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Abstract. Master Production Schedules (MPS) are widely used in industry especially

within Enterprise Resource Planning (ERP) software. The classical approach for generating

MPS assumes infinite capacity, fixed processing times and a single scenario for demand fore-

casts. In this paper, we questioned these assumptions and considered a problem with finite

capacity, controllable processing times, and several demand scenarios instead of just one.

We used a multi-stage stochastic programming approach in order to come up with maximum

expected profit given the demand scenarios. Controllable processing times enlarges the solu-

tion space so that the limited capacity of production resources are utilized more effectively.

We proposed an effective formulation which enabled an extensive computational study. Our

computational results clearly indicate that MPS problems could be solved to optimality

using multi-stage stochastic programming approach instead of relying on relatively simple

heuristic methods, and controllability increases the performance of multi-stage solutions.

1. INTRODUCTION

Master Production Schedules (MPS) are widely used by manufacturing facilities to handle

the production and scheduling decisions. In the current industry practice, MPS produces the

production schedules in a finite planning horizon assuming infinite capacity, fixed processing

times, and deterministic demand. As an example, the largest auto manufacturer in Turkey

recently introduced a new multi-purpose vehicle to the market. The company installed a new

single production line with a limited production capacity and dedicated it to this particular
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model. Since the production facilities are flexible, the processing times can be altered or

controlled (albeit at higher manufacturing cost) by changing the machining conditions in

response to the demand changes. As this model is new, the company generated different

demand scenarios for each time period. One of the important planning problems is to

develop a master production schedule to decide on how many units of this new model will be

produced in each time period along with the desired cycle time or equivalently the optimal

processing times to satisfy the demand and available capacity constraints with the aim of

maximizing the total profit. This plan will be used in their ERP system as an important

input to the materials management module to explode the component requirements and to

generate the required purchase and shop floor orders for the lower level components.

Motivated by this application, we consider the following problem setting. We have a single

work center with controllable processing times. The work center produces a single product

type which has a given price, manufacturing cost function, processing time upper bound,

i.e., processing time with minimum cost, and maximum compressibility value. As in the case

of MPS, we have a finite planning horizon. The orders arrive at the beginning of each period

and the products are replenished at the end of the period. There is an additional cost of

postponement if the replenishment cannot be done by the end of the period.

The demand of the first period is assumed to be known with certainty prior to scheduling.

However, the demand of the other periods are uncertain; possible scenarios for demand

realizations and their associated probabilities are known. In our MPS calculations, the

number of units of demand is defined in terms of the multiples of a base unit. Therefore, a

job represents the amount of one base unit. Our objective is to maximize the total expected

profit by deciding how many units to produce, when to produce and how to produce them,

i.e., the required processing times.

Our aim in this paper is to question the basic assumptions of MPS on infinite capacity, fixed

processing times, and deterministic demand, and to propose a new approach which overcomes

to an extent the disadvantages caused by these assumptions and is computationally efficient.
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In the remaining part of this section, we briefly summarize the existing work on MPS,

scheduling with controllable processing times, and multi-stage stochastic programming. We

conclude the section with an example that motivates our study.

1.1. Master Production Scheduling. The classical approach for generating Master Pro-

duction Schedules assumes known demands, infinite capacity, and fixed processing times. In

the current literature on MPS, the demand uncertainty is ignored during the schedule gener-

ation. As a result, the main research focuses on the length of the frozen time period, i.e., the

number of periods in which the production scheduling decisions are not altered even when

the demand realizations turn out to be different than the estimates. The longer frozen time

period will be less responsive to the demand changes, but creates less nervousness, while the

shorter one will act oppositely. The studies by Sridharan et al. (1987) and Tang and Grubb-

ström (2002) are good examples that consider the effect of the length of the frozen zone on

production and inventory costs. Based upon his industry practice, Vieira (2006) pointed out

that the real complexity involved in making a master plan arises when capacity is limited

and when products have the flexibility of being produced at different settings. As opposed

to the current literature, we consider different demand scenarios with given probabilities

along with the controllable processing times and finite capacity of the available production

resources while generating the schedule.

1.2. Controllable Processing Times. There are several instruments that can be used to

control the processing times. For example, in computer numerical control (CNC) machining

operations, the processing time can be controlled by changing the feed rate and the cutting

speed. As you increase the cutting speed and/or the feed rate, the processing time of the

operation is compressed at an additional cost that arises due to increased tooling costs

as discussed in Gurel and Akturk (2007). This results in a strictly convex cost function for

compression. Cheng et al. (2006) study a single machine scheduling problem with controllable

processing times and release dates. They assume that the cost of compression is a linear

function of the compression amounts. Leyvand et al. (????) provide a unified model for

solving single-machine scheduling problems with due date assignment and controllable job-

processing times. They assume that the job-processing times are either a linear or a convex
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function of the amount of a continuous and nonrenewable resource that is to be allocated

to the processing operations. In this study, we define the compression cost function f(y) =

κ · ya/b where y is the amount of compression, a and b are two positive integers such that

a > b > 0, and κ is a positive real number.

A review of scheduling with controllable processing times can be found in Shabtay and

Steiner (2007). As far as our problem is concerned, controllable processing times may con-

stitute a flexibility in capacity since the maximum production amount can be increased

by compressing the processing times of jobs with, of course, an additional amount of cost.

Thus, it brings up the trade-off between the revenue gained by satisfying an additional de-

mand and the amount of compression cost. The value of the controllable processing times

becomes even more evident during the current economic crisis, since it allows companies

to adjust their production quantities more effectively to meet the immediate demand that

varies significantly during the planning horizon.

1.3. Multi-stage Stochastic Programming. Stochastic programming uses mathemati-

cal programming to handle uncertainty. Although deterministic optimization problems are

formulated with parameters that are known with certainty, in real life, it is difficult to know

the exact value of every parameter during planning. Stochastic programming handles un-

certainty assuming that probability distributions governing the data are known or can be

estimated. The goal here is to maximize the expectation of some function of the decisions

and the random variables. Such models are formulated, analytically or numerically, solved

and then analyzed in order to provide useful information to a decision-maker.

Two-stage stochastic programs are the most widely used versions of stochastic programs.

The decision maker takes some action in the first stage, after which a random event occurs

affecting the outcome of the first-stage decision. A recourse decision can then be made in

the second stage to compensate for any bad effect that might have been experienced as

a result of the first-stage decision. A detailed explanation of stochastic programming, its

applications, and solution techniques can be found in Birge and Louveaux (1997) and a survey

of two-stage stochastic programming is given in Schultz et al. (1996). Shmoys and Sozio

(2007) apply two-stage stochastic programming to single machine scheduling and propose
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approximation algorithms. Using more than one stage in decision making is also utilized

in robust optimization. Atamtürk and Zhang (2007) apply two-stage robust optimization

to network flow and design problems. They give a numerical example which explains the

benefit of using two stages instead of a single one.

In multi-stage stochastic programming, decisions are made in several decision stages in-

stead of two. At each stage, a different decision is made or recourse action is taken. Multi-

stage stochastic programming models may yield better results than two-stage models since

they incorporate more future data as they become available, hence enables decision making

in a less uncertain environment. On the other hand, they are generally more difficult to

solve than their two-stage counterparts. Therefore, their applications are rare compared to

two-stage stochastic programming. Karabuk (2008) applied multi-stage stochastic program-

ming to production planning in textile manufacturing, whereas Balibek and Koksalan (2010)

applied a multi-objective multi-stage stochastic programming approach for the public debt

management problem. Guan et al. (2006) studied the uncapacitated lot-sizing problem and

Ahmed et al. (2003) studied the capacity expansion problem with uncertain demand and cost

parameters. Huang and Ahmed (2009) provided analytical bounds for the value of multistage

stochastic programming over the two-stage approach for a general class of capacity planning

problems under uncertainty. To the best of our knowledge, there is no study in the literature

which applies multi-stage stochastic programming to master production scheduling.

Stochastic programming problems are generally considered to be difficult problems (Dyer

and Leen, 2006). However, in this paper, we provide a formulation for our problem which is

solved efficiently for large size problems.

When the uncertain parameters evolve as a discrete time stochastic process with finite

probability space, the uncertainty can be represented with a scenario tree. Figure 1 depicts an

example of a scenario tree. The nodes of the tree represent demand scenarios for periods. For

each node, we give in parenthesis, the node number, the probability (not the conditional but

the actual probability) of realization of that node, and the corresponding demand realization.

For instance, node 2 corresponds to the scenario in which a demand of four is realized at

period 2 and its probability is 0.7. A path starting from the root node and ending at a
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(1 , 1 , 5)

(2 , 0.7 , 4)

(4 , 0.21, 2)

(5 , 0.28, 3)

(6, 0.21, 4) 

(3 , 0.3 , 7)

(7 , 0.12, 5)

(8 , 0.18, 1)

Figure 1. A scenario tree for three periods

leaf node represents a scenario in the decision tree and each scenario path can be uniquely

defined by a leaf node. For instance 1-2-6 is a path which can uniquely be represented by

node 6.

In our master production scheduling problem, we use a multi-stage stochastic programming

approach and a scenario tree in order to handle the uncertainty in demand. Since the

information on the demand of each period becomes available at the beginning of the period,

our decision stages correspond to periods.

The benefits of using a multi-stage stochastic programming approach instead of using fixed

demand estimates as in the case of the classical MPS is illustrated in the following example.

Example 1. Consider the scenario tree in Figure 1. In classical MPS, the planner needs to

define fixed values for demand realizations. There are several strategies available to choose

this single scenario:

1) Choosing the most likely scenario, which is 1-2-5,

2) Choosing the most optimistic scenario, which is 1-3-7,

3) Choosing the most pessimistic scenario, which is 1-2-4, and

4) Using rounded expected demand values. In our example, this corresponds to the scenario

in which the demands are 5, 5, and 3 for the first three periods, respectively.

The fifth option is to use multi-stage stochastic programming. Suppose that the compres-

sion cost function is f(y) = y
3
2 , the net unit revenue is 60, the time required to process a job
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at minimum cost is 10 time units, maximum compression amount is 4 time units, and the

capacity is 36 time units. For simplicity, we assume that the postponement and the shortage

costs are zero. The cost that is incurred due to excess production is ξ per item. We do not

assign a value to ξ at this point since we do not want this assumption to effect the overall

results.

In Table 1, we report the maximum profits for each strategy and scenario realization.

Clearly, the solutions based on single scenarios have the best performance for their own

scenarios. However, we observe that they have very poor results if the realized scenario is

different. The multi-stage stochastic programming solution has the best or the second best

performance in all scenarios and has the maximum expected profit.

Table 1. Maximum profits of different strategies.

Possible strategies

Realized scenario Prob Pessimistic Most likely Optimistic Expected demand Multi-stage

1-2-4 0.21 628.4 568.4 - ξ 485.8 - 6ξ 588.4 - 2ξ 604.2

1-2-5 0.28 628.4 672.6 545.8 - 5ξ 648.4 - ξ 664.2

1-2-6 0.21 628.4 672.6 605.8 - 4ξ 708.4 708.4

1-3-7 0.12 628.4 672.6 845.8 708.4 845.8

1-3-8 0.18 628.4 672.6 605.8 - 4ξ 708.4 672.9

Expected profit 628.4 650.7 - 0.2ξ 592.6 - 4.2ξ 666.4 - 0.7ξ 684.2

Another possible measure that can be used to evaluate the performance of strategies is

the relative regret. The relative regret of a solution at a given scenario is the percentage

difference between the profit of this solution and the optimal profit in that scenario. To

calculate the relative regrets, we need to assign a value to ξ. We consider a relatively small

ξ = 10. The results are given in Table 2.

Here we see that the relative regret of the multi-stage stochastic programming solution is

very small compared to the ones of the other solutions when the solution is not optimal for the

scenario in consideration. In all cases, the profit of the multi-stage stochastic programming

solution is within 5% of the actual optimal profit while the profits of the other solutions may

deviate up to 32%.
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Table 2. Relative regrets of different strategies.

Possible strategies

Realized scenario Prob Pessimistic Most likely Optimistic Expected demand Multi-stage

1-2-4 0.21 0.0 11.1 32.2 9.5 3.9

1-2-5 0.28 6.6 0.0 26.3 5.1 1.2

1-2-6 0.21 11.3 5.1 20.1 0.0 0.0

1-3-7 0.12 25.7 20.5 0.0 16.2 0.0

1-3-8 0.18 11.3 5.1 20.1 0.0 5.0

Expected Regret 10.0 7.1 21.2 5.5 2.0

Therefore, we conclude that, in this example, using a multi-stage stochastic programming

approach instead of using fixed demand estimates significantly improves the outcomes.

Using controllable processing times instead of fixed processing times also increases the

performance of the schedules. For instance, in this example, the profit of the multi-stage

stochastic programming solution decreases to 540 in every scenario if the processing times

are fixed. This clearly indicates that the controllability of processing times enlarges our

solution space and enables us to utilize the limited capacity of the production resources

more effectively.

The structure of the paper is as follows. In Section 2, we give the notation and a nonlinear

and a linear integer programming formulation. Then we study two subproblems and use

the outcomes of this study to derive an alternative linear integer programming formulation,

which turns out to be quite efficient. In section 3, we introduce two trivial cases and analyze

two special cases of the problem that are polynomially solvable. In section 4, we present

and discuss the results of our computational study, with emphasis on the assumptions of the

traditional MPS on infinite capacity, fixed processing times, and deterministic demand. We

conclude the paper in Section 5.

2. THE MULTI-STAGE STOCHASTIC PROGRAMMING MODELS

As explained above, we have a capacitated version of the MPS where the demand is

uncertain and the processing times are controllable. Thus, the decisions involved in this

problem are how much to produce, when to produce, and the processing times.
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In this section, we first give a nonlinear formulation that decides on when to produce and

how much to produce assuming that the profit of producing a certain number of jobs is given.

After that, we introduce an equivalent linear integer programming formulation.

Afterwards, we study two subproblems. The outcomes of our study of the first subproblem

is used to decide on the optimal processing times and to compute the profit of producing a

given number of jobs. We use the results on the second subproblem to reduce the size of our

formulation. Finally, we give an alternative linear formulation using these results.

2.1. Notation and Problem Definition. Let T be the number of periods in the planning

horizon. Let N be the set of nodes of the scenario tree and Nt be the set of the nodes of

period t = 1, 2, ..., T . For node i ∈ N , let di be the demand estimate in the corresponding

scenario, Di be the set of descendants of i including i, Bi be the set of predecessors of i

including i, γi be the probability of realization of node i with γ1 = 1, and finally si be the

period of node i. For i ∈ N and j ∈ Di, let Pij be the set of the nodes on the path from i

to j in the scenario tree.

We define the net unit revenue h as the difference between the unit price and all unit costs

except compression and postponement costs. We denote the processing time of a job with

minimum compression cost by p, the maximum compression amount by u, and the capacity

by C. We assume that h, p, and C are positive, and u is non-negative. Let kmax be the

maximum number of jobs that can be produced in a period without violating the capacity

constraint, i.e., kmax =
⌊

C
p−u

⌋
. We denote the cost of postponing one job for t periods with

b(t) and assume that b(t) is a convex function with b(0) = 0.

Let Π(k) be the maximum profit excluding the cost of postponement when k jobs are

produced in a period. For the time being, we assume that Π(k) is given for all possible

values of k. Later, we explain how this value is calculated.

Given the parameters above, the problem is to decide how many units of the demand of

each period to satisfy, when and with what processing time to produce it in each scenario

so that the capacities are respected and the expected profit is maximized. We refer to this

problem as multistage master production scheduling and abbreviate it with MMPS.
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2.2. A Nonlinear and a Linear Integer Programming Model. In this section, we first

present a nonlinear formulation for problem MMPS. We use the following decision variables.

For node j ∈ N , we define yj to be the number of jobs produced at node j and zj to be the

amount of demand of node j that is satisfied within the planning horizon. For node i ∈ N

and for j ∈ Bi, we define xij to be the amount of demand of node j that is produced at node

i.

Our first formulation for MMPS, referred to as MMPS-N, is as follows.

(MMPS-N) max
∑
i∈N

γi ·

(
Π(yi)−

∑
j∈Bi

b(si − sj) · xij

)
(2.1)

s.t.
∑
j∈Bi

xij = yi ∀i ∈ N (2.2)

∑
i∈Pjm

xij = zj ∀m ∈ NT ∩Dj, j ∈ N (2.3)

zj ≤ dj ∀j ∈ N (2.4)

yj ≤ kmax ∀j ∈ N (2.5)

xij ∈ Z+ ∀ i ∈ N, j ∈ Bi (2.6)

zi ∈ Z+ ∀i ∈ N (2.7)

yi ∈ Z+ ∀i ∈ N. (2.8)

The objective function (2.1) is equal to the total expected profit. Constraints (2.2) link

the variables xij’s and yi’s. The amount of production at a given node i is equal to the

sum of the amounts of production done at node i to satisfy the demand of its preceding

nodes. Constraints (2.3) ensure that the amount of the demand satisfied for a given node

j is equal in all scenarios which include node j. To this end, these constraints impose the

requirement that zj, which is the amount of demand of node j that is satisfied, is equal to

the sum of the amounts of production done to satisfy the demand of node j over each path

that starts at node j and ends at a descendant leaf node. Constraints (2.4) ensure that the

amount of demand of node j that is satisfied within the planning horizon is no more than
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the demand at node j. Capacity restrictions are imposed through constraints (2.5). Finally,

the integrality and nonnegativity of variables are given in constraints (2.6)-(2.8).

The model MMPS-N has a nonlinear objective function. Next, we propose a linear integer

programming formulation for problem MMPS. To obtain this formulation, we rewrite the

integer variables yi’s as weighted sums of binary variables. We define wik to be 1 if k jobs are

produced at node i and 0 otherwise for all i ∈ N and k ∈ {0, 1, ..., kmax}. Clearly, we need∑kmax

k=0 wik = 1 for all i ∈ N . Now, yi =
∑kmax

k=0 k · wik and Π(yi) =
∑kmax

k=0 Π(k) · wik for all

i ∈ N . Substituting these in the above formulation, and adding the constraints that ensure

that for each node i ∈ N , exactly one k value in {0, 1, ..., kmax} is picked as the production

amount, we obtain the following linear integer programming formulation, that is referred to

as MMPS-L1.

(MMPS-L1) max
∑
i∈N

γi ·

(
kmax∑
k=0

Π(k) · wik −
∑
j∈Bi

b(si − sj) · xij

)
s.t. (2.3), (2.4), (2.6), (2.7)

kmax∑
k=0

wik = 1 ∀i ∈ N

∑
j∈Bi

xij =
kmax∑
k=0

k · wik ∀i ∈ N

wik ∈ {0, 1} ∀i ∈ N, k ∈ {0, 1, ..., kmax}.

In this formulation, since wik values are defined only for feasible production amounts,

there is no need for capacity constraints (2.5).

In formulations MMPS-N and MMPS-L1, the maximum number of jobs that can be pro-

duced in a period is computed using the capacity restrictions and is equal to kmax. Moreover,

we assume that the values of the profit function Π(k) for k in {0, 1, ..., kmax} are given. As

the total profit is equal to the number of jobs times unit revenue minus the manufacturing

costs, this implies that the optimal compression amounts have to be computed for each k

value. Next, we introduce two sub-problems which are used to reduce the possible number of

jobs that are produced in a given period, and to calculate the optimal compression amounts

and maximum profits for a given number of jobs.
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2.3. The Single Period Capacitated Deterministic Scheduling Problem with Cost

Minimization Objective. In this section, we introduce and study our first sub-problem,

which is the single period capacitated deterministic scheduling problem with cost minimiza-

tion objective. The results that we obtain for this problem are used to define the optimal

compression costs and the Π(k) values.

In this problem, we have a single work center and identical products. The work center

has a finite capacity of C. Suppose that the processing time of a job that has the minimum

compression cost is p and the maximum compression amount is u. There are n ≤ kmax jobs

in the work center. The compression cost function is f : R+ → R+ and is a strictly convex

function. The problem is to decide on the compression amounts of the n jobs with the aim

of minimizing the total compression costs. We define the variable cj to be the compression

amount of job j in {1, ..., n}. Now, this problem can be formulated as follows.

min
n∑
j=1

f(cj) (2.9)

s.t. cj ≤ u ∀j ∈ {1, ..., n} (2.10)
n∑
j=1

(p− cj) ≤ C (2.11)

cj ∈ R+ ∀ j ∈ {1, ..., n}. (2.12)

The objective function (2.9) is equal to the sum of compression costs. Constraints (2.10)

ensure that the compression amounts do not exceed the maximum amount u and constraint

(2.11) ensures that the sum of processing times does not exceed the capacity. Constraints

(2.12) are nonnegativity constraints.

In the following proposition, we characterize the optimal solution to this problem.

Proposition 2.1. Let n be a positive integer with n ·(p−u) ≤ C. If n jobs are to be produced

in a work center, then the solution with cj = max{p− C
n
, 0} for all j = 1, ..., n is the unique

optimal solution to the above problem.

Proof. First, we show that in the optimal solution, the compression amount is equal for all

the jobs in the work center. Let c be an optimal solution. Suppose to the contrary that
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there exist jobs i and j such that ci > cj. Let c̄ be the same as c except c̄i = c̄j =
ci+cj

2
. The

solution c̄ is feasible and by strict convexity of the cost function, f(c̄i)+f(c̄j) < f(ci)+f(cj).

This contradicts the optimality of the initial solution c. Now, it follows immediately that

cj = max{p− C
n
, 0} for all j = 1, ..., n is an optimal solution. �

Proposition 2.1 is intuitive. As the compression cost function is a strictly convex function,

the more the compression amount is, the more the marginal compression cost that is incurred.

Thus, in order to minimize the total compression cost, the necessary compression amount

max{n · p− C, 0} is evenly distributed among all jobs. Using Proposition 2.1, it is possible

to find the optimal compression amounts for jobs given the optimal allocation of jobs to

the nodes. Moreover, we can compute the Π(k) values using our compression cost function

f(y) = κ · ya/b.

For x ∈ R+, we define Π(x) =

 x · h− x · κ · (p− C
x

)
a
b if x > C

p
,

x · h otherwise.

Corollary 2.2. Let n be a positive integer with n · (p− u) ≤ C. If n jobs are to be produced

at a work center in a period, then the maximum profit at the work center is Π(n).

Using Corollary 2.2, the profit function is calculated for all possible values of job numbers

at a node and is given as an input to formulations MMPS-N and MMPS-L1.

2.4. The Single Period Capacitated Deterministic Problem with Profit Maxi-

mization Objective. In this section, we study the second sub-problem and use the results

to reduce the size of formulation MMPS-L1. For this sub-problem, we have a single work

center with finite capacity C and a single period with infinite demand. The objective is to

decide on the number of jobs to produce to maximize the total profit.

We define the threshold value, denoted by τ , to be the optimal number of jobs to be

produced at the work center so that the total profit is maximized. Hence, the problem is:

max Π(n)

s.t. n ≤ kmax

n ∈ Z+.
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The value of τ depends on both the available capacity and the relative profit gain of

producing one more job. Although we could have used an enumerative approach to compute

τ in O(kmax) time, we use the following lemma to compute τ analytically.

Lemma 2.3. The profit function Π satisfies the following properties.

i. Π(x) is continuously differentiable on R++,

ii. Π(x) is concave,

iii. If h < κ · pa
b , there exists x∗ in (C

p
,+∞) such that dΠ

dx
(x∗) = 0.

Proof. Let Πc : (C
p
,+∞)→ R be defined as Πc(x) = x · h− x · κ · (p− C

x
)

a
b . Then,

Π(x) =

 Πc(x) if x > C
p
,

x · h otherwise.

When x < C
p

, Π(x) is linear. When x > C
p

, Π(x) = Πc(x) is a smooth function since x 6= 0.

Therefore, the only point that needs consideration is x = C
p

. The first derivative of the Πc

function with respect to x is:

dΠc

dx
(x) = h− κ · (p− C

x
)

a
b − a

b
· κ · (p− C

x
)

a
b
−1 · C

x
.

Therefore, the right limit of dΠ
dx

(x) at x = C
p

is h. The derivative of hx with respect to x is h

so the left limit of dΠ
dx

(x) at x = C
p

is also h. Therefore, dΠ
dx

(x) is continuous on R++, hence

Π(x) is continuously differentiable on R++.

The second derivative of Πc(x) with respect to x is:

d2Πc

dx2
(x) = −a

b
· κ · (p− C

x
)

a
b
−1 · C

x2
− a

b
· (a
b
− 1) · κ · (p− C

x
)

a
b
−2 · C

2

x3
+
a

b
· κ · (p− C

x
)

a
b
−1 · C

x2

= −a
b
· (a
b
− 1) · κ · (p− C

x
)

a
b
−2 · C

2

x3
≤ 0

since a > b and x ≥ C
p

, dΠc

dx
(x) is monotonically decreasing. Moreover, h is monotonically

non-increasing. In addition to those, the derivative function of Π(x) is continuous. Thus,

dΠ
dx

(x) is monotonically non-increasing and continuous, hence Π(x) is concave.
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Now suppose that h < κ ·pa
b . When x tends to C

p
, dΠc

dx
(x) > 0 and when x tends to infinity,

dΠc(x)
dx

< 0 since h < κ · pa
b . In addition to that, the derivative function is continuous. Then,

by the intermediate value theorem, there exists x∗ in (C
p
,+∞) such that dΠc

dx
(x∗) = 0. Since

Π(x) has the same values as Πc(x) on the domain (C
p
,+∞), then dΠ

dx
(x∗) = 0. �

By Lemma 2.3, we know that the profit function is concave and has a critical point within

its domain if h < κ · pa
b . Thus, one can find this critical point and by concavity this critical

point is the maximizing point within a continuous domain if h < κ · pa
b . Obviously, this does

not immediately tell what the τ value is since τ is the maximizing value among only integer

points. Moreover, the critical point does not take into account the capacity constraint.

Proposition 2.4 uses Lemma 2.3 to compute the actual threshold value.

Proposition 2.4. Suppose that h < κ · pa
b . Let x∗ be the critical point of Πc(x). Then,

τ =


kmax if x∗ > kmax

Πdx∗e if x∗ ≤ kmax and Πdx∗e > Πbx∗c

Πbx∗c otherwise

On the other hand, if h ≥ κ · pa
b , then τ = kmax.

Proof. Follows from the concavity of Π(x). �

Using the threshold value, it is possible to reduce the size of formulation MMPS-L1 such

that kmax in the main formulation can be replaced by τ as stated below. We omit the proof

as it is easy.

Proposition 2.5. At an optimal solution to MMPS-N, the production amounts of all nodes

are less than or equal to the threshold value, τ .

2.5. An Alternative Linear Integer Programming Formulation. In this section, we

give an alternative linear integer programming formulation for MMPS. This formulation uses

the results of the previous sections on the concavity of the profit function and the threshold

value. In this formulation, we rewrite the integer variables yi’s as the sum of binary variables.

We define vik to be 1 if at least k jobs are produced at node i and 0 otherwise for all i ∈ N

and k ∈ {1, . . . , τ}. Then for i ∈ N , yi =
∑τ

k=1 vik and Π(yi) =
∑τ

k=1(Π(k)−Π(k − 1)) · vik
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with vik ≥ vi(k+1) for all k ∈ {1, . . . , τ − 1}. This formulation, named as MMPS-L2, is as

follows.

(MMPS-L2) max
∑
i∈N

γi ·

(
τ∑
k=1

(Π(k)− Π(k − 1)) · vik −
∑
j∈Bi

b(si − sj) · xij

)
s.t. (2.3), (2.4), (2.6), (2.7)

vik ≥ vi(k+1) ∀i ∈ N, k ∈ {1, . . . , τ − 1} (2.13)∑
j∈Bi

xij =
τ∑
k=1

vik ∀i ∈ N

vik ∈ {0, 1} ∀i ∈ N, k ∈ {1, . . . , τ}.

Constraints (2.13) of MMPS-L2 ensure that if at least k + 1 jobs are produced at a node,

then clearly at least k jobs are produced. These constraints can be removed without changing

the optimal value since Π(x) is concave. Let MMPS-L3 be the resulting formulation.

In our computational study, we compare the solution times for formulations MMPS-L1

and MMPS-L3 and conclude that MMPS-L3 outperforms MMPS-L1.

3. EASY SPECIAL CASES

In this section, we first give some trivial instances of the problem. Afterwards, we introduce

two polynomially solvable special cases, namely, the case where there is no postponement

cost and the case with the deterministic demand. Finally, we have a negative result: the

technique that we use to establish the polynomial solvability of these special cases is not

valid for the general case.

3.1. Sufficient Conditions for Optimality. In this section, we introduce some trivial

cases.

Suppose that the demand at each node is no more than the threshold value and equal to

each other. Then by Proposition 3.1, the solution where each job is produced at its own

node (the node in which the demand of the job is realized) is optimal.

Proposition 3.1. Suppose that, di = d ≤ τ for all i in set N . Then the solution where all

the demand is satisfied and each job is produced at its own node is optimal.
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Another easy case arises when the demand is not less than the threshold value at all of

the nodes. A sufficient condition for optimality in this case is given in Proposition 3.2.

Proposition 3.2. Suppose that di ≥ τ for all i ∈ N . Then the solution where τ jobs are

produced at all nodes is optimal.

3.2. The Stochastic Problem with no Postponement Cost. We propose a different

formulation for MMPS without any postponement costs. This formulation is based on a

simple observation: as we do not have postponement costs, we do not need to keep track of

the demands of which periods are satisfied from the production. Therefore it is sufficient to

impose the requirement that we do not produce more than the demand. This special case

can be formulated as follows.

(MMPS-N1) max
∑
i∈N

γi · Π(yi)

s.t.
∑
j∈P1i

yj ≤
∑
j∈P1i

dj ∀i ∈ N (3.1)

yi ≤ τ ∀i ∈ N

yi ∈ Z+ ∀ i ∈ N.

We call this formulation MMPS-N1. Here constraints (3.1) ensure that for any node the

total production amount along the path from node 1 to this node does not exceed the total

demand on the same path.

Formulation MMPS-N1 is nonlinear. We use it to establish the complexity status of our

problem without postponement costs.

An integral matrix A is totally unimodular if each square matrix of A has determinant

equal to 0, 1, or -1. Hochbaum and Shantikumar (1990) have shown that minimizing a convex

separable objective function over a set of constraints with a totally unimodular constraint

matrix and integer variables is polynomially solvable.

Lemma 3.3. The constraint matrix of MMPS-N1 is totally unimodular.
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Proof. The constraint matrix consists of three sub-matrices; the first sub-matrix consists

of the coefficients of constraints (3.1), the second sub-matrix consists of the coefficients of

the upper bound constraints, and the third sub-matrix consists of the coefficients of the

nonnegativity constraints. The last two sub-matrices are identity matrices. Therefore, it is

sufficient to prove that sub-matrix one is totally unimodular. Each row of sub-matrix one

corresponds to a node in the scenario tree. If we sort the rows of this matrix using the

order of a depth-first search on the scenario tree, then this sorted sub-matrix satisfies the

consecutive 1’s property and thus is totally unimodular (Fulkerson and Gross, 1965). �

Theorem 3.4. Problem MMPS with no postponement costs is polynomially solvable.

Proof. For i in N , γi · Π(yi) is a concave function. The summation of these terms over

all i ∈ N generates a concave separable objective function. Moreover, by Lemma 3.3, the

constraint matrix is totally unimodular. Now using the result of Hochbaum and Shantikumar

(1990), we can conclude that this special case is polynomially solvable. �

3.3. The Deterministic Problem. In this section, we consider the problem with deter-

ministic demand. In the deterministic case, the scenario tree is a path. As a result, our first

nonlinear formulation MMPS-N simplifies as follows. We redefine the decision variables; yj

is the amount of production in period j ∈ {1, . . . , T} and xij is the amount of demand of

period j that is satisfied from the production in period i for i ∈ {1, . . . , T} and j ∈ {1, . . . , i}.

The deterministic problem can be formulated as follows.

(MMPS-N2) max
T∑
i=1

(
Π(yi)−

i∑
j=1

b(si − sj) · xij

)

s.t.
i∑

j=1

xij = yi ∀i ∈ {1, ..., T} (3.2)

T∑
i=j

xij ≤ dj ∀j ∈ {1, ..., T} (3.3)

yj ≤ τ ∀j ∈ {1, ..., T} (3.4)

xij ∈ Z+ ∀ i ∈ {1, ..., T}, j ∈ {1, ..., i}
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yi ∈ Z+ ∀i ∈ {1, ..., T}.

Lemma 3.5. The constraint matrix of formulation MMPS-N2 is totally unimodular.

Proof. We show that given any subset of rows of the constraint matrix of formulation MMPS-

N2, it is possible to find a partition of these rows into two sets such that the difference of

row sums over these two sets is a vector with entries equal to 1, 0, or -1. Here we ignore the

nonnegativity constraints. Given a set of rows, we put the rows corresponding to constraints

(3.2) into set one and the rows corresponding to constraints (3.3) and (3.4) into set two.

Then the vector of differences of the sums of rows of sets one and two has entries that are

equal to either 1, 0, or -1. Therefore, the matrix is totally unimodular (Schrijver, 1998). �

Theorem 3.6. The deterministic problem is polynomially solvable.

Proof. The objective function is a separable concave function since for i in {1, . . . , T}, Π(yi)

is concave and b(x) is convex which leads to -b(x) being concave. Moreover, by Lemma 3.5,

the constraint matrix is totally unimodular. By the result of Hochbaum and Shantikumar

(1990), the deterministic version of the problem is polynomially solvable. �

3.4. The Constraint Matrix of MMPS-N. In the previous sections, we proved that some

special cases of the problem are polynomially solvable. We achieved these results by suggest-

ing formulations with totally unimodular constraint matrices and concave separable objective

functions. In this section, we show that the constraint matrix of MMPS-N may not be totally

unimodular.

Figure 2. A counter example for totally unimodularity of constraint matrix

of MMPS-N

Example 2. Consider the scenario tree given in Figure 2. The constraint coefficient matrix

of formulation MMPS-N for this scenario tree is given in Table 3.
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Table 3. The constraint coefficient matrix of formulation MMPS-N for the

scenario tree in Figure 2

Ctr x11 x21 x22 x31 x32 x33 x41 x43 x52 x53 x61 x62 x42 x44 x51 x55 x63 x66 y1 y2 y3 y4 y5 y6 z1 z2 z3 z4 z5 z6

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0

3 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 -1 0 0 0 0 0 0

7 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

8 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

9 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

10 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

11 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

12 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

13 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0

14 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

15 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1

This matrix has at least one sub-matrix with determinant different that 1,0 or -1. For

instance, the sub-matrix consisting of the intersection of rows 4 to 12 and columns 4 to 12

in Table 3 has a determinant of 2. Therefore, the constraint coefficient matrix is not totally

unimodular. Consequently, the computational complexity of the general stochastic problem

with postponement costs is an open question.

4. COMPUTATIONAL RESULTS

The computational study consists of three stages. In stage one, we test the CPU time

performance of the linear integer programming formulations MMPS-L1 and MMPS-L3. We

find that MMPS-L3 proves to be very efficient in terms of CPU time solving all of the test

problems in at most four seconds. In the second stage, we compare the performances of

solutions obtained from single scenario strategies utilizing different production adjustment

policies with the multi-stage stochastic programming solution. We also make a thorough

analysis on the significance of capacity on solution quality. The results show that multi-

stage stochastic programming outperforms single scenario strategies, and that capacity has

a statistically significant effect on solution quality, regardless of the utilized strategy. Finally,
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in the third stage, we investigate the effect of controllability, and our computational results

clearly indicate that adding controllability in a capacitated environment provides a notable

improvement in the solution quality of multi-stage stochastic programming.

4.1. The Design of Experiments. Although our study was initially motivated by an

industrial application, the master production scheduling setting in the paper is quite general,

i.e. can be applied to different production systems. Therefore, we randomly generated data

to test the proposed model in different computational settings. In our test problems, we take

the number of periods T to be four as weekly periods in a monthly planning horizon. We

set the coefficient of the compression cost function κ to one, and net unit revenue h to 200.

The processing time with minimum cost p is Uniform[10,15] and the maximum compression

amount u is p× Uniform [0.5, 0.9].

In order to prevent possible parameter selection bias, we take different settings for each

parameter, which are determined based on an intensive pre-experimental study. In particular,

we parameterize the effect of the magnitude of the compression cost exponent, the tightness

of capacities, the relative magnitude of postponement costs, distributions that the node

probabilities are generated from, the variability of demand over scenarios, and the number

of possible scenarios. We also investigate the effect of the ratio between inventory holding

and postponement costs in our analysis with single scenario strategies. Table 4 summarizes

the factors that we find to be significant and the values that they take throughout the study.

We take five replications for each of the 384 experimental settings resulting in 1920 randomly

generated scenario trees. All runs are performed using ILOG Cplex Version 11.2 on a 2×2.83

Ghz Intel Xeon CPU and 8GB memory workstation HP with the operating system Ubuntu

8.04.

We use two alternatives for the compression cost function exponent a/b, which are 2 and

3. In Figure 3.a, we depict the profit function for a/b = 3 as an example. In this case,

τ = 3 < kmax = 10. The profit function for a/b = 2 is given in Figure 3.b and here

τ = kmax = 10. Consequently, with these two values for the compression cost function

exponent, we capture both cases where τ < kmax and τ = kmax.
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Table 4. Factors used in the experiments.

Number of Factor combinations
Factor Name levels 1 2 3 4

A Compression cost exponent a/b 2 2 3 - -
B Capacity scaling factor ζ 4 0.2 0.4 0.6 0.8
C Postponement cost scaling factor β 2 0.15 0.3 - -
D Probability Type (Node probabilities) 2 Equal Normal Dist. - -
E Demand variability [blow, bhigh] 3 [0,20] [10,30] [0,40] -
F Degree Factor 2 [0,14] [7,14] - -
G Inventory cost / Postponement cost 2 0.2 0.8 - -

Figure 3. Profit functions for a/b = 3 and a/b = 2 (kmin = bC
p
c).

A scenario tree is defined by its nodes and their associated demand scenarios and probabil-

ities. We generate the nodes as follows. To determine the number of immediate descendants

of a node, we use the concept of ‘degree factor’. The number of immediate descendants of a

node is generated from either Uniform[0,14] or Uniform[7,14].

The demand realization at a node is generated by rounding the random variate from

Uniform[blow, bhigh]. We refer to this factor as the ‘demand variability’. We use three alterna-

tive distributions to check different demand variability levels: Uniform[0,20], Uniform[10,30],

and Uniform[0,40]. Here, the first two alternatives are used to compare alternatives with the

same variance but different means, whereas the last two alternatives with the same mean

but different variances.
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The final factor concerning the scenario tree is the ‘probability factor’. Here we consider

two ways of assigning probabilities to the nodes of the scenario. The first way is to assign

equal probabilities to the immediate descendants of a node. The second way is to use a

normal distribution with mean µ =
blow+bhigh

2
and standard deviation 0.5µ.

We compute the capacity of a period as C = ζ×p · blow+bhigh

2
where ζ is the capacity scaling

factor. We use four alternatives for ζ: 0.2, 0.4, 0.6 and 0.8.

The postponement function is defined as b(t) = β · h · t2 for t ≥ 0, where β is the

postponement cost scaling factor and is taken as 0.15 and 0.3. When β is 0.3, we expect the

postponement cost to dominate the compression cost.

In the existing literature, the capacity is taken as a fixed parameter. Therefore, in order

to deal with demand fluctuations, typically inventory is carried to the future periods for a

demand surge that may or may not happen in the future. One of the important advantages

of having controllable processing times, the capacity is no longer fixed and it can be adjusted

with respect to the immediate demand information, which is more beneficial than carrying

inventories. Therefore, we do not consider carrying the inventory as an alternative in our

model, instead we use the capacity as a buffer, if necessary. However, if a single scenario

is used to estimate the demand, inventory is inevitable when the estimated scenario is not

realized. Thus, in order to be able to make a comparison, we assign inventory holding

cost a specific value. In practice, the inventory holding cost is generally lower than the

postponement cost. Thus, we take the inventory holding cost per unit per period as 80% and

20% of the postponement cost coefficient (we assume linear inventory holding cost function).

4.2. Computation times. In our first experiment, we investigate the performances of our

formulations MMPS-L1 and MMPS-L3 in terms of CPU times on different input parameters.

In this case, we consider two levels for factor B (capacity scaling factor) since the performance

of MMPS-L1 limited us in the total number of runs that could be taken. We consider an

additional level, 0.01, for postponement cost ratio (factor C) in order to test the case where

postponement cost is negligible. We do not use factor G since it will be used to evaluate the

single scenario strategies below. Therefore, we have a total of 144 factor combinations and

720 randomly generated instances in total.
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Formulation MMPS-L3 solves all the problem instances within at most 4 seconds. More-

over, MMPS-L3 always gives better results in terms of CPU time than MMPS-L1. Formu-

lation MMPS-L1 cannot prove optimality within one hour for ten instances corresponding

to two factor combinations. In these instances, the factor levels are: A = 2, B = 0.8, D =

Normal, E = [0,40], and F = [7,14]. Factor D is 0.01 and 0.15. These correspond to cases

where kmax is high due to high capacity, the demand has a larger mean and variability, the

number of descendants has a high mean, and the tree is unbalanced in terms of the proba-

bilities assigned to nodes. For the remaining instances, the maximum computation time is

2160 seconds with formulation MMPS-L1.

Our experimental results clearly indicate that MMPS-L3 outperforms MMPS-L1 and is

very efficient in terms of computation time. The significant reduction in computation time is

mainly due to the outcomes of Section 2 (such as the threshold value, τ , and concavity of the

profit function) and the new formulation. Moreover, its performance is robust to changes

in parameters. This enabled us to perform an extensive computational study to test the

quality of multi-stage stochastic programming solutions.

4.3. Comparison of Multi-stage Stochastic Programming with Single Scenario

Strategies. In the second experiment, we compare the performance of the multi-stage sto-

chastic programming solution (MSP) with the solution of single scenario strategies, namely,

choosing the most likely scenario (ML), choosing the most optimistic scenario (OPT), choos-

ing the most pessimistic scenario (PES), or using rounded expected demand values (EXP)

as shown in Example 1 in the Introduction. As the single scenario strategies ignore the un-

certainty in the demand, we use two different adjustment policies to improve their solutions.

• T periods frozen policy (TPF): In this policy, the demand values are first estimated

according to the given single scenario strategy. The production amounts are deter-

mined by solving MMPS-L3 where the scenario tree is a path and the demand values

are taken as the estimated ones. These production amounts do not change whatever

the realized demand scenario is, i.e., they are frozen for T periods.

• One period frozen myopic adjustments policy (OPF): In this policy, the initial produc-

tion amounts are calculated just as in TPF. These production amounts are adjusted
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myopically if the estimated scenario is not realized. Myopic adjustment works as

follows: For any period t, if there is positive inventory left from previous periods, the

production amount is decreased by the amount of inventory, and if there is shortage,

then the production is increased by the amount of shortage. This policy corresponds

to the chase policy in master production scheduling, since the production amounts

are more sensitive to the immediate demand realizations.

We compare the solution quality of the single scenario strategies coupled with these two

different production policies (resulting in a total of 8 different strategy - policy combinations,

e.g., ML-TPF denotes choosing the most likely (ML) strategy with the T periods frozen

(TPF) policy) with the multi-stage stochastic programming (MSP) solution. We use relative

regret as the metric of comparison for two reasons. First, it measures how bad our solutions

perform compared to an optimal solution that we would have if we had perfect knowledge

about the input parameters and hence it gives an insight about the performance of our

methods to hedge against uncertainty. Second, the profit values may differ significantly

among different settings which may cause settings with higher profit values to dominate the

results. Therefore, relative regret provides a scaled measure to compare the performance

under different settings.

As discussed above, there are 1920 randomly generated scenario trees. Since the single

scenario strategies are deterministic strategies, it is not possible to compare expected profits

or propose a common ground for comparison. Therefore, we use ex-post profit gained by

applying the schedules generated by (MSP) and the other single scenario strategy - policy

combinations. Namely, for each problem instance, we first generate 10 randomly selected

scenarios (i.e., select 10 nodes from the leaf nodes of the scenario tree) which represent 10

ex-post demand realizations. Afterwards, for each strategy-policy combination, we compute

the production amounts. The total profit is calculated for the given values of production

amounts and the demand realizations of the randomly generated scenario. We calculate the

relative regret R as follows.

R = 100×
profitoptimal − profitstrategy

profitoptimal
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To compute the optimal profit for each scenario, we give the realized demand values as an

input to MMPS-L3 and solve a single scenario model.

The following example explains the procedure in detail.

Example 3. Consider the numerical example given in the Introduction. Suppose that scenario

8 is realized (i.e. the randomly selected scenario is 8). Corresponding (ex-post) demand

realizations of periods 1, 2, and 3 are 5, 7, and 1, respectively. Suppose that we select the

pessimistic strategy (PES), where the estimated demands are 5, 4, and 2, respectively. Next,

we explain how two adjustment policies are applied in this case.

• T periods frozen policy: If TPF policy is applied, MMPS-L3 is solved for a single

path scenario where the demands are the estimated demands, which are 5, 4, and 2.

The optimal production amounts are 4 in the first period, 4 in the second period and

3 in the last period.

• One period frozen myopic adjustments policy: In OPF, first MMPS-L3 is solved and

the optimal production amounts of 4, 4, and 3 are obtained as explained above. In

the first period, 4 units are produced. In the second period, production of 4 units

takes place but a demand of 7 is realized instead of 4. This is compensated in period

3; the production amount in this period is changed to 3 + 7 - 4 = 6. In summary,

the production amounts are 4, 4, and 6 for periods 1, 2, and 3, respectively.

Now we explain how we compute the profits. Suppose that policy TPF is chosen. The

realized demands are 5, 7, and 1 and the production amounts are 4, 4, and 3. Therefore,

there is a total postponement of 4 units and a shortage of 2 units. There is no excess and

no inventory. We assume that postponement and shortage costs are zero. In total 11 units

are produced, and so there is a profit of 2× Π(4) + Π(3) = 628.4.

The optimal policy in this case is to produce 5, 4, and 4 which yields a total profit of

728.4. Thus the relative regret is 11.3% for the PES strategy - TPF policy combination.

Similar to inventory, some excess production or shortage may occur within the planning

horizon if the total demand of the realized scenario is strictly less or more than the demand

of the estimated scenario. We first analyze the effects of shortage and excess production
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costs. In order to have comparable numbers, we define a ‘shortage factor’ δf and an ‘excess

factor’ ξf . We assume a linear cost function for excess and shortage costs. The unit costs

per period are obtained by multiplying the associated factor by per unit profit h, such that

they take a value in the range of h × Uniform[0, 2]. We compare the mean of the regret

values of the 8 strategy - policy combinations described above with the regret value of MSP

for different shortage and excess factor values.

If we consider ξf and δf as exogenous variables, we have a three dimensional profit function.

Figure 4 displays a cross-section from this three dimensional profit function where the excess

and shortage cost factors are equal. We observe here that the multi-stage solution is always

better than the solutions of other strategies regardless of the values of excess and shortage

factors.

In the figure, some strategy - policy combinations exceed 100% regret (their profit drops

to negative) and becomes out of scale. When shortage and excess costs equally increase, the

relative difference between MSP and other strategies tends to increase as well. As we checked

for isolated effects of increase in shortage and excess costs, we encountered a similar result:

MSP always outperforms other strategies and as the excess/shortage cost increases, the gap

between MSP and the other strategies increases as well. Therefore, adding a shortage or

excess cost favors MSP against all other strategy - policy combinations. In order not to

affect the outcome of the analysis in favor of MSP, we take shortage and excess costs as zero

in the remaining of the analysis, noting that all of the results which we will present below

can be extended to the case with non-zero excess and shortage costs case as well.

Before going into the detailed analysis of the significance of capacity, let us begin with

a general analysis of our results. Table 5 gives the average relative regret values of each

strategy and policy combination and the number of times a strategy - policy combination

gives the minimum regret value for different capacity levels.

As the table suggests, using multi-stage stochastic programming gives a smaller average

relative regret value than all other strategies whatever the adjustment policy is. Moreover,

MSP has a significant dominance in terms of number of minimum regret values. The dif-

ference between the regret of MSP and other strategies is significantly high (going up to
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Figure 4. Cross section of the regret function where shortage and excess are equal

Table 5. Average relative regret and number of times minimum values of

each scenario selection strategy.

Average regret Number of times minimum
Policies ζ ML OP PES EXP MSP* ML OP PES EXP MSP

0.2-0.4 15.63 13.34 50.69 9.29 4.80 2099 2766 56 2904 7363
TPF 0.6-0.8 12.60 8.56 50.69 6.92 0.05 95 15 0 210 9416

All 14.12 10.95 50.69 8.11 2.42 2194 2781 56 3114 16779
0.2-0.4 18.21 15.63 27.15 14.78 4.80 1583 1822 475 1913 8403

OPF 0.6-0.8 19.02 16.47 25.12 15.41 0.05 9 14 0 35 9560
All 18.61 16.05 26.13 15.09 2.42 1592 1836 475 1948 17963

* The multi-stage solution is not dependant on policy changes.

50%). Moreover, MSP dominates other strategy-policy combinations in terms of the number

of times it achieves the minimum regret values (going up to 99.5%). Another interesting

conclusion is that the available capacity significantly affects the overall results. This ac-

tually points out that assuming infinite capacity in master production scheduling is quite

unreasonable since solutions are very sensitive to changes in capacity.
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Table 6 gives the statistics and the confidence intervals regarding the differences between

the solution quality of single scenario strategies and multi-stage stochastic programming.

As the table shows, the solutions of multi-stage stochastic programming are statistically

significantly better than the solutions of all other strategies whatever adjustment policy

is used. Moreover the 95 % confidence interval lower bounds of each strategy - policy

combination are considerably high, indicating the superiority of MSP over the single scenario

strategies.

Table 6. Pairwise statistics of differences of regret levels.

95 % CI for TPF policy 95 % CI for OPF policy
Lower Upper Lower Upper

ML - MSP 11.4 11.9 16.0 16.4
OPT - MSP 8.4 8.7 13.5 13.8
PES - MSP 47.9 48.6 23.5 23.9
EXP - MSP 5.5 5.8 12.5 12.8

We do not have enough space to discuss the effects of all seven factors here. Therefore we

summarize our findings on 6 factors and we give our results concerning the capacity factor

in more detail as it plays an important role in questioning one of the basic assumptions of

the traditional MPS: the infinite capacity assumption. Figures 5 and 6 illustrate the average

relative regret values for each strategy - policy combination and multi-stage stochastic pro-

gramming for factors A, C, D (23 = 8 different settings) and E, F, and G (3×22 = 12 different

settings) respectively. We separated these factors to reduce the number of settings displayed

at once and hence make the figures easier to interpret. In Figure 5, the pessimistic strategy

combined with TPF policy is not illustrated since it is way out of scale (its regret values are

around 80%). As it is clear in both figures, the average regret performance of multi-stage

stochastic programming is significantly better than other strategy - policy combinations in

all of the settings.

In order to find out whether a factor significantly affects the solution performance of

strategies, we first conducted one way analysis of variance (ANOVA) test. The ANOVA

results showed that all the factors that we parameterized are significant for all strategy-

policy combinations and multi-stage stochastic programming solution. Although we have
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Figure 5. Average regrets of strategy policy combinations and multi-stage

for combinations of factors A, C, and D.

Figure 6. Average regrets of strategy policy combinations and multi-stage

for combinations of factors E, F, and G.
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made a thorough analysis of the effects all factors, due to limited space and to focus on

our main purpose, we will not go into detail in those and we will focus on the significance

of capacity in the remaining part of this section. The tables of the other factors can be

obtained from the first author. The ANOVA results for the capacity factor are given in

Table 7. As the table suggests, the capacity factor is significant not only for MSP, but also

for other strategy policy combinations. Besides, confidence intervals also support this claim

since they do not generally intersect for different capacity levels. The effect of capacity on

the solution performance of MSP is evident and MSP gives relatively better solutions if the

capacity is looser compared to the case where it is very tight. This is quite expected because

the tighter capacity results in postponement of more jobs thus MSP looses its flexibility to

adjust to changes in demand.

Table 7. A summary of ANOVA results for capacity factor ζ.

CI for ζ = 0.2 CI for ζ = 0.4 CI for ζ = 0.6 CI for ζ = 0.8
F Significance LB UB LB UB LB UB LB UB

ML - TPF 63.0 0.000 14.6 15.5 15.7 16.7 12.7 13.6 11.7 12.5
OPT - TPF 627.8 0.000 10.8 11.4 15.1 16.0 11.0 11.6 5.7 6.0
PES - TPF 106.3 0.000 45.9 47.2 54.3 55.5 51.1 52.5 48.8 50.3
EXP - TPF 142.2 0.000 9.9 10.5 8.1 8.7 6.3 6.7 7.1 7.6
ML - OPF 23.5 0.000 16.9 17.7 18.8 19.5 18.4 19.1 18.9 19.6
OPT - OPF 45.0 0.000 14.2 14.8 16.5 17.1 16.1 16.7 16.2 16.9
PES - OPF 41.6 0.000 26.1 27.0 27.3 28.2 25.5 26.3 24.0 24.8
EXP - OPF 14.0 0.000 14.4 14.9 14.6 15.2 14.6 15.2 15.6 16.3
MSP - OPF 2386.0 0.000 8.3 8.9 0.9 1.1 0.1 0.1 0.0 0.0

To analyze the effects of the factors on the difference between the solution performances

of multi-stage stochastic programming and other strategies, we use paired sample t-tests.

In Table 8, we present the statistics and significance values for the eight strategy - policy

combinations and multi-stage stochastic programming.

In all cases, the MSP solution is statistically significantly better than other solutions.

However, the performance difference changes with respect to the capacity factor. For the first

three strategies, the capacity effect has a triangular shape as the regret takes its maximum

in the middle and is minimum at very low and very high capacity values. EXP has another

interesting structure because it has a decreasing regret as capacity becomes looser but the
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Table 8. Pairwise statistics of regret differences for different levels of capacity factor.

95 % CI for TPF Policy 95 % CI for OPF Policy
ζ = 0.2 ζ = 0.4 ζ = 0.2 ζ = 0.4

LB UB LB UB LB UB LB UB
ML vs. MSP 5.9 6.9 14.7 15.7 8.3 9.1 17.7 18.5
OPT vs. MSP 2.2 2.9 14.1 15.0 5.6 6.2 15.4 16.0
PES vs. MSP 37.2 38.7 53.3 54.4 17.5 18.5 26.3 27.1
EXP vs. MSP 1.3 1.9 7.1 7.6 5.7 6.4 13.6 14.2

ζ = 0.6 ζ = 0.8 ζ = 0.6 ζ = 0.8
ML vs. MSP 12.6 13.5 11.7 12.5 18.3 19.0 18.9 19.6
OPT vs. MSP 10.9 11.5 5.7 6.0 16.0 16.6 16.2 16.9
PES vs. MSP 51.0 52.4 48.8 50.3 25.4 26.2 24.0 24.8
EXP vs. MSP 6.2 6.6 7.1 7.6 14.5 15.1 15.6 16.3

regret starts to increase as the capacity is very loose. For MSP, as capacity decreases, the

regret increases. This is mainly due to the fact that as capacity becomes smaller, the number

of jobs that is produced at their own nodes decreases leading to an increase in error margin.

In OPF policy, the significance of capacity for the first four strategies decreases although

capacity still affects the performance of solutions. In general, all of the strategies are quite

sensitive to the available capacity, thus it is essential to revise the unrealistic infinite capacity

assumption of the existing MPS algorithms.

4.4. The Effect of Controllability. In this stage of the experiment, we aim to test the

role of controllability on the solution performance of multi-stage stochastic programming.

To this end, we generate the same scenario tree with the same parameters and solve multi-

stage stochastic programming formulation with and without controllability. We denote the

one with controllability as MSPC and the one without controllability as MSPF. The input

parameters and factors are the same as the ones that we used in the previous experiment.

Table 9 summarizes the results of this study. We use three different performance metrics

to compare MSPC and MSPF. The first performance metric compares expected profit values

of MSPC and MSPF. Calculation of the scenario based metric is the same as the one that

is used in Section 4.3. We randomly generate 10 scenarios and compare the profit of MSPC

and MSPF when these 10 scenarios are realized. In the first two metrics we take shortage

cost as zero. In the third metric, we compare the amount of shortage incurred when the
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Table 9. Comparison of multi stage solution with and without controllability.

Expected profit Scenario based Shortage cost
Processing times Capacity Average Num. best Average Num. best Average Num. best

0.2 - 0.4 56869 9600 51765 9578 5847δf 9600
Controllable (MSPC) 0.6 - 0.8 70061 9600 63771 9586 2δf 9600

Total 63465 19200 57768 19164 2924δf 19200
0.2 - 0.4 37135 118 30002 118 27878δf 0

Fixed (MSPF) 0.6 - 0.8 66105 4766 60766 4766 2658δf 1440
Total 51620 4884 45384 4884 15268δf 1440

randomly generated scenarios that are used for metric 2 are realized. Note that for the first

two metrics, a higher value is better but for the third one, a lower value is better. We first

calculate the average performance of two alternatives using each of these metrics. Then,

we make a pairwise comparison of MSPC and MSPF using each metric and calculate the

number of times that one is at least as good as the other.

In Table 9, the first two columns give the average and number of times best values for the

first metric of expected profit. The results show that in terms of average expected profit,

controllability provides an improvement around 23%. The third and fourth columns in the

table show the average profit and number of times best values when scenario based metric is

used. Again, controllability improves the solutions around 27% on the average and MSPC

finds a solution that is at least as good as MSPF in 99.8% of 19200 randomly generated

runs. Finally, the last two columns give the average (in terms of shortage factor δf ) and the

number of times best values with respect to the third metric. Using controllability decreases

the shortage cost by around 80% on the average and always gives a shortage value at least

as good as the other one. Thus, controllability has a very significant effect on the solution

performance of multi-stage stochastic programming.

Another observation that we make based on the results in Table 9 is on the significance

of capacity; capacity drastically affects the improvement provided by controllability. If the

capacity is tight, controllability provides an improvement up to 80%, but this improvement
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decreases to around 5-10% when the capacity is loose. This result is intuitive since control-

lability provides flexibility in capacity and as capacity gets tighter, this flexibility becomes

more and more critical.

4.5. Concluding Remarks on Computational Results. In Section 4.2, we tested the

performance of our formulations and formulation MMPS-L3 proved to be very efficient in

terms of CPU performance. We exploited this fact during our experiments in Sections 4.3

and 4.4 taking approximately 250,000 runs in the experiment of Section 4.3 and 40,000 runs

in the experiment of Section 4.4.

In Section 4.3, we compared the multi-stage stochastic programming approach with four

other strategies coupled with two adjustment policies. We have shown that capacity signifi-

cantly affected solution quality of strategies as well as pairwise differences between the single

scenario strategies and the multi-stage stochastic programming approach. We also showed

that MSP gave statistically significantly better results than other strategies in all factor

combinations and policies. We also pointed out that MSP generally gave one of the best

solutions in the number of times minimum analysis. Therefore, our computational results

suggest that using a multi-stage stochastic programming approach improves the solution

performance significantly compared to single scenario strategies which are used in current

industry practice.

In Section 4.4, we tested the effect of controllability on the profit performance of multi-

stage. The computational results showed that controllability provided a huge improvement

which was evident due to three different criteria: Expected profit, the performance when

the comparison technique of Section 4.3 is utilized, and finally, in terms of shortage values.

Also, capacity was found to be a significant factor which critically affects the improvement

that controllability provided. Therefore, our computational results suggest that utilizing

finite capacity and controllability significantly improve solution performances especially in

environments with tight capacity.

Based on the results obtained in Sections 4.3 and 4.4, we can conclude that using a

capacitated version of MPS with controllability and considering several scenarios for demand

realizations provide drastic improvements in the solution performance of MPS. Moreover, the
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fact that MMPS-L3 solves even large instances in a few seconds opens up new application

possibilities of our approach such as establishing it in ERP software or conducting what

if and sensitivity analysis. It is also possible to extend the analysis that we made in the

computational study by adding new factors or considering new strategies and policies, even

firm based strategies and policies.

5. CONCLUSION

The existing algorithms in the literature to solve the MPS problem are generally based

on the limiting assumptions of infinite capacity, fixed processing times, and fixed and known

demand realizations, although there might be very few applications where these assumptions

can be justified. In this paper, we questioned these assumptions and came up with a model

with finite capacity, controllable processing times, and uncertain demand values. We used

multi-stage stochastic programming to handle this uncertainty and proposed a very effective

formulation which solves large instances in a very short computation time. The fact that

the formulation solves considerably large instances at a maximum of four seconds, enabled

us to conduct an extensive computational study. Our computational results showed that

using multi-stage stochastic programming instead of single scenario strategies significantly

improved the solution quality. Moreover, using controllability provided improvements up

to 80% in the total profit. Finally, capacity had a large impact on the solution perfor-

mances of both the single scenario strategies and the multi-stage stochastic programming

approach. Therefore, our computational results suggest that changing these three unrealistic

assumptions of MPS provides huge improvement with a very little computational cost. The

efficiency of our formulation enables further analysis with various different factors, strate-

gies, and policies. Moreover, it provides the time flexibility to conduct sensitivity and what

if analysis.

Being aware of the severe limitations of the MPS algorithms in the current ERP software,

firms are making significant investments in new advanced planning and scheduling (APS)

software. Unfortunately, these new APS systems rely on relatively simple heuristic methods

(such as capable-to-promise, etc.) to solve the MPS problems. Our computational results



36 ERSİN KÖRPEOĞLU, HANDE YAMAN, AND M. SELİM AKTÜRK

clearly indicate that MPS problems could be solved to optimality using multi-stage stochastic

programming approach in short computation times.

References

Ahmed, S., King, A. J., Gyana, P., 2003. A multi-stage stochastic integer programming

approach for capacity expansion under uncertainty. Journal of Global Optimization 26 (1),

3–24.

Atamtürk, A., Zhang, M., 2007. Two-stage robust network flow and design under demand

uncertainty. Operations Research 55, 662–673.

Balibek, E., Koksalan, M., 2010. A multi-objective multi-period stochastic programming

model for public debt management. European Journal of Operational Research 205 (1),

215–217.

Birge, J. R., Louveaux, J., 1997. Introduction to Stochastic Programming. Springer.

Cheng, T., Kovalyov, M., Shakhlevich, N., 2006. Scheduling with controllable release dates

and processing times: Total completion time minimization. European Journal of Opera-

tional Research 175 (2), 769–781.

Dyer, M., Leen, S., 2006. Computational complexity of stochastic programming problems.

Mathematical Programming 106, 423–432.

Fulkerson, D., Gross, O., 1965. Incidence matrices and interval graphs. Pasific Journal of

Mathematics 15 (3), 835–865.

Guan, Y., Ahmed, S., Nemhauser, G. L., Miller, A. J., 2006. A branch-and-cut algorithm

for the stochastic uncapacitated lot-sizing problem. Mathematical Programming 105 (1),

55–84.

Gurel, S., Akturk, M., 2007. Optimal allocation and processing time decisions on non-

identical parallel CNC machines: ε-constraint approach. European Journal of Operational

Research 183, 591–607.

Hochbaum, D. S., Shantikumar, J. G., 1990. Convex optimization is not much harder than

linear optimization. Journal of the Association for Computing Machinery 37 (4), 843–862.



MASTER PRODUCTION SCHEDULING 37

Huang, K., Ahmed, S., 2009. The value of multistage stochastic programming in capacity

planning under uncertainty. Operations Research 57 (4), 893–904.

Karabuk, S., 2008. Production planning under uncertainty in textile manufacturing. Journal

of the Operations Research Society 59, 510–520.

Leyvand, Y., Shabtay, D., Steiner, G., ???? A unified approach for scheduling with convex re-

source consumption functions using positional penalties. European Journal of Operational

ResearchTo appear, doi:10.1016/j.ejor.2010.02.026.

Schrijver, A., 1998. Theory of Linear and Integer Programming. Wiley.

Schultz, R., Stougie, L., Vlerk, M. H., 1996. Two-stage stochastic integer programming: A

survey. Statistica Neerlandica 50, 404–416.

Shabtay, D., Steiner, G., 2007. A survey of scheduling with controllable processing times.

Discrete Applied Mathematics 155 (13), 1643–1666.

Shmoys, D. B., Sozio, M., 2007. Approximation algorithms for 2-stage stochastic scheduling

problems. In: Integer Programming and Combinatorial Optimization. Springer Berlin /

Heidelberg.

Sridharan, V., Barry, W. L., Udayabhanu, V., 1987. Freezing the master production schedule

under rolling planning horizons. Management Science 33 (9), 1137–1149.

Tang, O., Grubbström, R. W., 2002. Planning and replanning the master production schedule

under demand uncertainty. International Journal of Production Economics 78, 323–334.

Vieira, G. E., 2006. A practical view of the complexity in developing master production

schedules: Fundamentals, examples, and implementation. In: Handbook of Production

Scheduling. Springer Berlin / Heidelberg.


	1. INTRODUCTION
	1.1. Master Production Scheduling
	1.2. Controllable Processing Times
	1.3. Multi-stage Stochastic Programming

	2. THE MULTI-STAGE STOCHASTIC PROGRAMMING MODELS
	2.1. Notation and Problem Definition
	2.2. A Nonlinear and a Linear Integer Programming Model
	2.3. The Single Period Capacitated Deterministic Scheduling Problem with Cost Minimization Objective
	2.4. The Single Period Capacitated Deterministic Problem with Profit Maximization Objective
	2.5. An Alternative Linear Integer Programming Formulation

	3. EASY SPECIAL CASES
	3.1. Sufficient Conditions for Optimality
	3.2. The Stochastic Problem with no Postponement Cost
	3.3. The Deterministic Problem
	3.4. The Constraint Matrix of MMPS-N

	4. COMPUTATIONAL RESULTS
	4.1. The Design of Experiments
	4.2. Computation times
	4.3. Comparison of Multi-stage Stochastic Programming with Single Scenario Strategies
	4.4. The Effect of Controllability
	4.5. Concluding Remarks on Computational Results

	5. CONCLUSION
	References

