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Abstract 
In recent years, biological imaging techniques have advanced significantly and it is now possible to 

digitally reconstruct microvascular network structures in detail, identifying the smallest capillaries at 

sub-micron resolution and generating large three-dimensional structural data sets of size > 106 

vessel segments. However, this relies on ex vivo imaging; corresponding in vivo measures of 

microvascular structure and flow are limited to larger branching vessels and are not achievable in 

three dimensions for the smallest vessels. This suggests the use of computational modelling to 

combine in vivo measures of branching vessel architecture and flows with ex vivo data on 

complete microvascular structures to predict effective flow and pressures distributions. In this 

paper, a hybrid discrete-continuum model to predict microcirculatory blood flow based on structural 

information is developed and compared with existing models for flow and pressure in individual 

vessels. A continuum-based Darcy model for transport in the capillary bed is coupled via point 

sources of flux to flows in individual arteriolar vessels, which are described explicitly using 

Poiseuille's law. The venular drainage is represented as a spatially uniform flow sink. The resulting 

discrete-continuum framework is parameterised using structural data from the capillary network 

and compared with a fully discrete flow and pressure solution in three networks derived from 

observations of the rat mesentery. The discrete-continuum approach is feasible and effective, 

providing a promising tool for extracting functional transport properties in situations where vascular 

branching structures are well defined. 
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1. Introduction 
 
Normal tissue function is critically dependent on an adequate blood supply. In particular, the 

vascular system must supply oxygenated blood within a small distance of every point in a tissue, to 

meet cellular metabolic demands. This is achieved via a hierarchical network of vessels, whose 

branches with diameters below ~100 µm form the microcirculation and are classified as arterioles, 

capillaries or venules. The arterioles and venules form dichotomous branching structures with a 

hierarchy of vessel diameters, and respectively supply and drain the interconnected, mesh-like 

capillaries, which have diameters below 10 µm. The structures of microvascular networks 

determine distributions of blood flow and solute transport, and therefore strongly influence the 

function of the tissues that they supply. 

 

Current ex vivo biological imaging techniques allow detailed reconstruction of microvessel network 

structures, providing 3D data sets with more than 106 segments in some cases (Cassot et al, 

2006). Examples of these techniques include vascular casting with high-resolution imaging such as 

micro-computed tomography, confocal imaging based extended-volume imaging systems, and 

optical imaging of cleared tissue with fluorescent probes, all combined with automated post-

processing technologies. A number of studies have used such data to quantify microvascular 

structures in tissues including brain, retina, heart, lymph node, placenta and solid tumours (Cassot 

et al, 2006; Lee & Smith, 2008; van den Wijngaard et al 2013; Konerding et al, 1999; Konerding et 

al, 2001; Chan et al, 2012; Lee, 2009; Folarin et al , 2010; Mayerich et al, 2011; Kelch et al, 2015; 

d'Esposito et al 2018, Plitman et al 2016, Pearce et al 2016). 

 

The interpretation of such data sets in terms of functional physiological properties remains a major 

challenge. One obstacle is that in vivo measurements of vascular structure and blood flow in all 

individual microvessels are not generally feasible (Srinivasan et al, 2013). Therefore, mathematical 

models that link blood flow and mass transport to microvascular network structure provide a key 

tool for analysing these data sets and extracting functional properties. Indeed, mathematical 

modelling of blood flow and mass transport is a fundamental aim of the international Physiome 

Project (http://physiomeproject.org). Two main types of models for this purpose have emerged, 

here referred to as discrete and continuum. 

 

Discrete models can be used if the complete network structure, including capillaries, is defined 

explicitly. The flow properties of the network can then be represented mathematically by assigning 

a conductance, i.e. a ratio of flow rate to pressure drop, to every segment based on Poiseuille’s 

law. Conservation of blood flow at vessel junctions together with flow or pressure boundary 

conditions (BCs) at the boundary segments of the network lead to a system of linear equations, 

which can be solved for the node pressures and segment flows (Lipowsky & Zweifach, 1974; 
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Lorthois et al, 2011). Empirically-determined relationships (Pries & Secomb, 2005) are frequently 

used to define blood viscosity in Poiseuille’s law, as a function of vessel diameter and haematocrit. 

This approach has been extended to allow estimation of flows with incomplete BCs (Fry et al, 

2012), and Bayesian analysis techniques have been employed to quantify the effects of 

measurement uncertainties (Rasmussen et al, 2017). Even so, predictions of discrete models are 

inevitably affected by measurement errors and incomplete BCs, and discrete approaches are not 

feasible if the network structure is incompletely known or is so large that a complete solution is not 

computationally practical. Numerous approaches have sought to incorporate further 

haemodynamic (for example, (Secomb et al., 2001)) and topological (e.g. vessel tortuosity (Penta 

& Ambrosi 2015)) detail into these discrete approaches, with associated increase in computational 

cost of the model simulations. Although we not incorporate these features in this work, there is 

ample opportunity for model extension in the future, if the computational cost is justified by the 

potential for new physiological insights. 

 

Continuum models provide a more approximate approach that can be used when discrete models 

are not feasible. In this approach, the local transport properties of the capillary network are 

analysed, and the capillary network is represented in the model by a homogeneous medium with 

corresponding properties. (Chapman et al, 2008) and (Shipley & Chapman, 2010) developed 

continuum models for fluid and mass transport through the leaky vasculature and porous 

interstitium of a solid tumour using mathematical homogenisation methods. In (Chapman et al, 

2008) a discrete network of capillaries is homogenised to give a continuum description in terms of 

a vascular density. In (Shipley & Chapman, 2010) a multiple-scales approach is used to exploit the 

separation of length scales between individual capillaries and the tissue as a whole, assuming a 

periodic microstructure. Both approaches result in equations describing a double porous medium 

with coupled Darcy flow through the interstitium and vasculature. The Darcy fluid permeability 

tensors capture the dependence of tissue-scale perfusion on the micro-scale geometry and flow 

characteristics. In the limit of zero vessel leakage relevant to healthy tissues, the interstitial and 

vascular models are decoupled. More recent work has incorporated further complexity into these 

averaged frameworks, including haemodynamic complexities such as heterogeneity in blood 

rheological parameters (Penta et al, 2015). Continuum models have been employed using 

structural data from the rat myocardium (Lee, 2009; Smith et al, 2014) and human cortex (El-Bouri 

& Payne, 2015). However, the application of these continuum models involves several challenges 

(Peyrounette et al, 2018). Firstly, the vasculature contains hierarchical networks with a range of 

spatial scales, where vascular branching structures in particular may not be well represented in 

terms of two length scales (capillary scale and tissue scale). Secondly, the models assume a 

highly interconnected network, such that vessel pressures at nearby spatial locations are 

correlated. Thirdly, the parameters of the continuum models may be difficult to estimate. 
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Measurements of blood pressure within systemic microvessels show that most of the arterial-

venous pressure drop (75% or more under control conditions) occurs in the arterioles (Chilian et al, 

1989; Pries et al, 1995), with a smaller drop in the capillaries and a minimal drop in the venules. 

Furthermore, the arterioles are the primary site for local control of blood flow, by active contraction 

or dilation of vascular smooth muscle in their walls. It follows that the arterioles are dominant in 

determining spatial and temporal variations of flow and pressure in the microcirculation. This 

behaviour is not well represented by the continuum models described above. This suggests a need 

for models that include the arteriolar network structure, even if the complete vascular structure 

cannot be modelled explicitly.  

 

In this study, we develop a coupled discrete-continuum model for microcirculatory blood flow, 

taking advantage of the arterio-venous asymmetry of the pressure distribution in the systemic 

circulation (Pries et al, 1995). Blood flows and pressures in the tree-like arteriolar network are 

modelled using a discrete model, which is coupled via local sources to a continuum description of 

blood flow in the capillary bed, using a Green’s function approach. The venular system is treated 

using a uniformly distributed pressure-dependent sink term (although we note the opportunity to 

expand the framework to explicitly model the venular network as required). The model is intended 

for application in cases where the arteriolar network geometry is mapped out, but the capillary 

geometry is not fully resolved or is too extensive to be modelled using a discrete approach. For 

observed networks in the rat mesentery, model predictions are compared with their equivalents 

obtained from a discrete model for the complete network including capillaries and venules. 

 

2. Mesentery networks and discrete flow solutions 
 
The mesentery is a thin sheet of tissue containing essentially 2D microvasculature. Structural and 

some blood flow data for networks in the rat mesentery were obtained by Pries et al. (Pries & 

Secomb, 2005; Pries & Gaehtgens, 1986; Pries et al, 1990; Pries et al, 1995) and flow was 

analysed using a discrete model. Three such networks (Networks 1, 2 and 3, Figure 1) are used in 

the present study. 

 

Classification of vessels as arterioles, venules or capillaries is required for the approach presented 

here. Histological classification according to vessel wall structure (Henrikson et al, 1997) is not 

available for most imaging methods. Classification algorithms based on flow direction (Roy et al, 

2012) or structural information (Cassot et al, 2006; Smith et al, 2015) have been developed. Since 

data on flow direction are not generally available for large network structures, the structure-based 

method of Smith et al. (Smith et al, 2015) is used here, specifically their Algorithm 2 for networks 

with multiple inlets and outlets. This method identifies the topological transitions between the 

branching arteriolar and venular structures, and the interconnected loops of the capillary bed, and 
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was shown to be more robust to parameter variations than alternative structure-based algorithms 

(for example that of (Cassot et al, 2006)). The resulting classification of vessels in the mesentery 

networks is included in Figure 1 and summary data are provided in Table 1. 

 

The method for network flow calculation (Pries & Secomb, 2005) is as follows. We define N as the 

set of all nodes, comprised of the sets of interior nodes I and boundary nodes B (defined as nodes 

connected to only one segment), S as the set of all segments, n, nI and nB as the number of nodes 

in N, I and B respectively, and nS as the number of segments in S. The flux qj in segment j is 

calculated using Poiseuille’s Law: 

     𝑞" = ∑ 𝑀"&𝑝&&∈) , for 𝑗 ∈ 𝑆,    (2.1) 

where pk is the pressure at node k, and 

   𝑀"& = ,
+𝜋 𝑑"0 128⁄ 𝜇"𝑙" if	𝑘	is	the	start	node	of	segment	𝑗
−𝜋 𝑑"0 128⁄ 𝜇"𝑙" if	𝑘	is	the	end	node	of	segment	𝑗

0 otherwise
,  (2.2) 

 

where dj and lj are the diameter and length of segment j, and µj the associated viscosity obtained 

using the in vivo law of (Pries & Secomb, 2005). At interior nodes, conservation of flux is satisfied, 

while at boundary nodes, flux or pressure BCs are applied. At least one pressure BC is required for 

a unique solution. These conditions are combined to obtain 

    ∑ 𝐾J&𝑝& = −𝑞KJ&∈)  for 𝑖 ∈ 𝐼⋃𝐵.     (2.3) 

Here, Kik is defined by  

     𝐾J& = ∑ 𝐿J"𝑀"&"∈R  ,     (2.4) 

where 

   𝐿J" = S
−1 if	𝑖	is	the	start	node	of	segment	𝑗
+1 if	𝑖	is	the	end	node	of	segment	𝑗
0 otherwise

.    (2.5) 

If a flow boundary condition is given at node 𝑖 ∈ 𝐵, then q0i is the inflow (or outflow if negative). If a 

pressure BC is given at node 𝑖 ∈ 𝐵, then −q0i is replaced by the pressure condition and the ith row 

of K is replaced by δik. If 𝑖 ∈ 𝐼, then q0i = 0. Equation (2.3) yields a sparse linear system for the 

node pressures pk that may be solved using standard numerical methods.  

 

Blood flow directions were recorded in all segments of the three mesentery networks considered, 

but blood flow velocities were recorded only in Network 1, derived from centre-line velocity 

measurements (Pries et al, 1994). The measured flow values from Network 1 were not used 

directly here because these flows did not satisfy conservation of flux at nodes due to measurement 

inaccuracies. In order to obtain flow solutions by the discrete method, for comparison with the 

results of the hybrid method, the flow estimation method of (Fry et al, 2012) was applied to all three 

networks. Motivated by the need to estimate flow rates in networks with incomplete boundary value 



7	
	

data, this method minimises the sum of squared deviations from target pressure and shear stress 

values in each segment across the network. One pressure boundary condition was enforced at the 

venous outlet of each network (𝑝T = 13.8 mmHg), while at arteriolar inlets, flow boundary 

conditions were assigned by assuming an empirical linear relationship between vessel diameter (d, 

in μm) and velocity (v, in mm/s): v = 0.4d − 1.9 (Pries et al, 1995; Pries et al, 1990) and multiplying 

by the vessel cross-sectional area to obtain a flow value. This linear relationship is based on 

experimental measurements of pressure, red cell velocity and diameter in cat mesentery vessels 

with diameters in the range 7 to 58 µm, and serves as a useful approximation arteriolar inlet flow 

boundary values, which has been used on similar-sized vessels of other networks. To determine 

segment viscosities, the in vivo viscosity law (Pries et al, 1994) was employed with uniform 

haematocrit of 0.4 (this assumption facilitates model development, but we note the framework 

could incorporate heterogeneous haematocrit distributions using established empirical 

relationships such as those established in (Secomb et al, 2001) in future). The target pressure was 

set to 31 mmHg (Fry et al, 2012). 

 

The target shear stress (τ0,j, dyn/cm2) in each segment was assigned as a function of the mean 

segment pressure (pj in mmHg, the average of the pressures at the ends) (Pries et al, 1998): 

   U𝜏K,"U = 100 − 86 ∙ exp	[−5000 ∙ (𝑙𝑜𝑔aK(𝑙𝑜𝑔aK𝑝"))c.0].  (2.6) 

The sign of the target shear stress in each segment was set according to the recorded flow 

directions, rendering unnecessary the use of an iterative process for determining flow directions 

(Fry et al, 2012). The value of the parameter kτ in the flow estimation method, which specifies the 

weighting of shear stress terms, was chosen by minimising the normalised root mean square 

deviation from the flow solution obtained with all measured BCs applied in Network 1. This kτ value 

was then used for all three networks. 

 

3. Discrete-continuum flow model 
Here we describe the hybrid discrete-continuum model and methodology for parameter 

assignment. This framework is summarised in a flow diagram in Figure 2.  

In the hybrid discrete-continuum model, a discrete model for flow and pressure in the arterioles is 

coupled to a continuum description of flow and pressure in the capillaries and venules. This 

coupling is achieved via local sources of flow into the continuum domain, positioned at the terminal 

branches of the arterioles (see Figure 1). To avoid singular behaviour in the pressure field, these 

inflows are distributed over discs of radius r0, which provide the coupling between the discrete 

network and the continuum. In a recent 3D discrete-continuum model (Peyrounette et al, 2018), a 

more detailed analysis of this coupling was presented, taking into account the local capillary 

network at the terminal branches of the arterioles. Such local effects can be represented here 

through the value of r0. Outflow via the venules is accounted for by a pressure-dependent drainage 
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term. This drainage is applied throughout the domain, including the regions occupied by the 

coupling discs. 

 

In the continuum model for the capillary network, Darcy’s law describes the coupling between 

blood velocity and pressure 

      𝒖 = −𝜅𝛻𝑝,       (3.1) 

where u is the volume-averaged blood velocity, p is the pressure, and κ is the uniform, isotropic 

conductivity of the network. This description can be derived by averaging Stokes flow in 

representative capillary sub-regions via homogenisation methods (Chapman et al, 2008; Shipley & 

Chapman, 2010; Smith et al, 2014). Conservation of mass yields 

   𝛻. 𝒖 = −𝜅𝛻h𝑝 = ∑ 𝑞"ijk𝑑(𝑟)
)m
"na − 𝛽(𝑝 − 𝑝p),   (3.2) 

where the first term on the right-hand side represents discrete sources of flow from the arteriolar 

network into the capillary domain and the second term represents the spatially distributed drainage 

into the central venous system. In the arterial source term,  

     𝑑(𝑟) = q1 𝜋⁄ 𝑟Kh𝐷 for	𝑟 ≤ 𝑟K
0 otherwise

,     (3.3) 

and represents a unit flow source distributed over a disc of radius r0, where 𝑟 = U𝒙 − 𝒙𝑗U, xj (j = 

1,…,Nt) are the source points, 𝑞"ijk are the source strengths and D is the thickness of the tissue. 

The source points xj include the ends of arteriolar vessels and also capillary side-branches of 

arterioles. In the venous drainage term, pv is the uniform venous sink pressure and β represents 

the spatially averaged conductance of the venous network. Equation (3.2) is subject to the 

condition that the pressure tends to pv far from the flow sources. The substitution 𝑝̅ = 𝑝 − 𝑝p gives 

  −𝜅𝛻h𝑝̅ + 𝛽𝑝̅ = ∑ 𝑞"ijk𝑑(𝑟)
)m
"na  and 𝑝̅ → 0 as |𝒙| → ∞ .   (3.4) 

The Green’s function, 𝐺(𝒙; 𝒙∗) corresponding to (3.4) solves the adjoint problem 

   −𝜅𝛻h𝐺 + 𝛽𝐺 = 𝑑(𝑟) and 𝐺 → 0 as |𝒙| → ∞    (3.5) 

and the solution of (3.2) is then expressed as 

   𝑝(𝒙) = 𝑝p + ∑ 𝐺|𝒙, 𝒙"}𝑞"ijk
)m
"na .      (3.6)  

Hence the final capillary pressure field is given by a superposition of Green’s functions weighted by 

the corresponding source strengths, representing contributions from each source. In polar 

coordinates, (3.5) can be written as 

   ~�
�

�
��
�𝑟 ��

��
� + 𝛽𝐺 = 𝑑(𝑟) and 𝐺 → 0 as 𝑟 → ∞,    (3.7) 

with continuity of G(r) and its flux at r = r0, 

   𝐺|�n��� = 𝐺|�n��� , −𝜅 �𝑟 ��
��
��
�n���

= −𝜅 �𝑟 ��
��
��
�n��

�,   (3.8) 

and G(r) well-defined at r = 0. The solution of (3.7) is given by 
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𝐺(𝑟) = S
a

������
+ 𝐴𝐼K(𝜆𝑟) for	𝑟 ≤ 𝑟K

𝐵𝐾K(𝜆𝑟) for	𝑟 ≥ 𝑟K
 ,       (3.9) 

where 𝐴 and 𝐵 are integration constants to be determined, I0 and K0 are modified Bessel functions 

of the first and second kinds, and  

      𝜆 = �β/κ .     (3.10). 

Applying the continuity of G(r) and its flux at r = r0 conditions (3.8) yields the solution 

   𝐺(𝑟) = ,

a~���(���)��(��)
������

for	𝑟 ≤ 𝑟K
���(���)��(��)

������
for	𝑟 ≥ 𝑟K

 ,    (3.11) 

where  

    𝐶 = a
��(���)��(���)���(���)��(���)

.     (3.12) 

 

3.1 Computational implementation of the discrete-continuum model 
To calculate the pressure field, we assume that the arteriolar network structure, arteriolar inlet 

pressure pa and the background venous pressure pv are known, whereas the pressures and flows 

at the source nodes are unknown. From eq. (3.6), the pressure at xi is 

   𝑝Jijk = 𝑝p + ∑ 𝑀J"
kJ��𝑞"ijk

)m
"na  for 𝑖 = 1, … , 𝑁k,    (3.13) 

where 

   𝑀J"
kJ�� = 𝐺(𝑟J") and 𝑟J" = U𝑥J − 𝑥"U.     (3.14) 

 

The discrete model described in §2 is used to calculate the pressures at the outflow nodes of the 

arteriolar network, as functions of the unknown flow conditions at the interface between the 

arteriolar and capillary networks: 

   𝑝Jijk = 𝑝� − ∑ 𝑀J"
 ¡k𝑞"ijk

)m
"na  for 𝑖 = 1,… , 𝑁k,   (3.15) 

where the matrix 𝑴 ¡k characterises the pressure-flow relationship in the arteriolar network. The 

source nodes include capillary side-branches of arterioles. At these points, short dummy segments 

of length 5 μm and diameter equal to the minimum segment diameter in the arteriolar network are 

added for convenience, so that all source points are then terminal nodes of the arteriolar network. 

A sequence of discrete flow calculations is performed to calculate 𝑀J"
 ¡k for j = 1,…,Nt. In each 

case, if a node is a boundary node for the full network, the BC on pressure or flow for the full 

network is imposed. The flow at source node j is set to 1 and the flows at all other source nodes 

are set to zero so that, (3.14) gives 

     𝑀J"
 ¡k = 𝑝� − 𝑝Jijk.      (3.16)  

Matching the pressure values from the continuum and discrete solutions, (3.13) and (3.15), yields 

    ∑ [𝑀J"
 ¡k + 𝑀J"

kJ��]𝑞"ijk
)m
"na = 𝑝� − 𝑝p,     (3.17) 
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which may be solved for 𝑞"ijk. 

 

3.2 Parameter values 
Parameter definitions are summarised in Table 2. We assume that the tissue thickness is D = 20 

μm (a different assumed value would give equivalent results except for a rescaling of β and κ). The 

radius over which sources are distributed is r0 = 20 µm, chosen so that the sources do not overlap 

and hence act independently on the continuum solutions. A sensitivity analysis to variations in r0 is 

performed in §4.4. The arteriolar inflow pressure 𝑝� is chosen for each network to match that in the 

discrete solution, and 𝑝p = 2.6 mmHg is equal to the average of literature values for the central 

venous pressure in rats (Cui et al, 2008; Le Marquer-Domagala & Finet, 1995). The calculation of 

𝑴 ¡k also requires information on the flows at the non-source boundaries of the arteriolar network. 

We use the discrete solutions in the full mesentery networks to provide these values. 

 

The conductivity κ of the capillary network to fluid transport, and rate of drainage β from the 

capillary into the venous network are not known a priori. The conductivity κ is estimated using the 

‘micro-cell’ homogenisation approach (Smith et al, 2014), parameterised using the capillary data 

for each of the mesentery networks. Periodic hexagonal grid networks were generated with 

hexagon edge lengths scaled to match the capillary length densities, and non-uniform segment 

diameters were sampled from a log-normal distribution using the mean and standard deviation 

from each of the mesentery data sets. Segment viscosities were determined by the in vivo viscosity 

law (Pries et al, 1994) with a uniform haematocrit of 0.4. One thousand such networks were 

generated and the micro-cell problem solved on each to obtain a mean conductivity representative 

of each mesentery network (Smith et al, 2016). 

 

With κ given, a root finding algorithm was employed to identify the value of λ as defined in eq. 

(3.10) (and hence β) for which the difference in the sum of source fluxes between the network flow 

solution and the Darcy flow solution was zero. Once all parameters were estimated, the source 

fluxes were calculated using (3.16). Contour plots of pressure were generated from pressures at a 

grid of points in the spatial domain calculated using (3.6). All computations were carried out using 

MATLAB 2016a (Mathworks, Inc., Natick, Massachusetts, USA). 

 

4. Results 
 
4.1 Discrete model 
Figure 3 shows the pressure and flow distributions in each mesentery network, calculated using 

the discrete model with the flow estimation method. Each network displays haemodynamic 

properties consistent with expectations for the microcirculation, with vascular pressures decreasing 

from the arterioles to the capillaries and then venules. The predicted pressure drop is largest for 
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Network 1 (84 mmHg), with lower values for Network 2, 3 (42 and 58 mmHg, respectively). 

Arterioles and capillaries exhibits wide pressure ranges. Figure 4 shows their overlapping pressure 

distributions. Venular pressures are restricted to the lower end of the pressure range, with low 

means and standard deviations (Table 2), justifying the averaging of the venular network in the 

discrete-continuum model.   

  

Flow predictions of the discrete model are shown in Figure 3. Flows are largest in the larger-

diameter arterioles and venules, and the majority of capillaries have low flows. In general, flows are 

largest in Network 2 (a maximum of 1158 nL/min) compared to Networks 1, 3 (maxima of 686 and 

727 nL/min, respectively), with larger flows in Network 2 for a smaller pressure drop consistent with 

the larger network conductivity for that network. The discrete model simulations have 1.6%, 11.8% 

and 7.4% segment flow directions reversed compared to in vivo observations of flow directions.  

 

4.2 Discrete-continuum model 
The arteriolar networks with locations of the source points are shown in Figure 1. The number of 

sources (including arteriolar and capillary side branches), capillary network conductivities, and 

values of the venous drainage parameter, β, are provided in Table 2; the latter of which are 

calculated by matching of the sums of the source fluxes predicted by the discrete-continuum 

method with those from the fully discrete approach. Contour plots of the pressure and velocity 

distributions in the capillary network are shown in Figure 5. Predicted capillary pressures decay 

with distance away from the arteriolar sources, consistent with expected bulk pressure drops 

across the vasculature. For each network, the minimum pressure was achieved at the boundaries 

of the tissue domain; these minimum pressures were between 3 and 7 mmHg, corresponding to 

drainage into the central venous system. 

 

Figure 6 shows comparisons of discrete-continuum and discrete predictions of pressures at the 

nodal locations of each network, for both capillaries and venules. As with the discrete model, the 

capillary locations (green) in the discrete-continuum model encompass wide pressure ranges, 

whereas venule locations (blue) are clustered in the lower end of the pressure spectrum. In 

network 1, the mean pressure at the terminal arterioles in the hybrid model was similar to that in 

the discrete model, but in networks 2 and 3, the hybrid model predictions of mean pressure were 

higher than the discrete model predictions by 32% and 53% respectively. The coefficient of 

determination (R2) between the discrete-continuum and discrete pressure predictions at the source 

locations is approximately 0.89, 0.61 and 0.68 for Networks 1, 2, and 3, respectively, indicating 

good correlation between the two models in predicting microcirculatory pressures. Discrepancies in 

predicted pressures between the two models were largest in regions where arterioles and venules 

were in close spatial proximity but not closely connected topologically (data not shown). Such 
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discrepancies likely arise from the representation of the venular network as a spatially uniform flow 

sink rather than as a discrete network. 

 

Blood flow velocity predictions of the discrete-continuum model are highest for Network 2, which 

has the largest network conductivity (Figure 5). Whereas the continuum pressure decays with 

distance from the arteriolar sources, the spatial organisation of these sources results in local 

gradients of the pressure field and spatial patterning in the continuum velocity field (for example 

localised regions of low or high flow), which depends on the local distribution of sources. An 

analysis of the difference in the discrete and discrete-continuum velocity directions (not shown) 

indicates that areas of high correlation in velocity directions were distributed seemingly randomly 

across the regions considered, with the flow directions in the discrete model strongly dictated by 

the local network geometry. The R2 values between the discrete-continuum and discrete flow 

predictions at the source locations are approximately 0.27, 0.52 and 0.28 for Networks 1, 2 and 3 

respectively. For all three networks, the SD of the flows was approximately 50% lower in the hybrid 

model than in the discrete model. 

 
4.3 Sensitivity analysis 
To compare the discrete and hybrid models, we analysed the sensitivity of predicted pressures and 

flows evaluated at the arteriolar source locations to perturbations in key parameters. In the discrete 

model, ±10% variations were applied to the parameter kT in the flow estimation algorithm, the 

venular outflow pressure p0 and the flow BCs. The results (Table 4) showed similar trends as in 

previous studies (Smith, 2013; Sweeney et al; 2018). The source pressure and flow rates were not 

sensitive to changes in kT. Increasing p0 elevated predicted source pressures. Large variations in 

mean source pressures were observed as a result of altering flow BCs. As a result, mean flow 

rates significantly changed at the source locations due to redistribution of network flow. 

 

In the discrete-continuum model, ±10% variations were applied to the conductivity κ, source radius 

r0 and flow BCs at nodes located at the boundaries of each network (Table 5). The mean of the 

source flows was fixed in the sensitivity analysis because this quantity was used to determine the 

rate of venous drainage, β. Perturbing κ and r0 by ±10% had minimal effects in all networks. As in 

the discrete model, the predictions were sensitive to modification of the flow BCs. 

 

The source radius r0 is a key parameter in the discrete-continuum model because it affects the 

pressure field in the continuum resulting from a given arteriolar sources. Further sensitivity 

analyses were performed to determine the effects of changing r0 on (a) the difference in predicted 

means of pressures at arteriolar source locations, and (b) the R2 of pressures (results are shown in 

Figure 7). With increasing r0, the magnitudes of pressure differences between the two models 
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increase, but the R2 values improve. The chosen value of r0 = 20 µm achieves near maximal R2 

values while minimising the magnitude of the pressure differences. 

 
5. Discussion and conclusions 
 
Recent developments in imaging methods are providing data on extensive microvascular 

structures, but comprehensive measurements of blood flow and pressure are generally infeasible. 

Mathematical models that predict tissue-scale transport processes based on such structural data 

have potential to provide insights into normal and pathophysiological tissue function, and guide 

drug development and dosing regimens. Motivated by these goals, we have developed a hybrid 

discrete–continuum method for estimating microcirculatory blood flows and pressures from data on 

network structure and subjected it to rigorous testing by comparing results with those obtained 

from simulations of the complete network structure. 

 

The hybrid discrete-continuum approach presented here has several advantages. Relative to a 

purely continuum approach, the inclusion of the arteriolar network results in strong spatial 

gradients and heterogeneity in microvascular pressure and flow fields. Relative to a fully discrete 

approach, the representation of capillaries and venules by a continuum greatly decreases the 

anatomic data that is needed for the model. Predicted intravascular pressures at arteriolar source 

points are well correlated with predictions from the discrete model. The inclusion of arterioles 

allows for explicit simulation of effects of local flow regulation, which is mainly achieved by control 

of arteriolar diameters.  

 

The comparisons with the fully discrete model reveal some limitations of the hybrid approach. The 

use of a continuum representation for capillaries and venules tends to smooth the results, leading 

to lower levels of heterogeneity in pressure and flow variables than are predicted by the discrete 

model. Pressures at the arteriolar source points predicted by the hybrid model are generally higher 

than obtained using the discrete model, and the discrepancy varies among networks tested. 

Source flows predicted by the hybrid model show relatively low correlations with the discrete 

predictions. While the discrete model itself is not definitive, being based on flow estimations with 

incomplete boundary conditions, these findings nonetheless indicate that the hybrid model is only 

partially successful in providing quantitative predictions and in representing the flow heterogeneity 

within and among microvascular network structures. 

 

The application of this discrete-continuum approach is appropriate in cases where the complete 

network structure is not available. It is assumed that the complete network structure of the 

arterioles is available. Also, the capillary network structure in a sample region of the tissue is 

needed, together with specified pressures feeding the arteriolar network and draining the venular 



14	
	

network, and an estimate of overall tissue perfusion (flow per volume). In such cases, the following 

procedure would be used. 

(1) Calculate the capillary network conductivity κ by using data on the vessel radii and lengths to 

parameterise the micro-cell homogenisation approach (Smith et al, 2014). 

(2) Couple a discrete model for flow in the arterioles to a continuum model for transport in the 

capillary bed, via flow sources into the continuum domain. 

(3) Represent the venular network by a sink term distributed throughout the continuum domain. 

(4) Solve the coupled system of equations for the pressures at the arteriolar source locations. 

Estimate the coefficient β	by matching perfusion with the prescribed value. 

 

In summary, hybrid discrete-continuum models represent a promising approach to meeting the 

challenge of relating observations of microvascular structure to the resulting functional properties 

of tissues (El-Bouri & Payne, 2015; Smith et al; 2016). Such models can readily be extended to 

fully three-dimensional vascular structures with depth-dependent (Schmid et al; 2017) or 

anisotropic (Smith et al; 2014) capillary network properties, to incorporate more sophisticated 

descriptions of vessel tortuosity (Penta & Ambrosi, 2015) and network haemodynamics (e.g. 

Secomb et al, 2001), and combined with simulations of oxygen transport (Secomb et al; 2004; 

Secomb 2016) and models of flow regulation (Sweeney et al, 2018; Fry et al, 2013) to gain insight 

into the physiological processes underlying the control of blood and oxygen supply to tissues. 
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