â(t), b̂(t), ĉ0(t) and Ω̂(t) such that
limt→+∞ ŷ(t) − y(t) = 0 and all the internal signals
remain bounded, with the estimated frequency constrained
in the admissible set A := {ω ∈ R : ω ≥ ω}. For the sake
of notational simplicity, in the sequel we will neglect the
explicit dependence from time of the signals and of the time-
varying estimated parameters.

II. GQPLL EQUATIONS

In this Section we provide the complete set of equations
needed to implement the sinusoidal tracker/estimator. The
reader can refer to Figure 1 for a block diagram representa-
tion of the GQPLL.

Fig. 1. Scheme of the GQPLL. The dashed lines denote the additional
signal paths compared to a conventional QSG-PLL.

The equations for the online adaptation of the parameters
â and b̂ are given by the QSG-PLL-like multiplicative stage:

˙̂a = µ1 sin(ϑ̂)e− δa
˙̂
b = µ1 cos(ϑ̂)e+ δb

(1)

with µ1 > 0 a constant adaptation gain (chosen by the
designer to tune the convergence speed) and where the
signals δa and δb are suitable nonlinear injections aimed at
stabilizing the GQPLL. These signals are designed as

δa :=
√

Ω̂ cos(ϑ̂)
(
η0ĉ0+η1

(
ĉ1+

√
Ω̂
(
b̂ sin(ϑ̂)−â cos(ϑ̂)

)))
δb :=

√
Ω̂ sin(ϑ̂)

(
η0ĉ0+η1

(
ĉ1+

√
Ω̂
(
b̂ sin(ϑ̂)−â cos(ϑ̂)

)))
with ĉ0 and ĉ1 obtained through the second-order nonlinear
filter:

˙̂c0 = ĉ1 +
√

Ω̂
(
b̂ sin(ϑ̂)− â cos(ϑ̂)

)
˙̂c1 = (µ0 − Ω̂)e− Ω̂ŷ + K̂

(2)

where µ0 > 0, η0 < 0 and η1 < 0 are design constants that
can be chosen arbitrarily. The stability analysis will show
later the effect of these parameters on the convergence speed.



Finally, the estimates for the squared-frequency Ω̂ and for the
auxiliary parameter K̂ are given by

Ω̂ := max

(
Ω , −k1

2
y2 + Θ̂Ω

)
(3)

K̂ := k1y + Θ̂K (4)

where
˙̂
ΘΩ = k1y ˙̂y − k0ye. (5)

and
˙̂
ΘK = −k1

˙̂y + k0e. (6)

Note that the signal ˙̂y needed to implement the above
adaptation laws can be obtained from available quantities
without direct differentiation:

˙̂y = ˙̂a sin(ϑ̂) +
˙̂
b cos(ϑ̂) +

√
Ω̂
(
â cos(ϑ̂)− b̂ sin(ϑ̂)

)
+ ˙̂c0

= sin(ϑ̂)
(
µ1 sin(ϑ̂)e− δa

)
+ cos(ϑ̂)

(
µ1 cos(ϑ̂)e+ δb

)
+ĉ1 +

√
Ω̂
(
b̂ sin(ϑ̂)− â cos(ϑ̂)

)
+
√

Ω̂
(
â cos(ϑ̂)− b̂ sin(ϑ̂)

)
.

The expression for the estimated squared-frequency (3)
is provided of a one-sided saturation that keeps the es-
timate within the admissible set of strict-positive values:
ω̂ =

√
Ω̂ ∈ A. All in all, the GQPLL has a total dynamical

order of 7 with states Θ̂k, Θ̂Ω, ĉ0, ĉ1, â, b̂, ϑ̂.

III. STABILITY ANALYSIS

In absence of saturation, the expression for the squared-
frequency (3) yields to the following parameter derivative

˙̂
Ω = −k1yẏ + k1y ˙̂y − k0ye = −k1yė− k0ye

whilst it holds that ˙̂
Ω = 0 when the saturation is active.

Note that the above expression for ˙̂
Ω, unlike the equations

given in the previous section, is not directly implementable
due to the fact that ė is not available, but will be useful to
study the closed-loop stability of the adaptive system. The
frequency-error dynamics accounting for the saturation can
be formally expressed by the following o.d.e. with possibly
discontinuous right-hand side:

˙̃Ω =


k1yė+ k0ye , (Ω̂ > Ω) ∨

(
−k1yė−k0ye

2
√

Ω̂
> 0

)
0 , (Ω̂ == Ω) ∧

(
−k1yė−k0ye

2
√

Ω̂
≤ 0

)
(7)

whose solutions are intended in the sense of Filippov, [23].
Now, let us take the time-derivative of the error e := y−ŷ:

ė = ωa cos(ϑ)− ωb sin(ϑ)− ˙̂a sin(ϑ̂)− â
√

Ω̂ cos(ϑ̂)

− ˙̂
b cos(ϑ̂) + b̂

√
Ω̂ sin(ϑ̂)− ˙̂c0

(8)
Substituting the expression for ˙̂c0 then (8) simplifies into

ė = ωa cos(ϑ)− ωb sin(ϑ)− ˙̂a sin(ϑ̂)− ˙̂
b cos(ϑ̂)− ĉ1

(9)

Substituting the expressions for δa and δb in (1) we get

˙̂a = µ1 sin(ϑ̂)e−
√

Ω̂ cos(ϑ̂)
(
η0ĉ0 + η1

˙̂c0

)
˙̂
b = µ1 cos(ϑ̂)e+

√
Ω̂ sin(ϑ̂)

(
η0ĉ0 + η1

˙̂c0

)
.

Substituting the latter expressions into (9) we get the inter-
mediate result

ė = ωa cos(ϑ)− ωb sin(ϑ)− ĉ1
−µ1 sin(ϑ)2e+ sin(ϑ) cos(ϑ̂)

√
Ω̂(η0ĉ0 + η1

˙̂c0)

−µ1 cos(ϑ̂)2e− cos(ϑ̂) sin(ϑ)
√

Ω̂(η0ĉ0 + η1
˙̂c0)

= ωa cos(ϑ)− ωb sin(ϑ)− ĉ1
−µ1 sin(ϑ)2e− µ1 cos(ϑ̂)2e

= ωa cos(ϑ)− ωb sin(ϑ)− µ1e− ĉ1
The second time-derivative of the error yields to:

ë = −ω2(y − c)− µ1ė− ˙̂c1 (10)

Now, substituting the expression for ˙̂c1 into (10) we obtain

ë = −Ω(y − c)− µ1ė+ Ω̂e− µ0e+ Ω̂ŷ − K̂
= −Ωy + Ωc− µ1ė+ Ω̂y − µ0e− K̂
= −(Ω− Ω̂)y + (K − K̂)− µ1ė− µ0e.

(11)

where we have posed K := Ωc. Now, let us define
K̃ := K − K̂. The provided implementable expression (4)
for the parameter K̂ implies that ˙̃K can be written as:

˙̃K = − ˙̂
K = −k1ẏ + k1

˙̂y − k0e = −k1ė− k0e (12)

As in the case of (7), the above derivative is not directly
implementable, due to the unavailability of ė, but will be
useful to study the closed-loop stability.

Defining the parameter vector θ := [Ω K]> and denoting
by θ̂ := [Ω̂ K̂]> its estimate and by ξ = [−y 1]> the vector
of regressors, then we obtain the expression:

ë = ξ>(θ − θ̂)− µ1ė− µ0e. (13)

Finally, defining the parameter error vector θ̃ := θ − θ̂, the
tracking-error dynamics (13) can be re-arranged as

ë = ξ>θ̃ − µ1ė− µ0e. (14)

This differential equation is one of the ingredients needed to
characterize the convergence of the tracking-error.

Studying the stability of equation (14) alone is not suf-
ficient, however, to characterize the stability of the over-
all adaptive system, which also consists of the squared-
frequency adaptation and of the nonlinear filter (2) generating
the signals ĉ0 and ĉ1 that are needed to create the auxiliary
injections δa and δb. In this connection, let us take the second
derivative of ĉ0

¨̂c0 = Ω̂
(
η0ĉ0 + η1

˙̂c0

)
+ (µ0 − Ω̂)e− Ω̂ĉ0 + K̂

+
˙̂
Ω

2
√

Ω̂

(
b̂ sin(ϑ̂)− â cos(ϑ̂)

)
= Ω̂

(
(η0 − 1)ĉ0 + η1

˙̂c0

)
+ v

(16)



v := (µ0 − Ω̂)e+ K̂ −


(
b̂ sin(ϑ̂)− â cos(ϑ̂)

)
k1yė+k0ye

2
√

Ω̂
, (Ω̂ > Ω) ∨

(
−k1yė−k0ye

2
√

Ω̂
> 0

)
0 , (Ω̂ == Ω) ∧

(
−k1yė−k0ye

2
√

Ω̂
≤ 0

) (15)

where the signal v, defined in (15), can be seen as an external
input to the above system, depending on the tracking-error
and on the parameters. The stability analysis will be per-
formed in two steps, considering that the overall adaptive
system can be viewed as the forward connection of:
• A) a system consisting of the parameter-error dynamics

(7), (12) plus the error system (14), which is then
cascaded to the system at point B);

• B) a non-autonomous dynamical system corresponding
to the error-driven auxiliary dynamics (16).

Step A): Consider now the following candidate Lyapunov
function for the system (7),(12) and (14) (recall that θ̃
incorporates both the squared-frequency error Ω̃ and K̃):

V =
1

2

(
e>Pe+ θ̃>θ̃

)
.

with e> := [e ė]> and

P :=

[
p11 p12

p12 p22

]
where p11, p12, p22 must be chosen such that P is positive
definite. For the sake of the further discussion let us recast
the candidate Lyapunov function in the following scalar form

V = p11e
2 + p22ė

2 + 2p12eė+ Ω̃2 + K̃2.

We will provide a tuning criteria for the parameters of the
adaptive system for which will exist a P > 0 such that
V satisfies the assumptions of the Lyapunov-LaSalle (L-LS)
stability theorem.

First, let us now make some comments on the saturated
parameter adaptation law. Given the convexity of the ad-
missible domain for the estimated squared-frequency, the
saturation will prevent the increase of the quadratic-error
term Ω̃2 in the candidate Lyapunov function whenever the
unconstrained derivative of the squared-frequency points
outside the admissible domain. Thus for the sake of proving
the negative-definiteness of the derivative of V along the
system’s trajectory, we can take the conservative route of
considering only the unsaturated case.

Considering that ˙̃
θ = − ˙̂

θ, the derivative of V along the
system’s trajectory yields:

V̇ ≤ p11eė+ p22ėë+ p12eë+ p12ė
2 − Ω̃

˙̂
Ω− K̃ ˙̂

K

= p11eė− p22Ω̃yė+ p22K̃ė− p22µ1ė
2 − p22µ0eė+

−p12Ω̃ye+ p12K̃e− p12µ1eė− p12µ0e
2 + p12ė

2

+k1Ω̃yė+ k0Ω̃ye− k1K̃ė− k0K̃e
= −p12µ0e

2 − (p22µ1 − p12)ė2

+(p11 − p12µ1 − p22µ0)eė

+(k0 − p12)Ω̃ye+ (k1 − p22)Ω̃yė

−(k0 − p12)K̃e− (k1 − p22)K̃ė

To make V̇ negative definite with respect to the error-state,
one may select the constant parameters µ0 > 0, µ1 > 0 and
k0 > 0 arbitrarily (i.e., there are no small-gain restrictions
on the adaptation parameters). Then pick p12 = k0, p22 =
p12+µ̄1

µ1
, for some arbitrary

µ̄1 >
k2

0 − p2
12

p12
= 0

and set k1 = p22 and p11 = p12µ1 + p22µ0. Then we get

det(P ) = p22p11 − p2
12 = p12+µ̄1

µ1
(p12µ1 + p22µ0)− k2

0

> p2
12 + µ̄1p12 − k2

0 > 0

which ensures that V is positive-definite. Moreover, with
the above choice for the elements of P we have that V̇ is
negative-definite in the error-state:

V̇ ≤ −p12µ0e
2 − µ̄1ė

2

We can conclude that V is an L-LS function (positive definite
radially unbounded with semi-negative-definite derivative)
for the system (7),(14). Following standard arguments in
adaptive control (Barbalat’s lemma + La Salle’s invariance
principle, see [24] and [25]), it can be proven that θ̃
converges to zero in case of conventional persistency of
excitation conditions, which is always the case for a sinusoid
of nonzero amplitude.

Step B): It remains to prove that that the auxiliary
signals δa, δb and ĉ0 injected into the GQPLL to stabilize
the dynamics remain bounded. Having already proven the
boundedness of Ω̂, â and b̂ at Step A), by considering
the expressions for δa, δb we can conclude that the proof
can be completed by proving that limt→∞ |ĉ0| < +∞ and
limt→∞ |ĉ1| < +∞. It holds that (16), is a stable linear
system (η0 < 0 and η1 < 0 by design) which is therefore
ISS with respect to v. We proceed by showing that v is
bounded. Since the error e → 0 and y is bounded, then the
output ŷ of the estimator is bounded, too, which implies that
also â and b̂ are bounded. Moreover, the boundedness of K̃
descends from the boundedness of θ̃. This fact in turn implies
that v is bounded. Since we have proved that the error-state
[e ė]> → 0 exponentially, the ISS of the cascaded system
(16) implies that also ĉ0 is bounded. The boundedness of ĉ1
can be proven by invoking the same arguments.

In view of the above analysis, it turns out that the adap-
tation gains can be chosen arbitrarily large, enabling faster
convergence while preserving global stability properties. The
certifiable global stability of the GQPLL out of any small-
gain assumption represents a key benefit over the existent
QSG-PLL schemes.



IV. SIMULATION RESULTS: GRID VOLTAGE TRACKING

The behavior of the proposed GQPLL is analyzed in
this Section through some insightful numerical simulations,
considering the estimation of grid-voltage parameters in
both nominal and perturbed scenarios. For benchmarking
purposes, the GQPLL is compared with the following algo-
rithms: the EPLL of Kharimi-Garthemani [6], which is one
of the most used architectures in the Electrical Engineering
framework for the extraction of grid-voltage parameters, and
the Adaptive Observer (AO) developed in [26], which is often
taken as a baseline for comparison by the system-theoretic
literature.

The following sinusoidal signal subjected to DC-offset
is used to emulate a grid-voltage signal with rated 50Hz
frequency and subjected to sudden frequency-variations:

y(t) = 320 sin (2πft) + c

where

f =

{
52.5 0 ≤ t < 0.4 ,
47.5, t ≥ 0.4 ,

, c =

{
10, 0 ≤ t < 1 ,
15, t ≥ 1 .

The parameters of the proposed GQPLL are chosen as µ0 =
5e4, µ1 = 200, k0 = 5e5, k1 = 2e4, η0 = −80, η1 = −15.
For the sake of comparison, all the methods are initialized
with the same guess 50Hz for the frequency. Moreover, both
the EPLL and the AO are tuned so that their frequency
estimates exhibit the same convergence speed of the GQPLL
in the noise-free scenario (see Fig. 2). As shown in Fig. 2,
the frequency change at t = 0.4s can be captured by all
the methods under concern with comparable response speed,
but the GQPLL shows fewer oscillations. A remarkable
feature of the proposed algorithm can be appreciated at time
t = 1s, when the DC-bias term is suddenly changed: while
the GQPLL estimate appears insensitive to this variation,
instead the AO and the EPLL exhibit some oscillations. The
reconstructed sinusoid of each method is depicted in Fig. 3.
As it can be seen, despite the similar accuracy in steady state,
the EPLL shows the best transient performance. Compared
to the EPLL, the transient response of the GQPLL is slightly
slower, while the AO requires much longer response time to
address a parameter change than the other two algorithms.

Next, we examine the robustness of the three approaches in
facing unstructured perturbations, assuming the measurement
y(t) is corrupted by a random noise uniformly distributed
in the interval [−10, 10]. It is found in Figs. 2 and 3 that
the estimates of the proposed method remain accurate due
to its higher noise immunity. The EPLL is also capable to
extract the sine wave from the noisy measurement with satis-
factory accuracy and slightly faster convergence speed than
the GQPLL at the very beginning, however, its frequency
estimates are susceptible to the additive noise. Although the
frequency term is successfully tracked by the AO throughout
the simulation, the presence of the noise causes distortions
on the estimated synchronizing signal component. We can
conclude that the EPLL should be preferred for tracking
the sinusoidal grid-signal, while the GQPLL performs better

Fig. 2. Time behavior of the frequency estimates provided by the EPLL
[7], the AO [26] and the GQPLL in the noise-free (top) and noisy (bottom)
scenarios.

in terms of frequency-estimation, due to its superior DC-
rejection performance and noise immunity.

V. CONCLUSION

The paper proposes an estimation and tracking algorithm
for DC-biased sinusoidal signals, named GQPLL, that brings
together the architecture of QSG-PLL methods with the
stability certificates of adaptive observers. The algorithm
features the complete rejection of DC-bias and the ability to
track frequency variations. The global asymptotic stability of
the adaptive system is proven by Lyapunov analysis.

Further research will be devoted to characterize the be-
havior of the estimator in presence of harmonics and inter-
harmonics, and to extend the methodology to three-phase
systems with possible unbalance. Experimental activities will
be also performed to evaluate the performance of the method
in a realistic scenario.
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