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Abstract

This thesis analyses two broad problems: the computation of financial sensitivi-

ties, which is a computationally expensive exercise, and the evaluation of barrier-

crossing probabilities which cannot be approximated to reach a certain precision

in certain circumstances. In the former case, we consider the computation of the

parameter sensitivities of large portfolios and also valuation adjustments. The tra-

ditional approach to compute sensitivities is by the finite-difference approximation

method, which requires an iterated implementation of the original valuation func-

tion. This leads to substantial computational costs, no matter whether the valua-

tion was implemented via numerical partial differential equation methods or Monte

Carlo simulations. However, we show that the adjoint algorithmic differentiation

algorithm can be utilised to calculate these price sensitivities reliably and orders of

magnitude faster compared to standard finite-difference approaches. In the latter

case, we consider barrier-crossing problems of Ornstein-Uhlenbeck diffusions. Es-

pecially in the case where the barrier is difficult to reach, the problem turns into a

rare event occurrence approximation problem. We prove that it cannot be estimated

accurately and robustly with direct Monte Carlo methods because of the irremov-

able bias and Monte Carlo error. Instead, we adopt a partial differential equation

method alongside the eigenfunction expansion, from which we are able to calcu-

late the distribution and the survival functions for the maxima of a homogeneous

Ornstein-Uhlenbeck process in a single interval. By the conditional independence

property of Markov processes, the results can be further extended to inhomoge-

neous cases and multiple period barrier-crossing problems, both of which can be

efficiently implemented by quadrature and Monte Carlo integration methods.



Impact Statement

This thesis analyses and solves two problems. The first problem pertains to the

evaluation of sensitivities of financial products priced by numerically solving par-

tial differential equations or regression-based Monte Carlo methods. The second

problem concerns the multiple barrier-crossing probability of Ornstein-Uhlenbeck

diffusions. We now summarise their impacts to audiences inside and outside of

academia as follows.

In financial industry, finding the price of a financial derivative is only a start.

More importantly, one needs to consider their position’s exposure, whose risks

should be managed by hedging based on price sensitivities to the risk factors of

the underlying assets of the derivative. Although one may able to obtain a closed-

form price function for special contingent claims under specific model assumptions,

generally, one has to consider numerical methods for derivatives pricing, such as

partial differential equation approaches or Monte Carlo methods. The traditional

way to evaluate financial sensitivities is by the finite-difference approach, in which

one needs to bump the value of a risk factor and re-compute the price again. This

becomes time-consuming if the number of risk factors is large due to the nested im-

plementation of the numerical pricing function. In this thesis, we apply the adjoint

algorithmic differentiation method to compute the financial sensitivities. The ad-

joint algorithmic differentiation method reversely collects the linear combinations

of the Jacobian matrices for the pricing function. Therefore, its theoretical time-

consumption of evaluating all the sensitivities will not exceed four times the time-

consumption of the pricing function. With the adjoint algorithmic differentiation

method, one can evaluate the financial sensitivities efficiently in practice. This can
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not only save the computational and technological costs for financial institutions,

but can also improve the efficiency of derivatives hedging and risk management.

The other problem we consider in this thesis is the multiple barrier-crossing

probabilities of Ornstein-Uhlenbeck diffusions. Ornstein-Uhlenbeck processes

have been widely used in physics, finance and other fields. The main theoretical

impact we provide is the semi-analytical formula for the joint distribution of pas-

sage times for a continuous Markov process in consecutive time intervals. It can not

only be used in the Ornstein-Uhlenbeck diffusions setting, but can also be further

applied in the context of general continuous Markov processes. One natural exten-

sion is to find the joint distributions of passage times for other known processes

in consecutive intervals. Practically, one can use this result to model events with

joint-passaging features. A typical example concerns the modelling of a heatwave.

A heatwave is defined as period of at least several consecutive days during which

the maximum temperature exceeds certain thresholds.

In sum, this thesis provides theoretically- and practically-useful mathematical

theories. With these results, one can either boost the computational efficiency in risk

management exercises in financial industry or study the multiple barrier-crossing

probabilities for extensive group of stochastic processes.
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Chapter 1

Introduction

Increases in computational power have been witnessed since the start of the 21st

century. However, computational problems have not become fewer, despite the

improvement in computational technology. In fact, due to the advancements in

computational power, problems that may have been computationally expensive or

time-consuming to solve in the past have been brought back. The recent rise of

machine learning is one of such examples: most of the machine learning algorithms

were invented in the late 20th century, but it was not until recently that they drew ev-

eryone’s attention. Moreover, alongside the development of computational power,

the demand for quantitative analysis and the complexity of mathematical models

also grew. For example, the financial world has changed after the financial crisis

of 2007-2008. In the past, financial products were complicated under a relatively

simple financial environment. However, the financial crisis of 2007-2008 brought

more regulations to trades and transactions. Although these regulations reduced

the percentage of complicated financial products in the market, they also made the

pricing of simple financial products difficult. This has become especially true in the

aftermath of the financial crisis because of the renewed emphasis on risk manage-

ment and the introduction of a large number of valuation adjustments for financial

derivatives prices, collectively known as x valuation adjustments (XVA), see for ex-

ample [10] and [31]. In actuarial science, computational needs have also recently

increased. In casualty insurance, ruin probabilities of some rare events, such as

the occurrences of natural disasters or political hazards, are usually computed or
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approximated. This requires extensive computational power due to the small oc-

currence likelihoods. Indeed, it seems reasonable to suggest that regardless of the

rising computational power, the computational challenges we are facing have not

decreased.

Nowadays, financial technology (FinTech) has become a popular word in

industry. Artificial intelligence, Graphics Processing Units (GPU) computing,

blockchain and many other tools have been used in financial applications. The ap-

plications of these new technologies can make the industry more efficient in many

ways, however, they are not without risk. Actually, apart from the risks inside

these emerging tools, their abuse may lead to computational inefficiencies in prob-

lem solving, compared with using techniques relying on traditional mathematical

analysis. One such example is the computation of XVA. XVA aims at capturing

counterparty risk and other funding as well as capital costs that significantly affect

the profitability of trading operations. XVA is computationally expensive to ob-

tain because it involves computing the expectation of a function together with all

the conditional exposures of the transaction until expiry. This is a typical nested

Monte Carlo (MC) problem. One can solve it naively with modern technologies

by resorting to GPU computations. However, as shown in [60] and [71], the nested

MC algorithm can be approximated efficiently with a regression-based MC scheme.

The regression-based MC algorithm requires significantly less computational cost

compared with the nested MC method, even when the latter is implemented with

GPU clusters. Mathematics can not only bring efficiency in quantitative analysis,

but can also overcome problems which can hardly be solved by FinTech methods

alone. For instance, machine learning methods have been widely used in the in-

surance industry. For specific insurance contracts, machine learning “blackboxes”

are trained with historical data samples, comprising hazard factors, in order to show

the insurance company the risk profiles of their clients. However, for contracts pro-

tecting the insured from natural disasters, such as strong earthquakes or tsunamis,

historical occurrences samples are so few that the supervised training of machine

learning algorithms can be heavily biased. This may lead to inaccurate pricing of



20

insurance products or cause further problems such as insolvency.

Within the context specified above, this thesis focuses on applying advanced

mathematical tools to solve complex problems in efficient and accurate ways. We

summarise the main contributions of this thesis as follows:

1) We apply adjoint algorithmic differentiation (AAD) to the risk management

of derivative securities in the situation where the dynamics of securities prices

are given in terms of partial differential equations (PDEs). Through the use

of simple examples, we show how AAD can be applied to both forward and

backward PDEs in a straightforward manner. In particular, in the context of

one-factor short-rate models for interest rates or default intensity processes,

we show how one can compute price sensitivities reliably and orders of mag-

nitude faster in AAD than with a standard finite-difference approach. This

notable increased efficiency is obtained by combining (i) the adjoint of a for-

ward PDE for calibrating the parameters of the model, (ii) the adjoint of a

backward PDE for pricing the derivative security, and (iii) the implicit func-

tion theorem to avoid iterating the calibration procedure.

2) We show how AAD can be used to calculate price sensitivities in regression-

based MC methods (also known as the least-square MC approach) reli-

ably and orders of magnitude faster than with standard finite-difference ap-

proaches. In doing so, we introduce the AAD version of the traditional least-

square algorithms of [60] and [71]. By discussing detailed examples which

are of practical relevance, we demonstrate how accounting for the contribu-

tions associated with the algorithm’s regression functions is crucial in order

to obtain accurate estimates of the Greeks, especially in XVA applications.

3) We investigate the joint distribution and the multivariate survival functions

for the maxima of an Ornstein-Uhlenbeck (OU) process in consecutive time-

intervals. A PDE method with eigenfunction expansion is adopted, with

which we firstly calculate the distribution and the survival functions for the

maximum of a homogeneous OU-process in a single interval. By using a
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deterministic time-change and a parameter translation, this result can be ex-

tended to an inhomogeneous OU-process. Secondly, we derive a general for-

mula for the joint distribution and the survival functions for the maxima of a

continuous Markov process over consecutive periods. With these results, one

can obtain semi-analytical expressions for the joint distribution and the mul-

tivariate survival functions for the maxima of an OU-process, with piecewise

constant parameter functions, over consecutive time periods. We show that

the joint distribution and the survival functions can be evaluated numerically

by an iterated quadrature scheme, which can be implemented efficiently via

simple matrix multiplications. Moreover, we show that the computation can

be further simplified to the product of single quadratures if the filtration is

enlarged.

The content of this thesis is adapted from the following research papers: (i)

Chapter 2 is based on Capriotti, Jiang and Macrina (2015), henceforth [21]; (ii)

Chapter 3 is based on Capriotti, Jiang and Macrina (2016), henceforth [22]; and (iii)

Chapter 4 is based on Jiang, Macrina and Peters (2019), henceforth [49]. In partic-

ular, Chapter 2 and 3 introduce the AAD algorithm, which can be used to evaluate

financial sensitivities, such as the Greeks, efficiently and robustly. These chapters

cover the applications of AAD to two major numerical methods: the numerical PDE

approach and the MC method. Chapter 4 studies the multiple barrier-crossings of

OU-diffusions in consecutive periods. A semi-analytical formula for the joint dis-

tribution and the multivariate survival functions for the maxima of an OU-process

in consecutive time-intervals is achieved. The key message of this thesis is to show

that with mathematical analysis, new robust and efficient algorithms for computa-

tionally expensive problems and the semi-closed-form expressions for theoretically

difficult problems can be developed. We now consider the structure of this thesis in

further detail.

Chapter 2 applies the AAD algorithm to the risk management of structural

products, such as corporate bonds, bond options, credit default swaps (CDSs) and

CDS options, when their prices may be characterized by PDEs. We show how AAD
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can be applied to forward and backward PDEs in a straightforward manner. In the

context of one-factor models for interest rates or default intensities, we show how

price sensitivities are computed reliably and orders of magnitude faster than with a

standard finite-difference approach. Specifically, in Section 2.2 we begin by recall-

ing the standard formality for the valuation of securities prices by means of PDEs.

We also recall the standard numerical approach for the numerical solution of back-

ward PDEs. In Section 2.3, we review the equivalent forward PDE approach and its

use for the efficient implementation of calibration algorithms. Section 2.4 presents

the general principles of AAD and their application in numerical solution of the

forward and backward PDEs. The results of numerical experiments are presented

in Section 2.5 and conclusions are shown in Section 2.6.

In Chapter 3, we present the application of AAD to the regression-based

MC approach, which is widely applied for the pricing and risk management of

Bermudan-style options (see [24], [71], [60]), and in particular for XVA applica-

tions (see [25]). We first develop the AAD implementation of the well-known least-

square part of the algorithm for the computation of conditional expectation; then

we investigate numerically the impact on the Greeks arising from the sensitivities

of the regression functions. In Section 3.2, the regression-based MC algorithms for

both Bermudan-style options and XVA are presented. In Section 3.3, we discuss

the AAD algorithms for the regression-based MC method. Here, we also present

results on handling discontinuities within path-wise differentiations. We give two

numerical examples: the best of two stocks Bermudan-style call option and its cor-

responding XVA in Section 3.4. We show how smoothening discontinuities asso-

ciated with suboptimal exercise boundaries improves the accuracy of the Greeks of

Bermudan-style options, and why the contribution to the sensitivities arising from

the regression boundaries is essential for an accurate computation of XVA sensitiv-

ities. The efficiency and accuracy of AAD are also compared with the traditional

finite difference approach.

Up to this point, the research has focussed on applications of the AAD ap-

proach to financial derivatives in a real-time setting. The goal of Chapter 4 is to de-
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velop the mathematical theory to calculate the probability of OU-diffusions crossing

multiple upper barriers in consecutive periods, especially when the barrier-crossing

is a seldom event. Firstly, we study the first-passage-time (FPT) of a homoge-

neous OU-process with lower reflection barrier passing a constant upper barrier

with a PDE method in Section 4.2. Moreover in Section 4.3, we transform the

FPT of an inhomogeneous OU-process passing a time-dependent barrier to the FPT

of a homogeneous OU-process with a different time-dependent barrier. The time-

inhomogeneity from the process can be transferred to the time-dependent barrier

only. Furthermore, an integral representation of the joint distribution and joint sur-

vival function for the maxima of a continuous Markov process in consecutive in-

tervals is presented in Section 4.4. Finally, we show that the numerical integration

can be computed efficiently and accurately by the quadrature scheme and the MC

integration method in Section 4.5.

In concluding this introduction, we offer a few remarks to spur reflections on

the relationship between mathematical analysis and cutting-edge modern technolo-

gies. The increasing attention drawn from the fast developing technologies makes

many individuals think that these technologies will finally end the need for quan-

titative analysis in practical settings, especially in the financial industry. However,

without a clear understanding, the abuse of these technologies may lead to untoward

consequences. This is especially true in abusing machine learning when applied to

the analysis of financial data. Compared with medical, graphical and natural data,

financial data is strongly influenced by news, the behaviours of market participants

and many other aspects. The patterns in financial data are hidden behind signifi-

cant noise. Therefore, decisions based on machine learning algorithms trained with

noisy and dirty data can be very risky.

Nevertheless, one of the most important messages we wish to transmit with this

thesis is: mathematics is an essential part in financial modelling, risk management

and actuarial science, regardless of new upcoming technologies such as artificial

intelligence or in general FinTech. In fact, many aspects of these modern technolo-

gies are based on mathematics themselves. For example, deep learning has become
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one of the most spoken-of topics after the success of AlphaGo from DeepMind,

Google. Google has also introduced TensorFlow, a library based on GPU parallel

computing to accelerate deep neural network (DNN) training by back-propagation.

The core of TensorFlow in evaluating gradients is actually based on the same math-

ematical methodology as AAD, see Section 2.4. Through the use of mathematical

theories, modern technologies can be further improved in terms of accuracy and

efficiency. Conversely, modern technologies may affect ways of problem solving

in applied mathematics. In another research project (see [23]) excluded from this

thesis, we approximate solutions to non-linear PDEs by using a DNN based on the

universal approximation theorem. Since the DNN estimator is infinitely differen-

tiable with respect to all the input arguments, the problem of solving the PDE can

be transformed to an optimisation problem, where the solution to the PDE is ap-

proximated by minimising the residuals. Such methods give rise to more options in

solving mathematical problems.



Chapter 2

Real-time risk management: An

AAD-PDE approach

2.1 Overview

The practice of risk management of derivative securities comes with a high com-

putational burden and technology cost. Standard approaches for the calculation of

risk require repeated portfolio valuation under hundreds of market scenarios. As a

result, in order to complete risk calculations in practical time-spans, financial in-

stitutions employ vast computational resources bearing high infrastructure costs.

Since the total cost of “through-the-life” risk management can determine whether

it is profitable to execute a new trade, solving such a technological challenge is of

paramount importance for a financial institution to remain competitive.

Against this backdrop, a computational technique known as AAD was recently

introduced in [17], [19], [20] and [44]. It has been proven to be effective for speed-

ing up the calculation of sensitivities, especially for MC applications, see [16]

and [18] for example. This powerful technique allows for fast computation of

first-order sensitivities without repeating the portfolio valuation several times, as

happens in traditional finite-difference approaches.

Algorithmic differentiation (AD), see [42], is a scheme for the efficient calcu-

lation of derivatives of functions, which is implemented as a computer programme.

What makes AD particularly attractive, when compared to standard finite-difference
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methods for the calculation of derivatives, is its computational efficiency. AD ex-

ploits the information on the structure of the computer code in order to optimise

the calculation. In particular, when derivatives of a small number of outputs with

respect to a large number of inputs are required, the calculation can be optimised

by applying the standard chain rule of calculus through the instructions of the pro-

gramme in opposite order to their original evaluation. This gives rise to the adjoint

algorithmic differentiation (AAD), which means the adverse mode of AD, see [37].

Most of the applications considered in the financial literature so far have fo-

cused on MC simulations, such as [16], [17], [18], [19] and [38]. In that context,

AAD can be used to efficiently implement the so-called Pathwise Derivative Method

for the calculation of sensitivities, see [12]. In this chapter, we extend this research

area and demonstrate how AAD can be effective in applications to PDEs. In asset

pricing, the PDE method is widely used to compute the price of low dimensional

and non-path-dependent derivatives. This can be achieved either by solving a back-

ward PDE (the PDE with terminal condition) for the derivative price directly, or by

obtaining the Arrow-Debreu price from a forward PDE (the PDE with initial con-

dition) first and then computing the price by numerical quadrature. In this chapter,

we show how AAD can be utilised to speed up the calculation of the sensitivities in

situations where the pricing of the derivative and the calibration of the underlying

stochastic model rely on solving PDE. We further show how one can compute price

sensitivities more reliably and in orders of magnitude faster than standard finite-

difference approaches. This is achieved with a judicious combination of the adjoint

version of the numerical schemes for forward and backward PDEs and by the im-

plicit function theorem. We provide step-by-step instructions for the AAD-PDE

scheme to facilitate its implementation in “real-time” financial risk management.

The two main contributions of this chapter are as follows: a) As far as we are

aware, this is the first time that AAD algorithm has been paired with numerical PDE

methods to evaluate sensitivities of financial derivatives. The financial industry may

have been applying such techniques already. This chapter fills the gap between the-

ory and practice. b) By the implicit function theorem, we show how sensitivities



27

from the calibration function with numerical PDE pricer can be computed magni-

tude faster than the traditional finite-difference estimator or the direct application

of AAD to the calibration function. This further improves the efficiency of risk

management in practice.

2.2 Option prices and backward PDEs

Option pricing problems can be often formulated in terms of a linear parabolic par-

tial differential equation, of the second order, of the form

∂V
∂ t

+µ(x, t;θ)
∂V
∂x

+
1
2

σ
2(x, t;θ)

∂ 2V
∂x2 −ν(x, t;θ)V = 0, (2.2.1)

where

Vt(θ) =V (xt , t;θ)≡ E
[

exp
(
−
ˆ T

t
ν(xu,u;θ)du

)
P(xT ;θ)

∣∣∣xt

]
(2.2.2)

is the value of a derivative contract at time t. Here and from now on, θ =

(θ1, . . . ,θNθ
) represents the vector of Nθ parameters on which the model depends.

Unless further specification, the expectations in later context are taken under the

risk neutral probability measure, under which the discounted asset prices are mar-

tingales. At the maturity date T > t, the value, P(xT ;θ), of the financial derivative

depends on the realisation of the risk factor (xt)t≥0 that satisfies

dxt = µ(xt , t;θ)dt +σ(xt , t;θ)dWt , (2.2.3)

where µ(x, t;θ) and σ(x, t;θ) are the drift and the volatility functions, and (Wt)t≥0

is a one-dimensional Brownian motion. By supplying appropriate spatial boundary

conditions, see page 159 of [75], and the terminal condition V (x,T ;θ) = P(x;θ) at

maturity T , Equation (2.2.1) can be solved backwards in time for the value of the

derivative security at any time t ≤ T , V (x, t;θ) for xt = x.

Note that the Black-Scholes PDE for the price of European-style claims

is of the form (2.2.1), where µ(x, t;θ) = (r(t)−δ (t))x, σ(x, t;θ) = σ(t)x and
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ν(x, t;θ) = r(t). Here r(t) and δ (t) denote the risk-free interest rate and dividend

yield respectively.

One-factor short-rate models for applications to interest-rate derivatives pric-

ing, such as the models by [9], [29] or by [47] can also be described in terms of a

random driver that satisfies a diffusion of the form (2.2.3). For example, the Black-

Karasinski (BK) model can be expressed by setting the stochastic instantaneous rate

of interest to rt ≡ r(xt) = exp(xt). Here, (xt)t≥0 satisfies

dxt = κ(t)(µ(t)− xt)dt +σ(t)dWt , (2.2.4)

where κ(t) and µ(t) are the mean-reversion speed and level respectively. In the

context of short-rate models, the value of a derivative security with expiry value

P(rT ;θ) can be expressed as in (2.2.2) with ν(xu,u;θ) = r(xu) and where the ex-

pectation is taken under the risk-neutral measure. In this case the components of

the vector θ are typically the coefficients used to parameterise the mean-reversion

speed and level as well as the volatility of the process.

Since the BK-model is a positive stochastic process, it can be applied to the

modelling of stochastic default intensities, which is known as the Cox processes,

see page 46 of [61]. In this context, we take xt = ln(ht) in Equation (2.2.4), the

logarithm of the hazard rate (ht)t≥0, and it represents the default probability per

unit of time (between times t and t+dt) for a reference entity under the risk-neutral

measure, conditional on the survival up to time t. By modelling the default event

of an obligor as the first arrival time, τ , of a Poisson process, the conditional (risk-

neutral) probability of the obligor surviving up to time T is given by

Q(ht , t,T ) = E
[

exp
(
−
ˆ T

t
hu du

)∣∣∣ht ,τ > t
]
. (2.2.5)

Any credit derivative for which its payoff at time T is a function of the hazard rate,

hT (such as defaultable bonds, CDS, bond options and CDS options) can be priced

by using the backward PDE (2.2.1).



29

2.2.1 Numerical solutions to backward PDEs by finite-difference

discretisation

The solution, Vt0(θ) =V (xt0 , t0;θ), of the PDE (2.2.1) can be found numerically by

discretisation on the rectangular domain (t,x) ∈ [t0,T ]× [xmin,xmax] where xmin and

xmax ( such that xmin < xt0 < xmax) are constants obtained by means of probabilistic

considerations. In particular, by denoting (i) the points on the time axis by tm =

t0+m∆t where m = 0, . . . ,M and ∆t = (T − t0)/M, and (ii) the points on the spatial

axis by x j = xmin + j∆x, where j = 0, . . . ,N + 1 and ∆x = (xmax− xmin)/(N + 1),

one can discretise the PDE (2.2.1) with finite-difference approximations for the first

and second derivatives. A standard Euler discretisation scheme results in a matrix

iteration of the form

LB(tm,φ ;θ)V m(θ) = RB(tm,φ ;θ)V m+1(θ)+β (tm+1;θ) (2.2.6)

where V m(θ) = (V (x1, tm;θ), . . . ,V (xN , tm;θ))> and V (x j, tm;θ) indicate the finite-

difference approximation to the solution of the PDE (2.2.1)1 and

LB(tm,φ ;θ) = I−φ∆tD(t̃m(φ);θ), (2.2.7)

RB(tm,φ ;θ) = I+(1−φ)∆tD(t̃m(φ);θ). (2.2.8)

Here, t̃m(φ) = (1−φ)tm+φ tm and I is the N×N identity matrix. Both expressions

(2.2.7) and (2.2.8) are defined in terms of the tri-diagonal matrix D(t;θ) specified

by

[D(t;θ)] j, j =c j(t;θ), (2.2.9)

[D(t;θ)] j, j+1 =u j(t;θ), (2.2.10)

[D(t;θ)] j+1, j =l j+1(t;θ), (2.2.11)

1To keep the notation as light as possible, we denote the exact solution of the PDE (2.2.1) and its
finite-difference approximation with the same symbol.
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where j = 1, . . . ,N in Equation (2.2.9) and j = 1, . . . ,N− 1 in Equations (2.2.10)

and (2.2.11). The coefficients
c j(t;θ) =−σ(x j, t;θ)2∆x−2−ν(x j, t;θ),

u j(t;θ) = 1
2 µ(x j, t;θ)∆x−1 + 1

2σ(x j, t;θ)2∆x−2,

l j(t;θ) =−1
2 µ(x j, t;θ)∆x−1 + 1

2σ(x j, t;θ)2∆x−2,

(2.2.12)

are defined in terms of the functions µ(x,t;θ), σ(x,t;θ) and ν(x j, t;θ) in the PDE

(2.2.1). Moreover, β (tm+1;(θ)) is an N-dimensional vector encoding suitable spa-

tial boundary conditions which cannot be included in the matrix D(t;θ). The pa-

rameter φ is bounded between φ = 0 (corresponding to the fully explicit scheme)

and φ = 1 (corresponding to the fully implicit scheme). Both schemes are charac-

terised by an accuracy O(∆x2,∆t). The case φ = 1/2 corresponds to the Cranck-

Nicholson (CN) method, see [30], which is generally the method of choice in fi-

nancial applications because it is characterised by an accuracy O(∆x2,∆t2) and it is

unconditionally stable in most cases. The Von Neumann stability analysis of dif-

ferent finite difference methods can be found in Appendix A. Here, we consider

the stable discretization only. However, in some situations, e.g., for discontinuous

payoff functions, combining the CN method with fully-implict iterations (as in the

so-called “Rannacher stepping”) has been shown to improve the accuracy of the

numerical solution, see [68].

Given the value of the derivative at maturity V M
j (θ) = P(x j;θ), Equation

(2.2.6) can be solved recursively by utilising standard tri-diagonal solvers based

on the LU-decomposition, for m = M− 1, . . . ,0, in order to find the vector V 0
j (θ).

From this, the value of the derivative Vt0 = V (xt0, t0;θ), corresponding to the state

variable xt0 observed at time t0, can be computed by linear interpolation,

Vt0 =V 0
j? +

V 0
j?+1−V 0

j?

x j?+1− x j?
(xt0− x j?), (2.2.13)

with j? such that x j? ≤ xt0 < x j?+1. The associated algorithm is given as follows:

(S1) Initialise the value vector on the final time slice V M
j (θ) = P(x j;θ) with j =
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0, . . . ,N:

V M = PAYOFF(θ). (2.2.14)

(S2) For m = M−1, . . . ,0 execute the following steps:

a) Compute the coefficient vectors cm(θ) ≡ c(t̃m(φ);θ), um(θ) ≡

u(t̃m(φ);θ), and lm(θ)≡ l(t̃m(φ);θ) in Equations (2.2.12):

(cm,um, lm) = COMPUTECOEFFM(θ).

b) Compute the matrices Lm
B (θ)≡ LB(tm,φ ;θ) and Rm

B (θ)≡RB(tm,φ ;θ) in

Equations (2.2.7) and (2.2.8) from the coefficients vectors cm(θ), um(θ),

and lm(θ):

(Lm
B ,R

m
B ) = COMPUTELRB(cm,um, lm). (2.2.15)

c) Compute the boundary condition vector β m+1(θ)≡ β (tm;θ) by

β
m+1 = COMPUTEBC(θ). (2.2.16)

d) Given V m+1, solve Equation (2.2.6) for V m by calling a suitable tri-

diagonal solver such as

V m = TRIDIAGSOLVER(Lm
B ,R

m
B ,β

m+1,V m+1), (2.2.17)

which we can represent mathematically as the following sequence of

operations:

Um+1 = Rm
BV m+1, W m+1 =Um+1 +β

m+1 V m =W m+1/Lm
B ,

(2.2.18)

where we adopte the notation “B/A” to represent finding the solution X

of the linear system AX = B.

(S3) Compute Vt0 =V (xt0, t0;θ) with a suitable interpolation scheme, for example,
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the type shown in Equation (2.2.13), by calling a method of the kind

Vt0 = COMPUTESPOTVALUE(V 0).

Since the matrices (2.2.9), (2.2.10) and (2.2.11) are tri-diagonal, the cost of a single

iteration of Equation (2.2.6) is O(N). As a result, the overall computation complex-

ity of the algorithm above is O(NM).

2.2.2 Intermediate cashflows

Incorporating intermediate cash flows, which for instance may arise from coupon

payments, in the finite-difference scheme is immediate and results in the following

additional steps after a) – d) of (S2) in the previous section:

e) Initialise any additional payoff that might be necessary for the valuation of

intermediate cash-flows, C(t,xt ;θ), when their value is not available in closed

form, by C m+1
m+1 = AUXILIARYPAYOFF(θ). Here C m

k is the value vector at

time tm of a set of auxiliary securities with expiry tk.

f ) For k = m+1, . . . ,M, execute the tri-diagonal solver

C m
k = TRIDIAGSOLVER

(
Lm

B ,R
m
B ,β

m+1,C m+1
k

)
.

g) Compute the intermediate cash-flow at time tm and update the value vector

Cm = COMPUTECASHFLOW({C m
k }k=m+1,...,M,θ), (2.2.19)

V m+=Cm, (2.2.20)

where Cm
j = C(tm,x j;θ). We make use of the notation += for the standard

“addition assignment” operator.

In the most common situations, when the backward PDE (2.2.1) is used to

value an interest rate (respectively credit derivative), the auxiliary value vectors C m
k

in the steps above represent the value of the conditional discount factors,

C m
k = Z(rtm, tm, tk)≡ E

[
exp
(
−
ˆ tk

tm
ru du

) ∣∣∣rtm

]
,
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with rt = r(xt) (or respectively the value of the conditional survival probabilities

Q(htm , tm, tk) in Equation (2.2.5)).

2.2.3 American-style options

The numerical algorithm described in the previous section can be extended to handle

the pricing of securities with early exercise features, such as Bermudan-style and

American-style options (see page 44 of [75]), provided that the exercise value can

be expressed in terms of a deterministic function of the form E(xt , t;θ). Indeed, on

each exercise date, Te, the Bellman principle (see [7]) can be expressed as a simple

jump condition,

V (x,Te;θ) = max
(
V (x,T+

e ;θ),E(x,T+
e ;θ)

)
. (2.2.21)

By indicating the set of early exercise dates (assumed for simplicity to be a subset of

the discretisation dates tm, m = 0, . . . ,M) by Te, early exercise can be incorporated

into the finite-difference scheme of the previous section as the following additional

steps after a) – d) of (S2):

e) Initialise any additional payoff that might be necessary for the valuation of

the exercise function, E(xt , t;θ), or the valuation of the intermediate cash-

flow, C(t,xt ;θ), when their expressions are not available in closed-form from

C m+1
m+1 = AUXILIARYPAYOFF(θ). Here, as shown in Section 2.2.2, C m

k is

the value vector at time tm of a set of auxiliary securities with expiry tk.

f ) As in Section 2.2.2.

g) As in Section 2.2.2.

h) If tm ∈Te, execute the instructions

Em = COMPUTEEXERCISEVALUE({C m
k }k=m+1,...,M,θ), (2.2.22)

Hm =V m, (2.2.23)

V m = EARLYEXCERCISE(Hm,Em), (2.2.24)
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where

(i) (2.2.22) computes the early exercise function E(xtm, tm;θ), possibly us-

ing the auxiliary information C m
k , k = m+1, . . . ,M,

(ii) (2.2.23) assigns V (xtm, t
+
m ;θ) to the so-called “hold value” Hm,

(iii) EARLYEXCERCISE in (2.2.24) applies the Bellman condition in Equa-

tion (2.2.21) to determine V (xtm , tm;θ).

If the financial option may be exercised continuously in a given time interval,

as is the case for American-style options, then the set Te contains all the dates of the

finite-difference grid in the time interval in which early option exercise is contrac-

tually allowed. This algorithm is generally accurate to the first-order convergence

in the time step, even when the CN scheme is employed.

2.3 Arrow-Debreu prices and forward PDEs
An alternative approach to derivatives pricing is to solve the backward PDE (2.2.1)

by the Arrow-Debreu price density, see e.g. page 42 of [51], which is also known

as Green’s function. In the present setting, the Arrow-Debreu price density reads:

ψ(y,T |xt , t) = E
[

δ (y− xT )exp
(
−
ˆ T

t
ν(xu,u;θ)du

) ∣∣∣xt

]
, (2.3.1)

where δ (·) denotes the standard Dirac delta function. Similar to Section 2.2, the

expectation is taken under the risk neutral measure. In the context of the interest

rate derivatives and short-rate models introduced in Section 2.2, the price, Vt0(θ),

at time t0 of a European-style option with maturity date T and payoff function,

P(rT ;θ), is given by

Vt0(θ) =V (xt0, t0;θ) = E
[

exp
(
−
ˆ T

t0
rudu

)
P(rT ;θ)

∣∣∣xt0

]
,

where rt = r(xt) is the instantaneous short rate. The option price can be computed by

integrating the product of the payoff function and the Arrow-Debreu price density
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over all the possible values the short rate may take at time T , which is

Vt0(θ) =

ˆ
R

ψ(x,T |xt0 , t0)P(x;θ)dx. (2.3.2)

The integration is performed over the range of the function x = r−1(rT ). In partic-

ular, the price, Z(rt0, t0,T ), at time t0 of a discount bond with maturity T , can be

obtained as a special case by setting P(x;θ) = 1, that is

Z(rt0, t0,T ) =
ˆ
R

ψ(x,T |xt0, t0)dx, (2.3.3)

where rt0 = r(xt0). In the context of default intensity models, the conditional proba-

bility shown in Equation (2.2.5) can be expressed similarly to Equation (2.3.3). It is

well known, see for example page 42 of [51], that the Arrow-Debreu price density

(2.3.1) satisfies the following conjugate forward PDE:

∂tψ(x, t |xt0, t0) =−ν(x, t;θ)ψ(x, t |xt0, t0)−∂x (µ(x, t;θ)ψ(x, t |xt0, t0))

+
1
2

∂
2
x
(
σ

2(x, t;θ)ψ(x, t |xt0, t0)
)
, (2.3.4)

where the initial condition is given by ψ(x, t0 |xt0, t0) = δ (xt0 − x). The Arrow-

Debreu price density, ψ(xt , t |xt0, t0), can be determined for every t > 0 by solving

Equation (2.3.4) forward in time.

2.3.1 Numerical solutions for forward PDEs by finite-difference

discretisation

The conjugate forward PDE (2.3.4) can be discretised by the following steps, sim-

ilar to the ones illustrated in Section 2.2.1 for the backward PDE. The main two

differences are: 1) The finite difference method is to propagate starting from an

initial condition, while the method in Section 2.2.1 is to backwards propagate from

a terminal condition; 2) The boundary conditions for PDE (2.3.4) are modified as

well, which take zero value at upper and lower boundaries. By approximating the

Arrow-Debreu price density, ψ(x, t0 |xt0, t0) = δ (xt0 − x), at time t0 with its dis-



36

cretised counterpart, ψ0 ≡ ψ(x j, t0 |xt0 , t0) = ∆x−1δ j, j? , where δ j, j? is Kronecker’s

delta and x j? is the closest spatial grid point to xt0 , and by setting for the spatial

boundary conditions ψ(xmin, tm |xt0, t0) = ψ(xmax, tm |xt0 , t0) = 0, one can compute

the vector, ψm(θ) = (ψ(x1, tm |xt0, t0), . . . ,ψ(xN , tm |xt0, t0))
>, by iterating the ma-

trix recursion

LF(tm,φ ;θ)ψm+1(θ) = RF(tm,φ ;θ)ψm(θ), (2.3.5)

for m = 0, . . . ,M−1, where

LF(tm,φ ;θ) = I+(1−φ)∆tDT (t̃m(φ);θ), (2.3.6)

RF(tm,φ ;θ) = I−φ∆tDT (t̃m(φ);θ). (2.3.7)

The matrix D(t;θ) is determined by Equation (2.2.9) to (2.2.11). The algorithm to

numerically solve the forward PDE (2.3.4) can therefore be described by:

(S1) Initialise the value vector on the initial time slice ψ0(θ) = ∆x−1δ j, j? with

j = 0, . . . ,N by ψ0 = DELTA(), which has, in our setup, no dependences on

θ 2.

(S2) For m = 0, . . . ,M−1, execute

ψ
m+1 = PROPAGATEADPRICE(ψm;θ), (2.3.8)

comprising of the following steps:

a) Compute the coeffiecients cm(θ) ≡ c(t̃m(φ);θ) , um(θ) ≡ u(t̃m(φ);θ),

and lm(θ)≡ l(t̃m(φ);θ) in Equations (2.2.12) by

(cm,um, lm) = COMPUTECOEFFM(θ).

b) Compute the matrices, Lm
F (θ)≡ LF(tm,φ ;θ) and Rm

F (θ)≡ RF(tm,φ ;θ)

in Equations (2.3.6) and (2.3.7) from the vectors of coefficients cm(θ),
2The generalisation to the more general situation is straightforward.
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um(θ) and lm(θ) by

(Lm
F ,R

m
F ) = COMPUTELRF(cm,um, lm). (2.3.9)

c) Given ψm, solve Equation (2.3.5) for ψm+1 by calling a suitable tri-

diagonal solver

ψ
m+1 = TRIDIAGSOLVER(Lm

F ,R
m
F ,0,ψ

m), (2.3.10)

and executing W m+1 = Rm
F ψm as well as ψm+1 =W m+1/Lm

F .

Here, we make use of the notation introduced at the end of Section 2.2.1. In order

to compute the value Vt0(θ) of a derivative asset, one needs to compute the integral

(2.3.2) numerically, for example, by means of Gaussian quadrature.

(S3) Given the payoff vector P = P(x;θ), execute Vt0 = INTEGRATE(P,ψM),

where Pj = P(x j;θ). It performs the numerical integration of Equation

(2.3.2).

As for the backward PDE, the overall computational complexity of the algorithm

above is of order O(NM).

2.3.2 Forward PDEs and calibration

The valuation of a derivative security can be split in two distinct steps, a calibration

and a pricing step. In the calibration step,

θ = CALIBRATION(M ), (2.3.11)

the parameters of the model θ = (θ1, . . . ,θNθ
) are calibrated in order to reprice

simple and liquidly-traded financial instruments. We denote the price of such in-

struments with the market parameter vector M = (M1, . . . ,MNM ). For instance, in

the context of interest rate models (respectively credit models), the mean-reversion

level µ(t) is calibrated to the prices of the instruments used to build a yield curve

or, equivalently, a set of discount bond rates (respectively a set of prices of CDS



38

or also par spreads, see Chapter 5 of [61] for example). Similarly, the volatility

function, or a combination of the volatility and the mean-reversion speed function,

can be calibrated to swaption prices or implied volatilities. In the pricing step, the

parameters θ are mapped to the values of the derivative security, or a portfolio of

NV securities:

V = PRICING(θ), (2.3.12)

so that the concatenation of the calibration of the calibration and the pricing step

can be seen as a map of the form M → θ →V .

The calibration step, denoted by Equation (2.3.11), typically involves an it-

erative routine, for example, performing a numerical root search or least-square

minimisation. Forward PDEs and combinations of forward and backward PDEs are

usually used to efficiently implement the calibration step. In the following we will

assume that the mean-reversion level µ(t), the mean-reversion speed κ(t) and the

volatility function σ(t) in Equation (2.2.4) are all càdlàg piecewise constant on the

time line T1 < .. . < TL (assumed uniform for simplicity in the following), which is

a subset of the discretisation time axis tm for m = 0, . . . ,M, with T1 > t0 and TL = tM.

Also, we indicate by η(i) the map such that Ti = tη(i), for i = 1, . . . ,L and η(0) = 0.

The model parameter θ can therefore be expressed in terms of the levels of such

functions in each piecewise interval, namely θ =(µ1, . . . ,µL,κ1, . . . ,κL,σ1, . . . ,σL),

where µi = µ(Ti), κi = κ(Ti) and σi = σ(Ti), for i = 1, . . . ,L.

In the context of credit derivatives, the first goal of the calibration is to match

the survival probabilities in Equation (2.2.5), Q(ht0, t0,Ti) for i = 1, . . . ,L, with their

market-implied counterparts, Qmkt(t0,Ti), implied in turn via a standard bootstrap

procedure from a set of CDS quotes observed in the market. Here ht0 = exp(xt0) is a

free parameter of the model that for reasons of simplicity we assume fixed at some

reasonable value.

The algorithm for the calibration of the mean-reversion level function can be

described as follows. Initialise ψ0 with (S1) of Section 2.3.1 and for i = 1, . . . ,L,

proceed as follows.

(S1∗) Choose µi.
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(S2∗) Perform the instructions in (2.3.8) for m = η(i− 1), . . . ,η(i)− 1 and deter-

mine ψη(i).

(S3∗) Determine the numerical approximation of the survival probability in Equa-

tion (2.2.5) given by Q(ht0, t0,Ti) = INTEGRATE
(

1,ψη(i)
)

, where 1 is the

N-dimensional unit vector.

(S4∗) If the computed value Q(ht0, t0,Ti) equals what is quoted in the market, then

stop, otherwise go back to (S1∗) above.

The cost of the algorithm above is O(MNNav) where Nav is the average number of

root search iterations of (S1∗)-(S3∗) above, and it is O(N) more efficient than what

can be achieved with a backward PDE approach.

The calibration of the volatilities parameters to, for example, a collection of K

CDS options with expiry dates T e
i , i = 1, . . .K (assumed for simplicity to be a sub-

set of {Ti}L
i=1) and with underlying CDS maturity at time TL, can be implemented

efficiently with a combination of the forward and backward algorithms. Here we

assume, for simplicity, a stylised payoff for a CDS option with expiry date T e
i and

underlying maturity TL of the form

Pswpt
(

hT e
i
,T e

i ,TL

)
=
(

s
(

hT e
i

)
− c
)+

A
(

hT e
i
,T e

i ,TL

)
, (2.3.13)

where c is the running coupon of the CDS at which the option can be ex-

ercised, and A (hT e
i
,T e

i ,TL) and s(hT e
i
) are, respectively, the credit-risky an-

nuity and the par-spread for a TL maturity CDS contract starting at time T e
i .

The price at time T e
i of a credit-risky annuity is given by A (hT e

i
,T e

i ,TL) =

∑tm∈C (T e
i ,TL)∆tc Z(T e

i , tm)Q(hT e
i
,T e

i , tm), where C (T e
i ,TL) is the set of discretisa-

tion dates tm corresponding to the coupon dates3 for a CDS starting at time T e
i and

maturing at TL. The interval ∆tc is the length of the coupon period, which is as-

sumed uniform and commensurate with the spacing of the time grid T1, . . . ,TL for

3We can assume for simplicity that the coupon dates are a subset of the discretization dates tm,
for m = 1, . . . ,M.
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simplicity, and

Z(t, tm) = exp
(
−
ˆ tm

t
rudu

)
is the deterministic discount factor. The CDS par-spread is defined by

s(hT e
i
) = L (hT e

i
,T e

i ,TL)/A (hT e
i
,T e

i ,TL)

where L (hT e
i
,T e

i ,TL) is the discounted expected loss specified by

L (hT e
i
,T e

i ,TL) = (1−R)
ˆ TL

T e
i

Z(T e
i ,u)

(
−

dQ(hT e
i
,T e

i ,u)

du

)
du,

and R is the expected recovery rate, which is assumed independent of the default

time. In a discretised setting, the expected loss is generally approximated by

L (hT e
i
,T e

i ,TL)= (1−R) ∑
tm∈C (T e

i ,TL)

Z (T e
i , tm)

(
Q(hT e

i
,T e

i , tm−∆tc)−Q(hT e
i
,T e

i , tm)
)
,

so that the payoff in Equation (2.3.13) can be computed, provided that the con-

ditional survival probabilities Q(hT e
i
,T e

i , tm) with tm ∈ C (T e
i ,TL) and i = 1, . . . ,K

can be calculated. The calculation of the price of a swaption with expiry T e
i for

i = 1 . . . ,K, and underlying CDS-maturity TL,

V swpt
t0 (T e

i ,TL) = Z (t0,T e
i )E

[
Pswpt

(
hT e

i
,T e

i ,TL

)
|xt0

]
,

given a set of volatilities σ1, . . . ,σL, can be implemented using the following

method:

(S1′) By applying the forward induction from (S1∗) to (S4∗), calibrate µl , l =

1, . . . ,L. Save the Arrow-Debreu prices ψ
η(l)
j = ψ(x j,Tl |xt0, t0) where l =

1, . . . ,L.

(S2′) Execute (S2) of the backward induction algorithm in Section 2.2.1 equipped

with the steps e) and f ) of Section 2.2.2. The auxiliary securities are chosen

such that they provide a unit cash-flow at each coupon date of the CDS un-
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derlying the options, namely C m
m = 1 for tm ∈ C (T e

i ,TL), and zero otherwise.

As a result, [C m
k ] j represents the conditional survival probability Q(x j, tm, tk).

(S3′) Given the survival probabilities Q(x j,T e
i , tm), for tm ∈ C (T e

i ,TL), computed

in (S2′)

a) create the CDS option payoff in Equation (2.3.13), and

b) integrate the payoff as in Equation (2.3.2) against ψ(x j,T e
i |xt0, t0) by

numerical quadrature. Then produce the value, V swpt
t0 (T e

i ,TL), of the

swaption at time t0.

For processes characterised by a weak dependence of swaption prices on instanta-

neous volatility after the expiry, the calibration of the volatilities σ1, . . . ,σL can be

performed with the following bootstrap procedure, see for example [5]. Starting

from the first option expiry date T e
1 , one can vary all the knot points of the instan-

taneous volatilities at times before T e
1 while keeping the others constant until the

value V swpt
t0 (T e

1 ,TL) of the swaption is matched. Similarly, for the subsequent dates

T e
i , one can simultaneously vary all the knot points of the instantaneous volatilities

at the times between (and including) T e
i−1 and T e

i until the value V swpt
t0 (T e

i ,TL) of the

swaption is matched. On the last expiry date T e
K , one can vary all the knot points

of the instantaneous volatilities at T e
K−1 and after until the value V swpt

t0 (T e
K,TL) of

the swaption is matched. Since a swaption price has a weak dependence on all the

volatilities past its expiry dates, the bootstrap procedure above needs to be repeated

a few times until convergence is achieved. Conversely, when swaption prices have

a strong dependence on volatility after expiry, one cannot apply the bootstrap pro-

cedure above and the recourse to a multidimensional solver is necessary.

2.4 AAD and PDEs

2.4.1 Adjoint algorithmic differentiation

The main idea underlying algorithmic differentiation, see for example [42], is that

any computer implemented function – no matter how complicated – can be inter-

preted as a composition of basic arithmetic and intrinsic operations that are easy to
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differentiate. In particular, when one requires the derivatives of a small number of

outputs with respect to a large number of inputs, the calculation can be optimised

by applying the chain rule through the instructions of the programme in opposite

order with respect to their original evaluation. This gives rise to AAD. Page 75 to

80 in book [42] contains a detailed discussion of the computational cost of AAD.

In this section, we will only recall the main results in order to clarify what financial

computations and implementations can benefit from. This technique can be found

in [19] with several simple examples illustrating the intuition behind these results.

We now consider a function,

Y = FUNCTION(X), (2.4.1)

that maps a vector X ∈ Rn to a vector Y ∈ Rm through a sequence of steps

X → . . . → U → V → . . . → Y . The real vectors U and V represent in-

termediate variables in the calculation, and each step can be a distinct high-level

function or even a specific instruction. The adjoint mode of algorithmic differen-

tiation results from propagating the derivatives of the final output with respect to

all the intermediate variables—the so called adjoints—until the derivatives with re-

spect to the independent variables are formed. Using the standard AD notation, the

adjoint of any intermediate variable Vk is defined by

V̄k =
m

∑
j=1

Ȳj
∂Y j

∂Vk
,

where Ȳ is a vector in Rm. By applying the chain rule, we get for each variable Ui,

Ūi =
m

∑
j=1

Ȳj
∂Yj

∂Ui
=

m

∑
j=1

Ȳj ∑
k

∂Yj

∂Vk

∂Vk

∂Ui
,

which corresponds to the adjoint mode equation for the intermediate step repre-

sented by the function V =V (U). We thus have a function of the form Ū = V̄ (U,V̄ )

where

Ūi = ∑
k

V̄k
∂Vk

∂Ui
.
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Working from the right to the left, X̄ ← . . . ← Ū ← V̄ ← . . . ← Ȳ , we apply this

rule to each step in the calculation until we obtain X̄ . In other words, we continue

until one obtains the linear combination of the rows of the Jacobian of the function

X → Y , that is

X̄i =
m

∑
j=1

Ȳj
∂Yj

∂Xi
(i = 1, . . . ,n). (2.4.2)

In the adjoint mode, the cost does not increase with the number of inputs, but

it is linear in the number of rows of the Jacobian that need to be evaluated indepen-

dently. If the full Jacobian is required, one needs to repeat the adjoint calculation

m times, setting the vector Ȳ equal to each of the elements of the canonical basis in

Rm.

One important theoretical result is that given a computer programme perform-

ing some high-level function (2.4.1), the execution time of its adjoint counterpart

X̄ =FUNCTION b(X ,Ȳ ) (with suffix b for “backward” or “bar”) that computes the

linear combination (2.4.2), is bounded by three to four times the cost of execution

of the original one. That is,

Cost[FUNCTION b]

Cost[FUNCTION]
≤ ωA (2.4.3)

where ωA ∈ [3,4], see page 80 of [42].

2.4.2 AAD and backward PDEs

The evaluation of the numerical solution of the PDE (2.2.1) by means of the algo-

rithm described in Section 2.2.1 can be seen as a computer-implemented function

mapping θ → Vt0(θ). By following the principles of AAD, it is possible to design

its adjoint counterpart (θ ,V̄t0)→ (Vt0, θ̄) which gives the sensitivities,

θ̄k =
∂V (θ)

∂θk
, (2.4.4)

for k = 1, . . . ,Nθ . Here, we set V̄t0 = 1.

The adjoint of the solution of the backward PDE in Section 2.2.1 consists there-

fore of Steps (S1)-(S3) followed by their corresponding adjoint, executed in reverse
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order:

(S̄3) Set V̄t0 = 1, and execute

V̄ 0 = COMPUTESPOTVALUE b(V 0,V̄t0)

to compute

V̄ 0
j = V̄t0

∂Vt0

∂V 0
j

for j = 1, . . . ,N, according to rule (2.2.13).

(S̄2) For m = 0, . . . ,M−1, in opposite order to (S2) from Section 2.2.1, execute

d̄) Given V̄ m, execute the adjoint of function (2.2.17), namely

(L̄m
B , R̄

m
B , β̄

m+1,V̄ m+1)=TRIDIAGSOLVER b(Lm
B ,R

m
B ,β

m+1,V m+1,V̄ m),

which computes

[L̄m
B ] j,l =

N

∑
r=1

V̄ m
r

∂V m
r

∂ [Lm
B ] j,l

, [R̄m
B ] j,l =

N

∑
r=1

V̄ m
r

∂V m
r

∂ [Rm
B ] j,l

,

β̄
m+1
j =

N

∑
r=1

V̄ m
r

∂V m
r

∂β
m+1
j

, V̄ m+1
j =

N

∑
r=1

V̄ m
r

∂V m
r

∂V m+1
j

,

for j = 1, . . . ,N and l = 1, . . . ,N.

c̄) Compute the adjoint of (2.2.16), namely θ̄ = COMPUTEBC b(θ , β̄ m+1),

which gives

θ̄k+=
N

∑
r=1

β̄r
∂β m

r
∂θk

.

The initialisation of the vector of sensitivities θ̄ is given by

θ̄k =
N

∑
r=1

β̄r
∂β M

r
∂θk

.

b̄) Compute the adjoint of the function (2.2.15), that is
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(c̄m, ūm, l̄m) = COMPUTELRB b(cm,um, lm, L̄m
B , R̄

m
B ),

which produces the adjoint of the coefficient vectors

c̄m
j = [L̄m

B ] j, j
∂ [Lm

B ] j, j

∂cm
j

+[R̄m
B ] j, j

∂ [Rm
B ] j, j

∂cm
j

, (2.4.5)

ūm
j = [L̄m

B ] j, j+1
∂ [Lm

B ] j, j+1

∂um
j

+[R̄m
B ] j, j+1

∂ [Rm
B ] j, j+1

∂um
j

, (2.4.6)

l̄m
j+1 = [L̄m

B ] j+1, j
∂ [Lm

B ] j+1, j

∂ lm
j+1

+[R̄m
B ] j+1, j

∂ [Rm
B ] j+1, j

∂ lm
j+1

, (2.4.7)

where j = 1, . . . ,N in Equation (2.4.5) and j = 1, . . . ,N− 1 in (2.4.6)

and (2.4.7). Here we have used the fact that each component of the

vectors cm, um and lm appears only in one element of the three main

diagonals of the matrices Lm
B and Rm

B . By Equations (2.2.7) and (2.2.8)

it is immediately verified that

∂ [Lm
B ] j, j

∂cm
j

=
∂ [Lm

B ] j, j+1

∂um
j

=
∂ [Lm

B ] j+1, j

∂ lm
j+1

=−φδ t,

∂ [Rm
B ] j, j

∂cm
j

=
∂ [Rm

B ] j, j+1

∂um
j

=
∂ [Rm

B ] j+1, j

∂ lm
j+1

= (1−φ)δ t,

for 0 < φ < 1. In order to be fully explicit, φ = 0 (respectively the fully

explicit case, φ = 1), Lm
B (respectively Rm

B ) should be the identity matrix

and L̄m
B (respectively R̄m

B ) is identically zero.

ā) Compute the adjoints of the coefficients (2.2.12),

θ̄ +=COMPUTECOEFFM b(θ , c̄m, ūm, l̄m). (2.4.8)

This produces the following contribution to the adjoint of the vector θ̄ ,

θ̄k+=
N

∑
j=1

[
c̄m

j
∂cm

j (θ)

∂θk
+ ūm

j
∂um

j (θ)

∂θk
+ l̄m

j
∂ lm

j (θ)

∂θk

]

for k = 1, . . . ,Nθ , with um
N ≡ 0 and lm

1 ≡ 0.
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(S̄1) Compute the adjoint of the vector V M in (2.2.14) by executing

θ̄ +=PAYOFF b(θ ,V̄ M).

This gives the vector elements,

θ̄k+=
N

∑
j=1

V̄ M
j

∂P(x j;θ)

∂θk
,

for k = 1, . . . ,Nθ , associated with the explicit dependence of the payoff on the

model parameters θ (if any).

One can verify that the execution of the steps above produces the sensitivities shown

in Equation (2.4.4) of the option value with respect to the parameters θ . According

to the general result of AAD (see (2.4.3)), the cost to compute all the components of

the adjoint vector θ̄ is a small multiplier of order four times the cost of computing

(S1) to (S4), therefore resulting in an overall computation complexity of O(NM).

We note that obtaining the adjoint COMPUTESPOT b of the linear scheme in

Equation (2.2.13) is straightforward. The procedure consists of setting V̄ 0
j = 0

for j /∈ { j?, j?+ 1}, and allocating V̄ 0
j? and V̄ 0

j?+1 with their coefficients in Equa-

tion (2.2.13), namely

V̄ 0
j? = V̄t0

(
1−

xt0− x j?

x j?+1− x j?

)
, and V̄ 0

j?+1 = V̄t0
xt0− x j?

x j?+1− x j?
.

The adjoint function TRIADIAGSOLVER b, which gives the adjoint of (2.2.18), is

produced by

W̄ m+1 = [Lm
B ]
−T V̄ m, [Lm

B ]
−1 = V̄ m [W m+1]T , L̄m

B =− [Lm
B ]
−T [Lm

B ]
−1 [Lm]−T

B ,

Ūm+1 = W̄ m+1, β̄
m+1 = W̄ m+1, R̄m

B = Ūm+1 [V m+1]T , V̄ m+1 = [Rm
B ]

T Ūm+1.

(2.4.9)

Here we have used the fact that the adjoint of the linear operation y = Bx is given

by x̄ = BT ȳ and B̄ = ȳxT , and the identity Ā = −A−T A−1A−T , which holds for
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any invertible matrix A, see [37]. The computational cost of the instructions above

is O(N2). In order to reduce the computational cost to O(N), as in the original

sequence (2.2.18), one needs to avoid the matrix inversion in the first instruction

(2.4.9). This is obtained by utilising the solution of a linear system and then by

combining the first three instructions of Equation (2.4.9) and the third of Equation

(2.2.18). We thus have:

L̄m
B =− [Lm

B ]
−T V̄ m [W m+1]T [Lm]−T

B =−W̄ m+1
[
[Lm]−1

B W m+1
]T

=−W̄ m+1 [V m]T .

Then, the resulting algorithm is given by

W̄ m+1 = V̄ m/[Lm
B ]

T , L̄m
B =−W̄ m+1 [V m]T , Ūm+1 = W̄ m+1,

β̄
m+1 = W̄ m+1, R̄m

B = Ūm+1 [V m+1]T , V̄ m+1 = [Rm
B ]

T Ūm+1. (2.4.10)

We emphasise that only the elements on the three main diagonals of L̄m
B and R̄m

B

contribute to the sensitivities, so that only 3N multiplications are required for their

computation in the second and fourth instruction of Equation (2.4.10). The overall

computational cost of the adjoint tri-diagonal solver is O(N), exactly as for the

forward counterpart shown in the sequence of equations (2.2.18), and as expected

from the general result shown in Equation (2.4.3).

The execution of the adjoint instructions (2.4.10) requires the vector V m. This

is a manifestation of the general feature of the adjoint implementation which re-

quires: (i) the execution of the original code; and (ii) the storage of the intermediate

results as well as the final outputs before the execution of its adjoint counterpart.

In this case, TRIADIAGSOLVER b needs to contain a forward sweep repli-

cating the instructions (2.2.18) in order to compute V m. Alternatively, if the values

Vm were to be stored during the calculation in the forward sweep of (S1)-(S3), then

one could use the stored values directly as inputs in TRIADIAGSOLVER b. This

scheme is more efficient as it avoids repeating the forward sweep. The first im-

plementation comes with a reduced memory consumption as it does not store the

vectors V m for m = 0, . . . ,M and is an example of the “checkpointing” technique,
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see [19].

Finally, the adjoint of the function COMPUTECOEFFM b in Equation (2.4.8)

can be implemented by the adjoint of Equations (2.2.12), namely

σ̄
m
j =−c̄m

j 2σ(x j, t̃m;θ)∆x−2 + ūm
j σ(x j, t̃m;θ)∆x−2 + l̄m

j σ(x j, t̃m;θ)∆x−2,

ν̄
m
j =−c̄m

j , µ̄
m
j = ūm

j
1
2∆x−1− l̄m

j
1
2∆x−1,

for j = 1, . . . ,N, and

θ̄ += σ̄(x j, t̃m;θ , σ̄m
j ), θ̄ += µ̄(x j, t̃m;θ , µ̄m

j ), θ̄ += ν̄(x j, t̃m;θ , ν̄m
j ), (2.4.11)

and adding the contributions to the sensitivities

θ̄k+= σ̄
m
j

∂σ(x j, t̃m;θ)

∂θk
, θ̄k+= µ̄

m
j

∂ µ(x j, t̃m;θ)

∂θk
, θ̄k+= ν̄

m
j

∂ν(x j, t̃m;θ)

∂θk
,

for k = 1, . . . ,Nθ . The implementation of the adjoint functions in Equation (2.4.11)

depends on the particular model considered.

2.4.2.1 Intermediate cashflows and American-style options

The adjoint algorithm presented in the previous section can be extended to include

early-exercise contracts such as those described in Sections 2.2.2 and 2.2.3, by em-

ploying the following modification before d̄) of (S̄2) above:

h̄) For tm ∈Te, set {C̄ m
k }k=m+1,...,M = 0 and execute the following instructions:

(H̄m, Ēm) = EARLYEXCERCISE b(Hm,Em,V̄ m), V̄ m = Hm,

({C̄ m
k }k=m+1,...,M, θ̄)+ =

COMPUTEEXERCISEVALUE b({C m
k }k=m+1,...,M,θ , Ēm).

It is important to note that the application of the AAD rules in [19] require

the adjoint V̄ m be overridden rather than incremented.

ḡ) Execute the adjoint of Equation (2.2.19), that is, C̄m = V̄ m and
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({C̄ m
k }k=m+1,...,M, θ̄)+=COMPUTECASHFLOW b({C m

k }k=m+1,...,M,θ ,C̄m).

f̄ ) For k = M, . . . ,m+1, call the adjoint tri-diagonal solver,

(L̄m
B , R̄

m
B , β̄

m+1, C̄ m+1
k )+=TRIDIAGSOLVER b(Lm

B ,R
m
B ,β

m+1,C m+1
k , ¯A m

k ).

ē) Then execute θ̄ +=AUXILIARYPAYOFF b(θ , C̄ m+1
m+1 ), which gives the con-

tribution to the sensitivities arising from the intermediate cashflows and the

early-exercise optionality.

2.4.3 AAD and forward PDEs

Analogous to what is discussed in Section 2.4.2 for the backward PDE, the adjoint

of the numerical solution of the forward PDE of Section 2.3.1 consists of (S1)-(S3)

followed by their corresponding adjoint operations executed in reverse order. Or

one can use a change of variable τ = T − t and follow the same procedures as in

Section 2.4.2. Here, we present the AAD algorithm for (S1)-(S3) as follows:

(S̄3) Set V̄t0 = 1, execute (P̄, ψ̄M) = INTEGRATE b(P,ψM,V̄t0) and compute, ac-

cording to the rule (2.2.13), the gradients

ψ̄
M
j = V̄t0

∂Vt0

∂ψM
j
, P̄j = V̄t0

∂Vt0
∂Pj

,

for j = 1, . . . ,N. For an example in which a Gaussian quadrature scheme is

applied, we refer to [20]. The contribution to the sensitivities arising from the

functional form of the payoff (if any) is then computed by

θ̄k =
N

∑
j=1

P̄j
∂Pj

∂θ j
(k = 1, . . . ,Nθ ).

(S̄2) For m = M−1, . . . ,0 continue with the following steps:

c̄) Given ψ̄m+1, execute the adjoint of the function in Equation (2.3.10),

namely

(L̄m
F , R̄

m
F , ψ̄

m) = TRIDIAGSOLVER b(Lm
F ,R

m
F ,0,ψ

m, ψ̄m+1).
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b̄) Compute the adjoint of the function in Equation (2.3.9), namely

(c̄m, ūm, l̄m) = COMPUTELRF b(cm,um, lm, L̄m
F , R̄

m
F ).

ā) Compute the adjoints of the coefficients (2.2.12),

θ̄ +=COMPUTECOEFFM b(θ , c̄m, ūm, l̄m),

with the same adjoint functions as described in Section 2.4.2.

(S̄1) This step is void since the initialisation function, DELTA(), has no depen-

dency on θ .

One can verify that the execution of the steps above produces the sensitivities

of the option value with respect to the parameters θ , see Equation (2.4.4). As be-

fore, the general AAD result in (2.4.3) guarantees that the cost to compute all the

components of the adjoint vector θ̄ is a maximum of four times the cost of com-

puting (S1∗)-(S4∗) in Section 2.3.2, therefore resulting in an overall computational

complexity of order O(NM).

2.4.4 Calibration algorithm: AAD and the implicit function the-

orem

As demonstrated in Section 2.3.2, the valuation of a derivative security can be gen-

erally separated in two distinct steps, namely a calibration and a pricing step. While

the calculation of the sensitivities with respect to the internal model parameters ∂V
∂θ

,

obtained by the adjoint of the pricing step (2.3.12), θ̄ = PRICING b(θ ,V̄ ), which

computes

θ̄k =
NV

∑
i=1

V̄i
∂Vi

∂θk
,

for k = 1, . . . ,Nθ is sometimes useful, what is required for the risk management

of the portfolio of the derivative securities are the sensitivities ∂V
∂M , with respect

to the liquid market prices, because they define the size of the hedges. These can

be obtained, according to the general principles of AAD, by reversing the order of

computations so the adjoint of the algorithm consists of the adjoint pricing step,
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combined with the adjoint calibration step,

M̄ = CALIBRATION b(M , θ̄), (2.4.12)

giving

M̄m =
Nθ

∑
k=1

θ̄k
∂θk

∂Mm
,

for m = 1, . . . ,NM . The overall adjoint algorithm can be seen therefore as a map of

the form V̄ → θ̄ → M̄ .

The adjoint calibration step, (2.3.11), can be implemented according to the

general rules of AAD (see Section 2.4.1), paying attention to its iterative nature.

However, following the work by [27] and [44], a much better performance can be

obtained by exploiting the so-called implicit function theorem (IFT), as described

below. Here we consider the case in which the calibration algorithm in Equation

(2.4.12) consists of the numerical solution of a system of equations of the form

Gi(M ,θ) = 0 (2.4.13)

where M ∈RNM , θ ∈RNθ and i = 1, . . . ,Nθ . The function Gi(M ,θ) is often of

the form

Gi(M ,θ) =V mkt
i (M )−Vi(θ) (2.4.14)

where Vi(θ) is the price of the i-th calibration instrument as produced by the model

to be calibrated, and V mkt
i (M ) are the prices of the target instruments, possibly

generated by a simpler model used as a quoting mechanism.

As noted above, the adjoint calibration can be implemented in terms of the

adjoint of the numerical scheme solving equation system (2.4.13). The associated

computational cost is expected to be a few times of the cost of solving the equa-

tion system (2.4.13) (but approximately less than 4 times the cost, according to the

general result of AAD). Better performance can be obtained by the IFT. Under mild

regularity conditions, the IFT says that if there is a solution, (M0,θ0), to the root
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finding problem shown in equation system (2.4.13), such that Gi(M0,θ0) = 0, and

the matrix of derivatives [∂G
∂θ

]i j =
∂Gi
∂θ j

(M0,θ0) is invertible, then one can define in

the vicinity of M0 an implicit function θ = θ(M ) such that

Gi(M ,θ(M )) = 0. (2.4.15)

The derivatives ∂θ

∂M of such function can be expressed in terms of the derivatives of

the objective function G. Indeed, by differentiating Equation (2.4.15) with respect

to M , one obtains
∂Gi

∂Mm
+

Nθ

∑
j=1

∂Gi

∂θ j

∂θ j

∂Mm
= 0

for m = 1, . . . ,NM , or equivalently

∂θk

∂Mm
=−

[(
∂G
∂θ

)−1
∂G

∂M

]
k,m

,

with [ ∂G
∂M ]i j =

∂Gi
∂M j

. This relation allows the computation of the sensitivities of

the function θ(M ), locally defined in an implicit manner by Equation (2.4.13),

in terms of the sensitivities of the function G(M ,θ). These can be computed by

the corresponding adjoint function (M̄ , θ̄) = Ḡ(M ,θ , Ḡ) giving, according to the

general rule (Section 2.4.1),

M̄m =
Nθ

∑
i=1

Ḡi
∂Gi

∂Mm
, θ̄k =

Nθ

∑
i=1

Ḡi
∂Gi

∂θk
.

This method is more efficient and stable than calculating the derivatives of the im-

plicit functions M → θ(M ) by directly differentiating the calibration step either

by bumping or by applying AAD. This is because the G(M ,θ) in Equation (2.4.14)

are explicit functions of the market and model parameters, which are easy to com-

pute and differentiate. Moreover, by avoiding the numerical noise produced by the

finite difference approximation to the calibration procedure, the accuracy of the

sensitivities is improved when compared with the bumping scheme.
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2.5 Numerical results

In this section, we present the numerical results arising from the pricing and the

calibration of the BK model shown in Equation (2.2.4) for the stochastic instanta-

neous hazard rate, ht = exp(xt), that satisfies

d ln(ht) = κ(t)(µ(t)− ln(ht))dt +σ(t)dWt .

We fix the mean-reversion rate κ = 0.01 and assume that µ(t) and σ(t) are left-

continuous, piecewise constant functions. As shown in Section 2.3.2, we calibrate

µ(t) and σ(t) to a set of survival probabilities implied from liquid CDS prices and

a set of (co-terminal) CDS option prices.

We compute the survival probabilities in terms of a piecewise constant hazard

rate function, λ mkt(t), with L knot points (λ mkt
1 , . . . ,λ mkt

L ) at times (T1, . . . ,TL).

These are determined, for convenience, on the same time grid with equally-spaced

intervals ∆T = Ti+1−Ti = 0.5, for i= 1, . . . ,L−1, as utilised for the mean-reversion

level and volatility functions. The market survival probabilities, as seen at t0 = 0,

are then given by

Qmkt(t0,Ti) = exp
[
−
ˆ Ti

t0
λ

mkt(u)du
]
=

i

∏
j=1

exp
[
−λ

mkt
j ∆T

]
.

In these numerical examples, we choose the knot points of the hazard rate function

to be the same and equal to λ mkt = s/(1−R), where s = 1% is the the so-called

par-spread and R = 40% is the recovery rate, as set by market practice. Similarly,

the CDS option prices are derived using the standard Black formula from a set of

market-implied volatilities σmkt
j , for j = 1, . . . ,K, corresponding to the set of option
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maturities (T e
1 , . . . ,T

e
K). We have:

V mkt(t0,T e
j ;TL) =

(
cΦ(−d1)− sΦ(−d2)

)
A mkt(T e

j ,TL),

A mkt(T e
j ,TL) =

 ∑
m∈C (T e

j ,TL)

Z(t0, tm)Qmkt(t0, tm)∆tc

 ,

where

d1 =
lns/c+(σmkt

j )2(T e
j − t0)/2

σmkt
j

√
T e

j − t0
,

d2 = d1−σ
mkt
j

√
T e

j − t0,

and Φ is the standard normal distribution function, and c is the payment rate by the

protection buyer for the CDS against which the option can be exercised. Here we

set c equal to the par spread s, so as to represent at-the-money option quotes. We

assume zero interest rates and set the implied volatilities to all have the same value,

σmkt = 60%. The market data is given in Tables 2.1 and 2.2 and the results of the

calibration are shown in Figure 2.1.

Time 0.25 0.5 0.75 1 1.5 2
SP 0.996 0.992 0.988 0.983 0.975 0.967

Time 2.5 3 3.5 4 4.5 5
SP 0.959 0.951 0.943 0.935 0.928 0.920

Table 2.1: Survival probabilities utilised for the calibration of the parameters θ .

Expiry 0.25 0.5 1 1.5 2 2.5 3 4
Price (10−2) 0.570 0.719 0.894 0.947 0.926 0.853 0.739 0.417

Table 2.2: Prices of options written on a five-year CDS, which are utilised for the calibra-
tion of the parameters θ .



55

Figure 2.1: Calibration of the BK hazard rate model to a set of market implied survival
probabilities and option prices.

2.5.1 AAD versus bumping in the computation of sensitivities

We consider the pricing of a defaultable discount bond with a five-year maturity and

a unit redemption value. Its value at time t0 = 0 is given by Equation (2.2.5), and it

can be determined either by a backward or forward PDE by setting V (T,hT ;θ) = 1.

To show the reliability of the AAD sensitivities calculation in the PDE frame-

work, Table 2.3 display the sensitivities obtained by the AAD algorithms, described

in Section 2.4.2 and 2.4.3, and by means of one-sided finite-difference approxima-

tions (bumping) with a perturbation (bump) size of 10−5. As expected, the results

obtained with both the AAD version of the backward and forward PDE are consis-

tent with the ones obtained by bumping, with minor differences due to discretisation

errors and the finite precision of the finite-difference approach.
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Bwd PDE (AAD) Fwd PDE (AAD) Bwd PDE (FD) Fwd PDE (FD)
µ1 -1.8e-4 -1.8e-4 -1.8e-4 -1.8e-4
µ2 -1.7e-4 -1.6e-4 -1.7e-4 -1.6e-4
µ3 -1.6e-4 -1.6e-4 -1.6e-4 -1.6e-4
µ4 -1.5e-4 -1.5e-4 -1.5e-4 -1.5e-4
µ5 -2.7e-4 -2.7e-4 -2.7e-4 -2.7e-4
µ6 -2.3e-4 -2.3e-4 -2.3e-4 -2.3e-4
µ7 -2.0e-4 -2.0e-4 -2.0e-4 -2.0e-4
µ8 -1.6e-4 -1.6e-4 -1.6e-4 -1.6e-4
µ9 -1.3e-4 -1.3e-4 -1.3e-4 -1.3e-4
µ10 -9.1e-5 -9.1e-5 -9.2e-5 -9.1e-5
µ11 -5.6e-5 -5.5e-5 -5.6e-5 -5.5e-5
µ12 -1.8e-5 -1.8e-5 -1.9e-5 -1.8e-5

Bwd PDE (AAD) Fwd PDE (AAD) Bwd PDE (FD) Fwd PDE (FD)
σ1 -7.8e-3 -7.8e-3 -7.5e-3 -7.8e-3
σ2 -0.011 -0.01 -0.011 -0.01
σ3 -0.016 -0.016 -0.017 -0.016
σ4 -0.015 -0.015 -0.015 -0.015
σ5 -0.013 -0.013 -0.013 -0.013
σ6 -0.012 -0.011 -0.012 -0.011
σ7 -9.9e-3 -9.9e-3 -0.01 -9.9e-3
σ8 -0.019 -0.019 -0.02 -0.019

Table 2.3: Parameters sensitivities of a five-year defaultable discount bond computed by
the AAD version of the forward (Fwd) and backward (Bwd) PDEs and by finite-
difference (FD) approximations with a bump size of 10−5.

Similarly, in Table 2.4 we compare the sensitivities results for a CDS option

and a bond option using a combination of the forward and backward PDE ap-

proaches described in Section 2.3.2. Here we consider a two-year at-the-money

swaption written on a five-year CDS, and a two-year European-style call option

issued on the five-year defaultable bond with a strike of 0.75.

As in the previous example, these results confirm that the AAD approach pro-

vides accurate estimates of the sensitivities when benchmarked with the standard

finite-difference approach.
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CDS option Bond option
AAD FD AAD FD

µ1 -2.3e-5 -2.3e-5 -1.2e-4 -1.1e-4
µ2 -2.3e-5 -2.3e-5 -1.1e-4 -1.1e-4
µ3 -2.3e-5 -2.3e-5 -1.1e-4 -1.1e-4
µ4 -2.3e-5 -2.3e-5 -1.1e-4 -1.1e-4
µ5 -4.5e-5 -4.5e-5 -2.1e-4 -2.1e-4
µ6 -4.5e-5 -4.4e-5 -2.1e-4 -2.1e-4
µ7 -4.1e-5 -4.0e-5 -1.9e-4 -1.9e-4
µ8 -3.4e-5 -3.3e-5 -1.6e-4 -1.6e-4
µ9 -2.6e-5 -2.6e-5 -1.2e-4 -1.2e-4
µ10 -1.9e-5 -1.9e-5 -8.8e-5 -8.8e-5
µ11 -1.1e-5 -1.2e-5 -5.3e-5 -5.4e-5
µ12 -3.7e-6 -3.9e-6 -1.7e-5 -1.8e-5

CDS option Bond option
AAD FD AAD FD

σ1 3.5e-4 3.5e-4 -4.3e-3 -4.1e-3
σ2 5.0e-4 5.0e-4 -6.0e-3 -6.0e-3
σ3 8.3e-4 8.3e-4 -0.01 -0.01
σ4 8.3e-4 8.3e-4 -0.01 -0.01
σ5 7.6e-4 8.2e-4 -0.01 -0.01
σ6 -2.6e-3 -2.6e-3 -0.011 -0.011
σ7 -2.3e-3 -2.3e-3 -9.7e-3 -9.7e-3
σ8 -4.3e-3 -4.3e-3 -0.019 -0.019

Table 2.4: Parameters sensitivities of a CDS option and defaultable discount bond option
computed by means of AAD and by FD approximations with a bump size of
10−5.

The efficiency of AAD is shown in Figure 2.2. We plot the cost of computing

the sensitivities of a defaultable discount bond with respect to the knot points of

the mean-reversion level µi, i = 1, . . . ,L and volatility σi, i = 1, . . . ,K, relative to

the cost of performing a single valuation. As illustrated in Figure 2.2, for both,

the AAD version of the backward and forward PDE scheme, the calculation of the

sensitivities can be performed for about 3.3 times the cost of computing the value of

the bond, which is well within the theoretical bound shown in (2.4.3). In contrast,

the cost of bumping is, in general, (1+Nθ ) times the cost of as single valuation, in

other words, over 20 times the cost of computing the value of the bond in this case.
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Similarly, the cost of computing the sensitivities of a bond and CDS option by AAD

is also bounded, but the cost of the bumping scheme is proportional to the number

of parameters.

Figure 2.2: Cost of computing the sensitivities for a defaultable discount bond, CDS option
and defaultable discount bond option, relative to the cost of a single valuation.

Furthermore, and as shown in Figure 2.3, the overall cost of running the AAD

scheme to obtain all the sensitivities relative to the cost of computing the option

value through a single valuation of the PDE scheme is independent of the number

of sensitivities so that the computational gains, when compared to the bumping

scheme, increase with the number of sensitivities4.

4In these examples we have included the sensitivities with respect to the knot points of the mean-
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Figure 2.3: Cost of computing the sensitivities for a defaultable discount bond option, rela-
tive to the cost of a single valuation, as a function of the number of sensitivities.

2.5.2 Calibration and the implicit function theorem

As described in Section 2.4.4, the sensitivities with respect to the internal model

parameter θ can be converted into more practically relevant sensitivities with re-

spect to the market parameters, M. This can be achieved by combining sensitivities

obtained with the AAD version of the forward and backward PDE executed during

the calibration of the model parameters and also by invoking the IFT. As an illus-

tration, we can again consider the two-year option, on a five-year defaultable bond,

with strike price 0.6. By making use of the scheme described in Section 2.4.4, the

sensitivities with respect to the model parameters θ̄ = ∂V/∂θ can be transformed

into the sensitivities with respect to the market observables ∂V/∂M .

In this case, they are the sensitivities with respect to the implied hazard rates

and the CDS options’ implied volatilities, which are used for the calibration in Fig-

ure 2.1. Table 2.5 displays the bond option market sensitivities obtained by con-

verting the model sensitivities in Table 2.4 by means of the AAD-IFT approach,

and shows the satisfactory agreement with those obtained by the standard finite-

difference approach.

reversion speed function.
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Market observables IFT FD
λ mkt

1 -0.088 -0.078
λ mkt

2 -0.083 -0.089
λ mkt

3 -0.087 -0.081
λ mkt

4 -0.084 -0.086
λ mkt

5 -0.172 -0.168
λ mkt

6 -0.170 -0.174
λ mkt

7 -0.454 -0.453
λ mkt

8 -0.454 -0.452
λ mkt

9 -0.455 -0.455
λ mkt

10 -0.454 -0.453
λ mkt

11 -0.455 -0.455
λ mkt

12 -0.454 -0.454

Market observables IFT FD
σmkt

1 7.2e-07 7.9e-07
σmkt

2 2.5e-06 2.8e-06
σmkt

3 4.2e-06 -5.1e-06
σmkt

4 -6.4e-06 -5.7e-06
σmkt

5 0.001 0.001
σmkt

6 -2.5e-05 -2.1e-5
σmkt

7 -2.2e-05 -1.9e-05
σmkt

8 -1.5e-05 -1.2e-05

Table 2.5: Sensitivities of a defaultable discount bond option with respect to the market
observables as obtained with AAD and by FD approximations with a bump size
of 10−5.

The notable computational gains that can be achieved with the AAD-IFT

scheme are shown in Figure 2.4 (left, yellow column). We plot the ratio of time

necessary to convert the model sensitivities into market sensitivities by both, the

ADD-IFT approach and standard finite differences, relative to the cost of perform-

ing a single calibration and valuation.

For this application, the time necessary to compute the Jacobian ∂θ

∂M and model

parameter sensitivities ∂V
∂θ

by the AAD-IFT approach is less than 1% of the amount

of time necessary to perform a single calibration and valuation, thus resulting in

a 3 times orders of magnitude speed-up with respect to standard bumping. This

staggering difference in efficiency is due in part to the computationally intensive
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calibration procedure of the BK model involving, as described in Section 2.3.2, a

multidimensional root-search over the instantaneous volatilities.

Figure 2.4: Cost of computing the market parameter sensitivities for a defaultable discount
bond option relative to the cost of a single calibration and valuation for the BK
model .

2.6 Conclusions
AAD can be applied to efficiently compute price sensitivities of generic financial

securities as numerical solutions of PDEs. AAD is beneficial for computing the

sensitivities with PDE-based calibration algorithms. By using a practically-relevant

example, we show that by combining the adjoint versions of the algorithms for

the numerical solution of backward and forward PDEs, along with the IFT, one

can avoid repeating the calibration algorithm or the AAD-version of the calibration

routine. This allows for the calculation of all price sensitivities at an additional

computational cost that is a fraction of the cost of computing the portfolio P&L, thus

typically resulting in procedures that are orders of magnitude faster than standard

finite-difference approaches. We expect the insights presented in this chapter will

be of significant importance for the efficient implementation of pricing and hedging

approaches in practice.



Chapter 3

AAD and least-square MC: fast

Bermudan-style options and XVA

Greeks

3.1 Overview
The financial crisis of 2007-2008 has changed the financial world in many aspects.

All over-the-counter (OTC) contracts are currently cleared in three different ways:

i) bilaterally non-collateralised trades;

ii) bilaterally collateralised trades; and

iii) centrally cleared trades.

After the financial crisis, market participants have been required by regulators to

quantify the risks of default, funding, capital, liquidity and all other various poten-

tial risk factors during the traditional pricing procedure for all these OTC transac-

tions. The impact caused by these factors are captured by the well-known valuation

adjustments, collectively known as XVA, see [10] and [31].

Each component in the XVA is difficult to evaluate because it involves comput-

ing the expectation of a function together with all the future conditional exposures

of the transaction until expiry. Even in the simplest case, namely unilateral credit

valuation adjustment (CVA), analytical solutions are difficult to find. This will be
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complicated even more if one consider the dependences between the counterparty

default and the portfolio exposures, which are collectively known as wrong-way

risk (WWR) or right-way risk (RWR), see [11], [48] and [56].

Generally, the valuation of XVA is implemented through the use of MC meth-

ods. However, XVA requires two layers of MC simulations: the first layer of MC

simulation is necessary to obtain the exposures conditional on future time steps; and

the second layer is necessary to compute the mean of a function of the conditional

exposures. Together, this is known as the nested MC algorithm.

Although the evaluation of the XVA is difficult in terms of computational ef-

ficiency, the finalised Basel III directives emphasise the risk management of XVA,

see [6]. As mentioned in Chapter 2, the efficient calculation of the risk factor sensi-

tivities of financial derivatives, also known as the Greeks, is an essential component

of modern risk management practices. Similar to the risk management of credit

derivatives discussed in Chapter 2, the traditional approach for the calculation of

the Greeks for the XVA is also the bump and reval or bumping technique. This

comes at a significant computational cost, since it generally requires repeating the

calculation of the P&L of a portfolio under hundreds of market scenarios in order to

form finite-difference estimators. As a result, even after deploying vast amounts of

computer power, in most cases these calculations cannot be completed in a practical

amount of time.

Similar to the valuation of American options by MC methods in [24], [60]

and [71], the nested MC algorithm for XVA valuation can also be replaced by the

regression-based MC algorithm, see page 218 of [25]. The regression-based MC

algorithm for XVA computations replaces the first layer of the nested MC algorithm.

Its purpose is to compute the conditional exposures by using a regression step. The

XVA computation will benefit from the regression-based MC algorithm due to it

requiring fewer computational resources and it is efficient to implement. However,

evaluating sensitivities for XVA are still computationally expensive if one resorts to

the traditional finite-difference method.

Nevertheless, AAD has been proven to be effective for speeding up the calcu-
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lation of risk factor sensitivities with numerical PDE methods as shown in Chapter

2. In this chapter, we show how the AAD algorithm can be used in the regression-

based MC method, and we go on to demonstrate the efficiency as well as the accu-

racy that the AAD method can achieve in evaluating both the Greeks of American

options and XVA.

We conclude by emphasizing the main contributions of this chapter. We

present the AAD algorithm for the regression-based Monte Carlo method, which

can be used for the path-dependent derivatives, such as Bermudan-style contracts,

and XVA pricing. The application of AAD to Monte Carlo algorithm can be found

in [38], who applied AAD to LIBOR market models. AAD and regression-based

Monte Carlo methods have jointly been used in [32] to compute CVA sensitivi-

ties. However, only vanilla contracts are considered and it is without taking into

account the sensitivities arising from the regression basis functions. In contrast, we

introduce the smoothing method in Section 3.3.1 to collect the sensitivities from

the indicator function, making collecting sensitivities emerging from the regression

basis functions possible. This changes the situation that the sensitivities from in-

dicator functions are usually neglected in practice. The smoothing method will be

presented in Section 3.3.1 of this chapter, which is based on our publication [22].

Our methods are also cited in [36] as a way of collecting sensitivities arising from

the regression functions. By the smoothing method and the AAD algorithm for

regression-based Monte Carlo, we show with examples how this can improve the

efficiency of Bermudan-style option Greeks and XVA sensitivities computation.

3.2 Valuation of Bermudan-style options and XVA by

regression-based MC

In this section, we present the regression-based MC algorithm for the valuation of

Bermudan-style options, see for example [24], [60] and [71], and XVA, see for

example page 218 of [25].
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3.2.1 Bermudan-style options

While European-style options can be exercised only at maturity, Bermudan-style

options can be exercised on multiple discrete dates up to the trade’s expiry.

We denote by T1, . . . ,TM the exercise dates of the option and define D(t) =

{Tm ≥ t}. We denote by η(t) the smallest integer such that Tη(t)+1 > t. An exercise

policy is represented mathematically by a stopping time taking values in D(t). We

denote by T (t) the set of stopping times taking values in D(t).

A rational investor will exercise the option that he holds in such a way as to

maximise its economic value. As a result, the value of a Bermudan-style option

is the supremum of the option’s value over all possible exercise policies. With the

notation introduced above, the value of a Bermudan-style option at time t can thus

be expressed by
V (t)
N(t)

= sup
τ∈T (t)

E
[

E(τ)
N(τ)

]
, (3.2.1)

where E(t) is the exercise value of the option, and N(t) is the chosen numéraire1.

In this equation, V (t) is to be interpreted as the early-exercise value of the option

conditional on exercise not having taken place strictly before time t.

A useful concept is the hold value of the Bermudan-style option. We denote by

H(t) the value of the Bermudan-style option when the exercise dates are restricted

to D(Tη(t)+1), that is

H(t)
N(t)

= Et

[
V
(
Tη(t)+1

)
N
(
Tη(t)+1

)] , (3.2.2)

where we have assumed, for simplicity of exposition, no cashflow between t and

Tη(t)+1. The option holder, following an optimal exercise policy, will exercise his

option if the exercise value is larger than the hold value, i.e.

V
(
Tη(t)

)
= max

(
E
(
Tη(t)

)
,H
(
Tη(t)

))
. (3.2.3)

This, when combined with Equation (3.2.2), leads to the so-called dynamic pro-

1In the following, we will set N(0) = 1 for simplicity of notation.
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gramming formulation:

H(t)
N(t)

= Et

[
max

(
E
(
Tη(t)+1

)
N
(
Tη(t)+1

) , H
(
Tη(t)+1

)
N
(
Tη(t)+1

))] , (3.2.4)

for Tη ≤ t < Tη+1, and η = 1, . . . ,M − 1. Starting from the terminal condi-

tion H(TM) ≡ 0, Equation (3.2.4) defines a backward iteration in time for H(t).

By definition, this is also equal to V (t) if t is not an exercise date, i.e. if

Tη(t) < t < Tη(t)+1. Conversely, if t is an exercise date, that is t = Tη(t), then

V (Tη(t)) = max(E(Tη(t)),H(Tη(t))).

The dynamic programming formulation above implies that the stopping time,

defining the optional exercise date as seen at time t, is given by

τ
? = inf[Tm ≥ t : E(Tm)≥ H(Tm)] . (3.2.5)

The optimal exercise strategy defined by Equation (3.2.5) requires the com-

putation of the hold value H(t), m = η(t) + 1, . . . ,M− 1. In a setting in which

the underlying risk factor process {X(t)}0≤t≤T is a generic k-dimensional Markov

process, the hold value H(t) is a function of the state vector at time t. That is,

Ht(x) := E
[

N (X(t))
N (X(Tm+1))

V (X (Tm+1))
∣∣∣X(t) = x

]
. (3.2.6)

When the dimension of the Markov process, k, is small enough, the conditional

expectation value in Equation (3.2.6) can be computed in a straightforward way by

discretising the risk-factor process and performing standard backward induction on

a tree or a grid, or by discretising an associated PDE. Here we refer to, for example,

page 135 of [74]. However, the complexity of grid-based calculations is exponential

in the dimension of the Markov process and numerical implementations become

infeasible when k ≥ 4. Here we mention that one may also use the neural network

method to solve high dimensional PDEs numerically, see [23].

As we will review in Section 3.2.3, regression-based MC techniques provide

an effective way of computing conditional expectation values of the form (3.2.6).
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3.2.2 XVA

We consider next the computation of the CVA and the debt valuation adjustment

(DVA) as the main measures of a dealer’s counterparty credit risk, see for example

[10] and [31]. For a given portfolio of trades with the same investor or institution,

the CVA (respectively DVA) aims to capture the expected loss (respectively gain)

associated with the counterparty (respectively dealer) defaulting in a situation in

which the position, netted for any collateral posted, has a positive mark-to-market

for the dealer (respectively counterparty).

This can be evaluated at time T0 = 0 by

XVA =−E
[
I(τc ≤ T )

Lc

N(τc)
(V (τc))

++ I(τd ≤ T )
Ld

N(τd)
(V (τd))

−
]
, (3.2.7)

where τc (respectively τd) is the default time of the counterparty (resp. the dealer),

V (t) is the net present value of the portfolio or netting set at time t from the

dealer’s point of view, which is the so-called conditional future exposure, Lc (re-

spectively Ld) is the loss given default of the counterparty (respectively the dealer),

and I(τc ≤ T ) (respectively I(τd ≤ T )) is the indicator that the counterparty’s (re-

spectively dealer’s) default happens before the longest deal maturity, T , in the port-

folio. Here, for simplicity of notation, we consider the unilateral CVA and DVA,

since the generalisation to the bilateral formulation, see for example page 15 of [31],

is straightforward.

Equation (3.2.7) is typically computed on a discrete time grid of “horizon

dates” 0 = T0 < T1 < .. . < TM = T . For instance, we may have

XVA≈−
M

∑
m=1

E
[
Lc(SPc(Tm−1)−SPc(Tm))

(V (Tm))
+

N(Tm)

+Ld(SPd(Tm−1)−SPd(Tm))
(V (Tm))

−

N(Tm)

]
, (3.2.8)

where SPc(t) (respectively SPd(t)) is the survival probability of the counterparty

(respectively the dealer) up to time t, for example, conditional on a realisation of

the default intensity or hazard rate process in a Cox framework, see [52]. Here
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we assume that the default times, τc and τd , are conditionally independent of the

portfolio values, Vτc and Vτd , respectively, for simplicity in later context. i.e. I(τc ≤

T ) is independent of (V (τc))
+ conditional on Fτc and I(τd ≤ T ) is independent of

(V (τd))
+ conditional on Fτd .

In general, the right hand side of Equation (3.2.8) depends on several corre-

lated random market factors, including interest rates, recovery amounts and all the

market factors the net conditional future exposure of the portfolio, V (t), depends on.

As such, its calculation typically requires a MC simulation. In the k-dimensional

Markov setting introduced above, the conditional future exposure, V (Tm), is a func-

tion V (X(Tm)) of the state vector at time Tm. However, only for vanilla securities

and simple models for the evolution of the risk factors, such conditional future ex-

posures can be expressed in closed form. In order to illustrate how the conditional

future exposure can be computed by means of regression-based MC, we consider a

specific example in which the underlying portfolio contains a basket of Bermudan-

style options.

3.2.3 Conditional expectation values and Bermudan-style op-

tions by regression

The least square regression, see page 44 of [35] for example, with N observations

of the predictor variables x1,x2, · · ·xd and response variable y is to fit the model

y = β1x1 + · · ·+βdxd + ε,

where ε is the uncorrelated noise with zero mean and βi for i = 1,2 · · · ,d are the

regression coefficients. That is, we need to evaluate

min
β1,···,βd

N

∑
n=1

[
y(d)−

(
β1x(d)1 + · · ·+βdx(d)d

)]2
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where we denote the n-th observation of the predictor variables by x(n)1 ,x(n)2 , · · ·x(n)d

and the response variable by y(n). This can be written in matrix form as follows:

min
β1,···,βd

Y TY −2β
T XY +β

T XXT
β ,

where

Y =
[
y(1),y(2), · · · ,y(N)

]T
,

β =
[
β
(0),β (1), · · · ,β (d)

]T
,

X =


1 1 · · · 1

x(1)1 x(2)1 · · · x(N)
1

. . . . . . . . . . . .

x(1)d x(2)d · · · x(N)
d

 .

By the quadratic optimisation method, the optimal β is given by

β = (XXT )−1XY. (3.2.9)

In the context of the valuation of Bermudan-style options, the hold value, shown in

Equation (3.2.6), on an exercise date Tm is assumed to be of the form

Ĥm(x) = β
T
m ψ(x), (3.2.10)

where ψ(x) = (ψ1(x), . . . ,ψd(x))T is a vector of d basis functions and βm =

(β1m, . . . ,βdm)
T is the vector of coefficients to be determined by regressing

V (X(Tm+1))
N(X(Tm))

N(X(Tm+1))
on ψ(X(Tm+1)). By Equation (3.2.9), we have

βm = Ψ
−1
m Ωm , (3.2.11)

where we define the d×d matrix,

Ψm = ψ(X(Tm))ψ
T (X(Tm)) ,
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and the d×1 vector

Ωm =
N(X(Tm))V (X(Tm+1))

N(X(Tm+1))
ψ(X(Tm)) .

These equations provide a straightforward way to compute the regression co-

efficients, βm, by substituting Ψm and Ωm with their sample average over NMC MC

replications. This can be achieved by the following steps:

(R1) Simulate NMC independent MC paths, X (n)
m , of X(Tm) by the recursion

X (n)
m+1 = F

(
Tm,X

(n)
m ;θ

)
for m = 0, . . . ,M−1, and n = 1, . . . ,NMC. Here, F is a function based on the

chosen models for the risk factors, and θ is a vector of model parameters.

(R2) For n = 1, . . . ,NMC, compute the terminal payoff of the contract by setting

V (n)
M = E(n)

M ,

where EM := E(X (n)
M ) is the final exercise value of the option.

(R3) Apply the following backward induction steps for m = M−1, . . . ,1:

(a) Compute the MC sample average2 of Ψm and Ωm by

Ψm =
1

NMC

NMC

∑
n=1

ψ
(n)
m (ψ

(n)
m )T , (3.2.12)

Ωm =
1

NMC

NMC

∑
n=1

ψ
(n)
m

N(n)
m V (n)

m+1

N(n)
m+1

, (3.2.13)

where ψ
(n)
m := ψ

(
X (n)

m

)
and N(n)

m := N(X (n)
m ).

(b) Compute the regression coefficients βm by matrix inversion and multi-

2Here and in the following, in order to keep the notation simple, we do not introduce different
symbols for expectations and their respective sample averages.
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plication, i.e.

βm = Ψ
−1
m Ωm. (3.2.14)

(c) For the estimate of the hold value, H(n)
m := Hm

(
X (n)

m

)
, set

H(n)
m = β

T
m ψ

(n)
m ,

for n = 1, . . . ,NMC.

(d) For the estimate of the Bermudan-style option value at time Tm, set

V (n)
m = max

(
E(n)

m ,H(n)
m

)
, (3.2.15)

where E(n)
m := E(X (n)

m ) is the exercise value at time Tm, for n =

1, . . . ,NMC.

(R4) Compute the MC estimate of the Bermudan-style option at time T0 by

V0 =
1

NMC

NMC

∑
n=1

V (n)
1

N(n)
1

. (3.2.16)

A modification of this algorithm was proposed by [60] and it entails replacing

Equation (3.2.15) in Step (R3) (d) with

V (n)
m =

E(n)
m if E(n)

m > H(n)
m ,

N(n)
m V (n)

m+1/N(n)
m+1 otherwise,

(3.2.17)

which, in the examples considered, was shown to lead to more accurate results. In

the following, however, for simplicity of exposition, we will consider the estimator

in Equation (3.2.15).

Since our main goal of this chapter is to present the AAD algorithm for

regression-based Monte Carlo, we refer to the following literature for the stabil-

ity and the convergence of the least square Monte Carlo method. This method was
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introduced in [71] where it is shown that the estimator, V0, converges for n→ ∞ to

the true value, V (0), provided that the representation shown in Equation (3.2.10)

holds exactly. Moreover, [28] studied the convergence of the algorithm with respect

to the number of basis functions and the Monte Carlo paths. They proved the almost

sure convergence of the least square Monte Carlo algorithm and obtained the rate of

convergence with increasing number of Monte Carlo paths. The rate of convergence

with respect to the number of basis functions in some specific settings is estimated

in [40].

3.2.4 Lower bound algorithm for Bermudan-style options

The hold value obtained by the regression as described in the previous section de-

fines an exercise policy whereby on each exercise date, Tm, the option is exercised

if

E(X(Tm))> β
T
m ψ(X(Tm)) . (3.2.18)

Such policy, being an approximation to the solution of the dynamic programming

equation (3.2.4), will in general correspond to a suboptimal stopping time. As a

result, when utilised in a second, independent, MC simulation, the exercise policy

obtained by regression, will result in a lower-bound estimator for the Bermudan-

style option value. The corresponding algorithm can be schematically described as

follows.

For each MC replication indexed by n = 1, . . . ,NMC perform steps (L1) to (L4)

below:

(L1) Simulate the path X (n)
m of the risk factor vector X(Tm) as in (R1).

(L2) For m = 1,2, ...,M−1, compute the approximate hold value of the option at

time Tm using the associated regression vector βm, and regression functions

ψ , by

H(n)
m = β

T
m ψ

(n)
m (3.2.19)
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with the hold value at expiry TM set to zero.

(L3) Compute the pathwise estimator for the discounted cash-flows of the option

P(n) =
M

∑
m=1

[
I(n)(t1, tm)I

(
E(n)

m > H(n)
m

) E(n)
m

N(n)
m

]
, (3.2.20)

where

I(n)(t1, tm) =

(
m−1

∏
i=1

1
(

H(n)
i > E(n)

i

))
(3.2.21)

and the convention I(n)(t1, t1) = 1.

(L4) Compute the MC estimate of the Bermudan-style option at time T0 = 0 by

V0 =
1

NMC

NMC

∑
n=1

P(n) . (3.2.22)

3.2.5 Evaluating XVA by regression

As described in Section 3.2.2, the calculation of the XVA in Equation (3.2.8) re-

quires the conditional future exposure V (t) on a set of dates determined by a discre-

tised time grid T1 . . .TM. The regression algorithm described in the previous section

can be easily adapted to compute such quantity. Indeed, the conditional value of

each of the options contained in the netting set can be obtained using the same

least-square procedure. Once the regression algorithm is completed, we can use the

regression functions to compute the hold value of each option in the portfolio on the

discretised time grid by Hm = β T
m ψm. If the discretised time Tm is not an exercise

opportunity for the option under consideration, then this is its conditional future

exposure. Conversely, the conditional future exposure is obtained by comparing

the hold value to the exercise value as in Equations (3.2.15) and (3.2.17). These

observations translate in the following algorithm.

For each MC replication indexed by n = 1, . . . ,NMC, perform steps (X1) to

(X3) below:
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(X1) Simulate the path X (n)
m of the risk factor vector by the recursion:

X (n)
m+1 = F

(
Tm,X

(n)
m ;θ

)
,

for m = 0, . . . ,M− 1. Also, simulate the path of the counterparty’s and the

dealer’s default intensity, λ
d,c
m = λ d,c(Tm), by the recursions

λ
c,(n)
m+1 = Gc

(
Tm,λ

c,(n)
m ;θ

)
,

λ
d,(n)
m+1 = Gd

(
Tm,λ

d,(n)
m ;θ

)
,

for m = 0, . . . ,M− 1, where Gc (respectively Gd) is the function describing

the dynamics of the counterparty’s (respectively the dealer’s) hazard rate.

(X2) Compute the discretised pathwise survival probabilities for the counterparty

and the dealer by

SPc,(n)
m = exp

[
−

m−1

∑
j=0

λ
c,(n)
j

(
Tj+1−Tj

)]
, (3.2.23)

SPd,(n)
m = exp

[
−

m−1

∑
j=0

λ
d,(n)
j

(
Tj+1−Tj

)]
, (3.2.24)

for m = 1,2, ...,M.

(X3) For m = 1,2, ...,M− 1, approximate the hold value of the p-th option in the

portfolio at time Tm using the associated regression vector, βp,m, and regres-

sion functions ψp by

H(n)
p,m = β

T
p,mψp,m , (3.2.25)

for p = 1, . . . ,P. The hold value at the expiry date, TM, is set to zero. The con-
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ditional expected value of the portfolio is given by V (n)
m = ∑

P
p=1V (n)

p,m, where

V (n)
p,m =

 max
{

H(n)
p,m,E

(n)
p,m

}
, if Tm is an exercise date for the p-th option

H(n)
p,m , otherwise,

(3.2.26)

for m = 1,2, ...,M, where E(n)
p,m is the exercise value of the p-th option at time

Tm on the n-th path.

(X4) Compute the pathwise XVA by

XVA(n) =−
M

∑
m=1

Lc

(
SPc,(n)

m−1−SPc,(n)
m

) (V (n)
m

)+
N(n)

m

+Ld

(
SPd,(n)

m−1−SPd,(n)
m

) (V (n)
m

)−
N(n)

m

 .
(X5) Finally, form the MC estimator,

XVA =
1

NMC

NMC

∑
n=1

XVA(n) . (3.2.27)

3.3 The AAD algorithm for regression-based MC
As shown in Chapter 2, AAD can be utilised to compute the Greeks for derivatives

which are priced using a numerical PDE approach. Here, we give the AAD algo-

rithm for the regression-based MC method; one can use this algorithm to compute

the Greeks for Bermudan-style options and XVA sensitivities can also be calculated

numerically.

3.3.1 Function regularisations

In the context of MC methods, [19] shows that AAD allows for the calculation of the

sensitivities by differentiating the relevant estimator on a path by path basis. Since

a pathwise method is used, the MC estimators must satisfy specific regularity con-
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ditions, see page 386 of [39]. For instance, all the functions appearing in each step

leading to the computation of the payout estimator must be Lipschitz continuous.

A practical way of addressing non-Lipschitz continuous estimators is to

smoothen out the singularities they contain. This can be achieved by observing

that in most cases the singularities in the payout functions, although not necessar-

ily implemented as such, can be expressed in terms of Heaviside functions. For

instance, the payoff function of a digital option is,

P(X(T )) = I(X(T )> K) ,

while the payoff of a knock-out, path-dependent option with barrier monitored at

times T1, . . . ,TM is of the form

P(X(T1), . . . ,X(TM)) =
M

∏
m=1

I(X(Tm)> Bm),

where Bm is the the barrier level at time Tm.

The singularities in such payoff functions can be regularised by replacing the

indicator function with one of its smoothened counterparts. A very common choice,

for instance, is to approximate the step function with a “call spread” payoff func-

tions,

I(x > K)≈H cs
δ

(x−K) =

(
min

(
x− (K−δ )

2δ
,1
))+

, (3.3.1)

where δ � K. This is a standard choice for digital options, because it has a useful

interpretation in terms of the hedging portfolio of a long and a short position in

two calls with strike price K − δ and K + δ respectively. Alternatively, one can

approximate the indicator function with a cumulative normal density function with

zero mean and standard deviation δ , that is,

I(x > K)≈H cn
δ

(x−K) =

ˆ x−K

−∞

exp
(
−u2/2δ 2)
δ
√

2π
du. (3.3.2)

Both regularisations give rise to functions that are Lipschitz continuous with respect



77

to x and can be differentiated in a straightforward manner. In particular, the adjoint

regularised Heaviside functions are as follows:

H̄δ (x−K, x̄) = x̄
∂

∂x
Hδ (x−K) ,

where x̄ is the adjoint of the input variable, as in Section 2.4.1. For the call spread

regularisation shown in Equation (3.3.1), we then have

H̄ cs
δ
(x−K, x̄) =

 x̄/2δ if K−δ ≤ x≤ K +δ ,

0 otherwise,
(3.3.3)

and, for the cumulative normal regularisation shown in Equation (3.3.2),

H̄ cn
δ

(x−K, x̄) = x̄φδ (x−K), (3.3.4)

where φδ (x) is the Normal density function with standard deviation δ . When δ →

0, both Equations (3.3.1) and (3.3.2) give the correct derivative of the Heaviside

function in the distributional sense, i.e. the Dirac delta function. However, while

approaching this limit, the derivatives of such regularised Heaviside functions are

zero or vanishingly small, apart from a very small portion of the sample space where

instead they are very large. This leads to notably large variances in the MC sampling

of the estimators expressed in terms of such functions, signaling the breakdown of

the Lipschitz continuity condition. Hence, the choice of the smoothing parameter

δ is necessarily a tradeoff between the bias, which vanishes as δ → 0, and the

statistical errors of the MC sampling, which diverges in the same limit.

In general, the payoff estimator for Bermudan-style options, (3.2.20), is not dif-

ferentiable with respect to the pathwise value of the approximate exercise boundary

H(n)
m , and it requires the regularisation described above. A common approximation

among practitioners, see for example, [55], is to assume that the exercise boundary

implied by the rule specified by Equation (3.2.18) is close to optimality so that the

value of the contract is approximatively continuous across the exercise boundary;

hence no regularisation is required. Under this assumption, no contribution to the
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sensitivities is associated with the perturbations of the exercise boundary, and one

can therefore keep the regression coefficients fixed while calculating the sensitivi-

ties. As discussed in Section 3.4, depending on the accuracy of the basis functions

in representing the exercise boundary, this may or may not be an accurate approxi-

mation.

3.3.2 AAD for the lower bound algorithm for

Bermudan-style options

The AAD implementation of the lower bound algorithm for Bermudan-style options

described in Section 3.2.4, producing the MC estimators for the sensitivities of the

estimator shown in Equation (3.2.22) with respect to a set of model parameters θk,

for k = 1, . . . ,Nθ , specified by

θ̄k =
∂V (θ)

∂θk
,

comprises of the adjoint of steps (L1) to (L4) executed backwards for each MC

replication, for n = 1, . . . ,NMC. These are:

(L4) Set the adjoint of the option value V̄ = 1, the adjoint of the model parameters

θ̄ = 0 and set

P̄(n) = V̄0
1

NMC
.

(L3) Assuming the indicator functions in the estimator in Equation (3.2.20) have

been regularised, as discussed in Section 3.3.1, compute

H̄(n)
m = H̄δ

(
H(n)

m −E(n)
m , P̄(n)

)(
J(n)m −Q(n)

m

)
,

Ē(n)
m = P̄(n)R(n)

m +H̄δ

(
E(n)

m −H(n)
m , P̄(n)

)(
J(n)m −Q(n)

m

)
, (3.3.5)

N̄(n)
m =−P̄(n)

Q(n)
m Hδ

(
E(n)

m −H(n)
m

)
N(n)

m
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for m = M, . . . ,1 and where

J(n)m =
M

∑
k=m+1

E(n)
k

N(n)
k

I
(

E(n)
k > H(n)

k

) k−1

∏
j=2, j 6=m

I
(

H(n)
j > E(n)

j

)
,

Q(n)
m =

E(n)
m

N(n)
m

I(n)(t1, tm) ,

R(n)
m =

1

N(n)
m

I
(

E(n)
m > H(n)

m

)
I(n)(t1, tm) .

Initialise the adjoints of the risk factors so that

X̄ (n)
m = Ē(n)

m
∂E(n)

m

∂X (n)
m

+ N̄(n)
m

∂N(n)
m

∂X (n)
m

. (3.3.6)

(L2) For m = M, . . . ,1, initialise the adjoint of the regression coefficients βm to

give

β̄m =
NMC

∑
n=1

ψ
(n)
m H̄(n)

m , (3.3.7)

as well as the adjoints of the basis functions ψ
(n)
m ,

ψ̄
(n)
m = βmH̄(n)

m , (3.3.8)

and update the adjoints of the state vector

X̄ (n)
m +=(ψ̄

(n)
m )T ∂ψ

(n)
m

∂X (n)
m

, (3.3.9)

where we use the standard notation “+=” for the addition assignment opera-

tor.

(L1) For m = M, . . . ,0 compute the adjoint of the risk factor evolution such that

X̄ (n)
m += X̄ (n)

m+1
∂F

∂X (n)
m

(
Tm,X

(n)
m ;θ

)
, θ̄ += X̄ (n)

m+1
∂F
∂θ

(
Tm,X

(n)
m ;θ

)
,
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where the gradients are computed by applying the rules of adjoint differen-

tiation following the instructions that implement the function F . Finally, the

adjoint, X̄0, is used to populate the component of θ̄ corresponding to the ad-

joint of the model parameter X0.

3.3.3 AAD for XVA by regression

The AAD implementation of the algorithm for the calculation of XVA described

in Section 3.2.5, producing the MC estimators for the sensitivities of the estimator

shown in Equation (3.2.27) with respect to a set of model parameters θk, for k =

1, . . . ,Nθ , specified by

θ̄k =
∂XVA(θ)

∂θk
,

comprises of the adjoint of steps (X1)-(X5) executed backwards for each MC repli-

cation n = 1, . . . ,NMC:

(X5) Set the adjoint of the XVA value, XVA = 1, the adjoint of the model parame-

ters θ̄ = 0 and XVA(n)
= XVA 1

NMC
.

(X4) For m = M, . . . ,1 compute:

V̄ (n)
m =−XVA(n)

N(n)
m

[
Lc

(
SPc,(n)

m−1−SPc,(n)
m

)
I(V (n)

m > 0)

+Ld

(
SPd,(n)

m −SPd,(n)
m

)
I(V (n)

m < 0)
]
,

N̄(n)
m =

XVA(n)(
N(n)

m

)2

[
Lc

(
SPc,(n)

m−1−SPc,(i)
m

)(
V (n)

m

)+
+Ld

(
SPd,(n)

m−1 −SPd,(n)
m

)(
V (n)

m

)− ]
,

and

SPc,(n)
m = XVA(n)

[
V (n)

m

N(n)
m

(1−δm,0)−
V (n)

m+1

N(n)
m+1

]
I(V (n)

m > 0) ,

SPd,(n)
m = XVA(n)

[
V (n)

m

N(n)
m

(1−δm,0)−
V (n)

m+1

N(n)
m+1

]
I(V (n)

m < 0) ,
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where δm,n is the Kronecker delta symbol, and

V (n)
M+1/N(n)

M+1 = 0.

(X3) For m = M, . . . ,1, set

V̄ (n)
p,m = V̄ (n)

m

and compute the adjoint of Equation (3.2.26) by

H̄(n)
p,m = V̄ (n)

p,mI
(

H(n)
p,m > E(n)

p,m

)
, Ē(n)

p,m = V̄ (n)
p,mI

(
H(n)

p,m < E(n)
p,m

)
,

if Tm is an exercise date for the p-th option, and

H̄(n)
p,m = V̄ (n)

p,m , Ē(n)
p,m = 0 ,

otherwise. Initialise the adjoints of the risk factors,

X̄ (n)
m = Ē(n)

p,m
∂E(n)

p,m

∂X (n)
m

+ N̄(n)
m

∂N(n)
m

∂X (n)
m

.

Furthermore, initialise the adjoint of the regression coefficients βp,m, the ad-

joints of the basis functions ψp,m, and update the adjoints of the state vector

shown in Equations (3.3.7) to (3.3.9).

(X2) Update the adjoint of the simulated hazard rates by setting

λ̄
c,(n)
m +=− (Tm+1−Tm)

M

∑
j=m+1

SPc,(n)
m SPc,(n)

m ,

λ̄
d,(n)
m +=− (Tm+1−Tm)

M

∑
j=m+1

SPd,(n)
m SPd,(n)

m .
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(X1) For m = M, . . . ,0 compute the adjoint of the hazard rate evolution

λ̄
c,(n)
m +=λ̄

c,(n)
m+1

∂Gc

∂λ
c,(n)
m

(
Tm,λ

c,(n)
m ;θ

)
,

λ̄
d,(n)
m +=λ̄

d,(n)
m+1

∂Gd

∂λ
d,(n)
m

(
Tm,λ

d,(n)
m ;θ

)
,

θ̄ += λ̄
c,(n)
m+1

∂Gc

∂θ

(
Tm,λ

c,(n)
m ;θ

)
,

θ̄ += λ̄
d,(n)
m+1

∂Gd

∂θ

(
Tm,λ

d,(n)
m ;θ

)
,

where the gradients can be computed through the AAD implementation of

both the function G and the risk factor evolution as in step (L1).

3.3.4 AAD for the regression algorithm

In the AAD implementations presented in Sections 3.3.2 and 3.3.3, the adjoint of

the regression coefficients in Equation (3.3.7) do not contribute to the calculation of

sensitivities. As mentioned in Section 3.3.1, and as will be illustrated with numer-

ical examples in Section 3.4, this can be justified as a reasonable approximation in

the case of Bermudan-style options when the exercise boundary approximated by

regression is close to the optimal one. However, such arguments are generally ap-

proximations for Bermudan-style options, and cannot be invoked when regression

is utilised for XVA. In this case, the contributions associated with the sensitivities

of the regression coefficients must be taken into account in order to obtain accurate

estimates of the model parameters’ sensitivities.

In this section, we discuss how these contributions can be computed by the

AAD implementation of the least-square MC algorithm described in Section 3.2.3.

(R4) Skip this step if the regression algorithm is utilised in conjunction with a

second independent simulation for Bermudan-style options or in the context

of XVA. Initialise the adjoint of the option value V̄ = 1, the adjoint of the

model parameters θ̄ = 0, the adjoint of the regression coefficients β̄m = 0, for
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m = 1, . . . ,M−1 and set

V̄ (n)
1 =

V̄
NMC

1

N(n)
1

, N̄(n)
1 =− V̄

NMC

V (n)
1(

N(n)
1

)2

for n = 1, . . . ,NMC.

(R3) For m = 1 to M−1, we have:

(d) For n = 1, . . . ,NMC, compute

Ē(n)
m = V̄ (n)

m I
(

E(n)
m > H(n)

m

)
, H̄(n)

m = V̄ (n)
m I
(

E(n)
m < H(n)

m

)
,

and initialise the adjoint of the risk factor path value X (n)
m by

X̄ (n)
m = Ē(n)

m
∂E(n)

m

∂X (n)
m

.

(c) Set

β̄m+=
NMC

∑
n=1

ψ
(n)
m H̄(n)

m ,

and initialise the adjoint of the basis functions, ψ , as in Equa-

tion (3.3.8)3.

(b) Compute the adjoint of the two intermediate variables, Ωm and Ψm, in

Equation (3.2.14) using the results in [37] by

Ω̄m = Ψ
−T
m β̄m , Ψ̄m =−Ω̄mβ

T
m .

3Note that βm will contain the sensitivities of the second simulation.
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(a) For n = 1, . . . ,NMC compute the adjoint of Equation (3.2.13) by

ψ̄
(n)
m +=

1
NMC

N
(n)

m V (n)
m+1Ω̄m ,

V̄ (n)
m+1 =

1
NMC

N
(n)

m (ψ
(n)
m )T

Ω̄m ,

¯N
(n)

m =
1

NMC
V (n)

m+1(ψ
(n)
m )T

Ω̄m ,

where N
(n)

m =N(n)
m /N(n)

m+1, and compute the adjoint of Equation (3.2.12)

by

ψ̄
(n)
m +=

1
2NMC

(
Ψ̄

(n)
m +

(
Ψ̄

(n)
m

)T
)

ψ
(n)
m .

Then, update the adjoint of the risk factor vectors by

X̄ (n)
m +=

¯N
(n)

m

N(n)
m+1

∂N(n)
m

∂X (n)
m

+ ψ̄
T ∂ψ̄

∂X (n)
m

, X̄ (n)
m+1+=−

¯N
(n)

m N
(n)

m

N(n)
m+1

∂N(n)
m+1

∂X (n)
Tm+1

.

(R2) Compute the adjoint of the risk factor vector at expiry by

X̄ (n)
M = V̄ (n)

M
∂E(n)

M

∂X (n)
M

,

for n = 1, . . . ,NMC.

(R1) For m = M, . . . ,0, compute the adjoint of the risk factor evolution as in step

(L1).

3.4 Numerical results

Here, we illustrate two numerical examples to demonstrate the efficiency and accu-

racy of the AAD algorithm for the regression-based MC method. We first compute

the Greeks for the best of two assets Bermudan-style option via AAD and go on

to make a comparison with the bump-and-revaluation method. Then as the second

example, we consider the computation of its XVA sensitivities.
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3.4.1 Best of two assets Bermudan-style option

As a first example, we consider the classical case of a Bermudan-style option on

the maximum of two assets under a standard lognormal model for the asset price

processes {X1(t)} and {X2(t)}. The payoff function at exercise time t is specified

by

(max{X1(t),X2(t)}−K)+ , (3.4.1)

where K is the strike price. A similar example is also studied in [13], [14] and page

462 of [39]. The almost exact estimates for this example using the regression-based

Monte Carlo method equipped with twelve basis functions is given in [4].

We assume the option can be exercised every three months up to 3 years. As

briefly mentioned before, we assume the underlying assets follow independent geo-

metric Brownian motion processes with the same initial values X(0), volatilities σ ,

and dividend rates d. In particular, we choose X1(0) = X2(0) = 1, σ1 = σ2 = 0.2

and d1 = d2 = 0.1 and let the risk-free rate r = 0.05. We compute the Bermudan-

style option prices, the Deltas (i.e. the sensitivity with respect to the spot values,

Xi(0)) and the Vegas (i.e. the sensitivity with respect to the volatilities σi) for the

strike prices K = 0.9, 1.0 and 1.1 using both AAD and bumping. We also compare

these with their “exact” value, which is obtained by a partial differential equation

approach. The numerical results can be found in Table 3.1 and in Figure 3.1.

Throughout this section, the MC uncertainties are computed using the bin-

ning technique of Capriotti and Giles (2010). The binning method divides all the

Monte Carlo paths into n bins with the same number of sample paths. Then, the

AAD method is applied to each bin so that the sensitivity value for each bin can

be obtained. Then one takes the average of the sensitivity values as the sensitivity

estimator and the standard deviation over
√

n as estimation error.
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K = 0.9 Price Delta Vega
AAD 0.2012(2) 0.415(3) 0.456(2)
PDE 0.20107 0.41423 0.45740

K = 1.0
AAD 0.1396(1) 0.337(2) 0.486(2)
PDE 0.13959 0.33588 0.48440

K = 1.1
AAD 0.0941(2) 0.258(1) 0.463(2)
PDE 0.09431 0.25635 0.46253

Table 3.1: Prices, Deltas and Vegas for the Bermudan-style option in (3.4.1) with three
different strike values. The smoothing parameter in the call spread regularisation
(3.3.1) is δ = 0.005. The number of MC paths is 400,000. The MC uncertainty
(in parenthesis) is computed using the binning technique of [16] with 20 bins for
each set of simulations.

Figure 3.1: Deltas (left panel) and Vegas (right panel) for the Bermudan-style option in
(3.4.1) as a function of strike. The smoothing parameter in the call spread
regularisation (3.3.1) is δ = 0.005. The number of MC paths is 400,000. The
MC uncertainty (in parenthesis) is computed using the binning technique with
20 bins for each set of simulations.

In Table 3.1 and Figure 3.1, the smoothing parameter for the calculation of the

Greeks, discussed in Section 3.3.1, δ = 0.005, was chosen on the basis of it being

a reasonable compromise between the variance and the bias of the estimator. This

is illustrated in Figure 3.2, showing how for δ = 0.005 the bias introduced by the

finite δ is of the same order of magnitude as the statistical uncertainty for the chosen

computational budget; this is negligible for any practical application.
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Figure 3.2: AAD Delta (left panel) and Vega (right panel) of the Bermudan-style option
with payoff specified in Equation (3.4.1) for K = 1 vs the smoothing parameter
δ for the call spread regularisation (3.3.1). The number of simulated paths
is 3,000,000 for δ = 0.01 and is increased as δ is decreased in order to keep
statistical uncertainties roughly constant. The values in the graphs are fitted
based on a quadratic polynomial function (green lines).

Figure 3.3: AAD Delta (left panel) and Vega (right panel) of the Bermudan-style option
with payoff specified in Equation (3.4.1) for K = 1 as obtained with the un-
smoothed and the smoothened estimators with the call-spread approach (3.3.1)
for five choices of the regression basis functions. The number of simulated
paths is 1,000,000 with 20 bins and the smoothing component δ = 0.005.

As discussed in Section 3.3.1, neglecting to smoothen out the exercise bound-

ary, although common in the financial practice, introduces a bias in the computation

of sensitivities because the exercise boundary is in general not optimal. This is

illustrated in Figure 3.3, in which we compare the Delta, with and without smooth-
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ing, for different choices of basis functions. Here, the smoothened estimator for the

Delta turns out to be more accurate, especially when the exercise boundary obtained

by regression is a less accurate approximation of the real one. However, it is dif-

ficult to establish a priori whether the unsmoothened estimator provides a smaller

or a larger bias than the smoothened one. This is because the bias introduced by

the lack of smoothing may be offset by the bias arising from the sub-optimality of

the exercise boundary. This is illustrated in the right panel of Figure 3.3, showing

that for Vega the smoothened and unsmoothened estimators have a comparable ac-

curacy. In any case, a consideration to keep in mind is that smoothing the exercise

boundary is generally required to obtain stable second-order risk values.

Figure 3.4: AAD Delta (left panel) and Vega (right panel) of the Bermudan-style option
with payoff specified in Equation (3.4.1) for K = 1 as obtained by keeping the
exercise boundary fixed (Fixed) and accounting instead for its contributions to
the sensitivities (Flexible). The number of simulated paths is 1,000,000 with
20 bins and the call-spread smoothing component δ = 0.005.

The quasi-optimality of the exercise boundary is also generally invoked among

industry practitioners as a justification for neglecting the contributions to the sen-

sitivities arising from the exercise boundary. Clearly, the quality of this approxi-

mation is dependent on the accuracy of the regression functions in reproducing the

actual exercise boundary. This is illustrated in Figure 3.4 where we plot Delta and

Vega of the Bermudan-style option with payoff specified in Equation (3.4.1) for dif-

ferent choices of regression basis functions. Here, we compare the results obtained
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by the AAD algorithm, as described in Section 3.3.4, in the case where a) the exer-

cise boundary is kept fixed, and b) when accounting instead for its contributions to

the sensitivities. Here, keeping regression boundaries fixed means that the steps to

obtain regression coefficients will not contribute to sensitivity values. As expected,

the difference between the two approaches vanishes as the regression functions be-

come more and more accurate. As shown for the Vega, it can lead to a significant

bias if a simple (for example, linear or quadratic) form of basis functions is adopted.

3.4.2 XVA sensitivities

As another example, we compute the sensitivities of the XVA shown in (3.2.7) for

the same option with payoff specified in Equation (3.4.1). Here, for simplicity, we

assume that the hazard rate and the volatility are piecewise constants. The XVA sen-

sitivities with respect to some of the model parameters, namely the term structure

of hazard rates of the counterparty and of the volatilities of the underlying, obtained

with the AAD algorithm described in Section 3.2.5 are compared with the ones ob-

tained by standard bumping. The comparative results are shown in Tables 3.2 and

3.3. As expected, the AAD sensitivities are in excellent agreement with those ob-

tained by bumping, with discrepancies attributable to the bias of the finite-difference

approach which is completely masked in this example by the MC uncertainties.

Similar to the case of Bermudan-style option Greeks, keeping the regression

boundary fixed while computing the sensitivities may introduce a bias. However,

for XVA, this issue is much more severe than in the case of the Bermudan-style

option Greeks because no quasi-optimality argument can be invoked. As shown in

Figure 3.5, the XVA sensitivities against the volatilities obtained by bumping and

AAD, with flexible boundaries are almost identical. Instead, the results of AAD

with fixed boundaries are notably different and, if utilised for risk management, this

would lead to significant mis-hedging. On the other hand, and as is expected, the

XVA sensitivities with respect to the hazard rates are not affected by the contribution

arising from the regression functions. This is because the hazard rates do not enter

the computation of the portfolio value conditional on default, and hence do not

appear in the regression boundaries.
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σ0 σ1 σ2 σ3
AAD 0.00298(1) 0.00297(2) 0.00294(1) 0.00283(1)

Bumping 0.00298(1) 0.00297(2) 0.00294(1) 0.00283(1)
σ4 σ5 σ6 σ7

AAD 0.00271(1) 0.00255(1) 0.00236(1) 0.00218(1)
Bumping 0.00271(1) 0.00255(1) 0.00236(1) 0.00218(1)

σ8 σ9 σ10 σ11
AAD 0.00201(1) 0.00183(1) 0.00165(1) 0.001450(8)

Bumping 0.00201(1) 0.00183(1) 0.00165(1) 0.001450(8)

Table 3.2: XVA sensitivities with respect to the piecewise constant volatility. For both AAD
and bumping, results are computed with 1,000,000 MC paths and 25 bins.

λ0 λ1 λ2 λ3
AAD 0.03337(1) 0.03336(2) 0.03329(2) 0.03306(3)

Bumping 0.03337(1) 0.03336(2) 0.03329(1) 0.03306(3)
λ4 λ5 λ6 λ7

AAD 0.03269(3) 0.03218(3) 0.03151(3) 0.03074(4)
Bumping 0.03269(3) 0.03218(3) 0.03151(3) 0.03074(3)

λ8 λ9 λ10 λ11
AAD 0.02989(4) 0.02893(4) 0.02784(4) 0.02669(4)

Bumping 0.02989(4) 0.02893(4) 0.02784(4) 0.02669(4)

Table 3.3: XVA sensitivities with respect to the piecewise hazard rates. For both AAD and
bumping, results are computed with 1,000,000 MC paths and 25 bins.

Figure 3.5: CVA sensitivities with respect to the piecewise constant volatility (left panel)
and hazard rate (right panel), computed by AAD with flexible boundaries, fixed
boundaries and bumping. The number of MC paths is 1,000,000 and the num-
ber of bins is 25.

Finally, the notable computational efficiency of the AAD approach is illus-

trated in Figure 3.6. Here we plot the cost of computing the XVA sensitivities,
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with respect to the term structure of the counterparty hazard rate and the underlying

volatility, relative to the cost of performing a single valuation. The calculation of

the sensitivities by means of AAD can be performed by about three times the cost

of computing the XVA value, which is well within the theoretical bound shown in

(2.4.3). In contrast, the cost of bumping, for one-sided finite-difference estimators,

is in general (1+N) times the cost of a single valuation, where N is the number

of model parameters, which is in this case over 20 times the cost of computing the

value of the XVA.

Figure 3.6: Ratio of the CPU time required for the calculation of the CVA and its sensitiv-
ities obtained by AAD and bumping. Here, CPU time required for the pricing
function is set to be 1 unit.

3.5 Conclusions
We have shown how AAD can be used to efficiently implement the computation of

sensitivities in regression-based MC methods. By discussing examples of practi-

cal relevance in detail, we have demonstrated how accounting for the sensitivities’

contributions associated with the regression functions is crucial to obtain accurate

estimates of the Greeks in XVA applications and also for Bermudan-style options

especially when the exercise boundary is not particularly accurate. We also show

how smoothing out the discontinuities associated with suboptimal exercise bound-

aries can lead, in some situations, to more accurate estimates of the sensitivities.

From a computational stand point, similarly to what was previously found in
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other MC and PDE settings in [19], [21], the proposed method allows for the com-

putation of the complete first-order risk at a cost which is at most four times the

cost of calculating the value of the portfolio itself. This typically results in or-

ders of magnitude of savings in computational time with respect to standard finite-

difference approaches, thus making AAD an ever so indispensable technique in the

toolbox of modern financial engineering and insurance mathematics.



Chapter 4

Multiple barrier-crossings of an

Ornstein-Uhlenbeck diffusion in

consecutive periods

4.1 Overview

The OU-process is a well-known diffusion process, widely used in physics, finance,

biology and other fields. Due to its extensive use, the study of its FPT arises, natu-

rally. The FPT density of a homogeneous OU-process for particular types of barrier

functions can be found in closed-form. For example, if the barrier is equal to the

OU-process long-term mean, its closed-form PDF has been found by [69], [41]

and [76]. However, it is more involved to obtain the PDF of the FPT of the homo-

geneous OU-process to an arbitrary constant barrier. Although [54] claim that they

managed to find the closed-form solution, [41] publish another paper in the same

journal to point out the results in [54] were wrong due to the errors encountered

when using the property of 3D Bessel bridges, see [66] and [67]. A Bessel bridge

representation for the FPT-PDF of a homogeneous OU-process to an arbitrary con-

stant barrier is provided in [41].

Since the closed-form expression of the moment generating function for the

homogeneous OU-FPT has been well-studied, see for instance [69], [3] and [64],

one may obtain an infinite series representation for the PDF of the FPT of a homo-
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geneous OU-process crossing an arbitrary constant barrier by invoking the inverse

Laplace transform, see [3]. The same infinite series representation is also obtained

in [58] based on the spectral theory for options pricing, see [57]. However, to the

best of our knowledge, the properties of the infinite series solution, especially the

behaviour of the tail, have not yet been studied. The tail behaviour of the infinite

series representation is practically important since it determines whether one can

use the truncated series as a robust approximation.

The case of a time-inhomogeneous OU-process passing a time-dependent bar-

rier tends to be more complicated. The FPT of a time-homogeneous Itô process

where the barrier function must satisfy a first-order linear ordinary differential equa-

tion (ODE) is studied in [72]. Under such conditions, [72] provide a solution by

numerical PDE methods. In [15], it shows that the FPT-PDF of a diffusion pro-

cess passing a time-dependent boundary satisfies a Volterra integral equation of the

second kind involving two arbitrary continuous functions. By using this method,

the FPT-PDF for a homogeneous OU-process passing some special barrier specifi-

cations, for example where the barrier function is hyperbolic with respect to time,

can be found analytically. This integral equation approach to time-inhomogeneous

diffusion processes is generalised in [43]. The FPT-PDF of a time-inhomogeneous

diffusion process passing a constant barrier can be obtained numerically by solving

a PDE, see for example chapter 15 of [50] and [73]. The Fokker–Planck equation as-

sociated with an inhomogeneous OU-process passing a time-dependent barrier and

introduce the method of images to derive the solution is studied in [59]. However,

the generalisation to an unconstraint time-dependent barrier cannot be produced due

to the strict conditions imposed by the method of images. [45] deals with the FPT

of Itô processes whose local drift can be modelled in terms of a solution of the

Burgers’ equation. However, the OU-process does not belong to such a family of

processes.

Since all continuous functions can be approximated to arbitrary precision, in

the LP-sense, by piecewise constant functions , it appears worthwhile to study the

FPT of a homogeneous or inhomogeneous OU-process passing a piecewise con-
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stant barrier function. In such cases, the probability that the FPT is within a certain

threshold is equal to the probability that the maxima in all intervals, determined by

the piecewise constant function, is less than the barrier level in the corresponding

intervals. In this chapter, one of the main focuses is placed on the joint probabil-

ity that the running maximum is above arbitrary fixed thresholds in pre-specified

consecutive time intervals. Such a probabilistic problem arises, for example, in ap-

plications to environmental and climate risk, to which the insurance industry, but

more importantly general global welfare, is exposed. Heat waves, or repeated and

prolonged periods of droughts, can have substantial impact on economies, be these

regional or (supra-)national. A heat wave is an event that often is defined by the tem-

perature passing a pre-specified threshold on a number of consecutive days. This

is an unequivocal case of where the joint probability of the running maximum of a

stochastic process passing a fixed arbitrary barrier in consecutive intervals is neces-

sary to address an important real-world challenge. However, to our knowledge, this

mathematical problem has not yet been considered.

In this chapter, we study the multivariate survival function associated with an

OU-process crossing arbitrary barriers in multiple time intervals. In Section 4.2,

we adopt a PDE approach to deduce the infinite series representation of the sur-

vival function for the FPT of a homogeneous OU-process with lower reflection

barrier passing a constant upper barrier. By considering the lower reflection barrier

set at −∞, we produce the same infinite series representation as in [58] and [3].

This can be viewed as a generalisation and an alternative derivation of the infinite

series representation. The alternative derivation also gives a formula for the OU-

process FPT density when a lower reflection barrier is introduced. This is novel.

Moreover, we analyse the distributional properties of the deduced survival func-

tion, especially its tail behaviour and the truncation error. In Section 4.3, we pro-

vide a theorem that transforms the FPT of an inhomogeneous OU-process passing

a time-dependent barrier to the FPT of a homogeneous OU-process with a different

time-dependent barrier. This transfers the time-inhomogeneity from the process to

the time-dependent barrier only, which simplifies the original problem. In Section
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4.4, we deduce an integral representation of the joint distribution and joint survival

function for the maxima of a continuous Markov process in consecutive intervals.

With knowledge of the integral representation, the FPT density function and the

numerical integration method, the joint distribution and joint survival function for

the maxima of an OU-process with piecewise constant parameters in consecutive

intervals can be efficiently obtained. We also show that under certain assumptions,

the nested integration can be further simplified to become a product of single in-

tegrals, which leads to improved computational efficiency. Finally, we present the

quadrature scheme and the MC integration method for the numerical integration in

Section 4.5. Comparing with the direct MC approach, the results obtained by ei-

ther the quadrature scheme or the MC integration method show improved accuracy

and robustness. This is especially true in the rare-event cases, where the direct MC

approach fails to reduce the approximation error efficiently.

4.2 Survival function for the FPT of a homogeneous

OU-process passing a constant barrier
We begin by considering the FPT of a homogeneous OU-process crossing a constant

barrier. The definitions for the homogeneous and standardised OU-processes are

given in Definition 4.2.1. The FPT of a general continuous stochastic process is

specified in Definition 4.2.2.

Definition 4.2.1 An R-valued stochastic process (Xt)t≥0 is called a homogeneous

OU-process if it satisfies the stochastic differential equation

dXt = (µ−λXt)dt +σdWt , (4.2.1)

where X0 = x ∈ R, µ ∈ R, λ > 0, σ > 0 and (Wt)t≥0 is a Brownian motion, which

is defined on a probability space (Ω,F ,P). When µ = 0 and λ = σ = 1, we call

the process (X̃t)t≥0 that satisfies

dX̃t =−X̃tdt +dWt (4.2.2)
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a standardised OU-process.

Definition 4.2.2 The FPT of a continuous process (Xt)t≥0 to an upper constant

barrier b > X0 = x is defined by τX ,b := inf{t ≥ 0 : Xt ≥ b}. The survival function

of τX ,b, denoted by F̄τX ,b(t;x), is given by F̄τX ,b(t;x) = P
(
τX ,b ≥ t | X0 = x

)
.

As shown in [3], [64] and [58], if (Xt)t≥0 is a homogeneous OU-process, the

random variable τX ,b is “properly” defined in the sense that P
(
τX ,b < ∞

)
= 1.

Next we present a relation between the survival functions of the FPTs for two

different homogeneous OU-processes. By invoking Lemma 4.2.1, if one knows

the FPT distribution of a homogeneous OU-process to a given barrier, the FPT

distribution of another homogeneous OU-process to a shifted barrier can also be

obtained.

Lemma 4.2.1 The random variable τX ,b is equal to τX̃ ,b̃ in distribution for

t̃ = λ t, x̃ =

√
λ

σ2

(
x− µ

λ

)
, b̃ =

√
λ

σ2

(
b− µ

λ

)
That is, F̄τX ,b (t,x) = F̄τX̃ ,b̃

(t̃, x̃) .

Proof. We have

F̄τX ,b (t,x) =P

(
sup

s∈[0,t]
Xs < b

∣∣∣X0 = x

)
.

Then by a change of time, it follows that

P

(
sup

s∈[0,t]
Xs < b

∣∣∣X0 = x

)
=P

(
sup

s∈[0,λ t]
Xs/λ < b

∣∣∣X0 = x

)
.
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Then,

P

(
sup

s∈[0,λ t]
Xs/λ < b

∣∣∣X0 = x

)

= P

(
sup

s∈[0,λ t]

√
λ

σ2 Xs/λ <

√
λ

σ2 b
∣∣∣√ λ

σ2 X0 =

√
λ

σ2 x

)

= P

(
sup

s∈[0,λ t]

(√
λ

σ2 Xs/λ −
µ

σ
√

λ

)
< b̃
∣∣∣√ λ

σ2 X0−
µ

σ
√

λ
= x̃

)

The dynamics of the process (
√

λ/σ2 Xs/λ −µ/(σ
√

λ ))s≥0 are given by

d

(√
λ

σ2 Xs/λ −
µ

σ
√

λ

)
=

√
λ

σ2 dXt/λ =−

(√
λ

σ2 Xt/λ −
µ

σ
√

λ

)
dt +dWt .

This means that, in law, the process (
√

λ/σ2 Xs/λ−µ/(σ
√

λ ))s≥0 is a standardised

OU-process. Therefore,

P

(
sup

s∈[0,t]
Xs < b

∣∣∣X0 = x

)
= P

(
sup

s∈[0,t̃]
X̃s < b̃

∣∣∣X̃0 = x̃

)
,

that is, F̄τX ,b (t,x) = F̄τX̃ ,b̃
(t̃, x̃).

Lemma 4.2.1 provides a relationship between the survival functions – that is

between the distributions of the FPTs – of the homogeneous, respectively, the stan-

dardised OU-process. In order to calculate the FPT survival function for a homoge-

neous OU-process, one can first calculate the FPT survival function for a standard-

ised OU-process. Therefore, and from now on in this section, we consider the case

of a standardised OU-process.

4.2.1 The FPT survival function of the standardised OU-process

with a constant barrier

Similar to the valuation of a binary option with a constant up-and-out barrier for

a fixed expiration, see [78] for example, the FPT survival function of the standard
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OU-process with a constant upper barrier can be characterised by the following PDE

problem. On C1,2 ([0,∞),(−∞, b̃]
)
, the function F̄τX̃ ,b̃

(t̃, x̃) satisfies the forward PDE

∂ F̄τX̃ ,b̃

∂ t̃
= A F̄τX̃ ,b̃

, (4.2.3)

subject to the initial and boundary conditions

F̄τX̃ ,b̃
(0, x̃) = 1, (4.2.4)

F̄τX̃ ,b̃

(
t̃, b̃
)
= 0. (4.2.5)

Here A is the infinitesimal operator of a standardised OU-process (X̃t̃)t̃≥0 given by

A =−x̃
∂

∂ x̃
+

1
2

∂ 2

∂ x̃2 .

In order to solve this PDE, we add in the lower boundary condition,

∂ F̄τX̃ ,b̃

∂ x̃
(t̃, ã) = 0, (4.2.6)

which is the condition for a reflecting lower boundary at location ã < b̃. Here,

we follow the definition from Section 3 of [57] for the reflection boundary: the

boundary point ã is included in the state space and (A f )(ã) = lim
x↓ã

(A f )(x) for a

function f ∈ C2([ã, b̃]). The boundary condition (4.2.6) can be found in [73], for

example.

Through this chapter, we use several special functions and their properties. We

list them in Appendix B. The following proposition provides a generalisation to

the infinite series representation for the FPT of a homogeneous OU-process in [3]

and [58]. It recovers their results when ã→−∞, which will be shown in Theorem

4.2.1.

Proposition 4.2.1 The analytic solution to the PDE (4.2.3), subject to the ini-

tial condition and boundary conditions specified in Equations (4.2.4), (4.2.5) and
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(4.2.6) is given by

F̄τX̃ ,b̃
(t̃, x̃) =

∞

∑
k=1

cke−αk·t̃H(αk, x̃; ã),

for k ∈ N, where

H(αk, x̃; ã) =
2α
√

π

Γ
(1−α

2

) ( 1F1

(
−αk

2
;
1
2

; x̃2
)
+ y(αk, ã)x̃ 1F1

(
1−αk

2
;
3
2

; x̃2
))

,

y(αk, ã) =
2αkã 1F1

(
2−αk

2 ; 3
2 ; ã2

)
1F1

(
1−αk

2 ; 3
2 ; ã2

)
+ 2

3(1−αk)ã2 1F1

(
3−αk

2 ; 5
2 ; ã2

) .
Here, 1F1 is the confluent hypergeometric function of the first kind, see Appendix

B, and αk are the ordered solutions to the equation,

1F1

(
−α

2
;
1
2

; b̃2
)
+ y(α, ã)b̃ 1F1

(
1−α

2
;
3
2

; b̃2
)
= 0, (4.2.7)

with respect to α . Furthermore, the coefficient ck is given by

ck =−1/[αk ∂αkH(αk, x̃; ã)].

Proof. By the method of eigenfunction expansion, F̄τX̃ ,b̃
(t̃, x̃) admits the following

representation

F̄τX̃ ,b̃
(t̃, x̃) =

∞

∑
k=1

cke−αk t̃
φk(x̃),

where ck are the constant coefficients, and αk as well as φk(x̃) are the eigenvalues

and eigenfunctions that satisfy the general eigenfunction equation

A φk(x̃) =−αkφk(x̃), (4.2.8)

subject to

φ
′
k(ã) = φk(b̃) = 0.
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The pair (φ(·),α) satisfies

d2
φ

dx̃2 −2x̃
dφ

dx̃
+2αφ = 0 (4.2.9)

subject to

φ
′(ã) = φ(b̃) = 0. (4.2.10)

As shown in page 761 of [77], the ODE (4.2.9) is known as the Hermite differential

equation, whose general solution is given by

φ(x̃) = A 1F1

(
−α

2
;
1
2

; x̃2
)
+Bx̃ 1F1

(
1−α

2
;
3
2

; x̃2
)

(4.2.11)

where A and B are independent of x̃. After substituting Equation (4.2.11) into con-

dition (4.2.10), we obtain the system
A 1F1

(
−α

2 ; 1
2 ; b̃2)+Bb̃ 1F1

(1−α

2 ; 3
2 ; b̃2)= 0,

B
[

1F1
(1−α

2 ; 3
2 ; ã2)+ 2

3(1−α)ã2
1F1
(3−α

2 ; 5
2 ; ã2)]= 2Aα ã 1F1

(2−α

2 ; 3
2 ; ã2) .

Therefore, the eigenvalues αk must be the zeros of the equation

1F1

(
−α

2
;
1
2

; b̃2
)
+ y(α, ã)b̃ 1F1

(
1−α

2
;
3
2

; b̃2
)
= 0

with respect to α . So we let

φk(x̃) =H(αk, x̃; ã)

=
2α
√

π

Γ
(1−α

2

) ( 1F1

(
−αk

2
;
1
2

; x̃2
)
+ y(αk, ã)x̃ 1F1

(
1−αk

2
;
3
2

; x̃2
))

,

which will be convenient for later use. By Proposition 2 in [57], the coefficient of
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each term can be calculated and are given by

ck =−1/[αk ∂αkH(αk, x̃; ã)].

Proposition 4.2.1 gives the survival function of the FPT for a homogeneous OU-

process passing a given upper barrier subject to a lower reflection boundary. We

now re-derive the formulae after removing the lower reflection boundary by taking

a limit in the following theorem. This is a different derivation of the infinite se-

ries representation in [3] and [58] based on relaxing specific conditions. Here, the

definition of Hermite function Hα(x) is given in page 509 of [1].

Theorem 4.2.1 The analytic solution to the PDE (4.2.3) subject to the initial and

boundary conditions specified in Equations (4.2.4) and (4.2.5) is given by

F̄τX̃ ,b̃
(t̃, x̃) =

∞

∑
k=1

cke−αk t̃Hαk (−x̃)

for k ∈ N, where Hα(·) is the Hermite function with parameter α , αk are the

solutions to the equation Hα

(
−b̃
)
= 0 with respect to α , and ck = −1/[αk ·

∂αkHαk(−b̃)].

Proof. By page 506 of [1], we have the asymptotic relationship 1F1 (x;y;z) ∼

Γ(y)ezzx−y/Γ(x) for z→ ∞, that is,

lim
z→∞

1F1 (x;y;z)Γ(x)
Γ(y)ezzx−y = 1.
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Therefore,

lim
ã→−∞

y(α, ã) = lim
ã→−∞

2α ã 1F1
(2−α

2 ; 3
2 ; ã2)

1F1
(1−α

2 ; 3
2 ; ã2

)
+ 2

3(1−α)ã2 1F1
(3−α

2 ; 5
2 ; ã2

)
=

2α

lim
ã→−∞

1F1( 1−α

2 ; 3
2 ;ã2)

1F1( 2−α

2 ; 3
2 ;ã2)ã

+ 2
3(1−α) lim

ã→−∞

1F1( 3−α

2 ; 5
2 ;ã2)ã

1F1( 2−α

2 ; 3
2 ;ã2)

=
2Γ(1−α

2 )

Γ(−α

2 )
,

in particular, when α =αk. For ã→−∞ and α =αk, the eigenvalues αk are required

to satisfy

2α
√

π

(
1F1
(
−α

2 ; 1
2 ; b̃2)

Γ
(1−α

2

) +2b̃ 1F1
(1−α

2 ; 3
2 ; b̃2)

Γ
(
−α

2

) )
= 0,

which turn out to be the zeros of the Hemite function Hα(−b̃) with respect to α ,

i.e.

Hα(−b̃) := 2α
√

π

[
1F1
(
−α

2 ; 1
2 ; b̃2)

Γ
(1−α

2

) +2b̃ 1F1
(1−α

2 ; 3
2 ; b̃2)

Γ
(
−α

2

) ]
= 0.

Thus, the eigenfunctions are represented by φk(x̃) =Hαk(−x̃). The coefficients can

then be obtained by Proposition 4.2.1.

Remark 4.2.1 The Hermite function Hα(x) is equal to the limit,

lim
ã→−∞

H(α,x; ã),

where H(α,x; ã) is specified as in Proposition 4.2.1.

Example 4.2.1 Here we consider the PDF for the FPT of a standardised OU-

process hitting the upper barrier b̃ with different lower reflection barriers ã. Figure

4.1 shows that the distances of the ordered eigenvalues tend to increase, regardless

of the value which ã takes. We can observe from Figure 4.2 that when ã becomes

smaller, the PDF with lower reflection barrier approaches the PDF without lower

reflection barrier.
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Figure 4.1: Distance between the first eleven ordered eigenvalues for the PDE (4.2.3), with
upper barrier b̃ = 1.5 and different lower reflection barriers ã.

Figure 4.2: The probability density function for the first-passage-time of a standardised
OU-process crossing the upper barrier b̃ = 1.5, with lower reflection barrier ã.

Corollary 4.2.1 The analytical form of the FPT survival function of the OU-

process shown in Equation (4.2.1) is given by

F̄τX ,b(t,x) =
∞

∑
k=1

cke−λαktHαk

(
−
√

λ

σ2

(
x− µ

λ

))
, (4.2.12)

where Hαk(·) is the Hermite function, and the αk’s are the ordered solutions to the
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equation

Hαk

(
−
√

λ

σ2

(
b− µ

λ

))
= 0.

Furthermore, the coefficient ck is given by

ck =−
1

αk ·∂αkHαk

(
−
√

λ

σ2

(
b− µ

λ

)) .
Proof. By Lemma 4.2.1, we have

t̃ = λ t, x̃ =

√
λ

σ2

(
x− µ

λ

)
, b̃ =

√
λ

σ2

(
b− µ

λ

)
.

Substituting these parameters into Theorem 4.2.1, we obtain

F̄τX ,b(t,x) =
∞

∑
k=1

cke−λαktHαk

(
−
√

λ

σ2

(
x− µ

λ

))
, (4.2.13)

where αk and ck are given as above.

In the following theorem, we demonstrate the absolute convergence of the in-

finite series (4.2.12) and the bound of the truncation error by using Corollary 4.2.1.

Theorem 4.2.2 The infinite series in Equation (4.2.12) is absolutely convergent.

The truncated series
K
∑

k=1
cke−λαktHαk

(
−
√

λ

σ2

(
x− µ

λ

))
has truncation error of

O
(

e−2Kλ t
)

as K→ ∞. Moreover, the absolute value of the truncation error is bounded by

ε(αK) =
exp
(

x′2−b′2
2

)
√

2|b′|

[
exp(−λ tαK)

αK
+(1−λ t)Γ(0,λ tαK)

]
,

where x′ =
√

λ

σ2

(
x− µ

λ

)
, b′ =

√
λ

σ2

(
b− µ

λ

)
, and Γ(a,x) is the upper incomplete

Gamma function with parameter a.
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Proof. By adopting the results in Section 4.14 on page 66 of [53], as αk→∞, which

means k→ ∞, we have that

Hαk

(
−x′
)
=2αk+1/2ex′2−αk/2−1/4

(
αk

2
+

1
4

)αk/2

× cos

(
2x′
√

αk

2
+

1
4
− αkπ

2

)[
1+O

(
1√

αk/2+1/4

)]
.

(4.2.14)

Hence, for a large enough k ∈ N, we have

ck =−

[
1+O

(
1√

αk/2+1/4

)]
·

[
αk2αk+

1
2 exp

(
b′2

2
− αk

2
− 1

4

)(
αk

2
+

1
4

)αk/2

×sin

(
2b′
√

αk

2
+

1
4
− αkπ

2

)(
π

2
+

b′αk√
αk/2+1/4

)]−1

.

We can also obtain the asymptotic behaviour of αk,

αk = 2k+1+
4b′2

π2 +
2b′

π

√
4k+3+

4b′2

π2 , (4.2.15)

when k → ∞. Therefore, for large enough K ∈ N, the exact truncation error of

Equation (4.2.12) is

∞

∑
k=K

ckHαk

(
−x′
)

e−λαkt

=
∞

∑
k=K
−exp

(
x′2−b′2

2

)
cos
(

2x′
√

αk/2+1/4− αkπ

2

)
e−λαkt

αk sin
(

2b′
√

αk/2+1/4− αkπ

2

)(
π

2 +
b′αk√

αk/2+1/4

) .

Since αk are the zeros such that Hαk (−b′) = 0, by (4.2.14) we obtain

cos

(
2b′
√

αk

2
+

1
4
− αkπ

2

)
= 0.
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Therefore, ∣∣∣∣∣sin

(
2b′
√

αk

2
+

1
4
− αkπ

2

)∣∣∣∣∣= 1.

Therefore, we have the asymptotic inequality

∞

∑
k=K

∣∣∣ckHαk

(
−x′
)

e−λαkt
∣∣∣≤ ∞

∑
k=K

exp
(

x′2−b′2
2 −λαkt

)
αk

∣∣∣∣π

2 +
b′αk√

αk/2+1/4

∣∣∣∣
≤ exp

(
x′2−b′2

2

)
C1

∞

∑
k=K

exp(−λαkt)

α
3/2
k

≤ exp

(
x′2−b′2

2

)
C1 exp(−λαKt)

∞

∑
k=K

1

α
3/2
k

≤ exp

(
x′2−b′2

2

)
C1C2 exp(−λαKt)

∞

∑
k=K

1
k3/2

≤ exp

(
x′2−b′2

2

)
C1C2C3 exp(−λαKt)

= O(exp(−λαKt))

= O
(

e−2Kλ t
)
.

Meanwhile, since αK > 0, we have that

∞

∑
k=K

∣∣∣ckHαk

(
−x′
)

e−λαkt
∣∣∣≤ ∞

∑
k=K

exp
(

x′2−b′2
2 −λαkt

)
αk

∣∣∣∣π

2 +
b′αk√

αk/2+1/4

∣∣∣∣
≤ exp

(
x′2−b′2

2

)
∞

∑
k=K

exp(−λαkt)
√

αk +1√
2|b′|α2

k

≤ exp

(
x′2−b′2

2

)ˆ
∞

αK

exp(−λαt)(α +1)√
2|b′|α2

dα

=
exp
(

x′2−b′2
2

)
√

2|b′|

[
exp(−λ tαK)

αK
+(1−λ t)Γ(0,λ tαK)

]
.
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Theorem 4.2.2 gives an upper bound for the truncation error. One can deter-

mine the terms to be kept in order to achieve such a specific accuracy level with

an explicit function. An example of the error and its upper bound can be found in

Figure 4.3.

Figure 4.3: The log-scale plot between the truncation terms and the error for OU-process
with µ = 0, σ = 1 and λ = 0.1 for initial values 0 and different upper barriers
0.01, 0.1, 1 and 10.

To use the infinite series approximation for a probability density function, one

needs to analyse how many terms we should truncate in order to reach a certain

precision level for the approximated distribution. Since one can transform the ho-

mogeneous OU-process barrier-crossing problem to the standardised OU-process

barrier-crossing problem, see Lemma 4.2.1, we now study the truncation precision

of the standardised OU-process. Here, we plot the number of truncations required
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for various initial values and barrier levels in Figure 4.4, where the α-zeros are taken

in [0,70]. We observe that when the barrier level is far away from the initial value,

the number of truncations required becomes smaller. Figure 4.4 can be treated as a

benchmark to determine how many terms one should truncate for a given quantile

precision requirement.

Figure 4.4: Relationship between the process initial values, barrier levels and the number
of truncations.

Remark 4.2.2 The α-zeros can be obtained by the bisection method. However,

these α-zeros do not need to be obtained with high precision. Through the numer-

ical test, we notice that if the α-zeros are accurate up to 10−4, the approximation

can be stable and reliable.

Remark 4.2.3 For a barrier level b which is larger than 5, numerically solving the
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higher orders of α-zeros (for α ≥ 70) becomes unstable. This is due to the value

of Hα(−b) becoming too large to be stored in computer memory, leading to the

overflow of the mantissa under double precision issue.

4.2.2 Tail behaviour of the FPT distribution for a homogeneous

OU-process passing a constant barrier

With the given infinite series representation in Equation (4.2.12), we can analyse

the property of the FPT distribution for a homogeneous process passing a con-

stant barrier. With the method given on page 114 of [65], its tail behaviour can be

characterised by the “hazard rate function”.

Lemma 4.2.2 The distribution of the FPT of OU-process shown in Equation (4.2.1)

to a constant barrier b is light-tailed, that is, the exponential moments exist up to

the λα1 order, where α1 is given in Corollary 4.2.1. i.e.

E
[
eθτX ,b

]
< ∞, ∀θ < λα1.

Proof. We consider the hazard rate function given in page 114 of [65]. The hazard

rate function r(t) for the FPT of OU-process in Equation (4.2.1) is specified by

r(t) :=
−∂t F̄X(x, t;b)

F̄X(x, t;b)
=

∞

∑
k=1

Bke−λαkt

∞

∑
k=1

Cke−λαkt
,

where Bk = λαkckHαk(−
√

λ

σ2 (x− µ

λ
)) and Ck = ckHαk(−

√
λ

σ2 (x− µ

λ
)). As shown

in Remark 3.6 of [65], if limt→∞ r(t)> 0 exists, then the distribution is light-tailed

and the exponential moments exist up to liminft→∞ r(t).

In our case, since λ > 0 is given by the definition of an OU-process and

{αk}k∈N are ordered positive solutions to the equation

Hα

(
−
√

λ

σ2

(
b− µ

λ

))
= 0
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with respect to α , we have

lim
t→∞

r(t) = lim
t→∞

∞

∑
k=1

Bke−λαkt

∞

∑
k=1

Cke−λαkt
= lim

t→∞

B1 +
∞

∑
k=2

Bke−λ (αk−α1)t

C1 +
∞

∑
k=2

Cke−λ (αk−α1)t
= λα1.

4.3 FPT transformation between an inhomogeneous

and homogeneous OU-process hitting time-

dependant barriers
In Section 4.2 we derive the eigenvalue expansion formulae to compute the sur-

vival function of the FPT for a homogeneous OU-process hitting a constant barrier.

However, the homogeneous condition is usually too strong to model real events.

For example, if we want to model the process with periodic structure by a homoge-

neous OU-process, the periodic structure in the process cannot be modelled. On the

other hand, the barriers in reality will also vary with time. It is therefore natural and

practically important to study the FPT for an inhomogeneous OU-process hitting

a time-dependent barrier. The inhomogeneous OU-process is defined in Definition

4.3.2. We also present the definition of the FPT that a stochastic process hits a

time-dependent barrier in Definition 4.3.1.

Definition 4.3.1 Let (Zt)t≥0 be a continuous Markov process. The first-passage-

time of (Zt)t≥0 with initial value Z0 = z to an upper time-dependent barrier b(t),

where b(0)> z, is defined by

TZ,b(t) := inf{t ≥ 0 : Zt ≥ b(t)} . (4.3.1)

The survival function of TZ,b(t) is denoted by F̄TZ,b(t)
(t;z) and is given by

F̄TZ,b(t)
(t;z) = P

(
TZ,b(t) > t

)
. (4.3.2)
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In particular, we focus on inhomogeneous OU-processes, which are defined as fol-

lows.

Definition 4.3.2 Let (Wt)t≥0 denote a Brownian motion on the probability space

(Ω,F ,P). A solution, (Yt)t≥0, to the stochastic differential equation

dYt = (µ(t)−λ (t)Yt)dt +σ(t)dWt , (4.3.3)

where Y0 = y ∈ R, is called an inhomogeneous Ornstein-Uhlenbeck process if the

coefficients satisfy the existence and uniqueness conditions. i.e. For µ(t) : R+→

R, λ (t) : R+ → R+ and σ(t) : R+ → R+ satisfying (a) that ∃C ∈ R such that

|µ(t)−λ (t)y′|+ |σ(t)| ≤ C(1 + |y′|) for ∀y′ ∈ R, and (b) that λ (t) is bounded,

∀t ≥ 0, the solution (Yt)t≥0 exists and is unique.

By Theorem 5.3.2 in [62], the properties (a) and (b) in Definition 4.3.2 ensure

that the SDE (4.3.3) has a unique t-continuous solution. A sufficient condition for

t-continuity is for µ(t), λ (t) and σ(t) to be bounded.

Next we show that the FPT distribution of an inhomogeneous OU-process

crossing a time-dependent barrier is equivalent to the FPT distribution of a stan-

dardised OU-process crossing another time-dependent barrier.

Definition 4.3.3 The mean-reverting scaling function α(t) : R+ → R+, the shift

function β (t) : R+→ R, and the time-compensation function γ(t) : R+→ R+ are

to satisfy.

a) α(t), β (t) and γ(t) ∈C1(R+) for t > 0;

b) γ(t) is non-decreasing for t > 0;

c) α(t), β (t) and γ(t) satisfy the ODE system


σ(λ (t))α(t)

√
γ ′(t) = 1

λ (γ(t))γ ′(t)− α ′(t)
α(t) = 1

α(t)µ(γ(t))γ ′(t)+ α ′(t)β (t)
α(t) −β ′(t)−β (t)λ (γ(t))γ ′(t) = 0

(4.3.4)
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subject to the initial condition

α(0) = α0 ∈ R+, β (0) = β0 ∈ R, γ(0) = 0 (4.3.5)

where the constants α0 and β0 are pre-determined.

The time-dependent parameters µ(t), λ (t) and σ(t) are specified in Definition

4.3.2.

Lemma 4.3.1 (A sufficient condition for the uniqueness and existence of α(t), β (t)

and γ(t))

For µ(t), λ (t) and σ(t) given in Definition 4.3.2, if λ (t) ∈ C1 (R+) and σ(t) ∈

C2 (R+), then the ODE system (4.3.4) has a unique local solution with initial con-

ditions α(0) = α0 ∈ R+, β (0) = β0 ∈ R and γ(0) = 0.

Proof. The first two equations in system (4.3.4) can be rearranged such that

α(t) =
1

σ(t)
√

γ ′(t)
, λ (γ(t))γ ′(t) = 1+

α ′(t)
α(t)

.

Substituting the first equation into the second, we obtain

γ
′(t) =

1
λ (γ(t))

(
1− σ ′(t)

σ(t)
− 1

2γ(t)

)
.

Next we consider

f (t,γ) :=
1

λ (γ)

(
1− σ ′(t)

σ(t)
− 1

2γ

)
.

Since λ (t) ∈C1 (R+) and σ(t) ∈C2 (R+), f (t,γ) is continuous in t and ∂ f/∂γ is

continuous in γ . By the Picard-Lindelöf theorem, see page 38 of [46] for example,

the unique local solution to γ(t) is guaranteed, which implies the solution to α(t)

also exists and is unique. Since

α(t)µ(γ(t))γ ′(t)+
α ′(t)β (t)

α(t)
−β

′(t)−β (t)λ (γ(t))γ ′(t) = 0

is a first-order linear ODE with respect to β (t), whose solution is guaranteed to be
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unique, the ODE system (4.3.4) admits a unique solution.

Remark 4.3.1 The necessary and sufficient conditions for the uniqueness and ex-

istence of α(t), β (t) and γ(t) are non-trivial.

For α(t), β (t) and γ(t) specified as in Definition 4.3.3, an inhomogeneous OU-

process is transformed into a standardised one as follows.

Proposition 4.3.1 Consider the inhomogeneous OU-process (Yt)t≥0 given in Def-

inition 4.3.2. Assume α(t),β (t) and γ(t), given in Definition 4.3.3, satisfy the

sufficient conditions in Lemma 4.3.1. Then the transformed process (α(t)Yγ(t)−

β (t))t≥0 is a standardised OU-process (X̃t)t≥0 with initial value X̃0 = α0y−β0 al-

most surely.

Proof. The solution to the SDE (4.3.3) is given by

Yt =e−
´ t

0 λ (u)du

×
[

x+
ˆ t

0
µ(s)exp

(ˆ s

0
λ (u)du

)
ds+
ˆ t

0
σ(s)exp

(ˆ s

0
λ (u)du

)
dWs

]

Since γ(·) satisfies the sufficient condition in Lemma 4.3.1, γ(·) exists. Therefore,

Yγ(t) =e−
´ γ(t)

0 λ (u)du

[
x+
ˆ

γ(t)

0
µ(s)exp

(ˆ s

0
λ (u)du

)
ds

+

ˆ
γ(t)

0
σ(s)exp

(ˆ s

0
λ (u)du

)
dWs

]
,

and

Yγ(t) =exp
(
−
ˆ t

0
λ (γ(u))γ ′(u)du

)
×
[

x+
ˆ t

0
µ(γ(s))γ ′(s) exp

(ˆ s

0
λ (γ(u))γ ′(u)du

)
ds

+

ˆ t

0
σ(γ(s))

√
γ ′(s)exp

(ˆ s

0
λ (γ(u))γ ′(u)du

)
dWs

]
.



115

It follows that

dYγ(t) =
[
µ(γ(t))γ ′(t)−λ (γ(t))γ ′(t)Yγ(t)

]
dt +σ(γ(t))

√
γ ′(t)dWt ,

and hence

dX̃t =

[
α
′(t)

X̃t +β (t)
α(t)

−β
′(t)+α(t)µ(γ(t))γ ′(t)

−α(t)λ (γ(t))γ ′(t)
X̃t +β (t)

α(t)

]
dt +α(t)σ(t)

√
γ ′(t)dWt

=− X̃tdt +dWt .

In the last step Definition 4.3.3 is used. We thus have that (X̃t)t≥0 is a standardised

OU-process.

Now we are in the position to present the main theorem that links the FPT

distribution functions of the inhomogeneous and the standardised OU-processes.

Theorem 4.3.1 Let (Yt)t≥0 be the inhomogeneous OU-process in Definition 4.3.2,

and assume that the ODE (4.3.4) has a unique solution. Then,

F̄TY,b(t)
(t;y) = F̄TX̃ ,g(t)

(
γ
−1(t); x̃

)
(4.3.6)

where (X̃t)t≥0 is a standardised OU-process with initial value X̃0 = x̃ = α0y−β0,

and

g(t) = α(t)b(γ(t))−β (t).

An equivalent statement is that TY,b(t) and γ(TX̃ ,g(t)) are equal in distribution.

Proof. First, we show TY,b(t) and γ

(
TX̃ ,α(t)b(γ(t))−β (t)

)
are equal in distribution.

We have that

TY,b(t) = inf{t > 0 : Yt ≥ b(t)}= inf
{

γ(t)> 0 : Yγ(t) ≥ b(γ(t))
}

= inf
{

γ(t)> 0 : α(t)Yγ(t)−β (t)≥ α(t)b(γ(t))−β (t)
}
.
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Since γ(·) is monotone, non-decreasing and positive, we deduce

TY,b(t) =γ
(
inf
{

t > 0 : α(t)Yγ(t)−β (t)≥ α(t)b(γ(t))−β (t)
})

.

By Proposition 4.3.1, we know that the process (α(t)Yγ(t)−β (t))t≥0 has the law of

a standardised OU-process. Therefore,

TY,b(t) =γ
(
inf
{

t > 0 : α(t)Yγ(t)−β (t)≥ α(t)b(γ(t))−β (t)
))

=γ

(
TX̃ ,α(t)b(γ(t))−β (t)

)
.

Then, it follows that

F̄TY,b(t)
(t;x) =P

(
TY,b(t) > t |Y0 = x

)
= P

(
γ

(
TX̃ ,α(t)b(γ(t))−β (t)

)
> t | X̃0 = x̃

)
=P
(
TX̃ ,α(t)b(γ(t))−β (t) > γ

−1(t) | X̃0 = x̃
)
= F̄TX̃ ,g(t)

(
γ
−1(t); x̃

)
.

Example 4.3.1 (Seasonal trend) One example of above is to apply a seasonality

function to the mean-reverting level function µ(t). In this example, we show how

we can use Theorem 4.3.1 to transform the problem for an inhomogeneous OU-

process hitting a constant barrier to the problem for a standardised OU-process hit-

ting a periodic barrier.

We consider the inhomogeneous OU-process (Yt)t≥0, parametrised by µ(t) =

Asin(θ t +ϕ), λ (t) = λ and σ(t) = σ , with initial value Y0 = x, where A, θ , ϕ ∈R

and λ ,σ > 0. The constant barrier is denoted by b. The mean-reverting scaling

function α(t) and time-compensation function γ(t) are given by α(t) =
√

λ/σ and

γ(t) = t/λ . Then β (t) satisfies

β
′(t)+β (t) = µ

( t
λ

) 1

σ
√

λ
. (4.3.7)
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The associated ODE (4.3.7), in this particular case, has unique solution

β (t) = Be−t +
A
√

λ

σ
√

λ 2 +θ 2
sin
(

θ

λ
t +ϕ− arctan

(
θ

λ

))
, (4.3.8)

where B is a constant so to match the initial condition. For convenience, we let

B = 0 by imposing the initial condition

β (0) =
A
√

λ

σ
√

λ 2 +θ 2
sin
(

ϕ− arctan
(

θ

λ

))
,

which, by Theorem 4.3.1, means that the standardised OU-process (X̃t)t≥0 starts

from

X̃0 =

√
λ

σ
X0−

A
√

λ

σ
√

λ 2 +θ 2
sin
(

ϕ− arctan
(

θ

λ

))
.

Then we have a particular solution for β (t):

β (t) =
A
√

λ

σ
√

λ 2 +θ 2
sin
(

θ

λ
t +ϕ− arctan

(
θ

λ

))
.

By Theorem 4.3.1, we only need to study the probability of a standardised OU-

process with initial value,

X̃0 = x̃ =
x
√

λ

σ
− A

√
λ

σ
√

λ 2 +θ 2
sin
(

ϕ− arctan
(

θ

λ

))

crossing a periodic barrier

g(t) =
b
√

λ

σ
− A

√
λ

σ
√

λ 2 +θ 2
sin
(

θ

λ
t +ϕ− arctan

(
θ

λ

))
.

4.4 Multiple crossings of an inhomogeneous OU-

process

For an inhomogeneous OU-process with parameter functions in C1(R+), one can

transform its barrier-crossing problem to one associated with the standardised OU-

process and a time-dependent barrier function. The time-dependent barrier can be
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approximated by a piecewise constant function. This is due to the fact that any

continuous function can be approximated with a piecewise constant function to ar-

bitrary accuracy given a sufficiently large number of partitions. The problem thus

reduces to a multiple-crossing problem for a standardised OU-process.

Alternatively, one may directly use the piecewise constant approximation for

the parameter functions of the inhomogeneous OU-process. This alternative method

leads to a multiple-crossing problem for a locally-homogeneous OU-process.

Figure 4.5: An example where the transformation method is advantageous and the
piecewise-constant approximation is applied. The inhomogeneous OU-process
crossing the time-dependent barrier b(t) = 1 + 0.65sin(10t + arctan(10)) is
shown in the upper panel. The parameter functions of the OU-process are
µ(t) = sin(10t) and λ = σ = 1 as shown in the middle panel. The original
problem can be transformed to a standardised OU-process with smoother time-
dependent barrier, see the lower panel.

The first method transforms the inhomogeneous OU-process to a global stan-

dardised OU-process by solving the ODE system given in Definition 4.3.3. It uses

piecewise constant functions to approximate the time-varying barriers. This scheme

requires further conditions to be satisfied, such as continuity for parameter func-
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tions, for the transformation to be well-defined. In addition, solving the ODE sys-

tem can be difficult. The second method does not rely on such a transformation,

however, it results in a locally homogeneous OU-process with piecewise constant

barriers, where the time steps for the barriers and OU-parameters may not necessar-

ily match.

In applications, the method one should select is decided on a case-by-case

basis. In Figure 4.5, we simulate a time-inhomogeneous OU-process with a time-

dependent barrier. The application of the first method can offset most of the time-

dependences from the parameters and the barrier, however, the direct approximation

method will lead to higher approximation error. In order to reach the same level of

accuracy, one may have to approximate using more time segments, which compli-

cates the problem.

Figure 4.6: An example where the piecewise-constant approximation is inefficient and the
transformation method is disadvantageous. The inhomogeneous OU-process
crossing the constant barrier b(t) = 0.5 is shown in the upper panel. The pa-
rameter functions of the OU-process are µ(t) = 1/(1+e5−t) and λ = σ = 1 as
shown in the middle panel. The original problem is transformed to a standard-
ised OU-process with a steeper time-dependent barrier, see the lower panel.
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However, this does not mean that the first method is always better than the

direct approximation approach. For example in Figure 4.6, with the same number

of discretisations, the transformation method leads to a higher approximation error.

In general, if any of the three OU parameter functions are not in C1(R+), one

should use the direct approximation method. Otherwise, when applying the trans-

formation method, the transformed barrier function g(t) = α(t)b(γ(t))−β (t) can

be written as

g(t) = e−t

[
α0e
´ γ(t)

0 λ (s)dsb(γ(t))−β0−α0β0

ˆ
γ(t)

0
e
´ s

0 λ (s)ds
µ(s)ds

]
,

where γ(t) is obtained from the equation

α0e
´ γ(t)

0 λ (s)ds−t
σ(γ(t))

√
γ ′(t) = 1.

It is difficult to come up with a general principle on which method makes less es-

timation error by approximations with constants. However, this can be achieved

under certain conditions. For example, we assume the inhomogeneous OU-process

in Definition 4.3.2 has constant coefficients σ(t) = σ , λ (t) = 1, µ(t) ∈C2 ([t1, t2]),

and the barrier function is a constant b(t) = b. Under this assumption, we have the

transformed barrier function g(t) defined in domain [t1, t2]. Therefore, if ∀t ∈ [t1, t2],

g(t) and µ(t) are monotone, and

|g(t2)−g(t1)|< |µ(t2)−µ(t1)| ,

then the transformation method leads to less approximation error. That is, using a

constant to approximate g(t) in domain [t1, t2] is more accurate than using a constant

to approximate µ(t). This is because the range of monotone transformed function

g(t) is larger than than the range of monotone µ(t).

Next we investigate the case where µ(t), λ (t) and σ(t), the parameter func-

tions of the inhomogeneous OU-process (Yt)t≥0, and the barrier function b(t) are

càdlàg piecewise constant functions.
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Let the parameter functions b specified by

µ(t) =
N(µ)

∑
i=1

µiI
(

t ∈ [t(µ)i−1, t
(µ)
i )

)
, λ (t) =

N(λ )

∑
i=1

λiI
(

t ∈ [t(λ )i−1, t
(λ )
i )

)
σ(t) =

N(σ)

∑
i=1

σiI
(

t ∈ [t(σ)
i−1t(σ)

i )
)
, b(t) =

N

∑
i=1

biI(t ∈ [ti−1, ti))

∀i = 1,2, ...,N, where λi,σi ∈ R+, µi,bi ∈ R and b0 > Y0. Here, we consider a

finite-time horizon where t(µ)
N(µ) = t(λ )

N(λ ) = t(σ)

N(σ) = tN , and I(·) denotes the indicator

function. We study the following probabilities:

P
(

MY
t0,t1 < b1,MY

t1,t2 < b2, . . . ,MY
tN−1,tN < bN

)
, (4.4.1)

P
(

MY
t0,t1 ≥ b1,MY

t1,t2 ≥ b2, . . . ,MY
tN−1,tN ≥ bN

)
, (4.4.2)

where MY
ti−1,ti = sup

t∈(ti−1,ti]
Yt . In particular, probability (4.4.1) is equal to the proba-

bility that the FPT of this inhomogeneous OU-process is larger than tN ; probability

(4.4.2) is the probability that the inhomogeneous OU-process crosses the barrier in

each interval, i.e. the multiple crossing probability. We may consider the following

discretisation schemes:

1) Matching time-discretisation for µ(t), λ (t), σ(t) and b(t), i.e. t(µ)i = t(λ )i =

t(σ)
i = ti for all i = 0,1, . . . ,N.

2) Matching time-discretisation for µ(t), λ (t) and σ(t) only. i.e. t(µ)i = t(λ )i =

t(σ)
i for all i = 0,1, . . . ,N(µ).

3) Non-matching time-discretisations for any of µ(t), λ (t), σ(t) and b(t).

One can show that the probabilities (4.4.1) and (4.4.2) in the last two cases can

be further reduced to the first case by utilising Theorem 4.4.1. Therefore, in what

follows, we will focus on the first case unless specified otherwise, and we shall

show the reduction methods from the case 2) and 3) to case 1) in Section 4.4.3.
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4.4.1 The joint distribution and multivariate survival function

for multiple maxima of a continuous Markov process in

consecutive intervals

We begin with a general theorem for continuous Markov process. We recall the

definition of a Markov process, see for instance Section 5.2.3 in [8]. In this section,

we consider the probability space (Ω,F ,P) that is equipped with a filtration Ft .

Definition 4.4.1 Let (Ft) be the natural filtration generated by (Zs)s∈[0,t]. A

Markov process (Zt)t≥0 satisfies P(A |Ft) = P(A | Zt), for all A ∈ σ (Zu : u≥ t).

Lemma 4.4.1 If (Zt)t≥0 is a Markov process, then we have P(A ∩ B|Zt) =

P(A|Zt)P(B|Zt) for all A ∈ σ(Zu : u≥ t),B ∈ σ(Zu : u≤ t).

Proof. This is straightforward and shown in most standard textbooks on probability,

see for example Section 5.2.3 in [8].

We now go on to present Theorem 4.4.1 and prove it by the conditional in-

dependence property. We consider the time steps 0 = t0 < t1 < · · · < tN = T , and

denote the barrier level in the interval [ti−1, ti) by bi. In Theorem 4.4.1, we cal-

culate the joint distribution function, or the survival function, of the maxima of a

continuous Markov process in each interval. Here, we denote Mti−1,ti := sup
t∈(ti−1,ti]

Zt .

Theorem 4.4.1 Let b1, . . . ,bN ∈D := Dom(Zt). The joint distribution and survival

functions of the maxima of a continuous Markov process (Zt)t≥0 in consecutive

intervals are given, respectively, by

P
(
Mt0,t1 < b1, · · · ,MtN−1,tN < bN |Z0 = z0

)
=

ˆ
D

ψ1 (t0, t1,z0,z1,b1) · · ·
ˆ

D
ψN−1 (tN−2, tN−1,zN−2,zN−1,bN−1)

×q(tN−1, tN ,ZN−1)dzN−1 · · ·dz1,
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and

P
(
Mt0,t1 ≥ b1, · · · ,MtN−1,tN ≥ bN |Z0 = z0

)
=

ˆ
D

κ1 (t0, t1,z0,z1,b1) · · ·
ˆ

D
κN−1 (tN−2, tN−1,zN−2,zN−1,bN−1)

× q̄(tN−1, tN ,ZN−1)dzN−1 · · ·dz1,

where

ψi(ti−1, ti,zi−1,zi,bi) = P
(
Mti−1,ti < bi |Zti−1 = zi−1,Zti = zi

)
p(ti−1, ti,zi−1,zi),

κi(ti−1, ti,zi−1,zi,bi) = P
(
Mti−1,ti ≥ bi |Zti−1 = zi−1,Zti = zi

)
p(ti−1, ti,zi−1,zi),

q(tN−1, tN ,ZN−1) = P
(
MtN−1,tN < bN |ZtN−1 = zN−1

)
,

q̄(tN−1, tN ,ZN−1) = 1−q(tN−1, tN ,ZN−1) .

Here p(ti−1, ti,zi−1,zi), where i = 1, . . . ,N− 1, is the transition density function of

the process (Zt)t≥0 from state zi−1 at time ti−1 to state zi at time ti.

Proof. Here, we show the proof for the joint distribution function. The proof for

the joint survival function is similar, since we also utilise the Markov conditional

independence property. We proceed with a proof by induction.

(1) Case N = 2: We know that

P(Mt0,t1 < b1,Mt1,t2 < b2 |Z0 = z0)

=

ˆ
D
P(Mt0,t1 < b1,Mt1,t2 < b2 |Zt1 = z1,Z0 = z0)Pz0 (Zt1 ∈ dz1 |Z0 = z0) .

Since

{Mt0,t1 < b1} ∈ σ(Zs : s≤ t1)

and

{Mt1,t2 < b2} ∈ σ(Zs : s≥ t1),
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we have

P(Mt0,t1 < b1,Mt1,t2 < b2 |Z0 = z0)

=

ˆ
D
P(Mt0,t1 < b1 |Zt1 = z1,Z0 = z0)P(Mt1,t2 < b2 |Zt1 = z1,Z0 = z0)

×P(Zt1 ∈ dz1 |Z0 = z0) ,

by Lemma 4.4.1. Then by the Markov property, we obtain

P(Mt0,t1 < b1,Mt1,t2 < b2 |Z0 = z0)

=

ˆ
D

ψ1 (t0, t1,z0,z1,b1)q(t1, t2,Z1)dz1,

which is the case N = 2 in Theorem 4.4.1.

(2) Consider Theorem 4.4.1 for N = K such that

P
(
Mt0,t1 < b1,Mt1,t2 < b2, · · · ,MtK−1,tK < bK |Z0 = z0

)
=

ˆ
D

ψ1 (t0, t1,z0,z1,b1) · · ·
ˆ

D
ψK−1 (tK−2, tK−1,zK−2,zK−1,bK−1)

×q(tK−1, tK,ZK−1)dzK−1 · · ·dz1.

Now consider the case when N = K +1. We have

P
(
Mt0,t1 < b1,Mt1,t2 < b2, · · · ,MtK−1,tK < bK,MtK ,tK+1 < bK+1 |Z0 = z0

)
=

ˆ
D
P
(
Mt0,t1 < b1,Mt1,t2 < b2, · · · ,MtK ,tK+1 < bK+1 |Zt1 = z1,Z0 = z0

)
×Pz0 (Zt1 ∈ dz1 |Z0 = z0) .

Then, by Lemma 4.4.1, since

{Mt0,t1 < b1} ∈ σ(Zs : s≤ t1)

and

{Mt1,t2 < b2, · · · ,MtK ,tK+1 < bK+1} ∈ σ(Zs : s≥ t1),
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we have

P
(
Mt0,t1 < b1,Mt1,t2 < b2, · · · ,MtK ,tK+1 < bK+1 |Zt1 = z1,Z0 = z0

)
= P(Mt0,t1 < b1 |Zt1 = z1,Z0 = z0)

×P
(
Mt1,t2 < b2, · · · ,MtK ,tK+1 < bK+1 |Zt1 = z1,Z0 = z0

)
.

For N = K, by the Markov property, we have

P
(
Mt1,t2 < b2,Mt2,t3 < b3, · · · ,MtK ,tK+1 < bK+1 |Zt1 = z1

)
=

ˆ
D

ψ1 (t1, t2,z1,z2,b2) · · ·
ˆ

D
ψK (tK−1, tK,zK−1,zK,bK)

×q(tK, tK+1,ZK)dzK · · ·dz2.

By iterated substitutions, the proof is complete for the case N = K +1.

Now we decompose the joint distribution and survival functions of the maxima

of a continuous Markov process in consecutive intervals into three components:

a) The distribution or survival function of the maximum of the continuous

Markov process in a given interval conditional on its starting value and termi-

nal value;

b) The transition density function in a given interval;

c) The distribution function of the maximum of the continuous Markov process

in a given interval conditional on its starting value only.

The third item is equivalent to the FPT distribution for a Markov process to

cross a constant barrier in a given interval. Essentially, the first item involves the

calculation of the maximum of a continuous Markov bridge, which requires use of

Proposition 4.4.1.
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Proposition 4.4.1 Let (Zt)t≥0 be a continuous Markov process where Z0 = z, and

τZ,b := inf{t ≥ 0 : Zt ≥ b}. Then,

P
(
M0,T ≥ b |ZT = z′,Z0 = z

)
=


´ T

0
p(t,T,b,z′)
p(0,T,z,z′) fτZ,b(t;z)dt, if z,z′ < b,

1, otherwise,

where p(t,T,b,z′) denotes the transition density function of (Zt)t≥0 from state b

at time t to state z′ at time T, and fτZ,b(t;z) is the probability density function of

first-passage-time τZ,b with Z0 = z.

Proof. We first consider the case that z,z′ < b. Since the two events
{

M0,T ≥ b
}

and
{

τZ,b ≤ T
}

are equivalent,

P
(
M0,T ≥ b |ZT = z′,Z0 = z

)
=P
(
τZ,b ≤ T |ZT = z′,Z0 = z

)
=

ˆ T

0
fτZ,b

(
t |ZT = z′,Z0 = z

)
dt,

where fτZ,b (t |ZT = z′,Z0 = z) denotes the conditional density function of first-

passage-time τZ,b. By Bayes’ theorem, we have

P
(
M0,T ≥ b |ZT = z′,Z0 = z

)
=

ˆ T

0
p
(
0,T,z,z′ |τZ,b = t

) fτZ,b(t;z)
p(0,T,z,z′)

dt.

Here, p
(
0,T,z,z′ |τZ,b = t

)
denotes the conditional transition density of (Zt)t≥0

from state b at time t to state z′ at time T. Since (Zt) is a continuous process, we

have
{

τZ,b ≥ t
}
∩{Zt ≥ b}=

{
τZ,b ≥ t

}
. Hence,

p
(
0,T,z,z′ |τZ,b = t

)
= p

(
0,T,z,z′ |τZ,b = t,Zt = b

)
.

Because
{

τZ,b ≥ t
}
∈ σ (Zs : 0≤ s≤ t) and {ZT ≥ z′} ∈ σ (Zs : t < s≤ T ), by

Lemma 4.4.1, we have

p
(
0,T,z,z′ |τZ,b = t,Zt = b

)
= p

(
0,T,z,z′ |Zt = b

)
= p

(
t,T,b,z′

)
.



127

Therefore,

P
(
M0,T ≥ b |ZT = z′,Z0 = z

)
=

ˆ T

0

p(t,T,b,z′)
p(0,T,z,z′)

fτZ,b(t;z)dt.

In the case either z ≥ b or z′ ≥ b, because of the continuous property of process

(Zt)t≥0, the probability turns to be 1 obviously.

With Proposition 4.4.1 and Theorem 4.4.1, we are able to at least approximate

the joint distribution and survival functions of the maxima of a continuous Markov

process in consecutive intervals, provided that we know its transition density func-

tion and its FPT density for a constant barrier.

4.4.2 Simplified computation of survival functions via restric-

tions

Now we present a theorem which simplifies the calculation of the survival function

in Theorem 4.4.1 based on the assumption that {Zt0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN}.

We can prove that, if at the end of each interval the terminal value Zti−1 of the process

is lower than the barrier level bi in the subsequent time interval, the nested integral

simplifies to a product of single integrals.

Theorem 4.4.2 Given that {Zt0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN}, the joint survival

function of the maxima of a continuous Markov process (Zt)t≥0 ∈ R in consecutive

left-open and right-closed time intervals is given by

P
(
Mt0,t1 ≥ b1, · · · ,MtN−1,tN ≥ bN |Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
= P

(
Mt0,t1 ≥ b1 |Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
N

∏
i=2

[ˆ bi

−∞

P
(
Mti−1,ti ≥ bi |Zti−1 = xi,Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
P
(
Mti−2,ti−1 ≥ bi−1 |Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
×P

(
Mti−2,ti−1 ≥ bi−1 |Zti−1 = xi,Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
×P

(
Zti−1 ∈ dxi |Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)]
(4.4.3)

Proof. Let τ(i) = inf{t ≥ ti−1 : Zt = bi}, ∀ i = 1,2, · · · ,N. The event
{

Mti−1,ti ≥ bi
}
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is equivalent to
{

τ(i) ≤ ti
}

, and furthermore set

C =
{

Zt1 < b2, · · · ,ZtN−1 < bN
}
.

Since
{

τ(i−1) ≤ ti−1

}
⊆
{

Z
τ(i−1) = bi−1

}
, ∀ i = 1,2, · · · ,N, we have

P
(
Mti−1,ti ≥ bi |Z0 = z0,C,Mt0,t1 ≥ b1, · · · ,Mti−2,ti−1 ≥ bi−1

)
= P

(
Mti−1,ti ≥ bi |Z0 = z0,C,Mt0,t1 ≥ b1, · · · ,Mti−3,ti−2 ≥ bi−2,τ

(i−1) ≤ ti−1

)
= P

(
Mti−1,ti ≥ bi |Z0 = z0,C,Mt0,t1 ≥ b1, · · · ,Mti−3,ti−2 ≥ bi−2,τ

(i−1) ≤ ti−1,

Z
τ(i−1) = bi−1

)
Furthermore, since

{
Mt0,t1 ≥ b1, · · · ,Mti−3,ti−2 ≥ bi−2

}
⊂F

τ(i−1)

and {
Mti−1,ti ≥ bi

}
⊂Fti\Fτ(i−1),

by Lemma 4.4.1, we obtain

P
(
Mti−1,ti ≥ bi |Z0 = z0,C,Mt0,t1 ≥ b1, · · · ,Mti−2,ti−1 ≥ bi−1

)
= P

(
Mti−1,ti ≥ bi |Z0 = z0,C,τ(i−1) ≤ ti−1,Zτ(i−1) = bi−1

)
.

Since {
τ
(i−1) ≤ ti−1

}
⊆
{

Z
τ(i−1) = bi−1

}
,

the above formula equals to

P
(

Mti−1,ti ≥ bi |Z0 = z0,C,τ(i−1) ≤ ti−1

)
= P

(
Mti−1,ti ≥ bi |Z0 = z0,C,Mti−2,ti−1 ≥ bi−1

)
.

It means that conditional on event C, the discrete process (Li)i∈N defined by Li =
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IMti−1,ti≥bi is a discrete Markov process. Hence, we have

P
(
Mt0,t1 ≥ b1, · · · ,MtN−1,tN ≥ bN |Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
= P

(
MtN−1,tN ≥ bN |Z0 = z0,C,Mt0,t1 ≥ b1, · · · ,MtN−2,tN−1 ≥ bN−1

)
×P

(
MtN−2,tN−1 ≥ bN−1 |Z0 = z0,C,Mt0,t1 ≥ b1, · · · ,MtN−3,tN−2 ≥ bN−2

)
× ·· · ×P(Mt0,t1 ≥ b1 |Z0 = z0,C)

= P(Mt0,t1 ≥ b1 |Z0 = z0,C)
N

∏
i=2

P
(
Mti−1,ti ≥ bi |Z0 = z0,C,Mti−2,ti−1 ≥ bi−1

)
.

Based on the Markov property, we have

P
(
Mti−1,ti ≥ bi |Z0 = z0,C,Mti−2,ti−1 ≥ bi−1

)
=

ˆ bi

−∞

P
(
Mti−1,ti ≥ bi |Zti−1 = x,C

)
P
(
Zti−1 ∈ dx |Z0 = z0,Mti−2,ti−1 ≥ bi−1,C

)
Therefore, we have

P
(
Mt0,t1 ≥ b1, · · · ,MtN−1,tN ≥ bN |Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
= P(Mt0,t1 ≥ b1 |Z0 = z0,C)

×
N

∏
i=2

[ˆ bi

−∞

P
(
Mti−1,ti ≥ bi |Zti−1 = x,C

)
P
(
Zti−1 ∈ dx |Z0 = z0,Mti−2,ti−1 ≥ bi−1,C

)]
= P

(
Mt0,t1 ≥ b1 |Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
N

∏
i=2

[ˆ bi

−∞

P
(
Mti−1,ti ≥ bi |Zti−1 = xi,Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
P
(
Mti−2,ti−1 ≥ bi−1 |Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
×P

(
Mti−2,ti−1 ≥ bi−1 |Zti−1 = xi,Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)
×P

(
Zti−1 ∈ dxi |Zt0 = z0 < b1,Zt1 < b2, · · · ,ZtN−1 < bN

)]

We can simplify the previous nested integral in Theorem 4.4.1 to the product of

multiple single integrals under restrictions.



130

4.4.3 Non-matching time-discretisation

As discussed before, we may have non-matching time-discretisation schemes for

the piecewise constant functions µ(t), λ (t), σ(t) and b(t). In such a situation, the

process is still continuous and Markov. By Theorem 4.4.1, if we can obtain

P
(
Mti−1,ti ≥ bi |Zti−1 = zi−1,Zti = zi

)
and P

(
MtN−1,tN ≥ bN |ZtN−1 = zN−1

)
∀i = 1, . . . ,N−1, the joint distribution and survival function for the maxima of the

inhomogeneous OU-process in consecutive intervals can still be calculated. We

have the following two sub-cases for non-matching time-discretisations in the inter-

val [ti−1, ti].

Case 1: Matching time-discretisation for µ(t), λ (t) and σ(t), but non-

matching for b(t). An example of this case is shown in Figure 4.7. Here, the

time-discretisations for µ(t), λ (t) and σ(t) are the same.

Figure 4.7: Matching time-discretisation for µ(t), λ (t) and σ(t), but different for b(t).

In this case, P
(
Mti−1,ti ≥ bi |Zti−1 = zi−1

)
can still be calculated by Theorem

4.4.1. For example in Figure 4.7, we have

P
(
Mti−1,ti ≥ bi |Zti−1 = zi−1

)
= 1−P

(
Mti−1,t j1

< bi,Mt j1 ,t j2
< bi,Mt j2 ,ti

< bi |Zti−1 = zi−1

)
,

which can be solved by a nested integration formula, see Theorem 4.4.1, with

the local homogeneous property for each sub-interval.
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In terms of P
(
Mti−1,ti ≥ bi |Zti−1 = zi−1,Zti = zi

)
, we can also obtain follows

by Theorem 4.4.1.

P
(
Mti−1,ti ≥ bi |Zti−1 = zi−1,Zti = zi

)
= 1−P

(
Mti−1,t j1

< bi,Mt j1 ,t j2
< bi,Mt j2 ,ti

< bi |Zti−1 = zi−1,Zti = zi

)
= 1−

ˆ
R
P
(

Zt j1
∈ dx |Zti−1 = zi−1,Zti = zi

)
×P

(
Mti−1,t j1

< bi,Mt j1 ,t j2
< bi,Mt j2 ,ti

< bi |Zti−1 = zi−1,Zt j1
= x,Zti = zi

)
= 1−

ˆ
R
P
(

Mti−1,t j1
< bi |Zti−1 = zi−1,Zt j1

= x
)

×P
(

Mt j1 ,t j2
< bi,Mt j2 ,ti

< bi |Zt j1
= x,Zti = zi

)
×

p(t j1, ti,x,zi)p(ti−1, t j1,zi−1,x)
p(ti−1, ti,zi−1,zi)

dx

= 1−
ˆ
R
P
(

Mti−1,t j1
< bi |Zti−1 = zi−1,Zt j1

= x
)

ˆ
R
P
(

Mt j1 ,t j2
< bi |Zt j1

= x,Zt j2
= y
)

×P
(

Mt j2 ,ti
< bi |Zt j2

= y,Zti = zi

)
×

p(t j2, ti,y,zi)p(t j1, t j2,x,y)p(ti−1, t j1,zi−1,x)
p(ti−1, ti,zi−1,zi)

dydx.

Theorem 4.4.2 simplifies the nested integral in Theorem 4.4.1 to a product of

single integrals, provided that some additional restrictions are satisfied. For

non-matching time-discretisation, Theorem 4.4.2 can still be applied. How-

ever, the terms

P
(
Mti−2,ti−1 ≥ bi−1 |Zti−1 = xi,Z0 = z0

)
and

P
(
Mti−1,ti ≥ bi |Zti−1 = xi

)
can only be evaluated by the nested integral in Theorem 4.4.1.

• Case 2: Non-matching time-discretisations for any of the functions µ(t),

λ (t), σ(t) and b(t).
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An example of this case is shown in Figure 4.8. This case can be reduced

back to Case 1 by taking the union of all the time-discretisations steps as the

an overall discretisations scheme. For example in Figure 4.8, we can consider

it as a special case of Case 1 for the time steps ti−1, t j1, t j2, t j3, t j4, t j5 and ti.

Figure 4.8: Non-matching time-discretisations for any of µ(t),λ (t),σ(t) and b(t).

Remark 4.4.1 When the discretisation is non-matching, we have two layers of

nested integration:

a) The nested integration due to non-matching time-discretisation;

b) The nested integration arising from the application of Theorem 4.4.1.

By Theorem 4.4.2, one can simplify the nested integral in b) to a product of single

integrations under some restrictions. This can reduce the computational complex-

ity. Although the nested integral in a) cannot be further reduced, in practice, if

the variations of the piecewise constants within a single segment are much smaller

than the variations of the piecewise constants among all the segments, one can use

matching time-discretisation as an efficient approximation.

4.5 Computational methods and numerical results
For now, we have obtained decomposition formulae for both, the joint distribution

and the survival function for the maxima of a continuous Markov process in con-

secutive intervals. For convenience, in this section we take the survival function for

a standardised OU-process in consecutive intervals as an example to illustrate the

computational methods. For simplicity, in this section, we consider the case that the

lengths of all the time intervals are constant ∆t, i.e. ti = i∆t for i = 0,1,2, ...,N.
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Corollary 4.5.1 Let (Zt)t≥0 be a standardised OU-process and Mti−1,ti =

supt∈[ti−1,ti)Zt , where ti = i∆t, for i = 0,1,2, ...,N. Then

P
(
Mt0,t1 ≥ b1, · · · ,MtN−1,tN ≥ bN |Zt0 = z0

)
=

ˆ
R

κ (z0,z1,b1) · · ·
ˆ
R

κ (zN−3,zN−2,bN−2)

ˆ
R

κ (zN−2,zN−1,bN−1)

× q̄(zN−1,bN)dzN−1dzN−2 · · ·dz1, (4.5.1)

where

q̄(zN−1,bN) =

[
1−

∞

∑
k=1

c(N)
k e−α

(N)
k tH

α
(N)
k

(−zN−1)

]
I(zN−1 < bN)

+ I(zN−1 ≥ bN) ,

κ(zi−1,zi,bi) =
∞

∑
k=1

c(i)k α
(i)
k H

α
(i)
k
(−zN−1)

×
ˆ 1

e−∆t

x−α
(i)
k −1I(zi−1 < bi)I(zi < bi)√

π(1− x2)

× exp
{
−(zi−bix)2

1− x2 −α
(i)
k ∆t

}
dx

+ p(0,∆t,zi−1,zi)(1− I(zi−1 < bi)I(zi < bi)) .

Here, Hα(·) is the Hermite function with parameter α ,
{

α
(i)
k

}
are the solutions to

the equation Hα (−bi) = 0 with c(i)k =−1/(α(i)
k ∂

α
(i)
k

H
α
(i)
k
(−bi)).

Proof. By Theorem 4.4.1, we have

P
(
Mt0,t1 ≥ b1, · · · ,MtN−1,tN ≥ bN |Zt0 = z0

)
=

ˆ
R
P(Mt0,t1 ≥ b1 |Zt0 = z0,Zt1 = z1) p(t0, t1,z0,z1) · · ·

×
ˆ
R
P
(
MtN−2,tN−1 ≥ bN−1 |ZtN−2 = zN−2,ZtN−1 = zN−1

)
× p(tN−2, tN−1,zN−2,zN−1)

×
(
1−P

(
MtN−1,tN < bN |ZtN−1 = zN−1

))
dzN−1 · · ·dz1,
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where p(ti−1, ti,zi−1,zi) is the transition density function of the process (Zt)t≥0. By

Theorem 4.2.1 we have

1−P
(
MtN−1,tN < bN |ZtN−1 = zN−1

)
=

[
1−

∞

∑
k=1

c(N)
k e−α

(N)
k ∆tH

α
(N)
k

(−zN−1)

]
I(zN−1 < bN)+ I(zN−1 ≥ bN) .

By the homogeneous property of the standardised OU-process and Proposition

4.4.1, we have

P
(
Mti−1,ti ≥ bi |Zti−1 = zi−1,Zti = zi

)
p(ti−1, ti,zi−1,zi)

= P
(
M0,∆t ≥ bi |Z0 = zi−1,Z∆t = zi

)
p(0,∆t,zi−1,zi)

=

ˆ
∆t

0
p(t,∆t,bi,zi)P

(
τZ,bi ∈ dt |Z0 = zi−1

)
I(zi−1 < bi)I(zi < bi)

+ p(0,∆t,zi−1,zi)(1− I(zi−1 < bi)I(zi < bi))

=
∞

∑
k=1

c(i)k α
(i)
k H

α
(i)
k
(−zN−1)

ˆ 1

e−∆t

x−α
(i)
k −1I(zi−1 < bi)I(zi < bi)√

π(1− x2)

× exp
{
−(zi−bix)2

1− x2 −α
(i)
k ∆t

}
dx

+ p(0,∆t,zi−1,zi) [1− I(zi−1 < bi)I(zi < bi)] .

Therefore,

P
(
Mt0,t1 ≥ b1, · · · ,MtN−1,tN ≥ bN |Zt0 = z0

)
=

ˆ
R

κ (z0,z1,b1) · · ·
ˆ
R

κ (zN−3,zN−2,bN−2)

ˆ
R

κ (zN−2,zN−1,bN−1)

× q̄(zN−1,bN)dzN−1dzN−2 · · ·dz1,

The iterated integral can be approximated efficiently by quadrature schemes or

MC integration methods. We describe the two methods in what follows.
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4.5.1 Quadrature schemes

We first present a quadrature scheme to evaluate

I := P
(
Mt0,t1 ≥ b1, · · · ,MtN−1,tN ≥ bN | Zt0 = z0

)
=

ˆ
R

κ (z0,z1,b1) · · ·
ˆ
R

κ (zN−3,zN−2,bN−2)

ˆ
R

κ (zN−2,zN−1,bN−1)

× q̄(zN−1,bN)dzN−1 · · ·dz1, (4.5.2)

Since the OU-process is defined on R, we choose a sufficiently large number Zmax

and sufficiently small number Zmin. We partition the domain [Zmin,Zmax] into L

pieces of equal length δ z, where the grid points are denoted Zmin = z(1) < z(2) <

· · · < z(L) = Zmax. We can then approximate the integration with the following

proposition. The nested integral in Equation (4.5.1) can be approximated by the

product of matrices

I ≈
N−1

∏
i=1

KiQ̄(δ z)N−1,

where for i = 1

K1 =
[
κ

(
z0,z

(1)
1

)
,κ
(

z0,z
(2)
1

)
, · · · ,κ

(
z0,z

(L)
1

)]
,

for i = 2,3, · · · ,N−1,

Q̄ =
[
q̄
(

z(1)N−1,bN

)
, q̄
(

z(2)N−1,bN

)
, · · · , q̄

(
z(L)N−1,bN

)]>
,

and

Ki =


κ

(
z(1)i−1,z

(1)
i ,bi

)
κ

(
z(1)i−1,z

(2)
i ,bi

)
· · · κ

(
z(1)i−1,z

(L)
i ,bi

)
κ

(
z(2)i−1,z

(1)
i ,bi

)
κ

(
z(2)i−1,z

(2)
i ,bi

)
· · · κ

(
z(2)i−1,z

(L)
i ,bi

)
...

...
...

κ

(
z(L)i−1,z

(1)
i ,bi

)
κ

(
z(L)i−1,z

(2)
i ,bi

)
· · · κ

(
z(L)i−1,z

(L)
i ,bi

)

 .



136

4.5.2 MC integration method

The integral (4.5.2) can also be evaluated efficiently by an importance sampling

approximation. Assume Z1, Z2, ..., ZN−1 are independent and identical random

variables with density function p : R→ R+, which gives

ϕ
(
z,z′,u

)
:= κ

(
z,z′,u

)
/p(z′)

such that ˆ
R

ϕ
(
z,z′,u

)
dz′ < ∞.

Let Z(ki)
i−1 be the ki-th random number in the sample generated from the random

variable Zi−1, and let Li be the sample size of the random variable Zi−1. Then the

nested integral (4.5.1) in Proposition 4.5.1 can be approximated by the product of

matrices

I ≈ (
N−1

∏
i=1

Ωi/Li)Q̄,

where for i = 1,

Ω1 =
[
ϕ

(
z0,Z

(1)
1

)
,ϕ
(

z0,Z
(2)
1

)
, · · · ,ϕ

(
z0,Z

(K1)
1

)]
,

for i = 2,3, · · · ,N−1,

Q̄ =
[
q̄
(

Z(1)
N−1,bN

)
, q̄
(

Z(2)
N−1,bN

)
, · · · , q̄

(
Z(KN−1)

N−1 ,bN

)]>
.

and

Ωi =


ϕ

(
Z(1)

i−1,Z
(1)
i ,bi

)
ϕ

(
Z(1)

i−1,Z
(2)
i ,bi

)
· · · ϕ

(
Z(1)

i−1,Z
(Ki)
i ,bi

)
ϕ

(
Z(2)

i−1,Z
(1)
i ,bi

)
ϕ

(
Z(2)

i−1,Z
(2)
i ,bi

)
· · · ϕ

(
Z(2)

i−1,Z
(Ki)
i ,bi

)
· · · · · · · · · · · ·

ϕ

(
Z(Ki−1)

i−1 ,Z(1)
i ,bi

)
ϕ

(
Z(Ki−1)

i−1 ,Z(2)
i ,bi

)
· · · ϕ

(
Z(Ki−1)

i−1 ,Z(Ki)
i ,bi

)

 ,
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4.5.3 Numerical tests

4.5.3.1 Benchmark: direct MC

The two methods can be compared with the direct MC approach, which can be

shown in Algorithm 1.

Algorithm 1 Direct MC Algorithm
1: while path n≤ N do
2: while time step m≤M do
3: 1, simulate realisation of standard normal random variale φ

(n)
m

4: 2, evaluate x(n)m+1 = x(n)m e−λδ +µ(1− e−λδ )+σ

√
1−e−2λδ

2λ
φ
(n)
m

5:
6: if max(x(n)1 , · · · ,x(n)M/2)≥ b1 and max(x(n)M/2+1, · · · ,x

(n)
M )≥ b2 then

7: I(n) = 1
8: else
9: I(n) = 0

10: Final Prob = Mean(Ind)
11: Final Err = StD(Ind)/

√
N

Here, we denote

NB: Number of sets.
N: Number of paths for a given simulation set.
M: Number of time steps per path.
b1,b2: barrier level at interval one and two, consecutively.
n: n-th path.
m: m-th time step.
φ
(n)
m : realisation from standard normal random variable for path n at time step m

δ = T/M: time step length.
x(n)m : the realised OU-process value of path n at time step m.
I(n): the indicator.
Prob(nb): the probability of joint crossing in two consecutive intervals for set nb.

Alternatively, we can implement the direct MC method with a small memory

version Algorithm 2.
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Algorithm 2 Direct MC Algorithm (low memory requirement)
1: while set nb≤ NB do
2: while path n≤ N do
3: while time step m≤M do
4: 1, simulate realisation of standard normal random variale φ

(n)
m

5: 2, evaluate x(n)m+1 = x(n)m e−λδ +µ(1− e−λδ )+σ

√
1−e−2λδ

2λ
φ
(n)
m

6:
7: if max(x(n)1 , · · · ,x(n)M/2)≥ b1 and max(x(n)M/2+1, · · · ,x

(n)
M )≥ b2 then

8: I(n) = 1
9: else

10: I(n) = 0
11: Prob(nb) = Mean(Ind)

12: Final Prob = Mean(Prob)
13: Final Err = StD(Prob)/

√
NB

In this part, we consider the probability P
(

supt∈(t0,t1]Xt ≥ b1,supt∈(t1,t2]Xt ≥ b2

)
as an example. We compute it by the following algorithm:

a) We discretise the time interval [t0, t2] into M pieces:

t0 = t(0) < t(1) < · · ·< t(
M
2 ) < t1 = t(

M
2 +1) < · · ·< t(M) = t2.

b) We estimate the maximum in each interval by

sup
t∈(t0,t1]

Xt ≈max
{

Xt(0),Xt(1), · · · ,Xt(
M
2 )

}
,

sup
t∈(t1,t2]

Xt ≈max
{

X
t(

M
2 +1),Xt(

M
2 +2), · · · ,Xt(M)

}
.

c) We approximate P
(

supt∈(t0,t1]Xt ≥ b1,supt∈(t1,t2]Xt ≥ b2

)
with

P
(

max
{

Xt(1),Xt(2), · · · ,Xt(
M
2 )

}
≥ b1,

max
{

X
t(

M
2 +1),Xt(

M
2 +2), · · · ,Xt(M)

}
≥ b2

)
.
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Lemma 4.5.1 The direct MC algorithm (a) - (c) underestimates the real probability

due to the time discretisation, that is

P

(
sup

t∈(t0,t1]
Xt ≥ b1, sup

t∈(t1,t2]
Xt ≥ b2

)
≥ P

(
max

{
Xt(1),Xt(2), · · · ,Xt(

M
2 )

}
≥ b1,max

{
X

t(
M
2 +1),Xt(

M
2 +2), · · · ,Xt(M)

}
≥ b2

)
.

Proof. Since the probability of a sub-event is smaller than that of the event itself,

i.e.

{
max

{
Xt(1),Xt(2), · · · ,Xt(

M
2 )

}
≥ b1,max

{
X

t(
M
2 +1),Xt(

M
2 +2), · · · ,Xt(M)

}
≥ b2

}
⊆

{
sup

t∈(t0,t1]
Xt ≥ b1, sup

t∈(t1,t2]
Xt ≥ b2

}
,

we have

P

(
sup

t∈(t0,t1]
Xt ≥ b1, sup

t∈(t1,t2]
Xt ≥ b2

)
≥ P

(
max

{
Xt(1),Xt(2), · · · ,Xt(

M
2 )

}
≥ b1,max

{
X

t(
M
2 +1),Xt(

M
2 +2), · · · ,Xt(M)

}
≥ b2

)
.

Although a higher number of time steps in the discretization can reduce the under-

estimation bias in Lemma 4.5.1 for the direct Monte Carlo estimator, Lemma 4.5.2

shows that it may lead to higher Monte Carlo error.

Lemma 4.5.2 For a fixed number of paths, the errors of the direct MC algorithm

(a) - (c), based on a discretisation with M1 and M2 time steps (M1 < M2), satisfy the

relations

ErrMC(M1) ≥ ErrMC(M2) if and only if probMC(M1)
+probMC(M2)

≥ 1,

ErrMC(M1) ≤ ErrMC(M2) if and only if probMC(M1)
+probMC(M2)

≤ 1.
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Proof. For convenience, we denote

{
max

{
Xt(1),Xt(2), · · · ,Xt(

M1
2 )

}
≥ b1,max

{
X

t(
M1
2 +1)

,X
t(

M2
2 +2)

, · · · ,Xt(M1)

}
≥ b2

}

by A and

{
max

{
Xt(1),Xt(2), · · · ,Xt(

M2
2 )

}
≥ b1,max

{
X

t(
M2
2 +1)

,X
t(

M2
2 +2)

, · · · ,Xt(M2)

}
≥ b2

}

by B. Then the MC algorithm (a) - (c) computes probMC(M1)
= P(A) = E[IA] for M1

time steps, and probMC(M2)
= P(B) = E[IB] for M2 time steps. If we implement the

MC algorithm (a) - (c) to compute E [IA] and E [IB], the ratio between the resulting

errors is equal to the ratio between the standard deviation of IA and IB. That is:

Err(IA)

Err(IB)
=

StD(IA)

StD(IB)
=

√
Var(IA)

Var(IB)
=

√√√√√E
[
(IA)

2
]
−E [IA]

2

E
[
(IB)

2
]
−E [IB]

2
.

We observe that IA and IB, we have (IA)
2 = IA and (IB)

2 = IB. Therefore,

Err(IA)

Err(IB)
=

√√√√√E
[
(IA)

2
]
−E [IA]

2

E
[
(IB)

2
]
−E [IB]

2
=

√
E [IA]−E [IA]

2

E [IB]−E [IB]
2 =

√
P(A)P(Ā)
P(B)P(B̄)

.

This shows that

ErrMC(M1) =

√
probMC(M1)

probMC(M2)

1−probMC(M1)

1−probMC(M2)

ErrMC(M2).

Since M1 < M2, we have probMC(M1)
≤ probMC(M2)

. We denote probMC(M2)
by

p ∈ R+, then

probMC(M1)
= p−a
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for some a ∈ [0, p]. Therefore,

ErrMC(M1) =

√
p−a

p
· 1− (p−a)

1− p
ErrMC(M2)

=

√
1+

a
p(1− p)

(
probMC(M1)

+probMC(M2)
−1
)

ErrMC(M2).

Since a≥ 0 and p ∈ [0,1],

ErrMC(M1) ≥ ErrMC(M2) if and only if probMC(M1)
+probMC(M2)

≥ 1,

ErrMC(M1) ≤ ErrMC(M2) if and only if probMC(M1)
+probMC(M2)

≤ 1.

Therefore, as shown in Lemma 4.5.1 and 4.5.2, direct Monte Carlo is not ideal for

passage-time approximations for two reasons: 1) it is a biased estimator which un-

derestimate the true probability; 2) adding the number of time steps in discretization

can cause the increase of Monte Carlo error.

4.5.3.2 Results

Since the direct MC method needs to be implemented by a time discretisation, this

method underestimates the real passage-time probability, see Lemma 4.5.1. We

observe that when the number of time steps increase, the results obtained by direct

MC method become closer to the results obtained by quadrature scheme and the

MC integration. However, direct MC results become increasingly noisy when the

joint passage event becomes rarer, while the quadrature scheme and MC integration

methods remain stable. It shows the quadrature and MC integration methods can

improve the accuracy if the joint passage is a rare event. Another interesting result

is that although the direct MC result will be more accurate for larger number of

time steps, its MC error will be bigger as well, provided that the event occurrence

is a rare event, see Lemma 4.5.2. It means the direct MC method is not suitable

for the passage-time approximation. In the comparison of the three methods, i.e.

the direct MC, quadrature and MC integration, we test the following two cases: 1)
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We fix the number of consecutive intervals and change the level of barriers in each

interval; 2) We fix the level of barrier and increase the number of intervals. In both

cases, the probability we want to approximate becomes small when the barriers

rise or the number of intervals increase. The direct MC estimator will become

noisy when the joint event becomes rare, due to Lemma 4.5.1 and 4.5.2. In this

subsection, we want to show that with the quadrature scheme and MC integration

estimators, the approximation can still be accurate and robust and the efficiency can

also be smaller compared with the direct MC methods. Both the quadrature scheme

and the MC integration scheme contain two types of error source: 1) The truncation

error from the approximation of the FPT density infinite series; 2) The deterministic

or stochastic error from the numerical integration. As we have shown in Section

4.2, the truncation error in 1) can be reduced to a small level by introducing few

truncation terms. The numerical error 2) depends on its discretisation size in the

quadrature scheme while depends on the number of MC paths in the MC integration

scheme. This type of error can be reduced by introducing more time-discretisations

or more MC samples.

b1 b2 MC (500) MC (1000) MC (2000) Quad. MC int.
1 1 1.417×10−1 1.448×10−1 1.469×10−1 1.517×10−1 1.515×10−1

(2×10−4) (2×10−4) (2×10−4) (3×10−4) (6×10−4)

1 2 1.27×10−2 1.311×10−2 1.352×10−2 1.426×10−2 1.440×10−2

(1×10−4) (8×10−5) (8×10−5) (2×10−5) (7×10−5)

2 1 5.08×10−3 5.38×10−3 5.54×10−3 5.837×10−3 5.843×10−3

(7×10−5) (5×10−5) (6×10−5) (2×10−5) (3×10−5)

2 2 2.35×10−3 2.50×10−3 2.62×10−3 2.72×10−3 2.74×10−3

(4×10−5) (4×10−5) (4×10−5) (2×10−5) (3×10−5)

2 3 4.1×10−5 5.0×10−5 5.4×10−5 5.08×10−5 5.10×10−5

(4×10−6) (5×10−6) (4×10−6) (2×10−7) (3×10−7)

3 2 1.1×10−5 1.1×10−5 1.2×10−5 1.455×10−5 1.458×10−5

(3×10−6) (3×10−6) (4×10−6) (1×10−7) (9×10−8)

3 3 7×10−6 6×10−6 6×10−6 5.47×10−6 5.42×10−6

(2×10−6) (2×10−6) (2×10−6) (9×10−8) (5×10−8)

Table 4.1: The probability of the maxima for a standardised OU-process in [0,1) and [1,2]
are above b1 and b2. The number below in the bracket is the absolute MC or
quadrature error. The three sets of direct MC results are implemented with
2,000,000 sample paths. The number of time steps for the three sets of direct
MC results are 500, 1,000 and 2,000, respectively. The quadracture scheme is
implemented between the state domain [−5,5] with state increment 0.005. The
MC integration method is implemented with 100,000 sample paths.
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The first numerical example is to compute the probability of the maxima for a

standardised OU-process in [0,1) and [1,2] above b1 and b2, whose values vary in

the left of Table 4.1. In this example, we choose the number of paths and discreti-

sation numbers to fix the error order of magnitude as 10−4 for the case b1 = 1 and

b2 = 1. It gives the following results:

We can also observe from Table 4.1 that in the direct MC cases, the error cannot

be improved by introducing more time-discretisation due to Lemma 4.5.2. We also

compare the time consumption to obtain the results in Table 4.1. In Figure 4.9,

we can observe that the quadrature and MC integration methods are more efficient

than the direct MC methods. In fact, the quadrature scheme can be implemented in

real-time.

Figure 4.9: With given absolute error at 2 ∼ 4× 10−5 for all schemes, the CPU time con-
sumption for the case that b1 = b2 = 2.

Our second example is to fix the barrier and increase the number of intervals,

which will lead to smaller joint passage probability. We can observe in Table 4.2

that the numerical results obtained by the direct MC methods tends to be less ac-

curacy when the number of intervals increases. However, the quadrature and MC

integration methods remain reliable compared with the noisy direct MC results.
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N MC (500) MC (1000) MC (2000) Quadrature MC integration
2 2.35×10−3 2.50×10−3 2.62×10−3 2.72×10−3 2.74×10−3

(5×10−5) (4×10−5) (4×10−5) (2×10−5) (3×10−5)

3 3.1×10−4 3.3×10−4 3.3×10−4 3.23×10−4 3.29×10−4

(1×10−5) (1×10−5) (1×10−5) (1×10−6) (5×10−6)

4 5.5×10−5 5.7×10−5 5.6×10−5 5.23×10−5 5.30×10−5

(4×10−6) (7×10−6) (8×10−6) (3×10−7) (8×10−7)

5 8×10−6 7×10−6 8×10−6 8.06×10−6 8.07×10−6

(2×10−6) (2×10−6) (2×10−6) (6×10−8) (9×10−8)

Table 4.2: The probability of the maxima of a standardised OU-process in N consecutive
intervals are all above b = 2. The number below is the absolute MC or quadra-
ture error. The three sets of direct MC results are implemented with 2,000,000
sample paths. The number of time steps for the three sets of direct MC results
are 500, 1,000 and 2,000, respectively. The quadracture scheme is implemented
between the state domain [−5,5] with state increment 0.005. The MC integra-
tion method is implemented with 100,000 sample paths.

We can observe from Figure 4.10 that the time consumption by direct MC

method increases linearly with respect to the number of intervals. On the other

hand, there is a small jump in the time consumption for the quadrature scheme and

the MC integration method. This is because when the number of intervals is two, we

do not need matrix Ki and Ωi in Section 4.5.1 and 4.5.2. Once matrix Ki and Ωi are

obtained, they will be saved for future computation. It means that the quadrature

scheme and the MC integration method remain similar after three intervals. The

probability for large number of intervals can be evaluated much more efficiently by

the quadrature and MC integration methods.

Figure 4.10: Time consumption of different schemes for a different number of intervals in
Table 4.2.
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4.6 Conclusions
In this chapter, we considered the multiple barrier-crossing problem of an OU-

process in consecutive periods. To analyse this problem, we first presented the

formulae for the FPT survival function, which coincided with the formulae given

in [3] and [58]. Furthermore, we also showed that the FPT distribution is not heavy-

tailed. Afterwards, we showed the transformation formulae of the FPTs between an

inhomogeneous OU-process to a time-dependent barrier and a standardised OU-

process to another time-dependent barrier. We investigated the running maxima

of an inhomogeneous OU-process with piecewise constant parameters in consec-

utive intervals in detail. We presented a nested integration formulae for the joint

distribution and survival functions for the maxima in consecutive intervals of an

inhomogeneous OU-process with piecewise constant parameters. By matrix multi-

plications, the nested integral can be solved efficiently by quadrature or MC inte-

gration method. We also showed that if we put further constraints on the problem,

the event that the maxima in each interval are above the barrier can be simplified to

the product of single integrals.



Chapter 5

Overall conclusions

This thesis treated two broad classes of problems. The first problem was the known

existence of repeated and costly computations in the traditional approach to sensi-

tivity computations. The second problem arose due to the difficulty that exists in

approximating barrier-crossing probabilities by using the traditional approach.

In order to overcome the first problem, we proposed the use of the AAD

method. The AAD method computes partial derivatives of a certain function by

considering linear combinations of its Jacobian matrices. By doing so, one can

obtain sensitivities for all the input variables but at a bounded computational cost.

In modern computational finance, it is noted that the use of AAD can accelerate

computational speed in risk management exercises and can furthermore save com-

putational costs. This becomes increasingly important in the context of XVA com-

putations, which themselves have been known to be complex enough to carry out.

We noted, however, that as a pathwise method AAD cannot be directly applied to

non-Lipschitz continuous functions. We therefore developed two smoothing meth-

ods in order to overcome this limitation. With these methods, the sensitivities for

functions with non-Lipschitz continuous components can be computed accurately

and robustly.

We also showed that with the help of mathematical analysis, the second prob-

lem can be overcome in an elegant way which has a low approximation error.

This method was found to be more superior when compared to direct Monte Carlo

methods. By using the partial differential equation characterisation as well as the
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Markov property, we obtained a semi-analytical formula for the multiple barrier-

crossing probability of an Ornstein-Uhlenbeck diffusion. Moreover, by invoking

either quadrature or importance-sampling methods, we noted that one can compute

the semi-analytical formula numerically in an efficient manner. These approaches

also outperform the traditional Monte Carlo approach in terms of stability and effi-

ciency.

In sum, we emphasise that against the backdrops of the rapid growth in com-

putational power and the increase in volume of cutting-edge technologies avail-

able, mathematical and statistical analyses will always take priority in the context

of financial problem solving. Moreover, new technologies are not to be viewed

as competitors but rather as complements to traditional mathematical and statisti-

cal models. With the aid of advanced technologies, models and methods that used

to be difficult to implement can now be reconsidered in financial problem-solving

contexts, as we demonstrated in this thesis.



Appendix A

Stability analysis for finite difference

methods

We consider the following diffusion equation:

∂u
∂ t

= a
∂ 2u
∂ t2 , a > 0. (A.0.1)

The φ -method shown in Chapter 2 can be written as

um+1
j −um

j

∆t
= a

[
φ

um+1
j+1 −2um+1

j +um+1
j−1

∆x2 +(1−φ)
um

j+1−2um
j +um

j−1

∆x2

]
. (A.0.2)

Here, φ = 0 corresponds to the explicit method; φ = 1 corresponds to the implicit

method; and φ = 0.5 corresponds to the Crank-Nicolson method. Based on Section

V of [26], we analyse the Von Neumann stability of the finite difference method for

PDEs. We assume a numerical scheme admits a solution of the form

um
j = a(n)(ω)ei· jω∆x, (A.0.3)

where ω is the wave number and i =
√
−1. The Von Neumann stability condition

for an initial value problem is given by∣∣∣∣∣a(n+1)(ω)

a(n)(ω)

∣∣∣∣∣≤ 1 (A.0.4)
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and the Von Neumann stability condition for terminal value problem is given by∣∣∣∣∣ a(n)(ω)

a(n+1)(ω)

∣∣∣∣∣≤ 1, (A.0.5)

for 0≤ ω∆x≤ π . It can be shown that the explicit scheme is stable if and only if

ρ := a
∆t

∆x2 ≤
1
2
,

which is known as conditionally stable. The implicit and Crank–Nicolson schemes

are stable for any values of ρ , known as unconditionally stable, see page 95 of [70].

However, it is the growth factor that governs the propagation of the finite difference

solution from one time step to the next. As shown in [63], the growth factor for (i)

the explicit method is

g(ϕ) = 1−4ρ sin2 ϕ

2
,

for (ii) the implicit method it is

g(ϕ) =
1

1+4ρ sin2 ϕ

2

,

and for (iii) the Crank-Nicolson method it is

1−2ρ sin2 ϕ

2

1+2ρ sin2 ϕ

2

,

for −π ≤ ϕ ≤ π , which is the parameter in the frequency domain. The ϕ closes

to 0 corresponds to slowly varying components and the ϕ close to π corresponds

to highly oscillatory components of the solution. The latter is the case when there

are discontinuities in the initial conditions, such as the forward PDE in Chapter 2

with the Dirac Delta function initial condition. We have stability when |g(ϕ)|< 1.

We can see that for the explicit and implicit methods, we have the same results

for their stability. However, we notice that when |ϕ|→ π , we have g(ϕ)→ −1

for large ρ . This means that the oscillatory components are propagated as weakly

damped oscillations in time. Here, we refer to [63] for detailed methods to reduce
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the oscillations in the Crank-Nicolson scheme. One sufficient condition is to control

ρ such that
1

4N +2
≤ ρ ≤ N +

1
2

for N ∈N . With such ρ , we have

|g(ϕ)|≤ N
N +1

even for |ϕ|= π . The larger N we use, the more oscillations the solution is exposed

to.



Appendix B

Special functions and their

corresponding properties used

B.1 Confluent hypergeometric function

The confluent hypergeometric function is given by

1F1(a;b;x) =
∞

∑
n=0

a(n)xn

b(n)n!
(B.1.1)

where

a(0) = 1,

a(n) = a(a+1)(a+2) · · ·(a+n−1) .

We have the asymptotic relationship

1F1 (a;b;x)∼ Γ(b)exxa−b/Γ(a)

for x→ ∞.
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B.2 Hermite function
The Hermite function is given by

Hα(x) := 2α
√

π

[
1F1
(
−α

2 ; 1
2 ;x2)

Γ
(1−α

2

) +2x 1F1
(1−α

2 ; 3
2 ;x2)

Γ
(
−α

2

) ]
,

where Γ(·) is the Gamma function

Γ(x) =
ˆ

∞

0
yx−1e−y dy

and 1F1 (x;y;x) is the confluent hypergeometric function in Equation B.1.1. When

α → ∞, we have

Hα (x) =2α+1/2ex2−α/2−1/4
(

α

2
+

1
4

)α/2

× cos

(
2x

√
α

2
+

1
4
+

απ

2

)[
1+O

(
1√

α/2+1/4

)]
.

For large k, the α-zeros of Hα (b) = 0 for a given b is

αk = 2k+1+
4b2

π2 −
2b
π

√
4k+3+

4b2

π2 .
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