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ABSTRACT Appliances that cycle on and off throughout the day, such as fridges, freezers, and air-
conditioners can collectively provide second-by-second electricity supply-demand balancing known as
frequency response. Previous studies have shown that deterministic temperature set-point control of a
homogeneous population of such appliances can cause herding behavior with detrimental effects on the
system. Here, we use computational modeling to establish the minimum population heterogeneity required
to prevent herding problems without requiring centralized or stochastic control. We discover a linear
relationship between the benefits that fridges can provide and their number. The impact on system benefits
and on fridge temperatures of varying fridge frequency sensitivity is also explored, and a viable range for
sensitivity (the control parameter) is proposed. Our approach involves simulating a large heterogeneous
population of frequency-sensitive fridges using 12months’ GB system data fromNational Grid.We compare
the historic frequency response from other response providers with their response in our fridge simulations
to determine the benefits of the fridge population response. We find that a fridge population can offer a
valuable demand-side response service to the electricity system operator, requiring neither the expensive
infrastructure of centralized control nor the regular intervention of stochastic control for temperature cycle
desynchronization.

INDEX TERMS Demand-side management, frequency control, frequency response, modeling, power
system modeling, power system stability, refrigerators, simulation, thermostatically-controlled loads.

I. INTRODUCTION
As our electricity supply becomesmore dependent on volatile
resources such as the wind and sun, flexibility becomes
increasingly important for maintaining system security at
palatable costs [1]–[3]. Power system frequency is the fre-
quency of the alternating current produced when rotating
turbines drive synchronous generators that produce electri-
cal energy. The System Operator (SO) is required to main-
tain the frequency very close to the nominal value at all
times. The SO does this by employing flexible generation,
demand and storage to balance supply and demand by mon-
itoring the system frequency and adjusting their input/output
accordingly. One type of this service is known as frequency
response1 or frequency regulation. When the frequency falls

The associate editor coordinating the review of this manuscript and
approving it for publication was Siqi Bu.

1See, for example, [4], [5] for a description of the different types of fre-
quency response and balancing services more widely. During 2017-18 (and
similarly in previous years) the SO in Great Britain (GB) paid approximately
£140M for response [6]

below the nominal value (50Hz in GB) frequency response
providers increase generation (or decrease demand), and vice
versa when the frequency rises above nominal.

Thermostatically-controlled loads (TCLs), such as fridges,
freezers, air-conditioners and hot-water tanks can be flexible
demand resources because users only value the average tem-
perature they deliver, rather than the exact times they switch
on or off.Wewill show that using the power system frequency
(which TCLs can sense using basic equipment) to determine
the operating set points of each TCL, a population could
collectively provide frequency response to the system with
negligible impact on their individual operation.

The technology to control an appliance using the sys-
tem frequency was patented in 1979 by Schweppe [7], and
research into the potential role of TCLs for system balanc-
ing began in the 1980s [8]–[11]. Recent years have seen a
renewed interest in the possible use of TCLs for frequency
response, with prominent papers such as [12]–[21]. The chal-
lenge is to control potentially millions of domestic appli-
ances cheaply, efficiently and reliably for the benefit of the
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power system without impacting user experience. Various
control schemes have been proposed, generally classed as
either (predominantly) centralized or decentralized. Their
relative advantages and disadvantages are discussed in [22].
Our choice of decentralized control is largely due to the
financial burden and security risks associated with the very
large secure communications infrastructure required for cen-
tralized control.

For decentralized control each TCL has its own built-in
control mechanism that (in our case) changes the operat-
ing temperature set points based on the grid frequency. The
challenge of decentralized control is to prevent the synchro-
nization of TCL temperature cycling following frequency
disturbances, since all TCLs are responding to the same signal
with closed-loop control. Synchronization can cause power
system frequency fluctuations and instabilities if many TCLs
are switching on/off at almost the same time, causing sudden
large imbalances in the supply-demand balance2. Indeed,
populations of TCLs have exhibited synchronization prob-
lems in simulations in previous work [20]–[26].

A popular approach to preventing synchronization prob-
lems is to introduce stochasticity to the control scheme, such
as in [15], [21], [27]–[31]. For example, switching might
be governed by probability rates, or time spent off follow-
ing a frequency event may be determined probabilistically.
Two potential disadvantages are envisaged with (at least
highly frequent) stochastic switching. Firstly, naive random-
ized switching could lead to multiple switch events in short
succession, which can cause wear on the appliance (although
this can be avoided depending on the control). Secondly, reg-
ular stochastic switching could garner negative public opinion
if there are fears about appliances acting randomly.

Our work proposes that stochastic control is not necessary
to prevent herding behavior, so long as the population of
TCLs is sufficiently heterogeneous. There are examples of
simulations of heterogeneous TCLs with deterministic con-
trol that do not exhibit herding behavior, such as in [13],
[22]. Until now, no one has asked how much heterogeneity is
required to prevent synchronization problems. In this paper
we answer this question for a population of fridges with
deterministic control, and discuss the plausibility of the exis-
tence of this minimum level in the real world. In particular,
we consider heterogeneous temperature set points, asymp-
totic fridge heating and cooling temperatures, heating/cooling
coefficients, and (resulting from the above) different fridge on
and off durations and duty cycles.

The main contributions of this paper are as follows. Firstly,
to determine the minimum level of parameter heterogeneity
required to prevent synchronization problems without resort-
ing to stochastic or centralized control. We show that the
required level is very small, and well within what could
naturally be expected to occur. Secondly, we find the rela-
tionship between the number of frequency-sensitive fridges

2Normally the total load from a large number of such appliances is
approximately constant.

on the system and the amount of frequency response from
other providers they displace. Thirdly, we investigate the
impact of varying the sensitivity of the fridge temperature
set points to the frequency (our control parameter) on the
level of displaced response and also on fridge operating
temperatures. The remainder of this paper is structured as
follows. In Section II we describe our assumptions, model,
and choice of parameters. In Section III we present the results
of our analysis, and in Section IV we offer a discussion and
conclusions.

II. METHODS
Rather than simulate every fridge in our simulated frequency-
sensitive population individually, we reduce computation
time and resource by simulating 10,000 groups of fridges.
Within each group all fridges start (and remain) at the same
initial conditions and have the same parameter values. Differ-
ent groups have different initial conditions and parameter val-
ues (see Section II-D for full details). We model 1M fridges
(i.e. 100 per group unless stated otherwise3). There are an
estimated 10.1M households in GB with a fridge, and 18.6M
with a fridge-freezer [5]. Each combination of parameter
values is explored with 36 simulations spanning 12 months
during 2015-16, and each simulation runs for 10 days with
1s resolution. We use various historic data from the GB SO
National Grid and model what would have happened had a
fridge population been frequency responsive. We are able to
model the amount of response provided by others when the
fridges are contributing compared to howmuch was provided
historically, incorporating natural variations in demand and
stored kinetic energy. This is a large improvement on mod-
eling TCLs in isolation responding to a one-off frequency
event found in previous papers, such as, for example [13],
[23], [32].

A. ASSUMPTIONS
As in [22] we make the following assumptions:

(i) All parameters remain constant over time;
(ii) Fridges respond to frequency deviations with a 1s

detection delay and with negligible measurement error;
(iii) There is no influence from the fridge door being

opened or by the addition/removal of food4;
(iv) Temperature is sensed and set points defined with

machine precision;
(v) Fridges consume constant power when on and zero

power when off;
(vi) Power system frequency is the same everywhere on the

network and there are no inter-area oscillations [33].

The implications of these assumptions are discussed in
Section IV.

3We can vary the number of fridges in the population (between 0.2M -
10M) by changing the power consumption of each group.

4This is likely to be a conservative assumption, since such events are likely
to increase the heterogeneity of fridge temperatures.
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TABLE 1. Notation.

B. SIMULATION
We use the model and simulation method described fully
in [22], which we outline here. Notation are summarized
in Table 1.

1) INPUTS
There are four types of input data spanning our 12-month sim-
ulation period during 2015-16, provided by National Grid5.

5Unless stated otherwise, data were provided confidentially. However, for
box and whisker plots of all data used see Appendix C in [5].

Kinetic energy data are an estimate for the total stored
kinetic energy in MVAs (megavolt-ampere seconds) [34],
related to total system inertia. (Half-hourly) values are cal-
culated by summing the kinetic energy of all running syn-
chronized generators with an estimate of kinetic energy from
demand. Typical kinetic energy values are within 2 × 104 -
4×104MVAs.When the stored kinetic energy of the system is
low (such as during times of low demand and high renewable
output) the system is more sensitive to supply-demand imbal-
ances and fast-acting response provision is more valuable.
Demand data in MW are a sum of the power leaving the

electricity transmission system, including any power exports
through the interconnectors to other countries. Half-hourly
energy demand data are publicly available [35].
Historic system frequency data in hertz at a 1s resolution

had previously undergone a cleaning process that took advan-
tage of readings from multiple locations and are publicly
available [35]. During the 360 days’ data used in the sim-
ulations, multiple large frequency events occurred and are
captured in this dataset. Figure C3 in Appendix C3 of [5]
indicates the amount of frequency data outside of the range
49.8Hz - 50.2Hz (present in most of the 10-day simulation
periods).
Response holdings are the amount of frequency response

delivery in MW that National Grid expects each second as
a function of grid frequency and available providers. There
are three types of response holdings: primary and secondary
response (1s and 11s delay, respectively, when frequency is
below 49.985Hz), and high response (1s delay when fre-
quency is above 50.015Hz). The data allow us to simulate
the total frequency response from other providers historically,
and crucially, how the responsewould have been different had
a population of TCLs been providing response to the system.

2) ALGORITHM
Step 1 is performed once for all time steps
t ∈ {1, 2, . . . 864000} of duration 1t = 1s for each 10-day
simulation period. Steps 2 - 7 form an iterative loop. To ini-
tialize the simulation we set the simulated frequency f ∗(1) =
f (1), where the ∗ notation is used to distinguish simulated
variables from their historic values.

STEP 1: CALCULATE THE UNDERLYING SUPPLY-DEMAND
IMBALANCE
To simulate the impact of a fridge population on the
power system frequency we need to understand the under-
lying behavior that gave rise to the historic system fre-
quency. This is done for all time steps before the simulation
starts. The underlying supply-demand imbalance, Imbunder (t)
(in MW), is estimated accounting for frequency-sensitive
demand and the actions of historic frequency response pro-
vision. By ‘frequency-sensitive demand’ we are referring
to the increase (or decrease) in synchronous demand when
frequency rises (or falls) due to the speeding up (or slowing
down) of synchronous machines [36]. National Grid infers an
effect of 2.5% change in demand as frequency deviates from
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50Hz [36];

Dem
(
f (t)

)
= Demω0(t)

(
1+ 0.025(f (t)− 50)

)
. (1)

where Dem
(
f (t)

)
is historic measured demand and Demω0(t)

is the estimate for the historic demand had the frequency been
50Hz at all times (found by rearranging (1)). The historic
response from demand is given by

Demresp(f (t), t) = Dem
(
f (t)

)
− Demω0(t). (2)

The historic response from generation, Genresp(f (t), t),
is estimated using the response holdings data described
above, and running the simulation without a frequency-
sensitive fridge population. Demresp(f (t), t) and
Genresp(f (t), t) are then used to calculate the historic under-
lying imbalance Imbunder (t). For brevity we refer the reader
to [22] for details.

STEP 2: CALCULATE THE NEW RESPONSE FROM THE
HISTORIC PROVIDERS
For each time step we start by using the response holdings
data to simulate the actions of the historic frequency response
providers based on the updated frequency from the previous
time step. We denote this by Gen∗resp

(
f ∗(t −1t), t

)
.

STEP 3: UPDATE FRIDGE TEMPERATURE SET POINTS
A fridge switches on/off when its temperature hits its
upper/lower temperature set points T+ and T−, respectively.
Following [13] we establish a linear relationship between the
temperature set points and the power system frequency:

T±
(
t) = T 0

± − β
(
f ∗(t −1t)− 50

)
(3)

where control parameter β > 0 determines the sensitivity of
the temperature set points to frequency deviations and T 0

± are
the ‘normal’ temperature set points (we use 2◦C and 7◦C as
in [27]). Fig. 1 illustrates this concept.

STEP 4: CALCULATE THE NEW FRIDGE TEMPERATURES AND
ON/OFF STATES
Denote by T (t) the temperature of a fridge at time t , the cool-
ing/heating coefficient by α, and the asymptotic temperatures
that the fridge would reach if left on or off indefinitely by
Ton or Toff, respectively. Then as in [21],

Ṫ (t) =

{
α
(
Ton − T (t)

)
when a fridge is on

α
(
Toff − T (t)

)
when a fridge is off.

(4)

Note that this is equivalent to the model used in papers such
as [25], where in their notation, α = 1

CR , Toff = θamb and
Ton = θamb − PR, where C is the thermal capacitance, R is
the thermal6 resistance, θamb is the ambient temperature and
P is the cooling power of the TCL when switched on.
The temperature T of a fridge is given by solving (4);

T (t) = (T (t −1t)− Ton)e−α1t + Ton when on (5a)

6Fridge operation and set point control are also illustrated dynamically in
the accompanying video available at http://ieeexplore.ieee.org.

FIGURE 1. Illustrative example of how TCLs such as fridges can support
system frequency through temperature set point control.

T (t) = (T (t −1t)− Toff)e−α1t + Toff when off (5b)

(assuming no switching). If T (t) lies outside the interval
(T−,T+) then a switch on or off should have occurred
during [t − 1t, t]. The exact time of the switch on/off
is estimated and the temperature is recalculated from
the switch time to the end of the time step using lin-
ear interpolation. For the precise details see Appendix B
in [5].

The initial temperatures and on/off states of the
10,000 groups of fridges are set by evenly distributing the
groups around the on/off temperature cycle.7

STEP 5: CALCULATE RESPONSE FROM THE
FREQUENCY-SENSITIVE FRIDGE POPULATION
Response from the TCLs (in our simulation fridges),
TCLresp(f ∗(t − 1t), t), is given by the number of switched
on fridges multiplied by their individual power consumption
p, subtracted from the expected population demand if it were
not frequency-sensitive.8

7The groups of fridges are evenly distributed over time in the cycle rather
than temperature due to the nonlinear heating and cooling rates. For a longer
explanation see [5], [22].

8Expected population demand is the average fridge duty cycle (proportion
of cycle switched on) multiplied by the power consumption of one fridge p
and by the number of fridges in the population.
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STEP 6: CALCULATE TOTAL IMBALANCE
At each time step we calculate the total underlying supply-
demand imbalance Imb∗tot (t);

Imb∗tot (t) = Imbunder (t) + Gen∗resp
(
f ∗(t −1t), t

)
− TCLresp(f ∗(t −1t), t)

− Dem∗resp(f
∗(t), t). (6)

STEP 7: UPDATE SYSTEM FREQUENCY
We use the total system imbalance from step 6 to update the
system frequency, based on the linear approximation for ḟ ∗

from [36];

f ∗(t) = f ∗(t −1t)+
50Imb∗tot (t)
2Ek (t)

1t (7)

where Ek is total stored kinetic energy in MVAs. The algo-
rithm now updates to the next time step and iterates through
steps (2) - (7).

C. ANALYSIS
The most valuable way to measure the impact of the
frequency-sensitive fridge population is to ask how the provi-
sion of frequency response from other providers is affected.
If it is lower then the fridges have a positive effect on the sys-
tem. If, however, other actors have to provide more response,
then the fridges destabilize the system and do more harm than
good. We measure this impact with our variable ‘cumulative
response savings’ (respSave in MWh), which we define as
the sum of the difference between historic frequency response
provision and response provided by the historic providers in
the simulation with the fridges present:

respSave(t) =
t∑

t̂=1

{
|Genresp

(
f (t̂ −1t), t̂

)
|

− |Gen∗resp
(
f ∗(t̂ −1t), t̂

)
|

}
. (8)

We use the absolute value of response because it can be
positive or negative, depending on whether the frequency is
above or below 50Hz. If the fridges are acting beneficially to
the system then the cumulative response savings will grow
over time, and if they cause more harm than good then the
cumulative savings will become negative.

D. PARAMETER CHOICES
The mean of each heterogeneous parameter is shown
in Table 2. We take the mean of Toff,T 0

− and T 0
+ from [27],

the duty cycle from [37], and the asymptotic cooling temper-
ature Ton results from these choices. Heating/cooling rate α is
chosen for a total cycle of 45 minutes, similar to [37]. The on
and off durations τon and τoff, respectively, are derived from
the other parameters. The parameters without heterogeneity
are the number of fridges in the population, N = 1M; the
power consumption of each fridge when switched on, p =
70W [20], [27]; and the control parameter β = 2.4◦C.Hz−1

(see equation (3)) ensures that food will not freeze within the

statutory operating range of the system frequency.We explore
the impact of varying N and β in Section III.
Table 4.3 in [5] contains a survey of ten approaches to

parameter heterogeneity in the literature, and this was used
to inform our choices for introducing heterogeneity. In the
absence of data on realistic distributions for the parameters,
we use normal distributions. For each heterogeneous param-
eter, we increase the heterogeneity by choosing a ‘maximum
value’ for the standard deviation, SDmax, and simultaneously
multiply each parameter’s SDmax by a standard deviation
factor9, sdf ∈ [0, 1]. That is to say, the standard deviation
of parameter i is given by

σi = sdf× SDi
max. (9)

For example, room temperature Toff in GB is unlikely to vary
across the country by more than a few degrees Celsius, and a
range of ±4◦C would be a reasonable, if conservative maxi-
mum range10.We expect 99.7% of the population to lie within
this range if 3σ = 4, and so to achieve this for our simulations
with the greatest heterogeneity (sdf = 1), we set SDmax =

1.33 for Toff. For the asymptotic cooling temperature Ton
we let 3σ = 6 similarly to [13], [37], [38]. Rather than
treat the temperature set points T 0

− and T 0
+ independently,

which could result in fridges with impossibly short or overly
long cycle times, we instead treat their difference. For each
fridge, T 0

− and (T 0
+ − T

0
−) are selected independently from

normal distributions and T 0
+ is calculated from their sum.

Fridge cooling rates vary depending on the age and model
of the appliance and the amount of food inside. We allow the
cooling/heating rate α to vary such that 3σ = ᾱ

2 in the largest
diversity case. In the absence of data, we consider amaximum
range of ᾱ ± 50% to be a highly conservative estimate.

III. RESULTS
Our first aim is to determine the minimum amount of het-
erogeneity (the minimum sdf) required to prevent the fridges
from destabilizing the system frequency. Homogeneous pop-
ulations of TCLs have shown to synchronize when respond-
ing deterministically to a frequency signal [20]–[26]. [22]
shows that a homogeneous population will often cause neg-
ative cumulative response savings (meaning that the other
response providers have to provide more response when the
fridges are attempting to ‘help’), but that some heterogeneity
can alleviate these problems.

Fig. 2 shows the cumulative response savings at the end
of each 10-day simulation for different values of sdf (note
the logarithmic x-axis due to the very small level of sdf
required) for a population of 1M fridges. Below sdf ≈ 10−4

the results are similar to the homogeneous population (sdf
= 0). Increasing the sdf to approximately 10−3.5 results in

9Note that the sdf is called the ‘diversity factor’ δ in [5], [22].
10Note that this is the mean±20%, as used by [13], [37], [38].Wemention

percentages for comparisonwith other references, but of course in the context
of temperature in ◦C, percentage differences have no sensible meaning. The
actual size of the maximum range will be shown to have little bearing on our
results.
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TABLE 2. Mean and SDmax for each parameter (lower four parameters
result from choices for the upper set).

FIGURE 2. Final cumulative response savings after each 10-day
simulation (blue circles) and means (red diamonds) for different sdf. The
heterogeneity eradicates negative outcomes for sdf > 10−4.

positive savings in all simulations, which continue to increase
in value as the sdf increases. We find that when the number
of fridges in the frequency-sensitive population is increased
to 10M the negative cumulative savings are also eliminated
by increasing the sdf from 10−4 to 10−3.5. Therefore we
consider 10−3.5 to be the minimum heterogeneity require-
ments for preventing the detrimental behavior exhibited by
less-heterogeneous populations. For this level of parameter
heterogeneity, the simulations show that the probability of
synchronization is less than 1s per year since in each of the 36
10-day periods studied none of the populations were closer to
synchronization than at the start.

To understand the significance of the minimum sdf
required to prevent negative cumulative response savings,
Table 3 shows the standard deviation and 99.7% confidence
interval for each heterogeneous parameter for (a much more
conservative) sdf = 10−2. The intervals are all very small,
well within what might reasonably be expected to occur
in the real world. For example, a wide spread of mean
internal dwelling temperature in English households were

TABLE 3. Implications of sdf = 10−2 for each parameter.

FIGURE 3. Cumulative response savings over time for each of the 36
10-day simulations for 1M fridges with sdf = 10−2.

observed in [39], with a standard deviation of 2.47◦C; several
orders of magnitudes greater than our minimum requirement
of 0.133◦C. Hence, even in the absence of stochastic or cen-
tralized control, the natural diversity that exists within a popu-
lation of fridges, room temperatures and temperature set point
preferences can be expected to prevent the synchronization
problems exhibited in simulations of homogeneous popula-
tions. Fig. 3 shows the accumulation of cumulative response
savings over time for sdf = 10−2. We see a roughly linear
increase over time, with a large variation between simula-
tions. This is largely due to the variations in the underlying
supply-demand imbalance and stored kinetic energy of the
system over a year, highlighting the need to simulate elec-
tricity grid operation over multiple time periods to consider a
range of real system conditions. This figure can be contrasted
with Fig. 13a in [22] (where sdf = 0) to see how the hetero-
geneity has eliminated negative response savings.

An important question to ask is how changing the control
parameter β (introduced in equation (3)) would affect the
amount of cumulative response savings. Fig. 4 shows the
final cumulative response savings for sdf = 10−2 and 1M

VOLUME 7, 2019 130211



E. Webborn: Natural Heterogeneity Prevents Synchronization of Fridges With Deterministic Frequency Control

FIGURE 4. Final cumulative response savings after each 10-day
simulation (blue circles) for different β. Means shown with red diamonds.
Linear trend line estimated from the means.

fridges for different β. A trend line has been drawn from
the means for each value of β, and indicates that for every
1◦C.Hz−1 increase in β the savings increase by approxi-
mately 36.5MWh. Although the savings increase linearly
with β, our choice of β is limited by its impact on fridge
temperatures. The higher β, the further away fridges operate
from their ‘normal’ temperature set points T 0

±. Fig. 5 shows
the minimum, maximum and mean of the lowest temperature
reached by any fridge over all simulations (blue) and the same
for the highest temperature ever reached (red). The ‘worst’
values in each case are labeled. These values are approxi-
mately linearly dependent on β. If a fridge normally operates
between 2-7◦C, a user may not be happy with potential
operation between, say, 0.79-7.88◦C, and therefore β = 4.8
would be too high. We propose that β ∈ [2, 4] would be
a suitable choice that achieves reasonable response savings
(≈ 75-150MWh for 1M fridges) without compromising user
experience (no more than ≈ 1◦C outside of the normal
operating range).

We would like to ensure that our results are robust to
changing the number of fridges in the frequency-sensitive
population and to understand the benefits of increas-
ing the population. Previously we have been simulating
10,000 groups of 100 (identical) fridges (1M in total). Fig. 6
shows the final cumulative response savings when we vary
the number of fridges between 20 and 1000 per group, i.e.
0.2M-10M in total11. We see that the relationship is linear:
increasing the number of fridges by 1M increases the cumu-
lative response savings by approximately 80MWh. This rela-
tionship is possibly surprising, as one might have expected
a decreasing rate of return for using more fridges, or an
initially increasing rate of return at the low end of the scale.
For context, the original total response provided by other
response providers over the 10-day periods ranged between

11Recall that there are approximately 10.1M households in GB with a
fridge, which is why we explore this range.

FIGURE 5. Minimum, maximum (blue circles) and mean (blue diamonds)
of the lowest temperature reached by any fridge over all simulations and
likewise for the highest temperature ever reached (red). The ‘worst’
values (for the fridges) are labeled.

FIGURE 6. Final cumulative response savings for different population
sizes when sdf = 10−2, β = 2.4.

8,004MWh and 12,172MWh with a mean of 9,357MWh
(approximately).

IV. DISCUSSION AND CONCLUSIONS
We agree with [40] that ‘‘while some [demand response]
schemes are already in place, it can be expected that TCLs
will play a much more important role in providing a fast
and accurate source of flexibility in the future electric-
ity grid’’. Control schemes for TCLs to provide frequency
response have become a popular research topic in recent
years. Our simulations are unique in modeling not just a
frequency-sensitive TCL population, but also existing fre-
quency response providers whose response is affected by
the behavior of the TCLs. Previous work has considered
the impact of TCLs responding to an initial large frequency
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deviation on the grid frequency over the subsequent few
hours [13], [17], [21], or the response over several hours of a
TCL population (in isolation) to a varying input signal [14],
[16]. Capturing how other response providers react to changes
in system frequency under realistic system conditions allows
us to accurately determine the amount of response that could
be displaced by a population of fridges. Our simulations run
continuously for 10 days, and cover 1 year to account for the
variations in system conditions typically found over a year.

A homogeneous population of frequency-sensitive TCLs
has been shown to exhibit temperature cycle syn-
chronization that can destabilize the power system
frequency [13], [20]–[26]. In this paper we established the
minimum level of parameter heterogeneity required to pre-
vent harmful herding behavior in a population of fridges, and
found it to be far less than we would expect to occur naturally.
We elicited the linear relationship between the parameter con-
trolling the sensitivity of the fridges to frequency deviations
(β) and the benefits the fridges could provide to the system.
We also studied the impact on fridge temperatures of varying
β. This allowed us to propose a range for a suitable choice
of β. We also determined the linear relationship between
the number of frequency-sensitive fridges and reduction in
frequency response required from other providers (MWh).
By considering the needs of the system as a whole we have
been able to capture what is most important for grid stability
- providing a service that can contribute to overall provision,
and displacing, for example, the most expensive or most
polluting existing providers of frequency response.

Although many real-world attributes are captured in our
simulations, such as the response of other providers, national
demand and total stored kinetic energy, it is important to con-
sider the potential implications of our simplifying assump-
tions (Section II-A). We have assumed that system frequency
is identical across the electricity grid, when in reality fluctu-
ations have an origin and spread across the network. TCLs
respond to the frequency at their location, and thus could
potentially prevent local fluctuations from becoming grid-
scale. Imbalances at the distribution network level are becom-
ing increasingly important to manage [41], and so modeling
fridges on a network could show greater advantages for the
system than presented here. We have also assumed that all
parameters remain constant over time. This ignores any fridge
door opening and food addition or removal, as well as changes
in room temperature or long-term changes such as appliance
efficiency reduction. Opening the door and adding/removing
fridge contents are random events, with some correlation
around meal times, and will typically diversify the tempera-
tures and on/off states. The minimum heterogeneity require-
ments for synchronization prevention indicate that even if
many people were to use their fridge at a similar time,
the differences in room temperatures, food temperatures and
durations that doors remain open would be highly unlikely
to counteract the natural population diversity and cause syn-
chronization. Nevertheless, the clustering of these activities
around meal times should be explored before implementing a

large-scale rollout. Other assumptions which require further
investigation are the absence of measurement error, which
could be tested with a small number of appliances and sen-
sors, and the energy consumption of each fridge, which in
reality would exhibit a small spike as they switch on.

Certain areas remain open questions for further examina-
tion. Data covering 12 months during 2015-16 was used, but
it is possible for the system to experience greater frequency
fluctuations than occurred during this period, and simulation
of power outages could be beneficial. As explained above,
we estimate that the probability of synchronization with the
minimum heterogeneity requirements is less than 1s/year.
Further work is recommended to improve this bound and to
determine analytically how it decreases with sdf. One could
also investigate the impact of modeling fridges on a network,
with all of the spatial effects involved. Is a similar minimal
amount of heterogeneity required to prevent synchronization
for other types of TCL, such as air-conditioners, hot-water
tanks and heat pumps? Our results are likely to be most appli-
cable to those with similar on/off durations. A small-scale
trial could test the parameter assumptions made here, and
determine the most effective and affordable control equip-
ment to fit/retro-fit into TCLs. From an economic standpoint,
the response capabilities and costs of TCLs should be com-
pared with those of other response providers (and potential
providers), incorporating how the value of system flexibility
will increase in future [1]–[3]. Finally, greater policy research
into achieving a large-scale roll-out of frequency-sensitive
TCLs is needed, including, for example, participation incen-
tives (either market or government-led) or mandates to moti-
vate the development of this service.12

In conclusion, this analysis shows that a population of
fridges has the potential to provide a valuable frequency
response service to the GB System Operator without affect-
ing the needs of the appliance users, and without requiring
centralized or stochastic control, because the existing hetero-
geneity in the fridge population is much larger than the mini-
mum required for stability established in this paper. Modeling
the impact on the actions of other response providers offers
valuable insights into the benefits of such a service, contextu-
alizing the scale of the potential response service in relation
to the current needs of the GB power system.
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