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Abstract In an innovation contest, an organizer seeks solutions to an innovation-related problem from a

group of independent agents. Agents, who can be heterogeneous in their ability levels, exert efforts to

improve their solutions, and their solution qualities are uncertain due to the innovation and evaluation

processes. In this chapter, we present a general model framework that captures main features of a contest,

and encompasses several existing models in the literature. Using this framework, we analyze two important

decisions of the organizer: a set of awards that will be distributed to agents and whether to restrict entry

to a contest or to run an open contest. We provide a taxonomy of contest literature, and discuss past and

current research on innovation contests as well as a set of exciting future research directions.

1 Introduction

“Everybody has a creative potential and from the moment you can express this creative potential, you can start chang-

ing the world.” — Paulo Coelho

“Our best ideas come from clerks and stockboys.” — Sam Walton

Many organizations today look beyond their boundaries to elicit innovation. With advances in information

technology and global access to skilled individuals, contests (also known as tournaments) have emerged as

a popular and cost-effective tool to elicit innovative solutions to challenging problems. A contest usually

starts when a contest organizer announces a problem along with contest rules such as a set of awards (called

“award scheme”) and whether the contest is open to the public or not. Then, agents who are interested in

the contest make efforts to develop solutions to the problem, and submit them to the organizer. Finally, the

organizer evaluates these solutions, and awards the best one(s) according to the announced rule.
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This chapter focuses on two popular types of contests: innovation and crowdsourcing contests. In an

innovation contest, an organizer seeks solutions to an innovation-related problem from a (not necessarily

large) group of agents, and in a crowsourcing contest, the organizer seeks (not necessarily innovative)

solutions from a large group of agents. While pointing out this subtlety, we will refer to both types of

contests as “innovation contests” throughout the chapter as these contests mostly overlap in practice. To

illustrate how these contests work in practice, consider the following example from Ales et al. (2016) (see

their introduction for detailed examples). Since 2012, Samsung has organized several innovation contests,

called Samsung Smart App Challenge, seeking innovative apps for its products. The contest started with

Samsung’s announcement of contest rules. For example, Samsung Smart App Challenge 2013 for GALAXY

S4 was open to anyone who wished to participate, and distributed a total of $800,000 prizes for top ten

apps. The judging criteria were uniqueness, commercial potential, functionality, usability, and design.

Innovation contests are utilized for a broad set of topics ranging from mining solutions (e.g., Goldcorp

Challenge which seeks proposals for identifying potential gold mining targets) to design (e.g., a logo design

contest for FIFA World Cup) and software development (e.g., Samsung Smart App Challenge). While some

organizations run their own contests, others employ contest platforms such as Challenge.gov, Ennomotive,

InnoCentive, Inocrowd, and TopCoder that intermediate contests on behalf of their clients. For example,

InnoCentive crowdsources innovation on behalf of a diverse group of clients such as AARP Foundation,

Eli Lilly, NASA, and P&G (InnoCentive 2017). InnoCentive organizes ideation, theoretical, and reduction-

to-practice (RTP) challenges (in which agents develop ideas, theoretical solutions, and prototypes, respec-

tively) in subject areas such as chemistry and social innovation. Agents of different background compete in

these free-entry open innovation contests for awards ranging from $5,000 to $1 million. As another exam-

ple, TopCoder crowdsources software solutions on behalf of a large client base including Best Buy, Comcast,

HP, and IBM (TopCoder 2017). Agents around the world compete in various software development contests

that are open to public, and winners are awarded cash prizes around $10,000, and the performance of all

participants is converted into a continually updated TopCoder rating.

Through open innovation processes, an organizer can tap into a large number of experts outside of

its firm boundary, and can select the most promising solution from many submitted solutions. Despite

this benefit of having a large number of participants, the organizer does not need to pay every partici-

pant, the organizer may pay only one agent, the “winner,”who has submitted the best solution. In such a

winner-take-all contest, all agents except the winner bear all the costs of their efforts. Yet, with many contest

participants, agents expect their individual chance of winning a contest to be low, and hence may not have

sufficient incentives to exert their best efforts. Thus, the contest organizer should carefully choose the right

award scheme, and determine whether to restrict the number of participants to increase the probability of

winning for individual agents.
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The objective of this chapter is to present a general model framework for innovation contests, and

provide insights into two of the organizer’s decisions that are essential from both practical and theoreti-

cal points of view. The first decision we study is a set of awards through which an organizer incentivizes

agents to participate in a contest and make costly efforts. From a practical point of view, it is important for

an organizer to assess when to adopt a winner-take-all award scheme and when to offer multiple prizes.

From a theoretical point of view, the winner-take-all award scheme is almost a standard assumption in the

contest literature, and it is important to determine when this assumption is justified. The second decision

we analyze in this chapter is whether it is optimal for a contest organizer to hold an open contest without

restricting entries to the contest. From a practical point of view, this analysis addresses when open innova-

tion initiatives that rely on the “wisdom of crowds” are desirable. From a theoretical point of view, several

papers in the contest literature implicitly assume that an organizer does not impose any entry restrictions to

agents. Thus, it would be interesting to examine when it is indeed optimal for an organizer to hold an open

contest. Because this decision of an organizer is closely related to agents’ incentives, we will also discuss

how participating agents change their level of effort when additional agents enter the contest.

While discussing award scheme and entry restriction decisions based on Ales et al. (2016, 2017) and

Körpeoğlu and Cho (2017), we present a general model framework that encompasses several models that

have been studied in the literature. In particular, our framework captures the following three main features

of typical innovation contests in practice:

• When an organizer seeks the best K solutions, where K is a positive integer between one and the total

number of participants, Ales et al. (2016) say that there are K ”contributors” among participants in a contest.

In some contests, an organizer is interested in only the best solution, so K equals one (cf. Taylor 1995). For

example, in a logo design contest for FIFA World Cup, the organizer was interested in finding the best logo

to adopt. In other contests, the organizer seeks several good solutions; for example, Samsung sought many

useful apps in Smart App Challenge.

• Following Ales et al. (2017), we consider two sources of uncertainty that agents face. The first source

of uncertainty is referred to as ”technical uncertainty,” and this stochastic element is often modeled as a

search process for the best solution from a number of trials (e.g., Dahan and Mendelson 2001). For example,

a logo designer may experiment on several logo sketches, and s/he does not know the results of those

experiments a priori. The second source of uncertainty, called ”taste uncertainty,” is due to the subjective

or unknown taste of the organizer. For example, in Samsung Smart App Challenge, when submitting their

apps, developers do not know how judges will evaluate their apps in subjective criteria such as uniqueness,

usability, and design.

• We model agents’ heterogeneity utilizing a “productivity-based” model introduced by Körpeoğlu and

Cho (2017). In this model, agents are heterogeneous in their productivity levels so that one unit of effort

from a high-productivity agent creates higher value than that from a low-productivity agent. In practice,
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agents can feature heterogeneous productivity levels due to difference in experience, expertise, and overall

ability. For instance, the TopCoder rating of an agent can indicate his/her ability or experience level because

high rating indicates successful past performance.

The remainder of this chapter is organized as follows. In §2, we present our general model framework

and discuss how this model framework encompasses existing models in the literature. In §3, we provide

a brief taxonomy of the literature, and discuss several interesting work in the area of innovation contests.

Then, we study the organizer’s the award scheme and entry restriction decisions in §4 and §5. While we

choose to focus on the above two decisions, we discuss some exciting open questions in §6.

2 A General Model Framework for Innovation Contests

In this section, we describe a fairly general environment that encompasses commonly used models when

studying innovation contests. As discussed in §1, this general model essentially combines the models used

in Ales et al. (2016, 2017) and Körpeoğlu and Cho (2017). In what follows, we first present our model of

agents, and then we present our model of the organizer. At the end of this section, we briefly discuss this

model in comparison to other models in the literature.

Agents Suppose that there are N (≥ 2) agents who can participate in the contest. Each participating agent

i (∈ {1,2, ..., N}) develops a solution to the problem posed in the contest with solution quality (hereinafter

“output”) yi ∈ Y ⊆ R ∪ {−∞,∞}. Following Ales et al. (2017), we represent agent i’s output as a function

of improvement effort qi, a number of trials mi, trial shocks (ε̃i1, ..., ε̃imi
), and a taste shock ε̃ i as follows:

y(qi,mi, ε̃i1, ..., ε̃imi
, ε̃i) = v(qi) + max{ε̃it, t = 1, ...,mi} + ε̃ i. (1)

This function combines the following three components. First, each agent i can exert “improvement effort”

qi, and this effort leads to a deterministic improvement v(qi) of agent’s output, where v is an increasing

and concave function of qi. Second, each agent i may engage in a trial-and-error process by conducting

several experiments, where the agent determines a number of trials mi (hereinafter, “trial effort”). In each

trial t (= 1,2, ...,mi), the agent faces uncertainty in the outcome of a trial, which is modeled through a

trial shock ε̃it that follows a Gumbel distribution with E[ε̃it] = 0 and scale parameter μ. (Throughout the

chapter, we use the notation “˜” to represent random variables.) Each agent observes the outcome of these

trials (ε̃i1, ..., ε̃imi
) and submits the best one to the organizer. Third, each agent i’s output is subject to the

taste of the organizer, which we model by a taste shock ε̃ i. The taste shocks of agents, ε̃ i’s, are independent

and identically distributed (i.i.d.) random variables with a general disribution and E[ε̃ i] = 0. Unlike trial

shocks ε̃it’s, each agent i is uncertain about the taste shock ε̃i even after the development process is over.

For practical examples and details of these components, see Ales et al. (2017).

We next define a general form for the utility of agent i, Ua(qi,mi, xi, ci) : R4
+ → R, which is defined

over improvement effort qi, trial effort mi, monetary compensation xi received from the organizer, and
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heterogenous cost coefficient ci for exerting effort. The parameter ci is a privately known cost coefficient for

agent i, drawn from a continuous distribution Φ similar to Moldovanu and Sela (2001). The utility of the

agent takes the following form:

Ua(qi,mi, xi) = xi − ψ(ci(τ1qi + τ2mi)), (2)

where τ1 > 0, τ2 > 0, and ψ is convex and increasing with ψ(0) = 0. This utility function is more general

than Ales et al. (2016, 2017) which consider identical agents, but it is similar to Körpeoğlu and Cho (2017).

We define total effort as ei = τ1qi + τ2mi. For example, for an agent with improvement effort qi and trial

effort mi, total effort ei may represent the total labor hours an agent spends, where τ1 and τ2 are time

required for one unit of improvement and trial effort, respectively. Agent i’s cost of making effort ei is

ψ(ei) = ψ(ci(τ1qi + τ2mi)).

The following lemma shows that the output function y given in (1) can be simplified to a new func-

tion that depends only on the agent’s total effort ei and aggregate shock ξ̃i. The first part of the lemma is

shown by Ales et al. (2017) and a special case of the second part of the lemma is shown by Körpeoğlu and

Cho (2017) under linear cost of effort and no output uncertainty. We present the proof of Lemma 1(b) in

Appendix.

Lemma 1. (a) (Lemma 1 of Ales et al. 2017) The output function in (1) can be simplified to y(ei, ξ̃i) = r(ei) + ξ̃i in

which ei is the total effort, r is a concave and increasing function, and ξ̃i is a random shock that is independent of ei.

For example, if v(qi) = κ log(qi) for some κ > 0, then r(ei) = γ + θlog(ei) where θ (> 0) and γ are constants.

(b) (Adapted from Körpeoğlu and Cho 2017) The cost-based model in which agents are heterogeneous in their cost co-

efficients and the output function y(ei, ξ̃i) = r(ei) + ξ̃i is equivalent to a productivity-based model with y(ai, ei, ξ̃i) =

r(aiei) + ξ̃i, where ai is agent i’s heterogeneous productivity level drawn from distribution G(ai) = 1 − Φ(1/ai)

with support [a, a], and the cost of effort is ψ(ei).

In the rest of this chapter, we use the simplified output function y(ai, ei, ξ̃i) = r(aiei) + ξ̃i, and refer to ai

as agent i’s productivity, ei as agent i’s effort, and ξ̃i as agent i’s output shock. This model adds uncertainty

to the productivity-based model introduced by Körpeoğlu and Cho (2017), and adds heterogeneous produc-

tivity levels to the model of Ales et al. (2016). The productivity level ai is drawn from a general distribution

G over the support [a, a]. Let ãN
(j), GN

(j), and gN
(j) represent the random variable, the distribution function,

and the density function of the j-th highest productivity level among N agents, respectively. It is not dif-

ficult to verify that gN
(j)(ai) = N!

(j−1)!(N−j)! (1 − G (ai))
j−1 G (ai)

N−j g (ai). The output shock ξ̃i (∈ Ξ) follows

cumulative distribution H and density h with E[ξ̃i] = 0 and Ξ = [s, s] where s ∈ R ∪ {−∞} and s ∈ R ∪ {∞}.

Similarly, let ξ̃N
(j), HN

(j), and hN
(j) represent the random variable, the distribution function, and the density

function for the j-th highest value among N output shocks, respectively.
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The Organizer The profit of the organizer, Π̂(Y, X) : YN × RN → R, is defined over the output vector

Y and the compensation vector X. Following Ales et al. (2016), we consider the case where the organizer

benefits from the best K ∈ {1, ..., N} outputs, and refer to those agents who produce the best K outputs as

“contributors.” Formally, we can extend the definition of a contributor in Ales et al. (2016) (who assume

that only the best output is awarded a fixed prize) by utilizing a general compensation vector as follows:

Definition 1. Let Y(K) = {y(1)[Y], . . . ,y(K)[Y]} where y(j)[Y] represents the j-th highest output in Y - for ease

of notation, we use y(j) in short. The organizer’s profit has K contributors if for all Y ∈ YN , X ∈ RN
+ ,

(i) There exists a continuously differentiable function Π so that Π̂(Y, X) = Π(Y(K), X);

(ii) For all j = 1,2, . . . , K, ∂Π(Y(K) ,X)
∂y(j)

> 0.

A compensation rule φ : YN → RN maps the output vector Y = (y1, . . . ,yN) to a vector of compensations

the organizer pays to agents, X = (x1, . . . , xN). As in many contests in practice, we restrict attention to the

relative (also called ranked-order) compensation rule which compensates each agent based on the agent’s

relative rank of the output. Formally, a compensation rule is called the relative compensation rule when

there exists some constant A(j) such that φi(y(j)[Y]) = A(j) for all i ∈ N , j = {1, . . . , N} and Y ∈ YN . Thus,

the relative compensation rule consists of a vector of N prizes (awards), denoted by (A(1), ..., A(N)), such

that the agent who produces the j-th best output receives a prize of A(j). We refer to this vector of prizes as

“award scheme.” Furthermore, we refer to the agent who produces the best output as the winner, and to

the award scheme that awards only the winner as the winner-take-all (hereinafter WTA) award scheme.

With K contributors, the organizer’s profit function under the relative compensation rule is:

Π(Y(K), (A(1), A(2), ..., A(N))) =
K

∑
j=1

y(j) −
N

∑
j=1

A(j) ∀ Y ∈ Y . (3)

Whereas Ales et al. (2016) consider a general utility function for the organizer that can allow risk aversion

and other complex functional forms (see Section 5 in Ales et al. 2016), in this chapter, we restrict attention

to a risk-neutral organizer who maximizes profit as in Ales et al. (2017) and Körpeoğlu and Cho (2017).

We say that the organizer holds an “open contest” when all agents who wish to participate in a contest

are allowed to do so. An open contest proceeds in the following sequence. First, the organizer announces

the award scheme (A(1), A(2), ..., A(N)). Then, each agent i ∈ {1,2, ..., N} privately learns a productivity level

ai, and then determines whether to participate in the contest and chooses an effort level ei. An agent who

chooses not to participate receives reservation utility 0. Each agent i who chooses to participate in the con-

test incurs the cost of effort ψ(ei). Next, each agent observes an output shock ξ̃i, and produces an output

yi = r(aiei) + ξ̃i. Finally, the contest organizer collects solutions of all participating agents, and gives awards

to agents based on the award scheme (A(1), A(2), ..., A(N)). We assume that all parameters except the pro-

ductivity level ai are common knowledge to both agents and the organizer, and we focus on symmetric

pure-strategy Nash equilibria in which all agents with the same productivity level make the same effort.
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We next present the agent’s and organizer’s problems. Because Ales et al. (2016, 2017) and Körpeoğlu

and Cho (2017) consider either agent uncertainty or heterogeneity, we will develop an original formula-

tion that encompasses the formulations in those papers. Let e∗ : [a, a] → R+ denote the equilibrium effort

function, where e∗(ai) corresponds to the equilibrium effort of an agent with productivity level ai. We first

derive PN
(j)[ei|e∗, ai], the probability that agent i with productivity ai and effort ei has the j-th highest output

when all other (N − 1) agents exert effort based on the equilibrium effort function e∗. Because agent i has no

information about productivity levels of other agents, from agent i’s perspective, another agent k has a ran-

dom productivity level ãk and a random output shock ξ̃k, and hence a random output ỹk = r(e∗(ãk)) + ξ̃k.

Let F be the distribution function of ỹi, and let f be the corresponding density function. It is not difficult to

show that the support of ỹi is [s + r(ae∗(a)), s + r(ae∗(a))] (because it can be shown that aie∗(ai) is increasing

in ai). We can calculate F as follows:

F(yi) = P{r(aie
∗(ãi)) + ξ̃i ≤ yi} =

∫

[a,a]
H (yi − r(ae∗(a))) g(a)da. (4)

Let ỹN
(j) be a random variable with cumulative distribution FN

(j) and density f N
(j) that represents the j-th

highest value among N outputs. Conditional on agent i having an output shock realization s, the probability

that agent i outperforms agent k by exerting effort ei is

P{r(aiei) + s ≥ ỹk} = P{r(aiei) + s ≥ r(ãke∗(ãk)) + ξ̃k} =
∫

[a,a]
H (r(aiei) + s − r(ae∗(a))) g(a)da.

Thus, we can write the unconditional probability that agent i with productivity level ai has the j-th highest

output among N agents as follows:

PN
(j)[ei|e

∗, ai] =
∫

s∈Ξ

(N − 1)!
(j − 1)! (N − j)!

P{r(aiei) + s > ỹk}
N−jP{r(aiei) + s < ỹk}

j−1h(s)ds, (5)

because (N − j) agents are ranked lower than agent i, (j − 1) agents are ranked higher than agent i, and

they can be ordered in (N−1)!
(j−1)!(N−j)! combinations. The organizer solves the following program:

max
N≥K, (A(1) ,...,A(N))

Π =
K

∑
j=1

∫

[s+r(ae∗(a)),s+r(ae∗(a))]
y f N

(j)(y)dy −
N

∑
j=1

A(j) (6)

s.t.
N

∑
j=1

A(j)PN
(j)[e

∗(ai)|e
∗, ai] − ψ(e∗(ai)) ≥ 0 ∀ ai ∈ [a, a] (7)

e∗(ai) = arg max
ei∈R+

N

∑
j=1

PN
(j)[ei|e

∗, ai]A(j) − ψ(ei) ∀ ai ∈ [a, a] . (8)

The objective of the organizer given in (6) is to choose N (≥ K) and (A(1), ..., A(N)) that maximize his ex-

pected profit. Participation constraint (7) guarantees that each agent receives non-negative from the contest

in equilibrium, and hence chooses to participate in the contest. Constraint (8) is the incentive compatibility

constraint through which the organizer considers the agent’s utility maximization problem. In this problem,
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each agent i with productivity ai chooses an effort ei that maximizes the expected prize ∑N
j=1 PN

(j)[ei|e∗, ai]A(j)

less the expected cost ψ(ei), assuming that every other agent chooses an effort based on the function e∗ in

equilibrium.

Discussion The present model framework encompasses the main features of models used in the inno-

vation contest literature as detailed in Table 1. This framework includes both heterogeneous agents and

output shocks that affect agents’ outputs as well as the organizer’s payoff. Unfortunately, without making

very restrictive assumptions, such a generic model has limited analytical tractability for two reasons. First,

f N
(j) (yi) = N!

(j−1)!(N−j)! (1 − F (yi))
j−1 F (yi)

N−j f (yi) expression in the organizer’s objective (6) is highly com-

plex because it contains the multiplication of N integrals stemming from of the distribution F in (4), and

its density f . Second, the distribution F in (4) depends on the equilibrium effort e∗, so one needs to charac-

terize the agent’s equilibrium effort e∗ solving the agent’s problem in (8) before optimizing the organizer’s

decisions. Yet, in (8), the agent’s probability of attaining rank j, PN
(j)[ei|e∗, ai], is highly complex, and so is the

system of equations arising from agents’ first-order conditions. Due to these technical complications, most

papers in the literature have chosen one of two pathways: either focus on agents’ uncertainty by suppress-

ing their heterogenous ability levels or focus on agents’ heterogeneity by suppressing the uncertainty they

face. Accordingly, we use this separation while discussing the literature in the following section, and we

analyze these two analytically tractable special cases separately in §4 and §5.

3 A Brief Taxonomy of Contest Literature

In this section, we briefly discuss contest literature in general, and then discuss the distinguishing factors

of innovation contests. Although there is a stream of empirical studies on contests, we restrict attention to

theoretical work.

The research on contests is not new. Following the pioneering works of Tullock (1967, 1980) and Lazear

and Rosen (1981), contests have been used in various settings such as labor tournaments (e.g., Green and

Stokey 1983, Nalebuff and Stiglitz 1983) in which employers aim to incentivize employees to exert more ef-

fort, and sales contests (e.g., Kalra and Shi 2001) in which firms elicit effort from salespeople. Several topics

have been explored such as the optimal set of awards that an organizer should distribute (e.g., Moldovanu

and Sela 2001, Kalra and Shi 2001), the risk-taking behavior of agents in a contest (Hvide 2002), having

multiple rounds or a single round in a contest (Moldovanu and Sela 2006), and designing auction-based

mechanisms in which heterogeneous agents have different costs (Che and Gale 2003, Siegel 2009). Vojnović

(2015) provides a detailed overview of such contests. Different from these classical contests, innovation con-

tests possess two important distinct features: (i) an organizer is interested in only the best solution(s) rather

than all solutions (i.e., K < N) and (ii) agents’ uncertainty impacts an organizer’s profit from a contest, and

hence the organizer considers agents’ uncertainty as well as their effort while determining contest rules.
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Table 1 Review of Innovation Contest Literature that Use a Variant of the Present Model Framework.
Paper Model of Uncertainty Model of Heterogeneity Other Features

Terwiesch and
Xu (2008)

(i) Trial-and-error projects with
no improvement effort and no
taste shock; (ii) ideation projects
with no trial effort and a
Gumbel distributed taste shock

Expertise-based projects with
heterogeneous expertise
levels and no uncertainty

The organizer’s payoff is in the
weighted combination of the best
output and the average of all outputs

Ales et al. (2016)

A model that utilizes Lemma
1(a), and assumes a log-concave
or increasing density for the
output shock

Homogenous agents
A general utility function for the
organizer that allows risk aversion
and complementarity

Mihm and
Schlapp (2016)

Ideation projects with no
trial-and-error experiments and
uniformly distributed taste
shock

Expertise-based
heterogeneity in the second
period with feedback

A two-period model with two agents
where feedback can be given to
agents between periods

Nittala and
Krishnan (2016)

Ideation projects as in Terwiesch
and Xu (2008) with Gumbel
distributed taste shock

Homogenous agents

Internal contests where the organizer
incurs a cost from agents’ efforts; and
external contests where there is a risk
for linkage of intellectual property

Körpeoğlu and
Cho (2017)

No output shock
Productivity-based projects
that encompass cost-projects
and expertise-based projects

The same profit function for the
organizer as T&X; fixed cost of entry
when driving equilibrium

Ales et al. (2017)
Same model of uncertainty with
the present chapter

Homogenous agents No other features

Hu and Wang
(2017)

A model that utilizes Lemma
1(a), and assumes a symmetric
log-concave density for the
output shock

Two agents model where
each agent has high ability in
exactly one of two attributes

Two attribute model with the option
of running one contests per each
attribute or a single contest for both
attributes

Körpeoğlu et al.
(2017)

A model that utilizes Lemma
1(a) and assumes a log-concave
density for the output shock

Homogenous agents

Multiple contest organizers and a
more general cost function that
allows economies of scope across
different contests

Stouras et al.
(2017)

A common taste shock that does
not affect agents’ relative rank
but impacts their absolute
outputs

Heterogeneous expertise
levels

Fixed cost of entry leading to
uncertain number of participants

As discussed in §2, due to tractability issues, the literature on innovation contests has been divided

into two streams. The first stream focuses primarily on innovation contests in which agents exert effort or

conduct random trials when their outcomes are uncertain, while suppressing agent heterogeneity. Terwi-

esch and Xu (2008) show that agents’ efforts always decrease with more participants but an open contest

is always optimal when considering agents’ Gumbel distributed shocks. Ales et al. (2016) show that more

agents may lead to increased or decreased effort from agents depending on the distribution H of the output

shock, and further show that an open contest is optimal for a general distribution only when the output

shock distribution is sufficiently spread out or the organizer seeks many diverse solutions. Meanwhile,

Ales et al. (2017) characterize the optimal set of awards in this environment, and prove that when agents’

uncertainty has a log-concave or increasing density function, the winner-take-all award scheme is optimal.

Mihm and Schlapp (2016) compare different types of feedback (e.g., public, private, or no feedback) that

can be used to improve the contest outcome. Nittala and Krishnan (2016) compare internal innovation con-

tests within firms, in which the organizer incurs a cost from agents’ efforts (as they are employees), with

external contests where the organizer utilizes independent agents. Hu and Wang (2017) study a case where
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the organizer seeks two attributes, and compare running a single contest for both attributes with running

two contests – one for each attribute. Körpeoğlu et al. (2017) study multiple contests tackled by the same set

of agents, and show that when organizers seek innovative solutions rather than low-novelty tasks, it may

be better for organizers to allow agents to freely participate in multiple contests rather than to restrict them

to a single contest. They further characterize the optimal number of parallel contests, and show that this

optimal number increases with the novelty of the solutions organizers seek.

A second stream of the literature studies contests in which heterogeneous agents compete but with no

uncertainty in agents’ outputs. These papers build on prior research in economics such as Moldovanu and

Sela (2001), who analyze the optimal set of awards in a cost-based model where agents are heterogeneous

in their cost of effort. Liu et al. (2007) use a similar model to Moldovanu and Sela (2001) to study prize

structure, segmentation, and handicapping in a consumer contest where the organizer aims to stimulate

consumption of a good. Terwiesch and Xu (2008) analyze an expertise-based model in which agents are

heterogeneous in their initial expertise, and show that an open contest can be optimal under certain con-

ditions. Körpeoğlu and Cho (2017) propose an alternative productivity-based model to unify cost-based

model of Moldovanu and Sela (2001) and expertise-based model of Terwiesch and Xu (2008). They show

that an agent’s equilibrium effort can increase with more participants, and offer a precise explanation to

this result by detailing two opposing drivers. Körpeoğlu and Cho (2017) further show that an open contest

is more likely to be optimal than what prior studies asserted. Recently, Stouras et al. (2017) analyze how an

organizer can promote agents’ participation and effort when only a random number of agents participate in

the contest because agents incur large fixed costs of entry, which discourage some agents from participating.

Besides the two streams of research on innovation contests discussed above, there are some papers that

use a different, more tailored modelling framework to study special types of innovation contests. Taylor

(1995) considers a contest among a pool of identical agents, in which each agent conducts random trials

until the best output of those trials reaches a pre-determined quality level. Fullerton and McAfee (1999)

analyze a contest in which an organizer auctions entry into a contest. Both of these papers show that more

agents in a contest leads to a lower equilibrium effort for every agent, but unlike Terwiesch and Xu (2008)

and Ales et al. (2016), these papers conclude that the organizer should restrict entry to the contest. Erat and

Krishnan (2012) study design contests in which each agent selects one design approach among a finite set

of approaches. Bimpikis et al. (2016) study information extraction and disclosure strategies that keep agents

active in dynamic contests.

4 Contests with Uncertainty

In this section, we analyze innovation contests where the output uncertainty plays a larger role than the

heterogeneity of agents. To implement this, we suppress the agent heterogeneity by setting a = a = 1. With

this assumption, in a symmetric equilibrium, each agent exerts the same equilibrium effort e∗(ai) = e∗. In
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this case, we can simplify agent i’s probability of producing the j-th highest output in (5) as follows:

PN
(j)[ei|e

∗] =
∫

s∈Ξ

(N − 1)!
(j − 1)! (N − j)!

H(s + r(ei) − r(e∗))N−j(1 − H(s + r(ei) − r(e∗)))j−1h(s)ds. (9)

Then, we can rewrite the organizer problem (6)-(8) as follows:

max
N≥K, (A(1) ,...,A(N))

Π = Kr (e∗) + E

[
K

∑
j=1

ξ̃N
(j)

]

−
N

∑
j=1

A(j) (10)

s.t.
1
N

N

∑
j=1

A(j) ≥ ψ(e∗) (11)

e∗ = arg max
ei∈R+

N

∑
j=1

PN
(j)[ei|e

∗]A(j) − ψ(ei). (12)

In §4.1, we analyze the optimal award scheme, and in §4.2 we study the decision of the organizer to restrict

entry or not.

4.1 Optimal Award Scheme

This section discusses the optimal award scheme based on Section 3 of Ales et al. (2017). As discussed in

§2, a tournament organizer determines an award scheme by choosing a set of prizes ( A(1), A(2), ..., A(N))

for each ranked agent. It is common in the literature to focus on environments where the WTA is used.

However, the WTA scheme may not always be optimal. To examine when the WTA scheme is justified,

Ales et al. (2017) derive a necessary and sufficient condition in their Proposition 1 under which the WTA

scheme is optimal. Specifically, they link the optimality of the WTA scheme to (i) the distribution of the

output shock and (ii) whether the participation constraint (11) is satisfied. Without going into details about

this condition, we will discuss when it is violated and when it is satisfied.

Proposition 1. (Propositions 2 of Ales et al. 2017) For any given A, the winner-takes-all (WTA) award scheme is

suboptimal when one of the following conditions is satisfied:

(i) lims→s h(s) = 0, lims→s

∣
∣
∣ h′(s)

h(s)

∣
∣
∣ < ∞, and

∫

s∈Ξ
[HN

(j)(s) − HN
(1)(s)]

(
h′(s)
h(s)

)′

ds > 0, (13)

where (13) holds if h(s) is strictly log-convex (i.e., d2 log h(s)/ds2 > 0 ∀s).

(ii) A
N − ψ

((
ψ′

r′

)−1 (
A
∫

s∈Ξ (N − 1) H(s)N−2h(s)2ds
)
)

< 0.

We first discuss condition (i), using an example that satisfies this condition. Observe that the density h in

Figure 1(a) features a large highly convex and decreasing region between its peak point and its fat right tail.

In this example, an agent’s effort may be more effective in increasing the agent’s probability of attaining

some rank j (> 1) than that of becoming the winner. Thus, reducing the winner prize A(1) and increasing

award A(j) corresponding to this rank j makes the agent’s effort more effective to win a prize, and hence
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(a) WTA scheme is suboptimal.
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(b) WTA scheme is optimal.

Fig. 1 (a) Frechet density with mean 0, shape parameter β = 1.2, and scale parameter μ = 1.5 and (b) Gumbel density with
mean 0 and μ = 1, which is log-concave.

the agent finds it optimal to increase effort. In practice, this may occur when it is likely that most agents

generate low outputs while a few agents generate very high outputs in the contest; for example, when

agents’ outputs are evaluated based on popularity among consumers and only few solutions are expected

to be extremely popular (e.g., evaluation based on download counts for apps in the 2012 Samsung Smart

App Challenge).

Condition (ii) in Proposition 1 specifies when agents do not find it beneficial to participate a contest

under the WTA scheme. In this case, the participation constraint (11) is violated under the solution to the

agent’s problem in (12), because each agent’s effort in equilibrium is too high in a WTA contest to be justified

by the expected winner prize. In this case, the WTA scheme cannot be optimal to the organizer because

there is no equilibrium under the WTA. Thus, the organizer may offer multiple awards to strategically

reduce agents’ effort in order to guarantee their participation. Ales et al. (2017) show that the condition

in Proposition 1(ii) holds when agents’ uncertainty is sufficiently low and/or their cost function ψ has

low convexity. This suggests that, all else being equal, the WTA scheme is more likely to be optimal in a

contest that seeks highly technical or innovative solutions that demand more substantial increase in agents’

marginal costs of effort (e.g., an RTP challenge at InnoCentive).

Next, we discuss sufficient conditions for ξ̃i under which the WTA scheme is optimal.

Proposition 2. (Proposition 3 of Ales et al. 2017) Suppose that (11) holds under the WTA award scheme. Then, for

any given A, the WTA award scheme is optimal when the density h(s) of the output shock ξ̃i is log-concave (i.e.,

d2 log h(s)/ds2 ≤ 0 ∀s) or increasing in s.

According to Proposition 2, the WTA award scheme is optimal when the output shock density is log-

concave or increasing. When a density function is log-concave or increasing, no portion of its support is

highly convex and decreasing (e.g., see Figure 1(b)), and hence such a density violates (13) in Proposition 1.

In fact, the class of distributions proposed in Proposition 2 is fairly large because many of the commonly-

used distributions are either log-concave (e.g., Gumbel, exponential, normal, uniform, and logistic distribu-

tions, and Weibull distribution with a shape parameter greater than 1) or increasing (e.g., Weibull distribu-

tion with a shape parameter less than or equal to 1). Thus, in practice, the WTA scheme may be appropriate
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in contests where homogenous agents expect that their outputs will be evenly distributed rather than a few

agents generating very high outputs.

4.2 Open Innovation and Agents’ Incentives

In this section, we build our discussion on Section 4 of Ales et al. (2016) that shows when the organizer

should hold an open contest that allows entry of all agents who wish to participate in the contest. The

number of participants N directly impacts the organizer’s profit Π = Kr (e∗) + E[∑K
j=1 ξ̃N

(j)]− A in two ways.

First, N affects the agent’s equilibrium effort e∗ and hence Kr (e∗), since K is fixed and r(∙) is increasing.

Second, N affects E[∑K
j=1 ξ̃N

(j)], which represents the expected value of the best K outcomes from N random

shocks. It is easy to see that this term increases with N (≥ K) for any K because a more diverse set of

solutions increases the expected value of the best K outputs. Thus, for a given award A, depending on

how e∗ changes with N, Π can increase or decrease with N. When Π is increasing with N, it is optimal for

the organizer to choose an open contest. In the remainder of this section, we first study how the agent’s

equilibrium effort e∗ changes with N, and then when the organizer should choose an open contest.

As the number of participants N increases, one may expect that agents would decrease their ef-

fort e∗ because their individual chance of becoming the winner decreases. Yet, Ales et al. (2016) show,

counter-intuitively, that more participants do not always induce lower efforts from agents. To discuss

this finding, we can derive the equilibrium effort e∗ using the condition ψ′(e∗)/r′(e∗) = AIN , where

IN ≡
∫

s∈Ξ (N − 1) H (s)N−2 h (s)2 ds. Because ψ′/r′ is increasing, the effort e∗ is increasing (resp., decreas-

ing) in N whenever IN is increasing (resp., decreasing) in N; see the following example for illustration.

Example 1. (i) When ξ̃i follows a Weibull distribution with mean 0, shape parameter β = 1, and scale param-

eter μ, we have IN = N−1
μN increasing in N. Thus, e∗ increases with N as well.

(ii) When ξ̃i follows a Gumbel distribution with mean 0 and scale parameter μ, we have IN = N−1
μN2 . In this

case, IN is decreasing in N, and so is e∗.

Ales et al. (2016) explain the intuition for why more participants can increase the equilibrium effort e∗

by analyzing IN as follows. From (12), the agent’s marginal benefit of increasing effort is A(PN
(1))

′[e∗|e∗] =

Ar′(e∗)IN , and it increases with (PN
(1))

′[e∗|e∗] = r′(e∗)IN , which represents a marginal change of the winning

probability with additional effort. Thus, how e∗ changes with N depends not on the winning probability

but on the marginal impact of additional effort on the winning probability. When IN+1 > IN , more intense

competition due to a larger number of agents increases the marginal benefit of an agent’s additional effort

on the probability of winning. In this case, agents increase effort when faced with more intense competition.

Building on this observation, we next presents a necessary and sufficient condition on the output shock

ξ̃i under which the equilibrium effort e∗ decreases with the number agents N, and presents sufficient con-

ditions under which e∗ increases with N.
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Proposition 3. (Proposition 1 in Ales et al. 2016) (a) The equilibrium effort e∗ is non-increasing for any N ≥ 2 if

and only if the density h(s) of the output shock ξ̃i satisfies

∫

s∈Ξ
(1 − H(s))H(s)h′(s)ds ≤ 0. (14)

(b) Suppose h(s) is increasing in s or the symmetric function of h with respect to y-axis, i.e., hr(s) ≡ h(−s) for all s,

satisfies (14) strictly. Then, e∗ is increasing up to some N∗ (where N∗ = ∞ for increasing h).

Condition (14) in Proposition 3(a) ensures that the density h is sufficiently right-skewed as in Example

1(ii), and this condition is satisfied by any symmetric log-concave density (e.g., normal, logistic) as well as

Gumbel and exponential densities. This implies that when agents believe that a bad outcome is at least as

likely as a good outcome, they tend to decrease effort with more participants. On the other hand, whenever

the necessary and sufficient condition given in (14) is violated, Proposition 3(b) shows that the equilibrium

effort e∗ is increasing in N up to some N∗. For example, this condition is violated by a reversed Gumbel

distribution or a Weibull distribution. This implies that when agents expect good outcomes with high like-

lihood, they tend to increase effort with more participants in the contest. This finding is supported from

experimental results of List et al. (2014), which demonstrate that in contests with small size, when agents

know that they have a high chance of getting favorable outcomes, increasing the number of participants

may have positive impact on agents’ efforts (see Ales et al. 2016 for detailed discussion).

We next discuss the findings of Ales et al. (2016) about when the organizer should hold an open contest

that allows all agents who wish to participate in the contest to do so. When the equilibrium effort e∗ is

increasing in the number of agents N, the organizer’s profit increases with N because more participants

in the contest also provide a more diverse set of solutions to the organizer (i.e., increases ∑K
j=1 E[ξ̃N

(j)] as

discussed above). Thus, it is optimal for the organizer to hold an open contest.

When the equilibrium effort e∗ is decreasing in the number of agents N, the organizer’s profit may in-

crease or decrease with N, depending on whether the benefit of having a diverse set of solutions outweighs

the agents’ reduced effort. To quantify the benefit of having a more diverse set of solutions for a general

output shock distribution H(s), the notion of a scale transformation is used. When the output shock ξ̃i is

transformed with scale parameter α, the transformed output shock (i.e., ξ̂i = αξ̃i) has the same mean as ξ̃i

at 0, and its variance is α2 times the variance of ξ̃i. When α > 1, ξ̂i has a larger variance and its density is

more spread out. The following proposition of Ales et al. (2016) shows that when the output shock density

h is sufficiently spread out, an open contest is optimal.

Proposition 4. (Proposition 2 of Ales et al. 2016) For any distribution H of the output shock ξ̃i, there exist α such

that under a scale transformation of ξ̃i with α ≥ α, an open contest with unrestricted entry is optimal for any number

of contributors K.
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Proposition 4 shows that when the agents’ output uncertainty is sufficiently large, an open contest is

optimal. In practice, agents can face large uncertainty when the organizer seeks innovative solutions (e.g.,

writing a software that matches 3D objects with 2D images) rather than low-novelty tasks (e.g., findings

bugs in a software). Similarly, how broadly the organizer’s problem is defined or how objective the evalu-

ation criteria are can play a role in agents’ uncertainty. Overall, Proposition 4 shows that open innovation

initiatives are justified when the organizer seeks innovative solutions for broadly defined problems and/or

with subjective judging criteria.

Ales et al. (2016) further show in their Proposition 3 that the threshold scale parameter α, which is the

minimum α required for an open contest, decreases with the number of contributors K. This suggests that

an open contest is more likely to be optimal when there are more contributors. This result, in conjunction

with Proposition 4, generates insights that are consistent with practice. For example, Samsung Smart App

Challenge and Goldcorp Challenge are open contests, probably because agents face large uncertainty, and

anticipate a large number of contributors. On the other hand, in the design contest for the official emblem

of the 2014 FIFA World Cup, participating agencies were restricted to 25 (James 2014). Although this contest

also involves uncertainty, the restricted entry may be because there is a single contributor.

5 Contests with Heterogenous Agents

In this section, we go back to our general model, and analyze contests where agents feature heterogenous

productivity levels, while suppressing agents’ uncertainty. This model may be suitable for contests in which

agents engage in low-novelty tasks, and their ability levels are highly heterogeneous. For ease of illustration,

we focus on a case with a single contributor (i.e., K = 1) and a linear cost of effort ψ(ei) = cei. This model

corresponds to a special case of Körpeoğlu and Cho (2017) by assuming that the organizer is interested in

only the best solution.

In a symmetric equilibrium, an agent with productivity level ai chooses an effort level according to the

equilibrium effort function e∗(ai), and creates an output y∗(ai). In this case, each agent can decide on an

output level yi by choosing an appropriate effort ei = r−1(yi)/ai because yi = r(aiei). Since agent i does

not know other agents’ ability levels, the equilibrium output ỹ∗ = y∗(ã) is uncertain, where ã is a random

variable that represents another agent’s unknown productivity level. Assuming that y∗ is an increasing

function of a productivity level (verified later), we can write the probability that agent i is better than

another agent as P(yi ≥ ỹ∗) = G
(
(y∗)−1(yi)

)
. Thus, each agent i’s problem in (8) can be rewritten as

max
yi

N

∑
j=1

A(j)
(N − 1)!

(j − 1)! (N − j)!
G
(
(y∗)−1(yi)

)N−j
(1 − G

(
(y∗)−1(yi))

)j−1
− cr−1(yi)/ai. (15)

In equilibrium, yi = y∗ (ai) for all agents with productivity ai. Thus, for agent i to participate, the utility

from the contest must be non-negative; i.e.,
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N

∑
j=1

A(j)
(N − 1)!

(j − 1)! (N − j)!
G (ai)

N−j (1 − G (ai))
j−1 − cr−1(y∗(ai))/ai ≥ 0. (16)

Lastly, given the equilibrium effort e∗ (ai) = r−1(y∗(ai))/ai, the organizer’s profit in (6) becomes:

Π =
∫ a

a
r (aie

∗ (ai)) gN
(1) (ai)dai − A. (17)

In §5.1 we study the optimal award scheme, and in §5.2 we analyze the decision of the organizer to hold an

open contest or restrict entry to the contest.

5.1 Optimal Award Scheme

In this section, as in §4.1, we discuss when the WTA award scheme is optimal. The result of this section is

new, so its proof is presented in Appendix. Suppose that the organizer distributes two prizes to the winner

and the runner-up with a total prize of A. (The analysis can easily be generalized to multiple prizes.) Let

α ∈ [0,0.5] be a proportion of the total prize that is awarded to the runner-up. Then., the winner prize

A(1) = (1 − α)A and the runner-up prize A(2) = αA. To investigate when the WTA (i.e., α = 0) is optimal,

we use a specific functional form for the effort function r (e) = θ e1−b−1
1−b (where b ≥ 0), which is a Constant

Relative Risk Aversion (CRRA) function. The CRRA effort function collapses to the linear effort function of

Moldovanu and Sela (2001) and Mihm and Schlapp (2016) when b = 0 (i.e., limb→0 θ e1−b−1
1−b = θe), and to the

logarithmic effort function of Terwiesch and Xu (2008) when b = 1 (i.e., limb→1 θ e1−b−1
1−b = θ log e).

Proposition 5. Let r(e) = e1−b−1
1−b . There exists b0 such that for all b ≤ b0, it is optimal for the organizer to set α = 0.

In contrast, when
∫ a

a ai (aie∗(ai))
−b ∂e∗(ai)

∂α gN
(1)(ai)dai > 0, it is optimal for the organizer to set α > 0.

Proposition 5 shows that the WTA scheme is optimal when the concavity of the effort function (captured

in parameter b) is small; this result is also illustrated in Figures 2(a)-(b). In contrast, as Figure 2(c) depicts,

when b is large, the organizer’s profit improves by increasing the weight on the second prize, so the WTA

scheme is suboptimal. To understand the intuition behind this result, we need to analyze the derivative of

the organizer’s profit with respect to the weight on the second prize α:

∂Π
∂α

= θ
∫ a

a
ai (aie

∗(ai))
−b ∂e∗ (ai)

∂α
gN
(1)(ai)dai. (18)

As the organizer increases the weight on the second prize, agents with low productivity increase effort (i.e.,
∂e∗(ai)

∂α > 0 for small ai) and agents with high productivity reduce effort (i.e., ∂e∗(ai)
∂α < 0 for large ai). There are

two forces that determine whether the former effect or the latter effect dominates. On the one hand, because

the organizer is interested in the best output, the organizer has larger weight on the effort of the high-

productivity agents than low-productivity agents. On the other hand, because the equilibrium output y∗(ei)

is increasing in ai, and the effort function r is concave, additional effort by low-productivity agents leads

to larger increase in their outputs (i.e., (aie∗(ai))
−b is decreasing in ai). When the effort function is linear or

close to linear (i.e., b is small), the negative effect of the second prize (i.e., αA) on the equilibrium effort of
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Fig. 2 The organizer’s profit Π as a function of the weight on the runner-up prize α when ã ∼ Uniform(0,1), N = 10, r(e) =
e1−b

1−b , A = 1, and c = 0.1.

high-productivity agents outweighs its positive effect on the equilibrium effort of low-productivity agents,

so the WTA scheme is optimal. When the effort function is highly concave (i.e., b is large), additional effort

by low-productivity agents leads to significant increase in their outputs so it is optimal for the organizer to

offer a second prize.

Proposition 5 is similar to Propositions 2 and 5 of Moldovanu and Sela (2001), who study a cost-based

heterogeneity model with r(ei) = ei, and all contributors (i.e., K = N). Their Proposition 2 shows that the

WTA scheme is optimal when the cost of effort ψ is linear. Proposition 5 in Moldovanu and Sela (2001)

assumes convex ψ, and proposes a necessary and sufficient condition for the WTA scheme to be suboptimal.

Our Proposition 5 extends their results to the productivity-based model where the organizer is interested

in the best solution (i.e., K = 1), and shows that the concavity of the effort function r is another factor that

affects the optimality of the WTA scheme.

5.2 Open Innovation and Agents’ Incentives

In this section, we discuss when the organizer should allow the entry of all agents who wish to participate

in a winner-take-all contest. We build on Section 3 of Körpeoğlu and Cho (2017). As in §4.2, we first discuss

how the equilibrium output changes with the number of agents in the contest. Then, we present an original

result regarding the impact of the number of agents on the organizer. Before describing how the equilibrium

effort and output change with the number of agents N, we present the following result from Körpeoğlu

and Cho (2017). The lemma characterizes the equilibrium effort and output under the WTA scheme, while

generalizing this lemma to the case with multiple awards in Lemma A1 of Appendix.

Lemma 2. (Lemma 1 of Körpeoğlu and Cho 2017) In a productivity-based project with a general productivity

distribution G and a general effort function r, an agent with productivity ai has equilibrium effort e∗ (ai) =
A

cai

∫ ai
a agN−1

(1) (a)da and equilibrium output y∗ (ai) = r
(

A
c

∫ ai
a agN−1

(1) (a)da
)

.

We discuss how the agent’s output y∗ and effort e∗ change with the number of agents N, by contrasting

the implications of our model with empirical observations. Let y∗,N and e∗,N denote the agent’s output and

effort, respectively, when there are N agents in the contest. Figure 3(a), adapted from Figure 7 of Boudreau

et al. (2012), depicts how the agent’s output changes with an additional high-ability “superstar” (dotted
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Fig. 3 The impact of an additional agent on the agent’s output: (a) empirical observation in Boudreau et al. (2012), and (b) our

theoretical prediction of y∗,N+1 − y∗,N when G ∼Beta with parameters 1 and 0.75; N = 10, r(e) = e0.9

0.9 , A = 1, and c = 0.1.

curve) or an additional lower-ability “non-superstar” (normal curve) in software development contests

organized by TopCoder. For both cases, an additional agent has a minimal effect on low-ability agents with

TopCoder rating less than 2000, whereas it has a negative effect on moderate-ability agents with TopCoder

rating between 2000 and 2400, and it has a positive effect on high-ability agents with TopCoder rating over

2400. To compare such empirical observation with our theoretical prediction, we illustrate the impact of

an additional agent on the output of agents with different productivity levels in Figure 3(b) by plotting

y∗,N+1(ai) − y∗,N(ai) over ai. One can clearly see that the patterns in Figure 3(a) are strikingly similar to

those in Figure 3(b).

In order to identify the factors that derive the patterns in Figures 3(a) and 3(b), we utilize the findings

of Körpeoğlu and Cho (2017). Specifically, using their equation (6), we can write y∗,N as:

y∗,N (ai) = r

(
A
c

GN−1
(1) (ai) E[ãN−1

(1) |ãN−1
(1) < ai]

)

. (19)

In (19), there are two opposing forces that influence agent i’s equilibrium output with an increase of N.

First, a higher N reduces agent i’s probability of winning the contest, which corresponds to the probability

of having a higher productivity than all other agents; i.e., P(ãN−1
(1) < ai) = GN−1

(1) (ai), decreases with N. Sec-

ond, Körpeoğlu and Cho (2017) show in their Proposition 1 that a larger N raises the expected productivity

of the runner-up, given that agent i is the winner, E[ãN−1
(1) |ãN−1

(1) < ai]. This second effect creates positive in-

centives for some agents to exert higher effort and improve output in order to win the contest. Depending

on which of these two opposing forces dominates, agent i may generate a better or worse output y∗,N(ai).

Low-ability agents are hardly affected by increased competition because they already exert minimal effort

due to low chances of wining. Moderate-ability agents tend to have lower effort and hence worse out-

puts because the impact of increased competition on their winning probability (i.e., GN
(1)(ai)) is dominant.

High-ability superstars, who have higher winning probabilities, tend to increase effort and hence improve

outputs because the incentives for exerting higher efforts to win the contest are stronger for them (i.e., an

increase of E[ãN−1
(1) |ãN−1

(1) < ai] outweighs a decrease of GN
(1)(ai)).
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Fig. 4 The density g(a) for (a) beta distribution with parameters d and 1, (b) beta distribution with parameters 1.5 and 1.5, and
(c) log-normal distribution with log-scale parameter 0 and shape parameter 1.

Finally, we discuss when an open contest is optimal. An open contest is optimal when the organizer’s

profit increases with additional agents in the contest. Due to agents’ heterogeneous response to additional

agents in the contest, the organizer faces a trade-off when determining whether to allow more agents in the

contest. More agents in the contest induce higher efforts from high-productivity agents, but reduce efforts

of moderate-productivity agents. Because the organizer knows only the distribution of productivity levels

of agents but does not know their exact productivity levels a priori (for example, it is possible that all agents

have moderate productivity), it is not clear whether the organizer should hold an open contest. To illustrate

when an open contest is optimal, we consider a special case with a CRRA effort function r(e) = θ e1−b−1
1−b

(with b ∈ [0,1]) and a generalized beta distribution that encompasses a beta distribution (when a = 1) with

parameters d and 1 including uniform as shown in Figure 4(a).

Proposition 6. When r(e) = θ e1−b−1
1−b , and ã ∈ [0, a] follows G (ai) = ad

i /ad (where b ∈ [0,1] and d > 0), an open

contest is optimal.

To build intuition for Proposition 6, we rewrite the organizer’s profit Π as follows:

Π =
∫ a

a
y∗,N(ai)gN

(1)(ai)dai − A = E[r(ãN
(1)e∗,N(ãN

(1)))] − A. (20)

The number of agents N has three effects on the organizer’s profit Π. First, an increase in N reduces the

equilibrium effort e∗,N of moderate-productivity agents (i.e., e∗,N(ai) is decreasing in N for moderate val-

ues of ai). Second, a higher N raises e∗,N for high-productivity agents. Third, the productivity level of the

highest-productivity agent in the contest, ãN
(1), stochastically increases with N (i.e., ãN+1

(1) first-order stochas-

tically dominates ãN
(1)). Proposition 6 indicates that the second and third effects outweigh the decreased

effort from moderate-productivity agents. Thus, the organizer’s profit increases with the number of agents

N, so an open contest is optimal. While Proposition 6 shows the optimality of open contests for the general-

ized beta distribution, our supplementary numerical analysis verifies that this is also true for various other

distributions such as symmetric beta distribution (Figure 4(b)) or a log-normal distribution (Figure 4(c)).
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6 Conclusion and Future Research

Innovation contests are becoming an ever more popular instrument for research and development. This

transformation makes the research in the optimal design of contests of first-order importance. This chapter

contributes to this research agenda by proposing a general model framework that encompasses commonly

used models in the literature, and discussing two of the organizer’s important decisions: How to award

agents and whether to allow unrestricted entry to the contest. Our hope is that this chapter can serve as a

building block for future contest research, and insights we provide can help both theorists and practitioners.

Research in innovation contests is still relatively young, and there are many interesting open questions.

First, prior literature as well as this chapter has assumed a fixed contest duration, but the duration of a

contest is also a strategic decision that organizers make in practice. The exploration of the optimal contest

duration is an important future research direction. Second, we have adopted a relative compensation rule

in awarding agents. Comparison of this compensation rule with other possible compensation rules may

shed some light on why the relative compensation rule is so popular in practice. Third, we have considered

a case in which the organizer is interested in a fixed number of solutions, and an interesting future research

direction is to analyze a case in which the number of solutions organizer utilizes is endogenous to agents’

solution qualities and the cost of implementing those solutions. Finally, characterizing equilibrium under

both agent heterogeneity and uncertainty in a general form is an important research to pursue.

Overall, pioneering work in innovation contests has demonstrated that even the questions that have

already been studied by prior economics literature can have completely different answers when considering

the unique properties of innovation contests such as the impact of agents’ uncertainty on the organizer’s

profit and the fact that the organizer is interested in only the best solution(s). Furthermore, the rapid growth

of contest platforms such as InnoCentive poses new questions that were not relevant before. With abundant

potential for interesting, practically relevant, and important research questions, innovation contests are an

exciting area for future research.
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Appendix

Proof of Lemma 1(b). We use superscript P to denote productivity-based model and superscript C to

denote cost-based model. Consider the productivity-based model with the output function y(ai, ei, ξ̃i) =

r(aiei) + ξ̃i, where ai is a heterogeneous productivity level. Let νi = aiei. Let ν∗(ai) = aie∗(ai) be a best-

response function for agent i with productivity ai, where e∗ is the best-response effort. In this model, from

agent i’s perspective, another agent’s output is a random variable ỹ∗,P ≡ y∗,P(ãk) = r(ν∗,P(ãk)) + ξ̃k. Thus,

in a productivity-based model, an agent i solves:

max
νi

N

∑
j=1

PN
(j)[νi,ν

∗,P]A(j) − ψ(νi/ai), (21)

where PN
(j)[νi,ν∗,P] =

∫
s∈Ξ

(N−1)!
(j−1)!(N−j)! P{r(νi) + s > ỹ∗,P}N−jP{r(νi) + s < ỹ∗,P}j−1h(s)ds. In a cost-based

model, all agents except agent i have ν∗,C(ci). We will construct a bijective mapping η : R+ → R+ from

an agent’s cost ci to a productivity ai (i.e., η(ci) = ai) such that given that all other agents have ν∗,P(ai) =

ν∗,C(ci), agent i will have the same best-response ν. Define agent i’s productivity as ai = η(ci) = 1/ci.

Given ν∗,P(ai) = ν∗,C(ci), another agent’s output is the following random variable: ỹ∗,C ≡ r(ν∗,C(c̃j)) +

ξ̃ j = r(ν∗,P(ãj)) + ξ̃ j = ỹ∗,P. Then, in a cost-based model, PN
(j)[νi,ν∗,C] =

∫
s∈Ξ

(N−1)!
(j−1)!(N−j)! P{r(νi) + s >

ỹ∗,C}N−jP{r(νi) + s < ỹ∗,C}j−1h(s)ds, and hence

argmax
νi

N

∑
j=1

PN
(j)[νi,ν

∗,C]A(j) − ψ(ciνi) = argmax
νi

N

∑
j=1

PN
(j)[νi,ν

∗,P]A(j) − ψ(νi/ai), (22)

where the equality follows because ν̃∗,C = ν̃∗,P and ci = η−1(ai) = 1/ai. Thus, the agent’s problem in a cost-

based model is equivalent to the agent’s problem in a productivity-based model. As a result, given that all

http://www.topcoder.com/press/
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other agents have output ν∗,P(ai) = ν∗,C(ci), by using the mapping η, we obtain the same best response

for agent i under both models. Thus, in equilibrium, cost-based and productivity-based models satisfy

ν∗,P(ai) = ν∗,P(η(ci)) = ν∗,C(ci) = ν∗,C(1/ai). Finally, using ã = η(c̃) = 1/c̃, we obtain

G(ai) = P(ã ≤ ai) = P(1/c̃ ≤ ai) = P(1/ai ≤ c̃) = 1 − Φ(1/ai).

Lemma A1. In a productivity-based project with two prizes, a general productivity distribution G and effort function

r, an agent with productivity ai has the following equilibrium effort:

e∗ (ai) =
1
ai

∫ ai

a

a
c

[
A(1)gN−1

(1) (a) + A(2) (N − 1)
(

gN−2
(1) (a) − gN−1

(1) (a)
)]

da. (23)

Proof of Lemma A1. First, suppose that all agents except agent i have output based on the best-response

output function y∗ (ai), which is assumed to be continuously differentiable and increasing in the produc-

tivity level ai. We can write the best-response effort as e∗ (ai) = r−1 (y∗ (ai))/ai. Output yi of agent i with

productivity level ai is determined by the following problem:

max
yi

A(1)GN−1
(1)

(
(y∗)−1(yi)

)
+ A(2) (N − 1)

[
GN−2

(1)

(
(y∗)−1(yi)

)
− GN−1

(1)

(
(y∗)−1(yi)

)]
− cr−1 (yi)/ai.

The first-order condition evaluated at yi = y∗(ai) gives (note that y∗ (ai) = r (aie∗ (ai)))
[

A(1)gN−1
(1) (ai) + A(2) (N − 1)

(
gN−2
(1) (ai) − gN−1

(1) (ai)
)] 1

(y∗)′(ai)
−

c
air′(r−1(y∗(ai))

=

[
A(1)gN−1

(1) (ai) + A(2) (N − 1)
(

gN−2
(1) (ai) − gN−1

(1) (ai)
)]

r′(aie∗ (ai)) [ai(e∗)′ (ai) + e∗ (ai)]
−

c
air′(aie∗ (ai))

= 0. (24)

Multiplying both sides of (24) with air′(aie∗ (ai)) [ai(e∗)′ (ai) + e∗ (ai)]/c, we obtain

ai

c

[
A(1)gN−1

(1) (ai) + A(2) (N − 1)
(

gN−2
(1) (ai) − gN−1

(1) (ai)
)]

−
[
ai(e∗)′ (ai) + e∗ (ai)

]
= 0. (25)

Since y∗(ai) is increasing, in a contest with N > 2, the least productive agent cannot win A(1) or A(2), so ex-

erts zero effort (i.e., e∗(a) = 0). Thus, e∗ (ai) = 1
ai

∫ ai
a

a
c

[
A(1)gN−1

(1) (a) + A(2) (N − 1)
(

gN−2
(1) (a) − gN−1

(1) (a)
)]

da

is the solution to the solution of (25). Therefore, the equilibrium output function y∗(ai) is

y∗ (ai) = r

(∫ ai

a

a
c

[
A(1)gN−1

(1) (a) + A(2) (N − 1)
(

gN−2
(1) (a) − gN−1

(1) (a)
)]

da

)

. (26)

Finally, we verify that the equilibrium output function y∗ (ai) is continuously differentiable and increas-

ing in ai. Since all of the terms inside the integral in (26) are continuously differentiable in ai, and r

is continuously differentiable, so is y∗. Taking the derivative of y∗ (ai) with respect to ai, we obtain

(y∗)′ (ai) = r′
(∫ ai

a φ(a)da
)
× φ(ai), where φ(ai) ≡

ai
c [A(1)gN−1

(1) (ai) + A(2)(N − 1)(gN−2
(1) (ai) − gN−1

(1) (ai))].

Thus, y∗ is increasing because r′ > 0, and A(1) ≥ A(2) implies

φ(ai) ≥
ai

c

[
A(2)gN−1

(1) (ai) + A(2) (N − 1)
(

gN−2
(1) (ai) − gN−1

(1) (ai)
)]

=
ai A(2)

c
(N − 2) (N − 1)G (ai)

N−3 g (ai) [1 − G (ai)] > 0.
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Then, y∗(ai) = r(aie∗(ai)) is the agent’s equilibrium output proposed in the lemma.

Proof of Proposition 5. The derivative of V with respect to α is

∂V
∂α

=
∫ a

a
air

′ (aie
∗ (ai))

∂e∗ (ai)
∂α

gN
(1) (ai)dai. (27)

To evaluate (27), we need the equilibrium effort e∗ (ai) and its derivative with respect to α. If we substitute

A(1) = (1 − α)A, A(2) = αA into (23), and take derivative of e∗ (ai) with respect to α, we obtain ∂e∗(ai)
∂α =

A
ai

∫ ai
a

a
c

[
(N − 1) gN−2

(1) (a) − NgN−1
(1) (a)

]
da. Under CRRA function, noting that r′ (e) = θe−b, (27) becomes

∂V
∂α

= θ
∫ a

a
ai (aie

∗(ai))
−b ∂e∗ (ai)

∂α
gN
(1)(ai)dai. (28)

If ∂V
∂α > 0, it is optimal for the organizer to set α > 0 which proves the second part of the proposition.

When b = 0 (i.e., r (e) = θe), (28) becomes

∂V
∂α

=
∫ a

a

∫ ai

a

Aθa
c

[
(N − 1) gN−2

(1) (a) − NgN−1
(1) (a)

]
gN
(1) (ai)dadai

=
∫ a

a

Aθa
c

[
gN−1
(2) (a) − gN

(2) (a)
]
(

1 − GN
(1) (a)

)

1 − G (a)
da, (29)

because NgN−1
(1) (a) = N(N − 1)G(a)N−2g (a) = N(N−1)(1−G(a))G(a)N−2g(a)

(1−G(a)) =
gN
(2)(a)

(1−G(a)) . Thus,

∂V
∂α

=
Aθ

c
(E[ãN−1

(2) (
N−1

∑
j=1

G(ãN−1
(2) )j)] − E[ãN

(2)(
N−1

∑
j=1

G(ãN
(2))

j)N)]) < 0,

where the inequality follows because a
(

∑N−1
j=0 G(a)j

)
is an increasing function of a, and ãN

(2) is larger than

ãN−1
(2) in the sense of first-order stochastic dominance (cf. Theorem 1.A.8 of Shaked and Shanthikumar 2007).

Thus, it is optimal for the organizer to set α = 0. When b > 0, it is not difficult to verify that ∂V
∂α is continuous

in b because all terms in (28) are continuous in b. Then, for sufficiently small b, we have ∂V
∂α < 0. Therefore,

there exists b0 > 0 such that for all b < b0, it is optimal for the organizer to set A(1) = A and A(2) = 0.

Proof of Proposition 6. Suppose that ã ∈ [0, a] follows G (ai) = ad
i /ad. Substituting the effort e∗ (ai) =

Ad(N−1)
c(d(N−1)+1)

( ai
a

)d(N−1) and r(e) = θ e1−b−1
1−b in y∗(ai) = r (aie∗ (ai)) yields

y∗(ai) =
θ

1 − b

(
ai Ad (N − 1)

c (d (N − 1) + 1)

( ai

a

)d(N−1)
)1−b

−
1

1 − b
.

Noting that gN
(1)(ai) = nG(ai)N−1g(ai) = Nd

a

( ai
a

)d(N−1)+d−1, we can the organizer’s profit as

Π =
∫ a

0

[
aAd (N − 1)

c (d (N − 1) + 1)

]1−b ( ai
a

)[d(N−1)+1](1−b) − 1

1 − b

[
Nd
a

( ai

a

)d(N−1)+d−1
]

dai − A

=
[

aAd (N − 1)
c (d (N − 1) + 1)

]1−b d
(1 − b)

[
N

[d(N−1)+1](1−b)+Nd

]

−
1

1 − b
− A.
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Let W(N) = ad(N−1)
c(d(N−1)+1)

([
dN

[d(N−1)+1](1−b)+Nd

]) 1
1−b

. Noting that Π = A1−bW(N)1−b

1−b − 1
1−b − A is concave in A,

the optimal winner prize A∗ = W(N)
1−b

b . Substituting A∗ back to Π, we get

Π =
W(N)(1−b)( 1−b

b +1)

1 − b
−

1
1 − b

− W(N)
1−b

b = W(N)
1−b

b

[
1

1 − b
− 1

]

−
1

1 − b
=

W(N)
1−b

b

1 − b
b −

1
1 − b

.

Because W(N) is increasing with N, so is Π.
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