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Multivariate Data Analysis Methodology to Solve Data
Challenges Related to Scale-Up Model Validation and
Missing Data on a Micro-Bioreactor System

Stephen Goldrick,* Viktor Sandner, Matthew Cheeks, Richard Turner, Suzanne S. Farid,
Graham McCreath, and Jarka Glassey

Multivariate data analysis (MVDA) is a highly valuable and significantly
underutilized resource in biomanufacturing. It offers the opportunity to
enhance understanding and leverage useful information from complex
high-dimensional data sets, recorded throughout all stages of therapeutic
drug manufacture. To help standardize the application and promote this
resource within the biopharmaceutical industry, this paper outlines a novel
MVDA methodology describing the necessary steps for efficient and effective
data analysis. The MVDA methodology is followed to solve two case studies: a
“small data” and a “big data” challenge. In the “small data” example, a
large-scale data set is compared to data from a scale-down model. This
methodology enables a new quantitative metric for equivalence to be
established by combining a two one-sided test with principal component
analysis. In the “big data” example, this methodology enables accurate
predictions of critical missing data essential to a cloning study performed in
the ambr15 system. These predictions are generated by exploiting the
underlying relationship between the off-line missing values and the on-line
measurements through the generation of a partial least squares model. In
summary, the proposed MVDA methodology highlights the importance of
data pre-processing, restructuring, and visualization during data analytics to
solve complex biopharmaceutical challenges.

1. Introduction

“Big data” refers to complex data sets that are too difficult to an-
alyze using traditional data analytic techniques and are classified
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by the 6 V’s. The extreme Volume of data,
the wide Variety of structured and unstruc-
tured data types, the reliability or Veracity
within the data, the Velocity at which the
data is produced or analyzed, the Variability
of the data over time, and the Value within
the data.[1,2] There is no consensus on the
size of data classified as “Big data” with
tremendous differences in the size of data
sets recorded across different industrial
sectors. For example, in the retail sector:
Walmart collects an estimated 2.5 petabytes
of data every hour from its customer
transactions[3] whereas the genome human
project required analyzing up to 6 trillion
base pairs equaling ≈6 terabytes of data.[4]

Data recorded within the biomanufacturing
environment is on a much smaller scale,
typically in the gigabyte range. However,
this data are highly complex. Consider the
data recorded on a micro-bioreactor sys-
tem, this includes meta-information con-
taining cell line references, initial condi-
tions related to set-points, and inoculation
concentrations in addition to off-line mea-
surements recorded on multiple different
analytical devices with varying time delays.

Furthermore, the on-line data contains information of up to 50
variables recorded every second for up to 48 different vessels.
Therefore, the variety, veracity, velocity, variability, and poten-
tial value within these biomanufacturing data sets warrants the
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Figure 1. MVDAmethodology outlining necessary steps for data restructuring, pre-processing, and visualization necessary to implement advanced data
analytics on complex biopharmaceutical data sets.

classification of “Big Data.” Data analytics and the appropriate
management of these small and large complex data sets repre-
sent a major challenge for the majority of industries including
biopharmaceuticals. The increase in sensor technology,[5] com-
bined with recent advancements in parallelization and develop-
ment of disposable bioreactors for scale-down purposes[6–8] has
resulted in the production of a wide variety of complex data sets
to interpret. The sheer volume and variety of the available data
remains a significant unmet challenge within biopharmaceutical
manufacturing.
With the continued accumulation of these challenging bio-

pharmaceutical data sets, the industry as a whole is leveraging
more advanced statistics and multivariate data analysis (MVDA)
to understand better the hidden relationships and interactions
between their critical process parameters (CPPs) and critical
quality attributes (CQAs). The application of MVDA to the bio-
pharmaceutical sector is not a new concept and has been suc-
cessfully applied for the last 60 years.[9–12] The pioneering work
by Wold et al. (1987),[13] Nomikos and MacGregor (1994),[14]

and Eriksson (1999)[15] has extended the fundamental princi-
ples of principal component analysis (PCA) and partial least
squares (PLS) to enable direct comparison of batch-to-batch fer-
mentation systems and the analysis of within batch variabil-
ity. These techniques provide the necessary mathematical basis
for on-line monitoring,[16] root cause analysis,[17] missing data
algorithms,[18,19] and real-time control.[20–22] More recent advance-
ments include the development of a MVDA tool kit to simplify
the scale-up from ambr15 experiments to pilot-scale (300 L), re-
sulting in shorter process development timelines and reduced
costs.[23] Furthermore, MVDA underpins the FDA’s quality by

design (QbD)[24] and process analytical technology (PAT)[25] ini-
tiatives that provide the necessary framework and guidance for
a risk-based approach to drug development through better pro-
cess understanding and control. Other sectors are going one
step further and shifting focus toward “Industry 4.0” through the
digitization and automation of their processes.[26] These techno-
logical innovations promise to revolutionize the biopharmaceu-
tical sector enabling flexible, smart, and better controlled pro-
cesses. A core component of Industry 4.0 is data analytics and the
need to standardize the pre-processingmethods of these complex
biopharmaceutical data sets is therefore paramount. Previous
MVDAmethodologies have presented high-level generalizations
of data pre-processing and model building,[27,28] with other liter-
ature defining various decision trees suitable for specific MVDA
techniques such asmultilinear regression, factor, discrimination,
and cluster analysis.[29] However, neither of these methodologies
have emphasized the importance of data visualization which is a
core component of our proposed MVDA methodology shown in
Figure 1. Furthermore, this methodology was specifically devel-
oped to focus on the challenges of analyzing biopharmaceutical
data and outlines the primary steps necessary for data consolida-
tion and analysis, exemplified in two case studies.
One of those studies includes an example from the “small

data” world: Often during scale-up, a single large-scale run (n= 1)
is compared with multiple small-scale runs (n = 8). Plotting daily
measured samples between two groups and comparing them
visually to ensure they are within certain statistical tolerance
ranges are the most widely used methods to gauge comparability
across scales.However, the imbalance of runs between small- and
large-scale poses a complex challenge. We have addressed this
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problem, and followed our proposed MVDA methodology to de-
velop a multivariate equivalence test involving time-series data
that allows for more objective comparisons.
The second study features a “big data” problem. Here, data at

critical time-points are missing due to a hardware failure of the
viable cell concentration (VCC) analyzer. Thesemissing VCC val-
ues were essential criteria in the ranking of the top clones during
amicro-bioreactor clone screening carried out in the ambr15 sys-
tem (n = 1 × 24). Repeating this whole experiment would result
in significant delays to the time-sensitive project milestones. Us-
ing our methodology, we were able to effectively recover these
missing values through an MVDA approach. Our novel model-
ing approach took full advantage of on-line measurements and
additional off-line measurements recorded during this period,
enabling accurate predictions of the missing VCC using a PLS
model.
In summary, we created a MVDA methodology, shown in Fig-

ure 1, outlining the necessary steps to analyze big and small data
problems specific to biomanufacturing data sets. The method-
ology was demonstrated on two complicated data bioprocessing
problems, and can be used by other researchers in solving their
own challenges more efficiently.

2. Experimental Section

2.1. MVDA Methodology

This section describes the systematic MVDA workflow that
was created through an in-depth investigation into the primary
requirements of biopharmaceutical data analysis. The MVDA
workflow is outlined in Figure 1 and describes the necessary steps
to help improve data analytics and advanced modeling imple-
mentation. This methodology was built on previously described
“Best-Practices” for MVDA with a particular focus on the impor-
tance of visualization andmodel validation. Prior to any data anal-
ysis, the primary research question needs to defined: What pro-
cess insights or understanding can be gained from this data? Can
this data identify any correlations with product quality or produc-
tivity? Can the comparability between the scale-up/-downmodels
be concluded? Could any previous or historical experiments help
answer this research question? If no suitable data were available,
experimental work has to be carried out.
Once the data has been generated, the initial step is to visu-

alize and inspect the data. The importance of this step may not
seem critical, but is in fact hugely important, as the researcher
can quickly ascertain whether the data contains the correct vari-
ables and/or number of batches to effectively investigate the re-
search question. All time-series variables are recommended to be
plotted on x-y charts and all end-point or single-point measure-
ments on bar charts. This should be repeated for all groups or
categories such as different projects, scales, batches, or cell lines.
Restructuring the data frequently occurred during preliminary
investigations and this enabled any abnormalities, patterns, gaps,
or outliers to be quickly spotted and removed or rectified. Often
coined a “sanity-check,” this step verified that variables recorded
for different groups were recorded across similar timeframes and
had the same units. Often, the data set was explored and filtered
at the same time during visualization. Many irrelevant or redun-

dant variables that would not be part of the analysis were re-
moved during this iterative process. In a regulated environment
all data modifications should be governed by the ALCOA prin-
ciples ensuring the data are Attributable, Legible, Contempora-
neously recorded, Original or a true copy, and Accurate.[30] This
ensures data integrity and regulatory standards are maintained
during analysis.
Typically, data sets are enriched using feature generation lever-

aging additional information through the generation of mean-
ingful feature vectors. These can include the cumulative sum,
specific productivity, or calculated variables such as oxygen trans-
fer rate (OTR) or oxygen mass transfer rate (kLa).

[31] Off-line data
recorded at slightly different times each day could be categorized
into daily off-line measurements to simplify subsequent analy-
sis. The final pre-processing steps require smoothing, unit con-
versions, and interpolation. To handle missing data during the
analysis of two groups, there are two options. The first is to es-
timate the data through interpolation or more advanced missing
data algorithms and the second option is to remove the data in
each group to enable comparability.
After boiling down the data set to its essence, it was again visu-

alized to ensure all the previous pre-processing, feature genera-
tion, and restructuring had been correctly carried out and no obvi-
ous errors could be observed. Restructuring the data in this fash-
ion significantly simplified the implementation and evaluation of
any advanced modeling techniques. When the data set includes
batches, as is often the case in bioprocesses, there are three al-
gorithms suitable for unfolding the data: i) time-wise unfolding,
suitable for analyzing variability throughout the batch time, ii)
batch-wise unfolding to investigate variability between batches,
and iii) variable-wise unfolding, allowing differences among vari-
ables to be identified.[16,32] The previously described visualization,
pre-processing, and data restructuring steps were sequential and
iterative operations which should be automated through the de-
velopment of algorithms in preferred software, for example, Mat-
lab, R, or Python.
Once the data have been correctly restructured and pre-

processed, there are multiple MVDA techniques that can help
visualize the research solution. These include, but are not lim-
ited to: correlation development, exploratory analysis, predictive
modeling, hypothesis testing, and artificial intelligence/machine
learning solutions. If none of these techniques can answer the re-
search question, the data itself may not have the required depth
and quality. This can be a result of key process variables not
recorded, range of variables not varied enough to have a mea-
surable impact on performance, or too much noise present to
statistically validate a research question. In this case, new labo-
ratory experiments have to be designed, which could be further
optimized through a Design of Experiment (DoE).

2.2. Cell Line and Culture Propagation

The first case study involved cell culture data at FujifilmDiosynth
Biotechnologies, recorded at the facility in RTP, NC, USA and an-
alyzed in Billingham, UK. The second case study involved cell
culture data recorded by AstraZeneca at their facility in Cam-
bridge, UK. The cell lines utilized in these experiments were
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recombinant Chinese hamster ovary (CHO) expressing high lev-
els of a protein. The cells were cultured in defined CHO media
and maintained at 37 °C under 5% carbon dioxide, shaken at a
constant RPM, and passaged 2–3 times per week for propagation
and scale-up.

2.3. Bioreactor Systems

Scale-up experiments were performed at the 2 and 200 L scale
in standard glass and stainless steel bioreactors, respectively.
Two clone screening experiments were conducted on the ambr15
micro-bioreactors (TAP Biosystems, Greenville, DE) with 24 sin-
gle vessels and operated between 11 and 15 mL working volume.

2.4. Cell Culture Process

Initial seeding density for all culture stations was between 1–10 ×
105 cells mL−1. Nutrient feeding followed a standard fed-batch
protocol. The dissolved oxygen set point was set between 30%
and 60% andmaintained by gassing with air and oxygen. The ag-
itator speed was systematically ramped up for all experiments to
maintain the dissolved oxygen set point. Temperature and pH set
points of all experiments were maintained between 35–37 °C and
6.8–7.2 °C, respectively. For each bioreactor, antifoam was added
as required. Daily at-line samples were analyzed for metabolic
profiles and VCC for all experiments.

2.5. Software

Missing data and predictive regression algorithms were per-
formed using Matlab 2018b (The MathWorks,Inc., Natick, MA).
R, an open source software, was used for TOST and PCA calcu-
lations (R Foundation for Statistical Computing, Version 3.4.4,
Vienna, Austria).

2.6. Case Studies—Application of MVDA Methodology

2.6.1. Case Study 1—Small Data: Quantify Equivalence with a
Limited Number of Batches

The first case study features a mammalian cell culture process
that was scaled up from 2 to 200 L and operated at similar pro-
cess conditions. Historically, comparability is determined using
a variety of statistical techniques. The most popular ones are the
two-sample t-test, statistical tolerance intervals, and the two one-
sided test (TOST). The t-test fails to provide a measure of equiva-
lence, since the absence of an evidence to declare inequivalence
does not equate equivalence. Additionally, tolerance intervals pro-
vide a statistical measure of the upper and lower bounds where a
certain portion of the data is expected to lie but does not quantify
the comparability of new data. The TOST is specially designed to
assess comparability of data and is the preferred statistical equiv-
alence testing method within the pharmaceutical sector. For ex-
ample, the TOST correctly identified a statistical difference be-

tween the performance of a tablet dissolution test carried out in
a development laboratory compared to a contract manufacture
organization whereas the two-sample t-test incorrectly declared
these two methods equal.[33]

The MVDA methodology (Figure 1) was implemented to add
more depth to the current practice of equivalence testing by turn-
ing an otherwise univariate TOST into a multivariate one by uti-
lizing the full wealth of the time-series data and increasing theN
numbers and confidence of the equivalence testing. The TOST
is therefore well suited to quantify equivalence between the two
scales. The test calculates the confidence interval between their
means and standard deviations while taking into consideration
the number of batches at each scale.[33] The methodology to em-
ploy the TOST on time-profiles is described in great detail by
diCesare et al.[34] All variables used in the analysis can be seen
in Figure 3.
Visualization and Filtering: First, the data set was inspected

visually to generate leads on how to solve the challenge at hand.
Typically, the analysis starts by drilling down from the large data
set into a more compact version that contains all necessary ob-
servations for the required analysis, without redundant or irrele-
vant information. Variables with large proportions ofmissing val-
ues were removed and variables not available in both scales were
removed to ensure consistent data sets. Finally, scale-dependent
process variables such as RPMwere by default not equivalent dur-
ing scale-up and were excluded from this analysis. More informa-
tion on selection of variables for scale-up can be found in refs. [8]
and [35].
Feature Generation and Data Processing: Features such as spe-

cific productivity, integrated VCC, and lactic acid productionwere
calculated and appended to the data set. A Savitzky-Golay/pchip
interpolation or smoothing step was implemented on noisy vari-
ables. All units were changed to a consistent format (i.e., g L−1 in-
stead ofmM, and L instead ofmL), to ensure comparability across
runs. Finally, the consolidated data set was repeatedly visualized
with scatter plots to ensure all filtering and data pre-processing
operations were carried out as expected. The data set contained
data from day 2–12, had 17 variables, of which 3 were derived
variables (IVCC, qLac, qP, see ref. [36] for their calculation) and
were labeled with identifiers with one group containing the eight
batches at 2 L scale and the second group containing one batch
at the 200 L scale.
Batch-Wise Unfolding Per Day: The consolidated data set was

subdivided for every measurement day, resulting in a batch-wise
unfolded matrix with rows representing different batches and
columns representing variables, this was calculated for each day.
The unfolded subset had dimensions equal to a 9× 17matrix and
was utilized for the next operation.
Principal Component Analysis: Iteratively for every measure-

ment day, every variable’s data was mean-centered and scaled
by dividing by the standard deviation before calculating loadings
and scores with PCA using R’s FactoMineR package version 1.34.
PCA calculates the weight of particular variables in each principal
component (PC) and both their cumulative and individual vari-
ance explained in percent were used to calculate the new metric
of equivalence. Although more PCs could be calculated, the de-
fault threshold was set to 5 PCs in this study. Using more than
5 PCs did not improve the analysis because only a small amount
of variance was attributed to additional PCs. Meta-information
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on the quality of the PCA (how much variance was explained by
the PCs and which variables contributed to individual PCs) were
stored for later re-combination with the outcomes of the TOST.
This procedure was repeated for all measurement days and the
scores with the matrix dimensions 9 × 5 were progressed to the
next step of the analysis.
Multivariate Time-Series TwoOne-Sided Test: Each of the 5 PCs

score matrices was used iteratively as input in R’s TOSTER
package version 0.3 (https://cran.r-project.org/web/packages/
TOSTER/TOSTER.pdf ). TOST is used when the equivalence of
variables (or lack thereof), belonging to two different groups
(here 2 and 200 L), is being tested. Typical inputs into the
TOSTtwo function are: a variable’s mean and its standard de-
viation in both groups, the sample size per variable per group
(the variables in this case are the PC’s scores within one of
the two groups), Cohen’s d, and an alpha level for the statis-
tical quantification of the test. For more details, please refer
to the github repository: (https://github.com/Lakens/TOSTER/
blob/master/R/TOSTtwo.R). Some inputs into the TOST require
special consideration, such as the 200 L groupwith only one value
per variable per day available for analysis. The standard deviation
was calculated from the PCA scores from the 2 L group and also
used for the 200 L group. The mean of the PCA scores was taken
as the mean for the 2 L group, while the single PCA score value
from the 200 L group was taken as the mean for the 200 L group.
Furthermore, in order to represent a point value without uncer-
tainty spread, an artificially high value of n = 106 was well suited
without compromising the integrity of the TOST results.
Finally, TOST requires an input of statistical confidence met-

rics: alpha represents the level of significance of the test, taken
here as 0.025, and the standard deviation multiplier (SD×) re-
lates to the desired level of comparability between the groups,
taken here as 2𝜎. The standard deviations are utilized to calcu-
late the Cohen’s d margin, one of the most important metrics
that will support or refute equivalence in the TOST.[37] Cohen’s d
is a measure of the distance between two means, measured here
in standard deviations[38] (see Supporting Information Section).
Quantification of Individual and Global Equivalence: Testing

equivalence of the variance between two scales with PCA scores
(instead of measurement variables as input) allows calculation
of variable contribution (e.g., pH, LAC…) toward equivalence be-
tween two scales. For any given variable, only the variable’s per-
centile weights in an equivalent PC (the scores that passed the
TOST) were summed up, while the scores from PCs, which did
not pass the TOST, were not. Therefore, only variables that con-
tain the most variance in the process were considered, and their
individual contributions were reflected as a percentage. In other
words, the comparability between variables across the different
scales can now be quantified in percent, which is defined here
as the variable’s individual equivalence (IEQ) score. More details
on the calculation of the IEQ is provided in Supporting Infor-
mation Section. Furthermore, these individual time-series equiv-
alence scores were averaged to generate a single global equiva-
lence value, defining the overall level of equivalence between the
two groups throughout the duration of the cell culture run. A re-
sult matrix was created which holds all permutations enabling
the M-TOST results to be plotted. Combinations of 25 different
alpha and SD × conditions, 17 variables, and 10 days of process
information, sum up to a total of 4250 results, which provide a

new level of detail to the previously rather small data set. The sen-
sitivity of the method can be gauged when different alpha and
SD × values are used as input for the TOST, which can be re-
viewed as CSV file in the Supporting Information Section.

2.6.2. Case Study 2—Big Data: Predictive Modeling of Missing Data
in High-Throughput Ambr15

The first ambr15 clone screening experiment contained missing
data in VCC from day 6–10. The second screening experiment
had nomissing data and served to validate this missing data algo-
rithm. The MVDA methodology outlined in Figure 1 is followed
to pre-process the data. All the relevant on-line and off-line data
were visualized, collated, and restructured similarly to the pre-
vious case study. The noise associated with the time-series mea-
surements was minimized through a Savitzky–Golay smoothing
algorithm. To handle the sparse matrices that are generated by
feed additions and gas flow rate variables, their cumulative sum
was calculated. These newly created feature vectors are easier to
interpret and analyze. Furthermore, the OTR was calculated here
as a feature vector. To predict themissing VCC values a time-wise
unfolded algorithm was applied to the data set.
Characterization of Missing Data: There are two distinct fea-

tures which characterize missing data: the missing data pattern
referring to the configuration of missing data within the data
set and the missing data mechanism referring to relationships
between the measured variables and the probability of missing
data.[39,40] The five primary missing data patterns are: 1) univari-
ate pattern, data is missing from single variable; 2) multivariate
pattern, data is missing from multiple variables; 3) monotone
pattern, all data from a specific point till the end of an experi-
ment is missing, that is, as a result of probe failure during an ex-
periment; 4) general pattern, data is missing at random with no
particular pattern; 5) planned missing pattern, not all data is col-
lected due to experiment design, that is, to reduce burden of ana-
lytics. The threemechanisms describing the cause of themissing
data are: 1) missing at random (MAR) where there is a systemic
relationship between one or more of the measured variables and
the probability of missing data; 2) missing completely at random
(MCAR) indicates no relationship between any of the measured
variables and the probability of missing data; 3) missing not at
random (MNAR) defines where the probability of missing data
depends on the missing data itself. Depending on the missing
data pattern and mechanism, there are multiple missing data al-
gorithms to apply which are outlined in detail in refs. [39,40].
Missing Data Algorithms within Bioprocessing: There are two

primary strategies to deal with missing data, these include igno-
rance (discarding incomplete data sets) and imputation.[40] When
the missing data contains important information essential for
subsequent analysis, predicting these missing values through
imputation is required.
The available imputation techniques are based on univariate,

multivariate, or Bayesian statistics.
Simple univariate techniques are advantageous due to their

simplicity and infer missing data through linear interpolation
methods or replacing with simple approximations such as mean
or nearest neighbor. These predictions are typically only valid
for linear variables or to predict small sections of missing data.
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More advanced techniques to predict missing data include inter-
polation using an inverse distance weight (IDW) method. Nancy
et al.[41] extended this technique to predict some missing time-
series clinical trail observations through a concept of tolerance
rough set (TR) and particle size optimization (PSO). Bayesian
methods can predict missing data by estimating a probability
distribution of the missing data and benefit by enabling un-
certainty and confidence levels to be selected for the predicted
data measurements. These methods were successfully applied
to predict missing data within gene expression profile data.[42]

The most routinely applied multivariate techniques rely on PCA
or PLS and exploit the correlations between the missing data
and measured variables. These techniques are well-established
methods within the biopharmaceutical industry[43–45] and per-
form well with moderate amounts of missing data (up to 20%
of the measurements[46]). This paper focuses on the generation
of a PLS model based on its proven ability within industry to
enable on-line predictions of off-line variables[47,48] and miss-
ing data.[18,19] Additionally two linear interpolation methods (lin-
ear and cubic splines) were applied to compare against the PLS
model predictions.
The PLS model was developed as described by Geladi and

Kowalski 1986.[49] An individual PLS model was developed for
each cell culture run. Initially, all the J on-line and off-line vari-
ables were interpolated to a fixed length equal to K. This process
simplifies the generation of the model and subsequent analysis,
however this procedure does not account for any potential non-
linearities between each off-linemeasurement. Each interpolated
variable (1×K) was concatenated to form a 2Ddata (J×K)matrix.
The PLS model was built using all available on-line and off-line
process variables (summarized in Figure 4B) and selected four la-
tent variables based on minimizing the root mean squared error
(RMSE) of the calibration data set. Additionally a cross validation
procedure was implemented to ensure the model was not over-
fitted to the data. The four latent variables captured 81% of the
total variance in the X-block and 99% in the Y-block. Taking ad-
ditional latent variables unnecessarily increased the complexity
of the PLS model with only a marginal decrease in the RMSE. A
similar procedure was carried for the second ambr15 except the
calibration data set used the time series data from days 0 to 6 and
10 to 14 with the validation data set using the known VCC values
recorded on days 6–10. The linear regression and cubic splines
were generated as a function of time and were compared against
the PLS model predictions.
Cell Line Ranking Algorithm: To quantify the accuracy of the

different missing data algorithms the newly generated VCC pre-
dictions of the second ambr15 were used to rank the cell lines in
ascending order based on their maximum VCD achieved. This
was then compared to the actual ranking of the cell lines using the
known VCC values. The similarities between the different rank-
ings were assessed by the Kendal Ranking coefficient (𝜏).

𝜏 =
(
Number of agreements in order

)
− number of disagreements in order

(n) (n − 1) ∕2

(1)

where n is the number of cell lines to be ranked. The Kendall rank
correlation coefficient evaluates the similarity between different

ranking algorithms applied to the same set of objects. A value
equal to 1 represents a perfect positive relationship, 0 represents
no relationship, and −1 represents a perfect inverse relationship
between the ranking lists. Typically, additional metrics are also
used for lead clone selection which includes but are not limited
to productivity (titre and specific growth rates), product inhibi-
tion (lactate and ammonia), and product quality (aggregation and
fragment concentrations) considerations.[50]

3. Results and Discussion

3.1. Case Study 1—Small Data

Typically, scale-up studies focus on comparable oxygen trans-
fer rates, mixing times, and geometry parameters.[35,51–53] How-
ever, biopharmaceutical facilities are not normally designed ac-
cording to a fixed scale-up criteria but are dependent on sep-
arate process development and optimization strategies at each
scale, which can differ for products, processes, or facilities.[54]

Therefore, a metric to quantify equivalence of process perfor-
mance between the two scales is required. Routinely equivalence
can be judged by either overlaying time-series plots to visually
judge the similarity, or with a series of univariate TOST con-
ducted on end-point key performance indicators (KPIs). The first
method lacks objectivity, while the second method reduces the
whole data set to a comparison of just a few endpoints. We ap-
plied the MVDA methodology (Figure 1) to add more depth to
the current practice of equivalence testing by turning an other-
wise univariate TOST into a multivariate one that utilizes the en-
tire time-series data set. The TOST is an ideal equivalence test as
the aim of this study is not to show differences, but to conclude
similarity.[55]

Here, TOST was combined with the previously calculated PCA
scores of either the 2 or 200 L scale group. Our extension was
its combination with another well-established algorithm, PCA.
PCA was selected as it is one of the most commonly used MVDA
techniques within the biopharmaceutical sector and can help vi-
sualize, interpret, and quantify the variance of complex data sets
using a reduced dimensional space. PCA was implemented here
to calculate the global equivalence between the two groups. In
brief, the application of a multivariate time-series TOST enables
a quick and clear picture of a comparison of the variance in these
variables that are most and least equivalent, defined by a single
percentage metric.
Figure 2A gives an overview of the TOST equivalence deter-

mination implemented for case study 1. Figure 2B outlines a
summary of the TOST equivalence statistical test results from
day 2–12 for each principal component. The global equivalence,
averaging all TPVs, was 81%. This simple metric summarizes
the overall equivalence between the 200 and 2 L systems tak-
ing into account all the time-series data recorded by the 17 vari-
ables used in the test. The variables of both systems are found to
be equivalent throughout the duration of the runs as shown in
Figure 2B.
According to the multivariate TOST, the five variables with the

largest average level of individual equivalence (IEQ) were VCC,
BGApH, BGApCO2, Titre, and pO2, while the five least equiva-
lent variables were GLU, GLN, LAC, pH, and qp (Figure 3). The
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Figure 2. A) Outline of TOST determination with statistical equivalence defined by the difference in means and confidence limits of the two groups lying
within predefined ranges. Non-equivalence is determined by the difference in means and confidence limits of the two groups lying outside the predefined
ranges. In this case study, the predefined ranges were taken as two standard deviations (±2𝜎). B) A summary of the TOST equivalence statistical result
based on comparing the scores of the 200 and 2 L systems recorded from day 2–12 for each principal component (PC). Total passed variance (TPV)
sums up all variance that was explained by the PCs that passed the TOST.

biggest differences were related to metabolic markers, especially
amino acids, such as glutamate, glutamine, lactic acid, and am-
monia, but also qLac and qP.
Two versions of pH measurements were included in the data

set one from the off-line Blood Gas Analyzer (BGApH), and the
other from the on-line pH probe (pH). As can be seen from
Figure 3, pHmeasurements between the twomethods are signif-
icant different. The pHmeasured by the (on-line) probe had some
of the lowest equivalence scores, while the bench-top BGApH
scored on the opposite spectrum. The on-line pH probe may be
more inaccurate as these probes require frequent recalibration
during the process because of drift,[56] which might be related to
harsher conditions during equipment sterilization. The on-line
pH probe is typically recalibrated taking the off-line pH probe
measurement as the reference and therefore the off-line method
is more accurate. However, both of these measurements should
be included in the equivalence test as the poor performance of the
on-line pH ensures this deviation is further investigated. Possi-
ble differences could be the result of different pH probes used at
the different scales or due to the position of the probe in the 200 L
system. Additional evaluation of these pH deviations should be
carried out to ensure process behavior between the scales is not
affected.
In the case of the variables VCC and Titre, both are highly

equivalent in both scales, which indicate an overall good control
of KPIs. The variable BGApCO2 was not specifically controlled at
either scale butmonitored nevertheless. A large variance of pCO2
in all processes was considered normal and enabled the pCO2 to
have a high IEQ value.
Comparing our analytical findings with the consolidated data,

the same conclusions can be drawn, but in a more objective way.
Our new metric allowed us to quantify equivalence at particular
statistical confidence levels. The scaled-up 200 L process reached
a total equivalence score of 81% at a statistical confidence level of
alpha= 0.025 and SD × of 2𝜎. Testing other statistical confidence
levels in an in-silico DoE, where alpha and SD × were varied, we

found that varying SD × had a stronger impact on overall equiv-
alence than alpha.
Varying alpha between 0.005 and 0.1 while keeping the SD ×

level constant, the following average TPV were obtained: 38–63%
at SD × 1𝜎, 63–78% at SD × 1.5𝜎, 77–84% at SD × 2𝜎, 81–85%
at SD × 2.5𝜎, and 85–88% at SD × 3𝜎. The variance in TPV de-
creased as SD × was increased, while in general higher SD ×
values result in easier passing of the equivalence test, leading to
a higher score of equivalence. Industrial use of SD × 2𝜎, SD ×
2.5𝜎, and SD × 3𝜎 is common, although more precise values
for multiplying SD could be derived.[33] In contrast to other ap-
proaches, where a minimum effect size has to be calculated[57]

or an equivalence limit defined,[58] this work utilizes scores and
loadings of reduced dimensionality to determine equivalence by
TOST. Judging by the results presented here, we found that us-
ing SD × was an appropriate approach. Only little guidance can
be given regarding the choice of alpha and SD ×,[59] and thus the
recommendations of other researchers[60] to report the justifica-
tion of level chosen should be followed. The choice should be
based on the level of statistical confidence required, which will
be guided by the difficulty of establishing equivalence at a given
level. SD × 2𝜎 and alpha 0.025 were used as the statistical scale-
down model equivalence level in this research.
An important test of equivalence is comparability between

product quality at two scales—for this case, a simple TOST may
be sufficient. This contribution’s multivariate TOST focus is on
operating conditions and did not consider end point measure-
ments. However, our approach is to quantify the level of equiva-
lence and variable contribution in percent, resulting in an overall
equivalence score of multiple variables between two groups. In
addition to providing a metric, it helps to quickly identify vari-
ables which are most and least equivalent. This approach could
be applied also in different settings, for example, for other up-
stream processes, such as microbial, attachment cell cultures,
tissues cultures, or downstream operations such as chromatog-
raphy.
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Figure 3. Consolidated time-series data set. Dashed red lines represent the 2 L runs and the solid blue line represents the 200 L run. Percentages describe
the average individual equivalence (IEQ) of each variable over time in descending order.

3.2. Case Study 2—Big Data

High-throughput screening experiments enable rapid and effi-
cient selection of highly productive lead clones.[61] This cell line
screening strategy ensures a highly robust lead clone is selected
that demonstrates high protein expression levels with the neces-
sary phenotypic and product quality attributes while maintain-
ing consistent growth performance metrics across predefined
bioprocess conditions.[62] However, the caveat of operating high-
throughput experiments relates to any technical problems result-
ing in rapid and simultaneous issues to all cell culture runs.[63]

Figure 4A demonstrates the significant challenge of handling
missing data during a cell line selection protocol carried out in
the high-throughput ambr15 system. A technical fault with the
Vi-Cell automated cell viability analyzer resulted in no VCCmea-

surement recorded on day 8. The VCC measurement is defined
as a CPP and is a vital selection criteria for optimum cell line se-
lection. Therefore, these missing VCC time-points compromise
the entire run. Previous missing data algorithms specific to bio-
processing utilize only the available off-line data and single point
measurements of on-line data to infer these missing values,[64]

however the novel approach taken here utilizes both high fre-
quency on-line and low frequency off-line data to predict these
missing values. This approach is advantageous as it exploits all
available data recorded during this time period of missing data.
Figure 4B highlights the available off-line and on-line variables
that were utilized to infer the missing VCC values in addition to
the necessary pre-processing steps required for each variable.
To investigate whether any correlations existed between the

available on-line and off-line variables and the missing VCC
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Figure 4. A) Viable cell concentration (VCC) measurements highlighting missing values on day 8 due to technical fault. B) Summary of pre-processing
requirements for all available on-line and off-line measurements that were utilized to generate the PLS model.

variables, a correlation matrix was generated (Figure 5A). This
matrix highlights the interdependence between some of the on-
line and off-line variables and the VCC values in particular the
gas flow rates (FDO2), RPM, OTR, and titre values which have a
correlation coefficient (R2) close to 0.9. The strengths of these cor-
relations demonstrate the significant potential of these variables
to enable accurate predictions of the missing VCC values. The
missing data is characterized by a monotone pattern as only data
from a single variable ismissing and is classified byMCARmech-
anism. This pattern and mechanism of missing data is highly
suited for established MVDA techniques to exploit the correla-
tions shown in Figure 5A between available measurements and
the missing data. PLS was selected to predict the missing data
based on its versatility and proven ability to handle data contain-
ing both high frequency data (recorded every second) and off-
line data (recorded every 24 h). The PLS model utilized the pre-
processed data outlined in Figure 4B. It was trained using data
from days 0 to 6 and days 10 to 14 and was used to predict the
missing VCC values during days 6–10. The true values of the
missing VCC are irretrievable, and therefore the accuracy of this
PLSmodel to predict thesemeasurements cannot be assessed. In
order to validate this approach, a second data set without miss-
ing values wasmodified. On day 6–10, VCC values were removed
and a PLS model was created as previously described. This en-
abled the accuracy of the predictions to be evaluated. Other sim-
pler methods, including linear regression and cubic splines were
also implemented to compare against the PLSmodel predictions.
A subset of these predictions for the second ambr15 are high-

lighted in Figure 5B. The linear interpolation method poorly
predicts the missing VCCs and fails to capture the nonlineari-
ties inherent to the cell growth profile. The cubic spline gives
a better fit enabling a natural continuation between the miss-
ing VCC measurements, however any significant deviations of
the VCC on day 8 are not captured by these simple interpola-
tion methods. The more advanced PLS model takes advantage of
the strong correlations between the other available process mea-
surements resulting in accurate predictions of the VCCmeasure-

ments. The PLSmodel captures the significant nonlinearities as-
sociated with this variable at this critical time-point. The perfor-
mance of each missing data algorithm is quantified through the
calculation of the RMSE between the predicted and experimen-
tal VCC values in each of the 24 cell culture runs. The PLSmodel
has the lowest RMSE measurement, thus demonstrating the su-
periority of this technique to accurately predict the missing VCC
values.
Previous work has demonstrated the ability of four different

imputationmethods (deletion,mean, nearest neighbor, andmax-
imum likelihood) to predict missing data for time-series data,[65]

they concluded mean imputation yielded the most inaccurate
predictions and the maximum likelihood method was the best
performer. A problem with these imputation models is their in-
ability to predict previous non-observed behavior. Therefore, they
may not predict the observed nonlinear growth patterns observed
in Figure 5B as the cells shift from exponential stage to station-
ary stage.[41] Mante et al.[64] demonstrated the ability of simple
polynomial, logarithmic regression, and mean imputation tech-
niques to successfully predict missing time-series titre data suit-
able for secondary analyses. Therefore, thesemethods can be use-
ful. However, the more advanced MVDA methodologies includ-
ing PLS enable better predictions by leveraging the strong corre-
lations of the other variables recorded during the period of miss-
ing data. The advantage of the PLS algorithm is that it focuses
on maximizing the relationship between the input data and the
response, observed in Figure 5A, which improves the overall pre-
dictions of the missing VCC values.
Figure 5A highlights a number of strong positive correlations,

for example, an R2 value of 0.93 is shown between the viable cell
concentration (VCC) and both the dissolved oxygen gas flowrates
(FDO2) and calculated OTR. Similarly positive correlations were
observed by Casablancas et al.[66] and Fleischer.[67] These linear
relationships demonstrate the importance of the oxygen for cel-
lular growth andmaintenance. The strength of these correlations
enable exploitation for soft-sensor development or advanced con-
trol applications. This was demonstrated by Goldrick et al.[31] to
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Figure 5. A) Correlation between the offline variables (VCC, Lac, and Titre) and the available on-line measurements (Temp, RPM, PH, DO2, FDO2,
FGluc, FBase,Vol, and OTR). Circle size indicates strength of correlation and numbers indicate R2 value, color-coded for proportional (blue), and inverse
(red) correlation. B) Performance of predicted VCC values versus measured VCC values (blue squares), the legend shows different predictions: PLS
predictions (triangles), linear predictions (squares), and spline fit (diamonds). C) Table highlighting the accuracy of the three missing data algorithms
and their ability to rank each of the 24 cell culture runs in the correct order.

predict the glucose concentration on-line on a mammalian cell
culture based off a strong correlation between the cumulative
oxygen transfer rate and the cumulative glucose consumed. This
soft-sensor was incorporated into a control algorithm enabling
glucose concentration to be controlled to a fixed set-point. The
correlations observed in this work could be further exploited to
predict titre concertation, in particular the OTR, which had a R2

value of 0.93. Previous linear correlations were also observed be-
tween titre and OUR during the cultivation of mammalian cell
cultures.[68]

Furthermore, the predicted missing VCC values enabled the
maximumVCC values to be utilized as a key performance indica-
tor in this cell line ranking protocol. The accuracy of the missing
data algorithms was compared to the true values recorded on the
second ambr15 data set as summarized in Figure 5C. The rank-
ing order of each missing data algorithm is shown in Figure S1,
Supporting Information, and quantified using the nonparamet-
ric Kendall rank correlation coefficient (Equation (1)). The VCC
predictions generated by the PLS algorithm resulted in the high-
est Kendall rank coefficient (0.93) and ranked the top nine cell
lines correctly in comparison to the true rankings utilizing the
complete VCC data set. Both the linear and spline regression
methods had a similar Kendall rank coefficient equal to ≈0.88
and were able to effectively rank the top five cell lines except

not in the correct order. Thus both the spline and linear miss-
ing data algorithms can give an approximate estimate of missing
data measurements, however for more confident predictions the
PLS model significantly outperforms both methods.
The proposedmethodology is highly transferable across scales

and processes. The PLS model generated in this work only re-
quires a representative data set where both the on-line and cor-
responding off-line data are available to generate the necessary
correlation enabling predictions of additional off-line variables.
A limitation of the PLS model is the challenge of quantifying the
contribution of the measured variables toward the prediction of
the missing data. This involves the generation of the variable of
importance (VIP) graph as described in ref. [17].

4. Conclusions

This contribution outlines a methodology for effective evaluation
of complex multivariate biopharmaceutical data. This MVDA
methodology outlines important data pre-processing, restructur-
ing, and visualization steps. Visualizing data is a recurrent ac-
tivity and took a central role in our MVDA methodology (Fig-
ure 1). To demonstrate the benefits of following this MVDA
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methodology, two challenging case studies relevant to real-world
biopharmaceutical problems were presented.
The first case study highlights the application of the MVDA

methodology to develop a new quantification of equivalence,
when only a very small data set was available. The solution was
to process the data into a more suitable structure, where time
profiles were tested, instead of comparing only endpoints. In or-
der to work with meaningful data, a consolidated data set was
obtained after adding features, smoothing, filtering, and normal-
ization steps. Data unfolding techniques were combined with ro-
bust statistical tools such as PCA and TOST, and finally a new
equivalence metric was developed. This new metric could quan-
tify the similarity between a number of scale-down runs and a
single large-scale run at different levels of statistical significance.
In the second case study, the MVDA methodology was im-

plemented to infer missing VCC values that were essential to
a cloning study carried out in the ambr15 system. To quantify
the accuracy of three different missing data algorithms, a sec-
ond ambr15 system was used with the predicted VCC values
compared against the experimentally recorded VCC values. The
PLSmodel outperformed both the spline and linear interpolation
methods with superior accuracy. The PLS model was able to ex-
ploit the existing correlations between the VCC values and other
recorded on-line and off-line measurements. Furthermore, these
predictions enabled the top nine cell lines to be ranked correctly
based on their maximum VCC values. This work demonstrates
the benefits of correctly implementedMVDA to help recover pre-
viously thought failed experiments resulting in significant labor,
resource, and time savings.
In summary, two highly diverse and representative biophar-

maceutical problems could be solved through the implementa-
tion of MVDA solutions. Our proposed methodology takes the
reader through our own examples of data processing, data visu-
alization, and data analysis. The presented case studies demon-
strate the power of following a structured andmethodical MVDA
approach. We believe it will help researchers to find insights hid-
den within complex data sets faster and more efficiently.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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